Rong Xu | f430ae4 | 2015-12-09 18:08:16 +0000 | [diff] [blame] | 1 | //===-- CFGMST.h - Minimum Spanning Tree for CFG ----------------*- C++ -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements a Union-find algorithm to compute Minimum Spanning Tree |
| 11 | // for a given CFG. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "llvm/ADT/DenseMap.h" |
| 16 | #include "llvm/ADT/STLExtras.h" |
| 17 | #include "llvm/Analysis/BlockFrequencyInfo.h" |
| 18 | #include "llvm/Analysis/BranchProbabilityInfo.h" |
| 19 | #include "llvm/Analysis/CFG.h" |
| 20 | #include "llvm/Support/BranchProbability.h" |
| 21 | #include "llvm/Support/Debug.h" |
| 22 | #include "llvm/Support/raw_ostream.h" |
| 23 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
Rong Xu | f430ae4 | 2015-12-09 18:08:16 +0000 | [diff] [blame] | 24 | #include <utility> |
| 25 | #include <vector> |
| 26 | |
| 27 | namespace llvm { |
| 28 | |
| 29 | #define DEBUG_TYPE "cfgmst" |
| 30 | |
| 31 | /// \brief An union-find based Minimum Spanning Tree for CFG |
| 32 | /// |
| 33 | /// Implements a Union-find algorithm to compute Minimum Spanning Tree |
| 34 | /// for a given CFG. |
| 35 | template <class Edge, class BBInfo> class CFGMST { |
| 36 | public: |
| 37 | Function &F; |
| 38 | |
| 39 | // Store all the edges in CFG. It may contain some stale edges |
| 40 | // when Removed is set. |
| 41 | std::vector<std::unique_ptr<Edge>> AllEdges; |
| 42 | |
| 43 | // This map records the auxiliary information for each BB. |
| 44 | DenseMap<const BasicBlock *, std::unique_ptr<BBInfo>> BBInfos; |
| 45 | |
| 46 | // Find the root group of the G and compress the path from G to the root. |
| 47 | BBInfo *findAndCompressGroup(BBInfo *G) { |
| 48 | if (G->Group != G) |
| 49 | G->Group = findAndCompressGroup(static_cast<BBInfo *>(G->Group)); |
| 50 | return static_cast<BBInfo *>(G->Group); |
| 51 | } |
| 52 | |
| 53 | // Union BB1 and BB2 into the same group and return true. |
| 54 | // Returns false if BB1 and BB2 are already in the same group. |
| 55 | bool unionGroups(const BasicBlock *BB1, const BasicBlock *BB2) { |
| 56 | BBInfo *BB1G = findAndCompressGroup(&getBBInfo(BB1)); |
| 57 | BBInfo *BB2G = findAndCompressGroup(&getBBInfo(BB2)); |
| 58 | |
| 59 | if (BB1G == BB2G) |
| 60 | return false; |
| 61 | |
| 62 | // Make the smaller rank tree a direct child or the root of high rank tree. |
| 63 | if (BB1G->Rank < BB2G->Rank) |
| 64 | BB1G->Group = BB2G; |
| 65 | else { |
| 66 | BB2G->Group = BB1G; |
| 67 | // If the ranks are the same, increment root of one tree by one. |
| 68 | if (BB1G->Rank == BB2G->Rank) |
| 69 | BB1G->Rank++; |
| 70 | } |
| 71 | return true; |
| 72 | } |
| 73 | |
| 74 | // Give BB, return the auxiliary information. |
| 75 | BBInfo &getBBInfo(const BasicBlock *BB) const { |
| 76 | auto It = BBInfos.find(BB); |
| 77 | assert(It->second.get() != nullptr); |
| 78 | return *It->second.get(); |
| 79 | } |
