Jim Cownie | 5e8470a | 2013-09-27 10:38:44 +0000 | [diff] [blame] | 1 | /* |
| 2 | * kmp_affinity.cpp -- affinity management |
Jim Cownie | 181b4bb | 2013-12-23 17:28:57 +0000 | [diff] [blame] | 3 | * $Revision: 42810 $ |
| 4 | * $Date: 2013-11-07 12:06:33 -0600 (Thu, 07 Nov 2013) $ |
Jim Cownie | 5e8470a | 2013-09-27 10:38:44 +0000 | [diff] [blame] | 5 | */ |
| 6 | |
| 7 | |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // The LLVM Compiler Infrastructure |
| 11 | // |
| 12 | // This file is dual licensed under the MIT and the University of Illinois Open |
| 13 | // Source Licenses. See LICENSE.txt for details. |
| 14 | // |
| 15 | //===----------------------------------------------------------------------===// |
| 16 | |
| 17 | |
| 18 | #include "kmp.h" |
| 19 | #include "kmp_i18n.h" |
| 20 | #include "kmp_io.h" |
| 21 | #include "kmp_str.h" |
| 22 | |
| 23 | |
| 24 | #if KMP_OS_WINDOWS || KMP_OS_LINUX |
| 25 | |
| 26 | // |
| 27 | // Print the affinity mask to the character array in a pretty format. |
| 28 | // |
| 29 | char * |
| 30 | __kmp_affinity_print_mask(char *buf, int buf_len, kmp_affin_mask_t *mask) |
| 31 | { |
| 32 | KMP_ASSERT(buf_len >= 40); |
| 33 | char *scan = buf; |
| 34 | char *end = buf + buf_len - 1; |
| 35 | |
| 36 | // |
| 37 | // Find first element / check for empty set. |
| 38 | // |
| 39 | size_t i; |
| 40 | for (i = 0; i < KMP_CPU_SETSIZE; i++) { |
| 41 | if (KMP_CPU_ISSET(i, mask)) { |
| 42 | break; |
| 43 | } |
| 44 | } |
| 45 | if (i == KMP_CPU_SETSIZE) { |
| 46 | sprintf(scan, "{<empty>}"); |
| 47 | while (*scan != '\0') scan++; |
| 48 | KMP_ASSERT(scan <= end); |
| 49 | return buf; |
| 50 | } |
| 51 | |
| 52 | sprintf(scan, "{%ld", i); |
| 53 | while (*scan != '\0') scan++; |
| 54 | i++; |
| 55 | for (; i < KMP_CPU_SETSIZE; i++) { |
| 56 | if (! KMP_CPU_ISSET(i, mask)) { |
| 57 | continue; |
| 58 | } |
| 59 | |
| 60 | // |
| 61 | // Check for buffer overflow. A string of the form ",<n>" will have |
| 62 | // at most 10 characters, plus we want to leave room to print ",...}" |
| 63 | // if the set is too large to print for a total of 15 characters. |
| 64 | // We already left room for '\0' in setting end. |
| 65 | // |
| 66 | if (end - scan < 15) { |
| 67 | break; |
| 68 | } |
| 69 | sprintf(scan, ",%-ld", i); |
| 70 | while (*scan != '\0') scan++; |
| 71 | } |
| 72 | if (i < KMP_CPU_SETSIZE) { |
| 73 | sprintf(scan, ",..."); |
| 74 | while (*scan != '\0') scan++; |
| 75 | } |
| 76 | sprintf(scan, "}"); |
| 77 | while (*scan != '\0') scan++; |
| 78 | KMP_ASSERT(scan <= end); |
| 79 | return buf; |
| 80 | } |
| 81 | |
| 82 | |
| 83 | void |
| 84 | __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) |
| 85 | { |
| 86 | KMP_CPU_ZERO(mask); |
| 87 | |
| 88 | # if KMP_OS_WINDOWS && KMP_ARCH_X86_64 |
| 89 | |
| 90 | if (__kmp_num_proc_groups > 1) { |
| 91 | int group; |
| 92 | struct GROUP_AFFINITY ga; |
| 93 | KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL); |
| 94 | for (group = 0; group < __kmp_num_proc_groups; group++) { |
| 95 | int i; |
| 96 | int num = __kmp_GetActiveProcessorCount(group); |
| 97 | for (i = 0; i < num; i++) { |
| 98 | KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask); |
| 99 | } |
| 100 | } |
| 101 | } |
| 102 | else |
| 103 | |
| 104 | # endif /* KMP_OS_WINDOWS && KMP_ARCH_X86_64 */ |
| 105 | |
| 106 | { |
| 107 | int proc; |
| 108 | for (proc = 0; proc < __kmp_xproc; proc++) { |
| 109 | KMP_CPU_SET(proc, mask); |
| 110 | } |
| 111 | } |
| 112 | } |
| 113 | |
| 114 | |
| 115 | // |
| 116 | // In Linux* OS debug & cover (-O0) builds, we need to avoid inline member |
| 117 | // functions. |
| 118 | // |
| 119 | // The icc codegen emits sections with extremely long names, of the form |
| 120 | // ".gnu.linkonce.<mangled_name>". There seems to have been a linker bug |
| 121 | // introduced between GNU ld version 2.14.90.0.4 and 2.15.92.0.2 involving |
| 122 | // some sort of memory corruption or table overflow that is triggered by |
| 123 | // these long strings. I checked the latest version of the linker - |
| 124 | // GNU ld (Linux* OS/GNU Binutils) 2.18.50.0.7.20080422 - and the bug is not |
| 125 | // fixed. |
| 126 | // |
| 127 | // Unfortunately, my attempts to reproduce it in a smaller example have |
| 128 | // failed - I'm not sure what the prospects are of getting it fixed |
| 129 | // properly - but we need a reproducer smaller than all of libiomp. |
| 130 | // |
| 131 | // Work around the problem by avoiding inline constructors in such builds. |
| 132 | // We do this for all platforms, not just Linux* OS - non-inline functions are |
| 133 | // more debuggable and provide better coverage into than inline functions. |
| 134 | // Use inline functions in shipping libs, for performance. |
| 135 | // |
| 136 | |
| 137 | # if !defined(KMP_DEBUG) && !defined(COVER) |
| 138 | |
| 139 | class Address { |
| 140 | public: |
| 141 | static const unsigned maxDepth = 32; |
| 142 | unsigned labels[maxDepth]; |
| 143 | unsigned childNums[maxDepth]; |
| 144 | unsigned depth; |
| 145 | unsigned leader; |
| 146 | Address(unsigned _depth) |
| 147 | : depth(_depth), leader(FALSE) { |
| 148 | } |
| 149 | Address &operator=(const Address &b) { |
| 150 | depth = b.depth; |
| 151 | for (unsigned i = 0; i < depth; i++) { |
| 152 | labels[i] = b.labels[i]; |
| 153 | childNums[i] = b.childNums[i]; |
| 154 | } |
| 155 | leader = FALSE; |
| 156 | return *this; |
| 157 | } |
| 158 | bool operator==(const Address &b) const { |
| 159 | if (depth != b.depth) |
| 160 | return false; |
| 161 | for (unsigned i = 0; i < depth; i++) |
| 162 | if(labels[i] != b.labels[i]) |
| 163 | return false; |
| 164 | return true; |
| 165 | } |
| 166 | bool isClose(const Address &b, int level) const { |
| 167 | if (depth != b.depth) |
| 168 | return false; |
| 169 | if ((unsigned)level >= depth) |
| 170 | return true; |
| 171 | for (unsigned i = 0; i < (depth - level); i++) |
| 172 | if(labels[i] != b.labels[i]) |
| 173 | return false; |
| 174 | return true; |
| 175 | } |
| 176 | bool operator!=(const Address &b) const { |
| 177 | return !operator==(b); |
| 178 | } |
| 179 | }; |
| 180 | |
| 181 | class AddrUnsPair { |
| 182 | public: |
| 183 | Address first; |
| 184 | unsigned second; |
| 185 | AddrUnsPair(Address _first, unsigned _second) |
| 186 | : first(_first), second(_second) { |
| 187 | } |
| 188 | AddrUnsPair &operator=(const AddrUnsPair &b) |
| 189 | { |
| 190 | first = b.first; |
| 191 | second = b.second; |
| 192 | return *this; |
| 193 | } |
| 194 | }; |
| 195 | |
| 196 | # else |
| 197 | |
| 198 | class Address { |
| 199 | public: |
| 200 | static const unsigned maxDepth = 32; |
| 201 | unsigned labels[maxDepth]; |
| 202 | unsigned childNums[maxDepth]; |
| 203 | unsigned depth; |
| 204 | unsigned leader; |
| 205 | Address(unsigned _depth); |
| 206 | Address &operator=(const Address &b); |
| 207 | bool operator==(const Address &b) const; |
| 208 | bool isClose(const Address &b, int level) const; |
| 209 | bool operator!=(const Address &b) const; |
| 210 | }; |
| 211 | |
| 212 | Address::Address(unsigned _depth) |
| 213 | { |
| 214 | depth = _depth; |
| 215 | leader = FALSE; |
| 216 | } |
| 217 | |
| 218 | Address &Address::operator=(const Address &b) { |
| 219 | depth = b.depth; |
| 220 | for (unsigned i = 0; i < depth; i++) { |
| 221 | labels[i] = b.labels[i]; |
| 222 | childNums[i] = b.childNums[i]; |
| 223 | } |
| 224 | leader = FALSE; |
| 225 | return *this; |
| 226 | } |
| 227 | |
| 228 | bool Address::operator==(const Address &b) const { |
| 229 | if (depth != b.depth) |
| 230 | return false; |
| 231 | for (unsigned i = 0; i < depth; i++) |
| 232 | if(labels[i] != b.labels[i]) |
| 233 | return false; |
| 234 | return true; |
| 235 | } |
| 236 | |
| 237 | bool Address::isClose(const Address &b, int level) const { |
| 238 | if (depth != b.depth) |
| 239 | return false; |
| 240 | if ((unsigned)level >= depth) |
| 241 | return true; |
| 242 | for (unsigned i = 0; i < (depth - level); i++) |
| 243 | if(labels[i] != b.labels[i]) |
| 244 | return false; |
| 245 | return true; |
| 246 | } |
| 247 | |
| 248 | bool Address::operator!=(const Address &b) const { |
| 249 | return !operator==(b); |
| 250 | } |
| 251 | |
| 252 | class AddrUnsPair { |
| 253 | public: |
| 254 | Address first; |
| 255 | unsigned second; |
| 256 | AddrUnsPair(Address _first, unsigned _second); |
| 257 | AddrUnsPair &operator=(const AddrUnsPair &b); |
| 258 | }; |
| 259 | |
| 260 | AddrUnsPair::AddrUnsPair(Address _first, unsigned _second) |
| 261 | : first(_first), second(_second) |
| 262 | { |
| 263 | } |
| 264 | |
| 265 | AddrUnsPair &AddrUnsPair::operator=(const AddrUnsPair &b) |
| 266 | { |
| 267 | first = b.first; |
| 268 | second = b.second; |
| 269 | return *this; |
| 270 | } |
| 271 | |
| 272 | # endif /* !defined(KMP_DEBUG) && !defined(COVER) */ |
| 273 | |
| 274 | |
| 275 | static int |
| 276 | __kmp_affinity_cmp_Address_labels(const void *a, const void *b) |
| 277 | { |
| 278 | const Address *aa = (const Address *)&(((AddrUnsPair *)a) |
| 279 | ->first); |
| 280 | const Address *bb = (const Address *)&(((AddrUnsPair *)b) |
| 281 | ->first); |
| 282 | unsigned depth = aa->depth; |
| 283 | unsigned i; |
| 284 | KMP_DEBUG_ASSERT(depth == bb->depth); |
| 285 | for (i = 0; i < depth; i++) { |
| 286 | if (aa->labels[i] < bb->labels[i]) return -1; |
| 287 | if (aa->labels[i] > bb->labels[i]) return 1; |
| 288 | } |
| 289 | return 0; |
| 290 | } |
| 291 | |
| 292 | |
| 293 | static int |
| 294 | __kmp_affinity_cmp_Address_child_num(const void *a, const void *b) |
| 295 | { |
| 296 | const Address *aa = (const Address *)&(((AddrUnsPair *)a) |
| 297 | ->first); |
| 298 | const Address *bb = (const Address *)&(((AddrUnsPair *)b) |
| 299 | ->first); |
| 300 | unsigned depth = aa->depth; |
| 301 | unsigned i; |
| 302 | KMP_DEBUG_ASSERT(depth == bb->depth); |
| 303 | KMP_DEBUG_ASSERT((unsigned)__kmp_affinity_compact <= depth); |
| 304 | KMP_DEBUG_ASSERT(__kmp_affinity_compact >= 0); |
| 305 | for (i = 0; i < (unsigned)__kmp_affinity_compact; i++) { |
| 306 | int j = depth - i - 1; |
| 307 | if (aa->childNums[j] < bb->childNums[j]) return -1; |
| 308 | if (aa->childNums[j] > bb->childNums[j]) return 1; |
| 309 | } |
| 310 | for (; i < depth; i++) { |
| 311 | int j = i - __kmp_affinity_compact; |
| 312 | if (aa->childNums[j] < bb->childNums[j]) return -1; |
| 313 | if (aa->childNums[j] > bb->childNums[j]) return 1; |
| 314 | } |
| 315 | return 0; |
| 316 | } |
| 317 | |
| 318 | |
| 319 | // |
| 320 | // When sorting by labels, __kmp_affinity_assign_child_nums() must first be |
| 321 | // called to renumber the labels from [0..n] and place them into the child_num |
| 322 | // vector of the address object. This is done in case the labels used for |
| 323 | // the children at one node of the heirarchy differ from those used for |
| 324 | // another node at the same level. Example: suppose the machine has 2 nodes |
| 325 | // with 2 packages each. The first node contains packages 601 and 602, and |
| 326 | // second node contains packages 603 and 604. If we try to sort the table |
| 327 | // for "scatter" affinity, the table will still be sorted 601, 602, 603, 604 |
| 328 | // because we are paying attention to the labels themselves, not the ordinal |
| 329 | // child numbers. By using the child numbers in the sort, the result is |
| 330 | // {0,0}=601, {0,1}=603, {1,0}=602, {1,1}=604. |
| 331 | // |
| 332 | static void |
| 333 | __kmp_affinity_assign_child_nums(AddrUnsPair *address2os, |
| 334 | int numAddrs) |
| 335 | { |
| 336 | KMP_DEBUG_ASSERT(numAddrs > 0); |
| 337 | int depth = address2os->first.depth; |
| 338 | unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); |
| 339 | unsigned *lastLabel = (unsigned *)__kmp_allocate(depth |
| 340 | * sizeof(unsigned)); |
| 341 | int labCt; |
| 342 | for (labCt = 0; labCt < depth; labCt++) { |
| 343 | address2os[0].first.childNums[labCt] = counts[labCt] = 0; |
| 344 | lastLabel[labCt] = address2os[0].first.labels[labCt]; |
| 345 | } |
| 346 | int i; |
| 347 | for (i = 1; i < numAddrs; i++) { |
| 348 | for (labCt = 0; labCt < depth; labCt++) { |
| 349 | if (address2os[i].first.labels[labCt] != lastLabel[labCt]) { |
| 350 | int labCt2; |
| 351 | for (labCt2 = labCt + 1; labCt2 < depth; labCt2++) { |
| 352 | counts[labCt2] = 0; |
| 353 | lastLabel[labCt2] = address2os[i].first.labels[labCt2]; |
| 354 | } |
| 355 | counts[labCt]++; |
| 356 | lastLabel[labCt] = address2os[i].first.labels[labCt]; |
| 357 | break; |
| 358 | } |
| 359 | } |
| 360 | for (labCt = 0; labCt < depth; labCt++) { |
| 361 | address2os[i].first.childNums[labCt] = counts[labCt]; |
| 362 | } |
| 363 | for (; labCt < (int)Address::maxDepth; labCt++) { |
| 364 | address2os[i].first.childNums[labCt] = 0; |
| 365 | } |
| 366 | } |
| 367 | } |
| 368 | |
| 369 | |
| 370 | // |
| 371 | // All of the __kmp_affinity_create_*_map() routines should set |
| 372 | // __kmp_affinity_masks to a vector of affinity mask objects of length |
| 373 | // __kmp_affinity_num_masks, if __kmp_affinity_type != affinity_none, and |
| 374 | // return the number of levels in the machine topology tree (zero if |
| 375 | // __kmp_affinity_type == affinity_none). |
| 376 | // |
| 377 | // All of the __kmp_affinity_create_*_map() routines should set *fullMask |
| 378 | // to the affinity mask for the initialization thread. They need to save and |
| 379 | // restore the mask, and it could be needed later, so saving it is just an |
| 380 | // optimization to avoid calling kmp_get_system_affinity() again. |
| 381 | // |
| 382 | static kmp_affin_mask_t *fullMask = NULL; |
| 383 | |
| 384 | kmp_affin_mask_t * |
| 385 | __kmp_affinity_get_fullMask() { return fullMask; } |
| 386 | |
| 387 | |
| 388 | static int nCoresPerPkg, nPackages; |
| 389 | int __kmp_nThreadsPerCore; |
| 390 | |
| 391 | // |
| 392 | // __kmp_affinity_uniform_topology() doesn't work when called from |
| 393 | // places which support arbitrarily many levels in the machine topology |
| 394 | // map, i.e. the non-default cases in __kmp_affinity_create_cpuinfo_map() |
| 395 | // __kmp_affinity_create_x2apicid_map(). |
| 396 | // |
| 397 | inline static bool |
| 398 | __kmp_affinity_uniform_topology() |
| 399 | { |
| 400 | return __kmp_avail_proc == (__kmp_nThreadsPerCore * nCoresPerPkg * nPackages); |
| 401 | } |
| 402 | |
| 403 | |
| 404 | // |
| 405 | // Print out the detailed machine topology map, i.e. the physical locations |
| 406 | // of each OS proc. |
| 407 | // |
| 408 | static void |
| 409 | __kmp_affinity_print_topology(AddrUnsPair *address2os, int len, int depth, |
| 410 | int pkgLevel, int coreLevel, int threadLevel) |
| 411 | { |
| 412 | int proc; |
| 413 | |
| 414 | KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY"); |
| 415 | for (proc = 0; proc < len; proc++) { |
| 416 | int level; |
| 417 | kmp_str_buf_t buf; |
| 418 | __kmp_str_buf_init(&buf); |
| 419 | for (level = 0; level < depth; level++) { |
| 420 | if (level == threadLevel) { |
| 421 | __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Thread)); |
| 422 | } |
| 423 | else if (level == coreLevel) { |
| 424 | __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Core)); |
| 425 | } |
| 426 | else if (level == pkgLevel) { |
| 427 | __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Package)); |
| 428 | } |
| 429 | else if (level > pkgLevel) { |
| 430 | __kmp_str_buf_print(&buf, "%s_%d ", KMP_I18N_STR(Node), |
| 431 | level - pkgLevel - 1); |
| 432 | } |
| 433 | else { |
| 434 | __kmp_str_buf_print(&buf, "L%d ", level); |
| 435 | } |
| 436 | __kmp_str_buf_print(&buf, "%d ", |
| 437 | address2os[proc].first.labels[level]); |
| 438 | } |
| 439 | KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", address2os[proc].second, |
| 440 | buf.str); |
| 441 | __kmp_str_buf_free(&buf); |
| 442 | } |
| 443 | } |
| 444 | |
| 445 | |
| 446 | // |
| 447 | // If we don't know how to retrieve the machine's processor topology, or |
| 448 | // encounter an error in doing so, this routine is called to form a "flat" |
| 449 | // mapping of os thread id's <-> processor id's. |
| 450 | // |
| 451 | static int |
| 452 | __kmp_affinity_create_flat_map(AddrUnsPair **address2os, |
| 453 | kmp_i18n_id_t *const msg_id) |
| 454 | { |
| 455 | *address2os = NULL; |
| 456 | *msg_id = kmp_i18n_null; |
| 457 | |
| 458 | // |
| 459 | // Even if __kmp_affinity_type == affinity_none, this routine might still |
| 460 | // called to set __kmp_ht_enabled, & __kmp_ncores, as well as |
| 461 | // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. |
| 462 | // |
| 463 | if (! KMP_AFFINITY_CAPABLE()) { |
| 464 | KMP_ASSERT(__kmp_affinity_type == affinity_none); |
| 465 | __kmp_ncores = nPackages = __kmp_xproc; |