| 80 | |
Rong Xu | a5b5745 | 2016-12-02 19:10:29 +0000 | [diff] [blame^] | 81 | // Give BB, return the auxiliary information if it's available. |
| 82 | BBInfo *findBBInfo(const BasicBlock *BB) const { |
| 83 | auto It = BBInfos.find(BB); |
| 84 | if (It == BBInfos.end()) |
| 85 | return nullptr; |
| 86 | return It->second.get(); |
| 87 | } |
| 88 | |
Rong Xu | f430ae4 | 2015-12-09 18:08:16 +0000 | [diff] [blame] | 89 | // Traverse the CFG using a stack. Find all the edges and assign the weight. |
| 90 | // Edges with large weight will be put into MST first so they are less likely |
| 91 | // to be instrumented. |
| 92 | void buildEdges() { |
| 93 | DEBUG(dbgs() << "Build Edge on " << F.getName() << "\n"); |
| 94 | |
| 95 | const BasicBlock *BB = &(F.getEntryBlock()); |
| 96 | uint64_t EntryWeight = (BFI != nullptr ? BFI->getEntryFreq() : 2); |
| 97 | // Add a fake edge to the entry. |
| 98 | addEdge(nullptr, BB, EntryWeight); |
| 99 | |
| 100 | // Special handling for single BB functions. |
| 101 | if (succ_empty(BB)) { |
| 102 | addEdge(BB, nullptr, EntryWeight); |
| 103 | return; |
| 104 | } |
| 105 | |
| 106 | static const uint32_t CriticalEdgeMultiplier = 1000; |
| 107 | |
| 108 | for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { |
| 109 | TerminatorInst *TI = BB->getTerminator(); |
| 110 | uint64_t BBWeight = |
| 111 | (BFI != nullptr ? BFI->getBlockFreq(&*BB).getFrequency() : 2); |
| 112 | uint64_t Weight = 2; |
| 113 | if (int successors = TI->getNumSuccessors()) { |
| 114 | for (int i = 0; i != successors; ++i) { |
| 115 | BasicBlock *TargetBB = TI->getSuccessor(i); |
| 116 | bool Critical = isCriticalEdge(TI, i); |
| 117 | uint64_t scaleFactor = BBWeight; |
| 118 | if (Critical) { |
| 119 | if (scaleFactor < UINT64_MAX / CriticalEdgeMultiplier) |
| 120 | scaleFactor *= CriticalEdgeMultiplier; |
| 121 | else |
| 122 | scaleFactor = UINT64_MAX; |
| 123 | } |
| 124 | if (BPI != nullptr) |
| 125 | Weight = BPI->getEdgeProbability(&*BB, TargetBB).scale(scaleFactor); |
| 126 | addEdge(&*BB, TargetBB, Weight).IsCritical = Critical; |
| 127 | DEBUG(dbgs() << " Edge: from " << BB->getName() << " to " |
| 128 | << TargetBB->getName() << " w=" << Weight << "\n"); |
| 129 | } |
| 130 | } else { |
| 131 | addEdge(&*BB, nullptr, BBWeight); |
| 132 | DEBUG(dbgs() << " Edge: from " << BB->getName() << " to exit" |
| 133 | << " w = " << BBWeight << "\n"); |
| 134 | } |
| 135 | } |
| 136 | } |
| 137 | |
| 138 | // Sort CFG edges based on its weight. |
| 139 | void sortEdgesByWeight() { |
| 140 | std::stable_sort(AllEdges.begin(), AllEdges.end(), |
| 141 | [](const std::unique_ptr<Edge> &Edge1, |
| 142 | const std::unique_ptr<Edge> &Edge2) { |
| 143 | return Edge1->Weight > Edge2->Weight; |
| 144 | }); |
| 145 | } |
| 146 | |
| 147 | // Traverse all the edges and compute the Minimum Weight Spanning Tree |
| 148 | // using union-find algorithm. |