| 466 | __kmp_nThreadsPerCore = nCoresPerPkg = 1; |
| 467 | __kmp_ht_enabled = FALSE; |
| 468 | if (__kmp_affinity_verbose) { |
| 469 | KMP_INFORM(AffFlatTopology, "KMP_AFFINITY"); |
| 470 | KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); |
| 471 | KMP_INFORM(Uniform, "KMP_AFFINITY"); |
| 472 | KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, |
| 473 | __kmp_nThreadsPerCore, __kmp_ncores); |
| 474 | } |
| 475 | return 0; |
| 476 | } |
| 477 | |
| 478 | // |
| 479 | // When affinity is off, this routine will still be called to set |
| 480 | // __kmp_ht_enabled, & __kmp_ncores, as well as __kmp_nThreadsPerCore, |
| 481 | // nCoresPerPkg, & nPackages. Make sure all these vars are set |
| 482 | // correctly, and return now if affinity is not enabled. |
| 483 | // |
| 484 | __kmp_ncores = nPackages = __kmp_avail_proc; |
| 485 | __kmp_nThreadsPerCore = nCoresPerPkg = 1; |
| 486 | __kmp_ht_enabled = FALSE; |
| 487 | if (__kmp_affinity_verbose) { |
| 488 | char buf[KMP_AFFIN_MASK_PRINT_LEN]; |
| 489 | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, fullMask); |
| 490 | |
| 491 | KMP_INFORM(AffCapableUseFlat, "KMP_AFFINITY"); |
| 492 | if (__kmp_affinity_respect_mask) { |
| 493 | KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); |
| 494 | } else { |
| 495 | KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); |
| 496 | } |
| 497 | KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); |
| 498 | KMP_INFORM(Uniform, "KMP_AFFINITY"); |
| 499 | KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, |
| 500 | __kmp_nThreadsPerCore, __kmp_ncores); |
| 501 | } |
| 502 | if (__kmp_affinity_type == affinity_none) { |
| 503 | return 0; |
| 504 | } |
| 505 | |
| 506 | // |
| 507 | // Contruct the data structure to be returned. |
| 508 | // |
| 509 | *address2os = (AddrUnsPair*) |
| 510 | __kmp_allocate(sizeof(**address2os) * __kmp_avail_proc); |
| 511 | int avail_ct = 0; |
| 512 | unsigned int i; |
| 513 | for (i = 0; i < KMP_CPU_SETSIZE; ++i) { |
| 514 | // |
| 515 | // Skip this proc if it is not included in the machine model. |
| 516 | // |
| 517 | if (! KMP_CPU_ISSET(i, fullMask)) { |
| 518 | continue; |
| 519 | } |
| 520 | |
| 521 | Address addr(1); |
| 522 | addr.labels[0] = i; |
| 523 | (*address2os)[avail_ct++] = AddrUnsPair(addr,i); |
| 524 | } |
| 525 | if (__kmp_affinity_verbose) { |
| 526 | KMP_INFORM(OSProcToPackage, "KMP_AFFINITY"); |
| 527 | } |
| 528 | |
| 529 | if (__kmp_affinity_gran_levels < 0) { |
| 530 | // |
| 531 | // Only the package level is modeled in the machine topology map, |
| 532 | // so the #levels of granularity is either 0 or 1. |
| 533 | // |
| 534 | if (__kmp_affinity_gran > affinity_gran_package) { |
| 535 | __kmp_affinity_gran_levels = 1; |
| 536 | } |
| 537 | else { |
| 538 | __kmp_affinity_gran_levels = 0; |
| 539 | } |
| 540 | } |
| 541 | return 1; |
| 542 | } |
| 543 | |
| 544 | |
| 545 | # if KMP_OS_WINDOWS && KMP_ARCH_X86_64 |
| 546 | |
| 547 | // |
| 548 | // If multiple Windows* OS processor groups exist, we can create a 2-level |
| 549 | // topology map with the groups at level 0 and the individual procs at |
| 550 | // level 1. |
| 551 | // |
| 552 | // This facilitates letting the threads float among all procs in a group, |
| 553 | // if granularity=group (the default when there are multiple groups). |
| 554 | // |
| 555 | static int |
| 556 | __kmp_affinity_create_proc_group_map(AddrUnsPair **address2os, |
| 557 | kmp_i18n_id_t *const msg_id) |
| 558 | { |
| 559 | *address2os = NULL; |
| 560 | *msg_id = kmp_i18n_null; |
| 561 | |
| 562 | // |
| 563 | // If we don't have multiple processor groups, return now. |
| 564 | // The flat mapping will be used. |
| 565 | // |
| 566 | if ((! KMP_AFFINITY_CAPABLE()) || (__kmp_get_proc_group(fullMask) >= 0)) { |
| 567 | // FIXME set *msg_id |
| 568 | return -1; |
| 569 | } |
| 570 | |
| 571 | // |
| 572 | // Contruct the data structure to be returned. |
| 573 | // |
| 574 | *address2os = (AddrUnsPair*) |
| 575 | __kmp_allocate(sizeof(**address2os) * __kmp_avail_proc); |
| 576 | int avail_ct = 0; |
| 577 | int i; |
| 578 | for (i = 0; i < KMP_CPU_SETSIZE; ++i) { |
| 579 | // |
| 580 | // Skip this proc if it is not included in the machine model. |
| 581 | // |
| 582 | if (! KMP_CPU_ISSET(i, fullMask)) { |
| 583 | continue; |
| 584 | } |
| 585 | |
| 586 | Address addr(2); |
| 587 | addr.labels[0] = i / (CHAR_BIT * sizeof(DWORD_PTR)); |
| 588 | addr.labels[1] = i % (CHAR_BIT * sizeof(DWORD_PTR)); |
| 589 | (*address2os)[avail_ct++] = AddrUnsPair(addr,i); |
| 590 | |
| 591 | if (__kmp_affinity_verbose) { |
| 592 | KMP_INFORM(AffOSProcToGroup, "KMP_AFFINITY", i, addr.labels[0], |
| 593 | addr.labels[1]); |
| 594 | } |
| 595 | } |
| 596 | |
| 597 | if (__kmp_affinity_gran_levels < 0) { |
| 598 | if (__kmp_affinity_gran == affinity_gran_group) { |
| 599 | __kmp_affinity_gran_levels = 1; |
| 600 | } |
| 601 | else if ((__kmp_affinity_gran == affinity_gran_fine) |
| 602 | || (__kmp_affinity_gran == affinity_gran_thread)) { |
| 603 | __kmp_affinity_gran_levels = 0; |
| 604 | } |
| 605 | else { |
| 606 | const char *gran_str = NULL; |
| 607 | if (__kmp_affinity_gran == affinity_gran_core) { |
| 608 | gran_str = "core"; |
| 609 | } |
| 610 | else if (__kmp_affinity_gran == affinity_gran_package) { |
| 611 | gran_str = "package"; |
| 612 | } |
| 613 | else if (__kmp_affinity_gran == affinity_gran_node) { |
| 614 | gran_str = "node"; |
| 615 | } |
| 616 | else { |
| 617 | KMP_ASSERT(0); |
| 618 | } |
| 619 | |
| 620 | // Warning: can't use affinity granularity \"gran\" with group topology method, using "thread" |
| 621 | __kmp_affinity_gran_levels = 0; |
| 622 | } |
| 623 | } |
| 624 | return 2; |
| 625 | } |
| 626 | |
| 627 | # endif /* KMP_OS_WINDOWS && KMP_ARCH_X86_64 */ |
| 628 | |
| 629 | |
| 630 | # if KMP_ARCH_X86 || KMP_ARCH_X86_64 |
| 631 | |
| 632 | static int |
| 633 | __kmp_cpuid_mask_width(int count) { |
| 634 | int r = 0; |
| 635 | |
| 636 | while((1<<r) < count) |
| 637 | ++r; |
| 638 | return r; |
| 639 | } |
| 640 | |
| 641 | |
| 642 | class apicThreadInfo { |
| 643 | public: |
| 644 | unsigned osId; // param to __kmp_affinity_bind_thread |
| 645 | unsigned apicId; // from cpuid after binding |
| 646 | unsigned maxCoresPerPkg; // "" |
| 647 | unsigned maxThreadsPerPkg; // "" |
| 648 | unsigned pkgId; // inferred from above values |
| 649 | unsigned coreId; // "" |
| 650 | unsigned threadId; // "" |
| 651 | }; |
| 652 | |
| 653 | |
| 654 | static int |
| 655 | __kmp_affinity_cmp_apicThreadInfo_os_id(const void *a, const void *b) |
| 656 | { |
| 657 | const apicThreadInfo *aa = (const apicThreadInfo *)a; |
| 658 | const apicThreadInfo *bb = (const apicThreadInfo *)b; |
| 659 | if (aa->osId < bb->osId) return -1; |
| 660 | if (aa->osId > bb->osId) return 1; |
| 661 | return 0; |
| 662 | } |
| 663 | |
| 664 | |
| 665 | static int |
| 666 | __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a, const void *b) |
| 667 | { |
| 668 | const apicThreadInfo *aa = (const apicThreadInfo *)a; |
| 669 | const apicThreadInfo *bb = (const apicThreadInfo *)b; |
| 670 | if (aa->pkgId < bb->pkgId) return -1; |
| 671 | if (aa->pkgId > bb->pkgId) return 1; |
| 672 | if (aa->coreId < bb->coreId) return -1; |
| 673 | if (aa->coreId > bb->coreId) return 1; |
| 674 | if (aa->threadId < bb->threadId) return -1; |
| 675 | if (aa->threadId > bb->threadId) return 1; |
| 676 | return 0; |
| 677 | } |
| 678 | |
| 679 | |
| 680 | // |
| 681 | // On IA-32 architecture and Intel(R) 64 architecture, we attempt to use |
| 682 | // an algorithm which cycles through the available os threads, setting |
| 683 | // the current thread's affinity mask to that thread, and then retrieves |
| 684 | // the Apic Id for each thread context using the cpuid instruction. |
| 685 | // |
| 686 | static int |
| 687 | __kmp_affinity_create_apicid_map(AddrUnsPair **address2os, |
| 688 | kmp_i18n_id_t *const msg_id) |
| 689 | { |
| 690 | int rc; |
| 691 | *address2os = NULL; |
| 692 | *msg_id = kmp_i18n_null; |
| 693 | |
| 694 | # if KMP_MIC |
| 695 | { |
| 696 | // The code below will use cpuid(4). |
| 697 | // Check if cpuid(4) is supported. |
| 698 | // FIXME? - this really doesn't need to be specific to MIC. |
| 699 | kmp_cpuid buf; |
| 700 | __kmp_x86_cpuid(0, 0, &buf); |
| 701 | if (buf.eax < 4) { |
| 702 | *msg_id = kmp_i18n_str_NoLeaf4Support; |
| 703 | return -1; |
| 704 | } |
| 705 | } |
| 706 | # endif // KMP_MIC |
| 707 | |
| 708 | // |
| 709 | // Even if __kmp_affinity_type == affinity_none, this routine is still |
| 710 | // called to set __kmp_ht_enabled, & __kmp_ncores, as well as |
| 711 | // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. |
| 712 | // |
| 713 | // The algorithm used starts by setting the affinity to each available |
| 714 | // thread and retreiving info from the cpuid instruction, so if we are not |
| 715 | // capable of calling __kmp_affinity_get_map()/__kmp_affinity_get_map(), |
| 716 | // then we need to do something else. |
| 717 | // |
| 718 | if (! KMP_AFFINITY_CAPABLE()) { |
| 719 | // |
| 720 | // Hack to try and infer the machine topology using only the data |
| 721 | // available from cpuid on the current thread, and __kmp_xproc. |
| 722 | // |
| 723 | KMP_ASSERT(__kmp_affinity_type == affinity_none); |
| 724 | |
| 725 | // |
| 726 | // Get an upper bound on the number of threads per package using |
| 727 | // cpuid(1). |
| 728 | // |
| 729 | // On some OS/chps combinations where HT is supported by the chip |
| 730 | // but is disabled, this value will be 2 on a single core chip. |
| 731 | // Usually, it will be 2 if HT is enabled and 1 if HT is disabled. |
| 732 | // |
| 733 | kmp_cpuid buf; |
| 734 | __kmp_x86_cpuid(1, 0, &buf); |
| 735 | int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; |
| 736 | if (maxThreadsPerPkg == 0) { |
| 737 | maxThreadsPerPkg = 1; |
| 738 | } |
| 739 | |
| 740 | // |
| 741 | // The num cores per pkg comes from cpuid(4). |
| 742 | // 1 must be added to the encoded value. |
| 743 | // |
| 744 | // The author of cpu_count.cpp treated this only an upper bound |
| 745 | // on the number of cores, but I haven't seen any cases where it |
| 746 | // was greater than the actual number of cores, so we will treat |
| 747 | // it as exact in this block of code. |
| 748 | // |
| 749 | // First, we need to check if cpuid(4) is supported on this chip. |
| 750 | // To see if cpuid(n) is supported, issue cpuid(0) and check if eax |
| 751 | // has the value n or greater. |
| 752 | // |
| 753 | __kmp_x86_cpuid(0, 0, &buf); |
| 754 | if (buf.eax >= 4) { |
| 755 | __kmp_x86_cpuid(4, 0, &buf); |
| 756 | nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; |
| 757 | } |
| 758 | else { |
| 759 | nCoresPerPkg = 1; |
| 760 | } |
| 761 | |
| 762 | // |
| 763 | // There is no way to reliably tell if HT is enabled without issuing |
| 764 | // the cpuid instruction from every thread, can correlating the cpuid |
| 765 | // info, so if the machine is not affinity capable, we assume that HT |
| 766 | // is off. We have seen quite a few machines where maxThreadsPerPkg |
| 767 | // is 2, yet the machine does not support HT. |
| 768 | // |
| 769 | // - Older OSes are usually found on machines with older chips, which |
| 770 | // do not support HT. |
| 771 | // |
| 772 | // - The performance penalty for mistakenly identifying a machine as |
| 773 | // HT when it isn't (which results in blocktime being incorrecly set |
| 774 | // to 0) is greater than the penalty when for mistakenly identifying |
| 775 | // a machine as being 1 thread/core when it is really HT enabled |
| 776 | // (which results in blocktime being incorrectly set to a positive |
| 777 | // value). |
| 778 | // |
| 779 | __kmp_ncores = __kmp_xproc; |
| 780 | nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; |
| 781 | __kmp_nThreadsPerCore = 1; |
| 782 | __kmp_ht_enabled = FALSE; |
| 783 | if (__kmp_affinity_verbose) { |
| 784 | KMP_INFORM(AffNotCapableUseLocCpuid, "KMP_AFFINITY"); |
| 785 | KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); |
| 786 | if (__kmp_affinity_uniform_topology()) { |
| 787 | KMP_INFORM(Uniform, "KMP_AFFINITY"); |
| 788 | } else { |
| 789 | KMP_INFORM(NonUniform, "KMP_AFFINITY"); |
| 790 | } |
| 791 | KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, |
| 792 | __kmp_nThreadsPerCore, __kmp_ncores); |
| 793 | } |
| 794 | return 0; |
| 795 | } |
| 796 | |
| 797 | // |
| 798 | // |
| 799 | // From here on, we can assume that it is safe to call |
| 800 | // __kmp_get_system_affinity() and __kmp_set_system_affinity(), |
| 801 | // even if __kmp_affinity_type = affinity_none. |
| 802 | // |
| 803 | |
| 804 | // |
| 805 | // Save the affinity mask for the current thread. |
| 806 | // |
| 807 | kmp_affin_mask_t *oldMask; |
| 808 | KMP_CPU_ALLOC(oldMask); |
| 809 | KMP_ASSERT(oldMask != NULL); |
| 810 | __kmp_get_system_affinity(oldMask, TRUE); |
| 811 | |
| 812 | // |
| 813 | // Run through each of the available contexts, binding the current thread |
| 814 | // to it, and obtaining the pertinent information using the cpuid instr. |
| 815 | // |
| 816 | // The relevant information is: |
| 817 | // |
| 818 | // Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context |
| 819 | // has a uniqie Apic Id, which is of the form pkg# : core# : thread#. |
| 820 | // |
| 821 | // Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The |
| 822 | // value of this field determines the width of the core# + thread# |
| 823 | // fields in the Apic Id. It is also an upper bound on the number |
| 824 | // of threads per package, but it has been verified that situations |
| 825 | // happen were it is not exact. In particular, on certain OS/chip |
| 826 | // combinations where Intel(R) Hyper-Threading Technology is supported |
| 827 | // by the chip but has |
| 828 | // been disabled, the value of this field will be 2 (for a single core |
| 829 | // chip). On other OS/chip combinations supporting |
| 830 | // Intel(R) Hyper-Threading Technology, the value of |
| 831 | // this field will be 1 when Intel(R) Hyper-Threading Technology is |
| 832 | // disabled and 2 when it is enabled. |
| 833 | // |
| 834 | // Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The |
| 835 | // value of this field (+1) determines the width of the core# field in |
| 836 | // the Apic Id. The comments in "cpucount.cpp" say that this value is |
| 837 | // an upper bound, but the IA-32 architecture manual says that it is |
| 838 | // exactly the number of cores per package, and I haven't seen any |
| 839 | // case where it wasn't. |
| 840 | // |
| 841 | // From this information, deduce the package Id, core Id, and thread Id, |
| 842 | // and set the corresponding fields in the apicThreadInfo struct. |
| 843 | // |
| 844 | unsigned i; |
| 845 | apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate( |
| 846 | __kmp_avail_proc * sizeof(apicThreadInfo)); |
| 847 | unsigned nApics = 0; |
| 848 | for (i = 0; i < KMP_CPU_SETSIZE; ++i) { |
| 849 | // |
| 850 | // Skip this proc if it is not included in the machine model. |
| 851 | // |
| 852 | if (! KMP_CPU_ISSET(i, fullMask)) { |
| 853 | continue; |
| 854 | } |
| 855 | KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc); |
| 856 | |
| 857 | __kmp_affinity_bind_thread(i); |
| 858 | threadInfo[nApics].osId = i; |
| 859 | |
| 860 | // |
| 861 | // The apic id and max threads per pkg come from cpuid(1). |
| 862 | // |
| 863 | kmp_cpuid buf; |
| 864 | __kmp_x86_cpuid(1, 0, &buf); |
| 865 | if (! (buf.edx >> 9) & 1) { |
| 866 | __kmp_set_system_affinity(oldMask, TRUE); |
| 867 | __kmp_free(threadInfo); |
| 868 | KMP_CPU_FREE(oldMask); |
| 869 | *msg_id = kmp_i18n_str_ApicNotPresent; |
| 870 | return -1; |
| 871 | } |
| 872 | threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff; |
| 873 | threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; |
| 874 | if (threadInfo[nApics].maxThreadsPerPkg == 0) { |
| 875 | threadInfo[nApics].maxThreadsPerPkg = 1; |
| 876 | } |
| 877 | |
| 878 | // |
| 879 | // Max cores per pkg comes from cpuid(4). |
| 880 | // 1 must be added to the encoded value. |
| 881 | // |
| 882 | // First, we need to check if cpuid(4) is supported on this chip. |
| 883 | // To see if cpuid(n) is supported, issue cpuid(0) and check if eax |
| 884 | // has the value n or greater. |
| 885 | // |
| 886 | __kmp_x86_cpuid(0, 0, &buf); |
| 887 | if (buf.eax >= 4) { |
| 888 | __kmp_x86_cpuid(4, 0, &buf); |
| 889 | threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; |
| 890 | } |
| 891 | else { |
| 892 | threadInfo[nApics].maxCoresPerPkg = 1; |
| 893 | } |
| 894 | |
| 895 | // |
| 896 | // Infer the pkgId / coreId / threadId using only the info |
| 897 | // obtained locally. |
| 898 | // |
| 899 | int widthCT = __kmp_cpuid_mask_width( |