| 149 | void computeMinimumSpanningTree() { |
| 150 | // First, put all the critical edge with landing-pad as the Dest to MST. |
| 151 | // This works around the insufficient support of critical edges split |
| 152 | // when destination BB is a landing pad. |
| 153 | for (auto &Ei : AllEdges) { |
| 154 | if (Ei->Removed) |
| 155 | continue; |
| 156 | if (Ei->IsCritical) { |
| 157 | if (Ei->DestBB && Ei->DestBB->isLandingPad()) { |
| 158 | if (unionGroups(Ei->SrcBB, Ei->DestBB)) |
| 159 | Ei->InMST = true; |
| 160 | } |
| 161 | } |
| 162 | } |
| 163 | |
| 164 | for (auto &Ei : AllEdges) { |
| 165 | if (Ei->Removed) |
| 166 | continue; |
| 167 | if (unionGroups(Ei->SrcBB, Ei->DestBB)) |
| 168 | Ei->InMST = true; |
| 169 | } |
| 170 | } |
| 171 | |
| 172 | // Dump the Debug information about the instrumentation. |
| 173 | void dumpEdges(raw_ostream &OS, const Twine &Message) const { |
| 174 | if (!Message.str().empty()) |
| 175 | OS << Message << "\n"; |
| 176 | OS << " Number of Basic Blocks: " << BBInfos.size() << "\n"; |
| 177 | for (auto &BI : BBInfos) { |
| 178 | const BasicBlock *BB = BI.first; |
| 179 | OS << " BB: " << (BB == nullptr ? "FakeNode" : BB->getName()) << " " |
| 180 | << BI.second->infoString() << "\n"; |
| 181 | } |
| 182 | |
| 183 | OS << " Number of Edges: " << AllEdges.size() |
| 184 | << " (*: Instrument, C: CriticalEdge, -: Removed)\n"; |
| 185 | uint32_t Count = 0; |
| 186 | for (auto &EI : AllEdges) |
| 187 | OS << " Edge " << Count++ << ": " << getBBInfo(EI->SrcBB).Index << "-->" |
| 188 | << getBBInfo(EI->DestBB).Index << EI->infoString() << "\n"; |
| 189 | } |
| 190 | |
| 191 | // Add an edge to AllEdges with weight W. |
| 192 | Edge &addEdge(const BasicBlock *Src, const BasicBlock *Dest, uint64_t W) { |
| 193 | uint32_t Index = BBInfos.size(); |
| 194 | auto Iter = BBInfos.end(); |
| 195 | bool Inserted; |
| 196 | std::tie(Iter, Inserted) = BBInfos.insert(std::make_pair(Src, nullptr)); |
| 197 | if (Inserted) { |
| 198 | // Newly inserted, update the real info. |
| 199 | Iter->second = std::move(llvm::make_unique<BBInfo>(Index)); |
| 200 | Index++; |
| 201 | } |
| 202 | std::tie(Iter, Inserted) = BBInfos.insert(std::make_pair(Dest, nullptr)); |
| 203 | if (Inserted) |
| 204 | // Newly inserted, update the real info. |
| 205 | Iter->second = std::move(llvm::make_unique<BBInfo>(Index)); |
| 206 | AllEdges.emplace_back(new Edge(Src, Dest, W)); |
| 207 | return *AllEdges.back(); |
| 208 | } |
| 209 | |
| 210 | BranchProbabilityInfo *BPI; |
| 211 | BlockFrequencyInfo *BFI; |
| 212 | |
| 213 | public: |
| 214 | CFGMST(Function &Func, BranchProbabilityInfo *BPI_ = nullptr, |
| 215 | BlockFrequencyInfo *BFI_ = nullptr) |
| 216 | : F(Func), BPI(BPI_), BFI(BFI_) { |
| 217 | buildEdges(); |
| 218 | sortEdgesByWeight(); |
| 219 | computeMinimumSpanningTree(); |
| 220 | } |
| 221 | }; |
| 222 | |
| 223 | #undef DEBUG_TYPE // "cfgmst" |
| 224 | } // end namespace llvm |