| 900 | threadInfo[nApics].maxThreadsPerPkg); |
| 901 | threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT; |
| 902 | |
| 903 | int widthC = __kmp_cpuid_mask_width( |
| 904 | threadInfo[nApics].maxCoresPerPkg); |
| 905 | int widthT = widthCT - widthC; |
| 906 | if (widthT < 0) { |
| 907 | // |
| 908 | // I've never seen this one happen, but I suppose it could, if |
| 909 | // the cpuid instruction on a chip was really screwed up. |
| 910 | // Make sure to restore the affinity mask before the tail call. |
| 911 | // |
| 912 | __kmp_set_system_affinity(oldMask, TRUE); |
| 913 | __kmp_free(threadInfo); |
| 914 | KMP_CPU_FREE(oldMask); |
| 915 | *msg_id = kmp_i18n_str_InvalidCpuidInfo; |
| 916 | return -1; |
| 917 | } |
| 918 | |
| 919 | int maskC = (1 << widthC) - 1; |
| 920 | threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) |
| 921 | &maskC; |
| 922 | |
| 923 | int maskT = (1 << widthT) - 1; |
| 924 | threadInfo[nApics].threadId = threadInfo[nApics].apicId &maskT; |
| 925 | |
| 926 | nApics++; |
| 927 | } |
| 928 | |
| 929 | // |
| 930 | // We've collected all the info we need. |
| 931 | // Restore the old affinity mask for this thread. |
| 932 | // |
| 933 | __kmp_set_system_affinity(oldMask, TRUE); |
| 934 | |
| 935 | // |
| 936 | // If there's only one thread context to bind to, form an Address object |
| 937 | // with depth 1 and return immediately (or, if affinity is off, set |
| 938 | // address2os to NULL and return). |
| 939 | // |
| 940 | // If it is configured to omit the package level when there is only a |
| 941 | // single package, the logic at the end of this routine won't work if |
| 942 | // there is only a single thread - it would try to form an Address |
| 943 | // object with depth 0. |
| 944 | // |
| 945 | KMP_ASSERT(nApics > 0); |
| 946 | if (nApics == 1) { |
| 947 | __kmp_ncores = nPackages = 1; |
| 948 | __kmp_nThreadsPerCore = nCoresPerPkg = 1; |
| 949 | __kmp_ht_enabled = FALSE; |
| 950 | if (__kmp_affinity_verbose) { |
| 951 | char buf[KMP_AFFIN_MASK_PRINT_LEN]; |
| 952 | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); |
| 953 | |
| 954 | KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY"); |
| 955 | if (__kmp_affinity_respect_mask) { |
| 956 | KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); |
| 957 | } else { |
| 958 | KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); |
| 959 | } |
| 960 | KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); |
| 961 | KMP_INFORM(Uniform, "KMP_AFFINITY"); |
| 962 | KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, |
| 963 | __kmp_nThreadsPerCore, __kmp_ncores); |
| 964 | } |
| 965 | |
| 966 | if (__kmp_affinity_type == affinity_none) { |
| 967 | __kmp_free(threadInfo); |
| 968 | KMP_CPU_FREE(oldMask); |
| 969 | return 0; |
| 970 | } |
| 971 | |
| 972 | *address2os = (AddrUnsPair*)__kmp_allocate(sizeof(AddrUnsPair)); |
| 973 | Address addr(1); |
| 974 | addr.labels[0] = threadInfo[0].pkgId; |
| 975 | (*address2os)[0] = AddrUnsPair(addr, threadInfo[0].osId); |
| 976 | |
| 977 | if (__kmp_affinity_gran_levels < 0) { |
| 978 | __kmp_affinity_gran_levels = 0; |
| 979 | } |
| 980 | |
| 981 | if (__kmp_affinity_verbose) { |
| 982 | __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1); |
| 983 | } |
| 984 | |
| 985 | __kmp_free(threadInfo); |
| 986 | KMP_CPU_FREE(oldMask); |
| 987 | return 1; |
| 988 | } |
| 989 | |
| 990 | // |
| 991 | // Sort the threadInfo table by physical Id. |
| 992 | // |
| 993 | qsort(threadInfo, nApics, sizeof(*threadInfo), |
| 994 | __kmp_affinity_cmp_apicThreadInfo_phys_id); |
| 995 | |
| 996 | // |
| 997 | // The table is now sorted by pkgId / coreId / threadId, but we really |
| 998 | // don't know the radix of any of the fields. pkgId's may be sparsely |
| 999 | // assigned among the chips on a system. Although coreId's are usually |
| 1000 | // assigned [0 .. coresPerPkg-1] and threadId's are usually assigned |
| 1001 | // [0..threadsPerCore-1], we don't want to make any such assumptions. |
| 1002 | // |
| 1003 | // For that matter, we don't know what coresPerPkg and threadsPerCore |
| 1004 | // (or the total # packages) are at this point - we want to determine |
| 1005 | // that now. We only have an upper bound on the first two figures. |
| 1006 | // |
| 1007 | // We also perform a consistency check at this point: the values returned |
| 1008 | // by the cpuid instruction for any thread bound to a given package had |
| 1009 | // better return the same info for maxThreadsPerPkg and maxCoresPerPkg. |
| 1010 | // |
| 1011 | nPackages = 1; |
| 1012 | nCoresPerPkg = 1; |
| 1013 | __kmp_nThreadsPerCore = 1; |
| 1014 | unsigned nCores = 1; |
| 1015 | |
| 1016 | unsigned pkgCt = 1; // to determine radii |
| 1017 | unsigned lastPkgId = threadInfo[0].pkgId; |
| 1018 | unsigned coreCt = 1; |
| 1019 | unsigned lastCoreId = threadInfo[0].coreId; |
| 1020 | unsigned threadCt = 1; |
| 1021 | unsigned lastThreadId = threadInfo[0].threadId; |
| 1022 | |
| 1023 | // intra-pkg consist checks |
| 1024 | unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg; |
| 1025 | unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg; |
| 1026 | |
| 1027 | for (i = 1; i < nApics; i++) { |
| 1028 | if (threadInfo[i].pkgId != lastPkgId) { |
| 1029 | nCores++; |
| 1030 | pkgCt++; |
| 1031 | lastPkgId = threadInfo[i].pkgId; |
| 1032 | if ((int)coreCt > nCoresPerPkg) nCoresPerPkg = coreCt; |
| 1033 | coreCt = 1; |
| 1034 | lastCoreId = threadInfo[i].coreId; |
| 1035 | if ((int)threadCt > __kmp_nThreadsPerCore) __kmp_nThreadsPerCore = threadCt; |
| 1036 | threadCt = 1; |
| 1037 | lastThreadId = threadInfo[i].threadId; |
| 1038 | |
| 1039 | // |
| 1040 | // This is a different package, so go on to the next iteration |
| 1041 | // without doing any consistency checks. Reset the consistency |
| 1042 | // check vars, though. |
| 1043 | // |
| 1044 | prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg; |
| 1045 | prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg; |
| 1046 | continue; |
| 1047 | } |
| 1048 | |
| 1049 | if (threadInfo[i].coreId != lastCoreId) { |
| 1050 | nCores++; |
| 1051 | coreCt++; |
| 1052 | lastCoreId = threadInfo[i].coreId; |
| 1053 | if ((int)threadCt > __kmp_nThreadsPerCore) __kmp_nThreadsPerCore = threadCt; |
| 1054 | threadCt = 1; |
| 1055 | lastThreadId = threadInfo[i].threadId; |
| 1056 | } |
| 1057 | else if (threadInfo[i].threadId != lastThreadId) { |
| 1058 | threadCt++; |
| 1059 | lastThreadId = threadInfo[i].threadId; |
| 1060 | } |
| 1061 | else { |
| 1062 | __kmp_free(threadInfo); |
| 1063 | KMP_CPU_FREE(oldMask); |
| 1064 | *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique; |
| 1065 | return -1; |
| 1066 | } |
| 1067 | |
| 1068 | // |
| 1069 | // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg |
| 1070 | // fields agree between all the threads bounds to a given package. |
| 1071 | // |
| 1072 | if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) |
| 1073 | || (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) { |
| 1074 | __kmp_free(threadInfo); |
| 1075 | KMP_CPU_FREE(oldMask); |
| 1076 | *msg_id = kmp_i18n_str_InconsistentCpuidInfo; |
| 1077 | return -1; |
| 1078 | } |
| 1079 | } |
| 1080 | nPackages = pkgCt; |
| 1081 | if ((int)coreCt > nCoresPerPkg) nCoresPerPkg = coreCt; |
| 1082 | if ((int)threadCt > __kmp_nThreadsPerCore) __kmp_nThreadsPerCore = threadCt; |
| 1083 | |
| 1084 | // |
| 1085 | // When affinity is off, this routine will still be called to set |
| 1086 | // __kmp_ht_enabled, & __kmp_ncores, as well as __kmp_nThreadsPerCore, |
| 1087 | // nCoresPerPkg, & nPackages. Make sure all these vars are set |
| 1088 | // correctly, and return now if affinity is not enabled. |
| 1089 | // |
| 1090 | __kmp_ht_enabled = (__kmp_nThreadsPerCore > 1); |
| 1091 | __kmp_ncores = nCores; |
| 1092 | if (__kmp_affinity_verbose) { |
| 1093 | char buf[KMP_AFFIN_MASK_PRINT_LEN]; |
| 1094 | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); |
| 1095 | |
| 1096 | KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY"); |
| 1097 | if (__kmp_affinity_respect_mask) { |
| 1098 | KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); |
| 1099 | } else { |
| 1100 | KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); |
| 1101 | } |
| 1102 | KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); |
| 1103 | if (__kmp_affinity_uniform_topology()) { |
| 1104 | KMP_INFORM(Uniform, "KMP_AFFINITY"); |
| 1105 | } else { |
| 1106 | KMP_INFORM(NonUniform, "KMP_AFFINITY"); |
| 1107 | } |
| 1108 | KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, |
| 1109 | __kmp_nThreadsPerCore, __kmp_ncores); |
| 1110 | |
| 1111 | } |
| 1112 | |
| 1113 | if (__kmp_affinity_type == affinity_none) { |
| 1114 | __kmp_free(threadInfo); |
| 1115 | KMP_CPU_FREE(oldMask); |
| 1116 | return 0; |
| 1117 | } |
| 1118 | |
| 1119 | // |
| 1120 | // Now that we've determined the number of packages, the number of cores |
| 1121 | // per package, and the number of threads per core, we can construct the |
| 1122 | // data structure that is to be returned. |
| 1123 | // |
| 1124 | int pkgLevel = 0; |
| 1125 | int coreLevel = (nCoresPerPkg <= 1) ? -1 : 1; |
| 1126 | int threadLevel = (__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1); |
| 1127 | unsigned depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0); |
| 1128 | |
| 1129 | KMP_ASSERT(depth > 0); |
| 1130 | *address2os = (AddrUnsPair*)__kmp_allocate(sizeof(AddrUnsPair) * nApics); |
| 1131 | |
| 1132 | for (i = 0; i < nApics; ++i) { |
| 1133 | Address addr(depth); |
| 1134 | unsigned os = threadInfo[i].osId; |
| 1135 | int d = 0; |
| 1136 | |
| 1137 | if (pkgLevel >= 0) { |
| 1138 | addr.labels[d++] = threadInfo[i].pkgId; |
| 1139 | } |
| 1140 | if (coreLevel >= 0) { |
| 1141 | addr.labels[d++] = threadInfo[i].coreId; |
| 1142 | } |
| 1143 | if (threadLevel >= 0) { |
| 1144 | addr.labels[d++] = threadInfo[i].threadId; |
| 1145 | } |
| 1146 | (*address2os)[i] = AddrUnsPair(addr, os); |
| 1147 | } |
| 1148 | |
| 1149 | if (__kmp_affinity_gran_levels < 0) { |
| 1150 | // |
| 1151 | // Set the granularity level based on what levels are modeled |
| 1152 | // in the machine topology map. |
| 1153 | // |
| 1154 | __kmp_affinity_gran_levels = 0; |
| 1155 | if ((threadLevel >= 0) |
| 1156 | && (__kmp_affinity_gran > affinity_gran_thread)) { |
| 1157 | __kmp_affinity_gran_levels++; |
| 1158 | } |
| 1159 | if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) { |
| 1160 | __kmp_affinity_gran_levels++; |
| 1161 | } |
| 1162 | if ((pkgLevel >= 0) && (__kmp_affinity_gran > affinity_gran_package)) { |
| 1163 | __kmp_affinity_gran_levels++; |
| 1164 | } |
| 1165 | } |
| 1166 | |
| 1167 | if (__kmp_affinity_verbose) { |
| 1168 | __kmp_affinity_print_topology(*address2os, nApics, depth, pkgLevel, |
| 1169 | coreLevel, threadLevel); |
| 1170 | } |
| 1171 | |
| 1172 | __kmp_free(threadInfo); |
| 1173 | KMP_CPU_FREE(oldMask); |
| 1174 | return depth; |
| 1175 | } |
| 1176 | |
| 1177 | |
| 1178 | // |
| 1179 | // Intel(R) microarchitecture code name Nehalem, Dunnington and later |
| 1180 | // architectures support a newer interface for specifying the x2APIC Ids, |
| 1181 | // based on cpuid leaf 11. |
| 1182 | // |
| 1183 | static int |
| 1184 | __kmp_affinity_create_x2apicid_map(AddrUnsPair **address2os, |
| 1185 | kmp_i18n_id_t *const msg_id) |
| 1186 | { |
| 1187 | kmp_cpuid buf; |
| 1188 | |
| 1189 | *address2os = NULL; |
| 1190 | *msg_id = kmp_i18n_null; |
| 1191 | |
| 1192 | // |
| 1193 | // Check to see if cpuid leaf 11 is supported. |
| 1194 | // |
| 1195 | __kmp_x86_cpuid(0, 0, &buf); |
| 1196 | if (buf.eax < 11) { |
| 1197 | *msg_id = kmp_i18n_str_NoLeaf11Support; |
| 1198 | return -1; |
| 1199 | } |
| 1200 | __kmp_x86_cpuid(11, 0, &buf); |
| 1201 | if (buf.ebx == 0) { |
| 1202 | *msg_id = kmp_i18n_str_NoLeaf11Support; |
| 1203 | return -1; |
| 1204 | } |
| 1205 | |
| 1206 | // |
| 1207 | // Find the number of levels in the machine topology. While we're at it, |
| 1208 | // get the default values for __kmp_nThreadsPerCore & nCoresPerPkg. We will |
| 1209 | // try to get more accurate values later by explicitly counting them, |
| 1210 | // but get reasonable defaults now, in case we return early. |
| 1211 | // |
| 1212 | int level; |
| 1213 | int threadLevel = -1; |
| 1214 | int coreLevel = -1; |
| 1215 | int pkgLevel = -1; |
| 1216 | __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1; |
| 1217 | |
| 1218 | for (level = 0;; level++) { |
| 1219 | if (level > 31) { |
| 1220 | // |
| 1221 | // FIXME: Hack for DPD200163180 |
| 1222 | // |
| 1223 | // If level is big then something went wrong -> exiting |
| 1224 | // |
| 1225 | // There could actually be 32 valid levels in the machine topology, |
| 1226 | // but so far, the only machine we have seen which does not exit |
| 1227 | // this loop before iteration 32 has fubar x2APIC settings. |
| 1228 | // |
| 1229 | // For now, just reject this case based upon loop trip count. |
| 1230 | // |
| 1231 | *msg_id = kmp_i18n_str_InvalidCpuidInfo; |
| 1232 | return -1; |
| 1233 | } |
| 1234 | __kmp_x86_cpuid(11, level, &buf); |
| 1235 | if (buf.ebx == 0) { |
| 1236 | if (pkgLevel < 0) { |
| 1237 | // |
| 1238 | // Will infer nPackages from __kmp_xproc |
| 1239 | // |
| 1240 | pkgLevel = level; |
| 1241 | level++; |
| 1242 | } |
| 1243 | break; |
| 1244 | } |
| 1245 | int kind = (buf.ecx >> 8) & 0xff; |
| 1246 | if (kind == 1) { |
| 1247 | // |
| 1248 | // SMT level |
| 1249 | // |
| 1250 | threadLevel = level; |
| 1251 | coreLevel = -1; |
| 1252 | pkgLevel = -1; |
| 1253 | __kmp_nThreadsPerCore = buf.ebx & 0xff; |
| 1254 | if (__kmp_nThreadsPerCore == 0) { |
| 1255 | *msg_id = kmp_i18n_str_InvalidCpuidInfo; |
| 1256 | return -1; |
| 1257 | } |
| 1258 | } |
| 1259 | else if (kind == 2) { |
| 1260 | // |
| 1261 | // core level |
| 1262 | // |
| 1263 | coreLevel = level; |
| 1264 | pkgLevel = -1; |
| 1265 | nCoresPerPkg = buf.ebx & 0xff; |
| 1266 | if (nCoresPerPkg == 0) { |
| 1267 | *msg_id = kmp_i18n_str_InvalidCpuidInfo; |
| 1268 | return -1; |
| 1269 | } |
| 1270 | } |
| 1271 | else { |
| 1272 | if (level <= 0) { |
| 1273 | *msg_id = kmp_i18n_str_InvalidCpuidInfo; |
| 1274 | return -1; |
| 1275 | } |
| 1276 | if (pkgLevel >= 0) { |
| 1277 | continue; |
| 1278 | } |
| 1279 | pkgLevel = level; |
| 1280 | nPackages = buf.ebx & 0xff; |
| 1281 | if (nPackages == 0) { |
| 1282 | *msg_id = kmp_i18n_str_InvalidCpuidInfo; |
| 1283 | return -1; |
| 1284 | } |
| 1285 | } |
| 1286 | } |
| 1287 | int depth = level; |
| 1288 | |
| 1289 | // |
| 1290 | // In the above loop, "level" was counted from the finest level (usually |
| 1291 | // thread) to the coarsest. The caller expects that we will place the |
| 1292 | // labels in (*address2os)[].first.labels[] in the inverse order, so |
| 1293 | // we need to invert the vars saying which level means what. |
| 1294 | // |
| 1295 | if (threadLevel >= 0) { |
| 1296 | threadLevel = depth - threadLevel - 1; |
| 1297 | } |
| 1298 | if (coreLevel >= 0) { |
| 1299 | coreLevel = depth - coreLevel - 1; |
| 1300 | } |
| 1301 | KMP_DEBUG_ASSERT(pkgLevel >= 0); |
| 1302 | pkgLevel = depth - pkgLevel - 1; |
| 1303 | |
| 1304 | // |
| 1305 | // The algorithm used starts by setting the affinity to each available |
| 1306 | // thread and retrieving info from the cpuid instruction, so if we are not |
| 1307 | // capable of calling __kmp_affinity_get_map()/__kmp_affinity_get_map(), |
| 1308 | // then we need to do something else - use the defaults that we calculated |
| 1309 | // from issuing cpuid without binding to each proc. |
| 1310 | // |
| 1311 | if (! KMP_AFFINITY_CAPABLE()) |
| 1312 | { |
| 1313 | // |
| 1314 | // Hack to try and infer the machine topology using only the data |
| 1315 | // available from cpuid on the current thread, and __kmp_xproc. |
| 1316 | // |
| 1317 | KMP_ASSERT(__kmp_affinity_type == affinity_none); |
| 1318 | |
| 1319 | __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; |
| 1320 | nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; |
| 1321 | __kmp_ht_enabled = (__kmp_nThreadsPerCore > 1); |
| 1322 | if (__kmp_affinity_verbose) { |
| 1323 | KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY"); |
| 1324 | KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); |
| 1325 | if (__kmp_affinity_uniform_topology()) { |
| 1326 | KMP_INFORM(Uniform, "KMP_AFFINITY"); |
| 1327 | } else { |
| 1328 | KMP_INFORM(NonUniform, "KMP_AFFINITY"); |
| 1329 | } |
| 1330 | KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, |
| 1331 | __kmp_nThreadsPerCore, __kmp_ncores); |
| 1332 | } |
| 1333 | return 0; |
| 1334 | } |
| 1335 | |
| 1336 | // |
| 1337 | // |
| 1338 | // From here on, we can assume that it is safe to call |
| 1339 | // __kmp_get_system_affinity() and __kmp_set_system_affinity(), |
| 1340 | // even if __kmp_affinity_type = affinity_none. |
| 1341 | // |
| 1342 | |
| 1343 | // |
| 1344 | // Save the affinity mask for the current thread. |
| 1345 | // |
| 1346 | kmp_affin_mask_t *oldMask; |
| 1347 | KMP_CPU_ALLOC(oldMask); |
| 1348 | __kmp_get_system_affinity(oldMask, TRUE); |
| 1349 | |
| 1350 | // |
| 1351 | // Allocate the data structure to be returned. |
| 1352 | // |
| 1353 | AddrUnsPair *retval = (AddrUnsPair *) |
| 1354 | __kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc); |
| 1355 | |
| 1356 | // |
| 1357 | // Run through each of the available contexts, binding the current thread |
| 1358 | // to it, and obtaining the pertinent information using the cpuid instr. |
| 1359 | // |
| 1360 | unsigned int proc; |
| 1361 | int nApics = 0; |
| 1362 | for (proc = 0; proc < KMP_CPU_SETSIZE; ++proc) { |
| 1363 | // |
| 1364 | // Skip this proc if it is not included in the machine model. |
| 1365 | // |
| 1366 | if (! KMP_CPU_ISSET(proc, fullMask)) { |
| 1367 | continue; |
| 1368 | } |
| 1369 | KMP_DEBUG_ASSERT(nApics < __kmp_avail_proc); |
| 1370 | |
| 1371 | __kmp_affinity_bind_thread(proc); |
| 1372 | |
| 1373 | // |
| 1374 | // Extrach the labels for each level in the machine topology map |
| 1375 | // from the Apic ID. |
| 1376 | // |
| 1377 | Address addr(depth); |
| 1378 | int prev_shift = 0; |
| 1379 | |
| 1380 | for (level = 0; level < depth; level++) { |
| 1381 | __kmp_x86_cpuid(11, level, &buf); |
| 1382 | unsigned apicId = buf.edx; |
| 1383 | if (buf.ebx == 0) { |
| 1384 | if (level != depth - 1) { |
| 1385 | KMP_CPU_FREE(oldMask); |
| 1386 | *msg_id = kmp_i18n_str_InconsistentCpuidInfo; |
| 1387 | return -1; |
| 1388 | } |
| 1389 | addr.labels[depth - level - 1] = apicId >> prev_shift; |
| 1390 | level++; |
| 1391 | break; |
| 1392 | } |
| 1393 | int shift = buf.eax & 0x1f; |
| 1394 | int mask = (1 << shift) - 1; |
| 1395 | addr.labels[depth - level - 1] = (apicId & mask) >> prev_shift; |
| 1396 | prev_shift = shift; |
| 1397 | } |
| 1398 | if (level != depth) { |
| 1399 | KMP_CPU_FREE(oldMask); |
| 1400 | *msg_id = kmp_i18n_str_InconsistentCpuidInfo; |
| 1401 | return -1; |
| 1402 | } |
| 1403 | |
| 1404 | retval[nApics] = AddrUnsPair(addr, proc); |
| 1405 | nApics++; |
| 1406 | } |
| 1407 | |
| 1408 | // |
| 1409 | // We've collected all the info we need. |
| 1410 | // Restore the old affinity mask for this thread. |
| 1411 | // |
| 1412 | __kmp_set_system_affinity(oldMask, TRUE); |
| 1413 | |
| 1414 | // |
| 1415 | // If there's only one thread context to bind to, return now. |
| 1416 | // |
| 1417 | KMP_ASSERT(nApics > 0); |
| 1418 | if (nApics == 1) { |
| 1419 | __kmp_ncores = nPackages = 1; |
| 1420 | __kmp_nThreadsPerCore = nCoresPerPkg = 1; |
| 1421 | __kmp_ht_enabled = FALSE; |
| 1422 | if (__kmp_affinity_verbose) { |
| 1423 | char buf[KMP_AFFIN_MASK_PRINT_LEN]; |
| 1424 | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); |
| 1425 | |
| 1426 | KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY"); |
| 1427 | if (__kmp_affinity_respect_mask) { |
| 1428 | KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); |
| 1429 | } else { |
| 1430 | KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); |
| 1431 | } |
| 1432 | KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); |
| 1433 | KMP_INFORM(Uniform, "KMP_AFFINITY"); |
| 1434 | KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, |
| 1435 | __kmp_nThreadsPerCore, __kmp_ncores); |
| 1436 | } |
| 1437 | |
| 1438 | if (__kmp_affinity_type == affinity_none) { |
| 1439 | __kmp_free(retval); |
| 1440 | KMP_CPU_FREE(oldMask); |
| 1441 | return 0; |
| 1442 | } |
| 1443 | |
| 1444 | // |
| 1445 | // Form an Address object which only includes the package level. |
| 1446 | // |
| 1447 | Address addr(1); |
| 1448 | addr.labels[0] = retval[0].first.labels[pkgLevel]; |
| 1449 | retval[0].first = addr; |
| 1450 | |
| 1451 | if (__kmp_affinity_gran_levels < 0) { |
| 1452 | __kmp_affinity_gran_levels = 0; |
| 1453 | } |
| 1454 | |
| 1455 | if (__kmp_affinity_verbose) { |
| 1456 | __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1); |
| 1457 | } |
| 1458 | |
| 1459 | *address2os = retval; |
| 1460 | KMP_CPU_FREE(oldMask); |
| 1461 | return 1; |
| 1462 | } |
| 1463 | |
| 1464 | // |
| 1465 | // Sort the table by physical Id. |
| 1466 | // |
| 1467 | qsort(retval, nApics, sizeof(*retval), __kmp_affinity_cmp_Address_labels); |
| 1468 | |
| 1469 | // |
| 1470 | // Find the radix at each of the levels. |
| 1471 | // |
| 1472 | unsigned *totals = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); |
| 1473 | unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); |
| 1474 | unsigned *maxCt = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); |
| 1475 | unsigned *last = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); |
| 1476 | for (level = 0; level < depth; level++) { |
| 1477 | totals[level] = 1; |
| 1478 | maxCt[level] = 1; |
| 1479 | counts[level] = 1; |
| 1480 | last[level] = retval[0].first.labels[level]; |
| 1481 | } |
| 1482 | |
| 1483 | // |
| 1484 | // From here on, the iteration variable "level" runs from the finest |
| 1485 | // level to the coarsest, i.e. we iterate forward through |
| 1486 | // (*address2os)[].first.labels[] - in the previous loops, we iterated |
| 1487 | // backwards. |
| 1488 | // |
| 1489 | for (proc = 1; (int)proc < nApics; proc++) { |
| 1490 | int level; |
| 1491 | for (level = 0; level < depth; level++) { |
| 1492 | if (retval[proc].first.labels[level] != last[level]) { |
| 1493 | int j; |
| 1494 | for (j = level + 1; j < depth; j++) { |
| 1495 | totals[j]++; |
| 1496 | counts[j] = 1; |
| 1497 | // The line below causes printing incorrect topology information |
| 1498 | // in case the max value for some level (maxCt[level]) is encountered earlier than |
| 1499 | // some less value while going through the array. |
| 1500 | // For example, let pkg0 has 4 cores and pkg1 has 2 cores. Then maxCt[1] == 2 |
| 1501 | // whereas it must be 4. |
| 1502 | // TODO!!! Check if it can be commented safely |
| 1503 | //maxCt[j] = 1; |
| 1504 | last[j] = retval[proc].first.labels[j]; |
| 1505 | } |
| 1506 | totals[level]++; |
| 1507 | counts[level]++; |
| 1508 | if (counts[level] > maxCt[level]) { |
| 1509 | maxCt[level] = counts[level]; |
| 1510 | } |
| 1511 | last[level] = retval[proc].first.labels[level]; |
| 1512 | break; |
| 1513 | } |
| 1514 | else if (level == depth - 1) { |
| 1515 | __kmp_free(last); |
| 1516 | __kmp_free(maxCt); |
| 1517 | __kmp_free(counts); |
| 1518 | __kmp_free(totals); |
| 1519 | __kmp_free(retval); |
| 1520 | KMP_CPU_FREE(oldMask); |
| 1521 | *msg_id = kmp_i18n_str_x2ApicIDsNotUnique; |
| 1522 | return -1; |
| 1523 | } |
| 1524 | } |
| 1525 | } |
| 1526 | |
| 1527 | // |
| 1528 | // When affinity is off, this routine will still be called to set |
| 1529 | // __kmp_ht_enabled, & __kmp_ncores, as well as __kmp_nThreadsPerCore, |
| 1530 | // nCoresPerPkg, & nPackages. Make sure all these vars are set |
| 1531 | // correctly, and return if affinity is not enabled. |
| 1532 | // |
| 1533 | if (threadLevel >= 0) { |
| 1534 | __kmp_nThreadsPerCore = maxCt[threadLevel]; |
| 1535 | } |
| 1536 | else { |
| 1537 | __kmp_nThreadsPerCore = 1; |
| 1538 | } |
| 1539 | __kmp_ht_enabled = (__kmp_nThreadsPerCore > 1); |
| 1540 | |
| 1541 | nPackages = totals[pkgLevel]; |
| 1542 | |
| 1543 | if (coreLevel >= 0) { |
| 1544 | __kmp_ncores = totals[coreLevel]; |
| 1545 | nCoresPerPkg = maxCt[coreLevel]; |
| 1546 | } |
| 1547 | else { |
| 1548 | __kmp_ncores = nPackages; |
| 1549 | nCoresPerPkg = 1; |
| 1550 | } |
| 1551 | |
| 1552 | // |
| 1553 | // Check to see if the machine topology is uniform |
| 1554 | // |
| 1555 | unsigned prod = maxCt[0]; |
| 1556 | for (level = 1; level < depth; level++) { |
| 1557 | prod *= maxCt[level]; |
| 1558 | } |
| 1559 | bool uniform = (prod == totals[level - 1]); |
| 1560 | |
| 1561 | // |
| 1562 | // Print the machine topology summary. |
| 1563 | // |
| 1564 | if (__kmp_affinity_verbose) { |
| 1565 | char mask[KMP_AFFIN_MASK_PRINT_LEN]; |
| 1566 | __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask); |
| 1567 | |
| 1568 | KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY"); |
| 1569 | if (__kmp_affinity_respect_mask) { |
| 1570 | KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask); |
| 1571 | } else { |
| 1572 | KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask); |
| 1573 | } |
| 1574 | KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); |
| 1575 | if (uniform) { |
| 1576 | KMP_INFORM(Uniform, "KMP_AFFINITY"); |
| 1577 | } else { |
| 1578 | KMP_INFORM(NonUniform, "KMP_AFFINITY"); |
| 1579 | } |
| 1580 | |
| 1581 | kmp_str_buf_t buf; |
| 1582 | __kmp_str_buf_init(&buf); |
| 1583 | |
| 1584 | __kmp_str_buf_print(&buf, "%d", totals[0]); |
| 1585 | for (level = 1; level <= pkgLevel; level++) { |
| 1586 | __kmp_str_buf_print(&buf, " x %d", maxCt[level]); |
| 1587 | } |
| 1588 | KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg, |
| 1589 | __kmp_nThreadsPerCore, __kmp_ncores); |
| 1590 | |
| 1591 | __kmp_str_buf_free(&buf); |
| 1592 | } |
| 1593 | |
| 1594 | if (__kmp_affinity_type == affinity_none) { |
| 1595 | __kmp_free(last); |
| 1596 | __kmp_free(maxCt); |
| 1597 | __kmp_free(counts); |
| 1598 | __kmp_free(totals); |
| 1599 | __kmp_free(retval); |
| 1600 | KMP_CPU_FREE(oldMask); |
| 1601 | return 0; |
| 1602 | } |
| 1603 | |
| 1604 | // |
| 1605 | // Find any levels with radiix 1, and remove them from the map |
| 1606 | // (except for the package level). |
| 1607 | // |
| 1608 | int new_depth = 0; |
| 1609 | for (level = 0; level < depth; level++) { |
| 1610 | if ((maxCt[level] == 1) && (level != pkgLevel)) { |
| 1611 | continue; |
| 1612 | } |
| 1613 | new_depth++; |
| 1614 | } |
| 1615 | |
| 1616 | // |
| 1617 | // If we are removing any levels, allocate a new vector to return, |
| 1618 | // and copy the relevant information to it. |
| 1619 | // |
| 1620 | if (new_depth != depth) { |
| 1621 | AddrUnsPair *new_retval = (AddrUnsPair *)__kmp_allocate( |
| 1622 | sizeof(AddrUnsPair) * nApics); |
| 1623 | for (proc = 0; (int)proc < nApics; proc++) { |
| 1624 | Address addr(new_depth); |
| 1625 | new_retval[proc] = AddrUnsPair(addr, retval[proc].second); |
| 1626 | } |
| 1627 | int new_level = 0; |
| 1628 | for (level = 0; level < depth; level++) { |
| 1629 | if ((maxCt[level] == 1) && (level != pkgLevel)) { |
| 1630 | if (level == threadLevel) { |
| 1631 | threadLevel = -1; |
| 1632 | } |
| 1633 | else if ((threadLevel >= 0) && (level < threadLevel)) { |
| 1634 | threadLevel--; |
| 1635 | } |
| 1636 | if (level == coreLevel) { |
| 1637 | coreLevel = -1; |
| 1638 | } |
| 1639 | else if ((coreLevel >= 0) && (level < coreLevel)) { |
| 1640 | coreLevel--; |
| 1641 | } |
| 1642 | if (level < pkgLevel) { |
| 1643 | pkgLevel--; |
| 1644 | } |
| 1645 | continue; |
| 1646 | } |
| 1647 | for (proc = 0; (int)proc < nApics; proc++) { |
| 1648 | new_retval[proc].first.labels[new_level] |
| 1649 | = retval[proc].first.labels[level]; |
| 1650 | } |
| 1651 | new_level++; |
| 1652 | } |
| 1653 | |
| 1654 | __kmp_free(retval); |
| 1655 | retval = new_retval; |
| 1656 | depth = new_depth; |
| 1657 | } |
| 1658 | |
| 1659 | if (__kmp_affinity_gran_levels < 0) { |
| 1660 | // |
| 1661 | // Set the granularity level based on what levels are modeled |
| 1662 | // in the machine topology map. |
| 1663 | // |
| 1664 | __kmp_affinity_gran_levels = 0; |
| 1665 | if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) { |
| 1666 | __kmp_affinity_gran_levels++; |
| 1667 | } |
| 1668 | if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) { |
| 1669 | __kmp_affinity_gran_levels++; |
| 1670 | } |
| 1671 | if (__kmp_affinity_gran > affinity_gran_package) { |
| 1672 | __kmp_affinity_gran_levels++; |
| 1673 | } |
| 1674 | } |
| 1675 | |
| 1676 | if (__kmp_affinity_verbose) { |
| 1677 | __kmp_affinity_print_topology(retval, nApics, depth, pkgLevel, |
| 1678 | coreLevel, threadLevel); |
| 1679 | } |
| 1680 | |
| 1681 | __kmp_free(last); |
| 1682 | __kmp_free(maxCt); |
| 1683 | __kmp_free(counts); |
| 1684 | __kmp_free(totals); |
| 1685 | KMP_CPU_FREE(oldMask); |
| 1686 | *address2os = retval; |
| 1687 | return depth; |
| 1688 | } |
| 1689 | |
| 1690 | |
| 1691 | # endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ |
| 1692 | |
| 1693 | |
| 1694 | #define osIdIndex 0 |
| 1695 | #define threadIdIndex 1 |
| 1696 | #define coreIdIndex 2 |
| 1697 | #define pkgIdIndex 3 |
| 1698 | #define nodeIdIndex 4 |
| 1699 | |
| 1700 | typedef unsigned *ProcCpuInfo; |
| 1701 | static unsigned maxIndex = pkgIdIndex; |
| 1702 | |
| 1703 | |
| 1704 | static int |
| 1705 | __kmp_affinity_cmp_ProcCpuInfo_os_id(const void *a, const void *b) |
| 1706 | { |
| 1707 | const unsigned *aa = (const unsigned *)a; |
| 1708 | const unsigned *bb = (const unsigned *)b; |
| 1709 | if (aa[osIdIndex] < bb[osIdIndex]) return -1; |
| 1710 | if (aa[osIdIndex] > bb[osIdIndex]) return 1; |
| 1711 | return 0; |
| 1712 | }; |
| 1713 | |
| 1714 | |
| 1715 | static int |
| 1716 | __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a, const void *b) |
| 1717 | { |
| 1718 | unsigned i; |
| 1719 | const unsigned *aa = *((const unsigned **)a); |
| 1720 | const unsigned *bb = *((const unsigned **)b); |
| 1721 | for (i = maxIndex; ; i--) { |
| 1722 | if (aa[i] < bb[i]) return -1; |
| 1723 | if (aa[i] > bb[i]) return 1; |
| 1724 | if (i == osIdIndex) break; |
| 1725 | } |
| 1726 | return 0; |
| 1727 | } |
| 1728 | |
| 1729 | |
| 1730 | // |
| 1731 | // Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the |
| 1732 | // affinity map. |
| 1733 | // |
| 1734 | static int |
| 1735 | __kmp_affinity_create_cpuinfo_map(AddrUnsPair **address2os, int *line, |
| 1736 | kmp_i18n_id_t *const msg_id, FILE *f) |
| 1737 | { |
| 1738 | *address2os = NULL; |
| 1739 | *msg_id = kmp_i18n_null; |
| 1740 | |
| 1741 | // |
| 1742 | // Scan of the file, and count the number of "processor" (osId) fields, |
| 1743 | // and find the higest value of <n> for a node_<n> field. |
| 1744 | // |
| 1745 | char buf[256]; |
| 1746 | unsigned num_records = 0; |
| 1747 | while (! feof(f)) { |
| 1748 | buf[sizeof(buf) - 1] = 1; |
| 1749 | if (! fgets(buf, sizeof(buf), f)) { |
| 1750 | // |
| 1751 | // Read errors presumably because of EOF |
| 1752 | // |
| 1753 | break; |
| 1754 | } |
| 1755 | |
| 1756 | char s1[] = "processor"; |
| 1757 | if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { |
| 1758 | num_records++; |
| 1759 | continue; |
| 1760 | } |
| 1761 | |
| 1762 | // |
| 1763 | // FIXME - this will match "node_<n> <garbage>" |
| 1764 | // |
| 1765 | unsigned level; |
| 1766 | if (sscanf(buf, "node_%d id", &level) == 1) { |
| 1767 | if (nodeIdIndex + level >= maxIndex) { |
| 1768 | maxIndex = nodeIdIndex + level; |
| 1769 | } |
| 1770 | continue; |
| 1771 | } |
| 1772 | } |
| 1773 | |
| 1774 | // |
| 1775 | // Check for empty file / no valid processor records, or too many. |
| 1776 | // The number of records can't exceed the number of valid bits in the |
| 1777 | // affinity mask. |
| 1778 | // |
| 1779 | if (num_records == 0) { |
| 1780 | *line = 0; |
| 1781 | *msg_id = kmp_i18n_str_NoProcRecords; |
| 1782 | return -1; |
| 1783 | } |
| 1784 | if (num_records > (unsigned)__kmp_xproc) { |
| 1785 | *line = 0; |
| 1786 | *msg_id = kmp_i18n_str_TooManyProcRecords; |
| 1787 | return -1; |
| 1788 | } |
| 1789 | |
| 1790 | // |
| 1791 | // Set the file pointer back to the begginning, so that we can scan the |
| 1792 | // file again, this time performing a full parse of the data. |
| 1793 | // Allocate a vector of ProcCpuInfo object, where we will place the data. |
| 1794 | // Adding an extra element at the end allows us to remove a lot of extra |
| 1795 | // checks for termination conditions. |
| 1796 | // |
| 1797 | if (fseek(f, 0, SEEK_SET) != 0) { |
| 1798 | *line = 0; |
| 1799 | *msg_id = kmp_i18n_str_CantRewindCpuinfo; |
| 1800 | return -1; |
| 1801 | } |
| 1802 | |
| 1803 | // |
| 1804 | // Allocate the array of records to store the proc info in. The dummy |
| 1805 | // element at the end makes the logic in filling them out easier to code. |
| 1806 | // |
| 1807 | unsigned **threadInfo = (unsigned **)__kmp_allocate((num_records + 1) |
| 1808 | * sizeof(unsigned *)); |
| 1809 | unsigned i; |
| 1810 | for (i = 0; i <= num_records; i++) { |
| 1811 | threadInfo[i] = (unsigned *)__kmp_allocate((maxIndex + 1) |
| 1812 | * sizeof(unsigned)); |
| 1813 | } |
| 1814 | |
| 1815 | #define CLEANUP_THREAD_INFO \ |
| 1816 | for (i = 0; i <= num_records; i++) { \ |
| 1817 | __kmp_free(threadInfo[i]); \ |
| 1818 | } \ |
| 1819 | __kmp_free(threadInfo); |
| 1820 | |
| 1821 | // |
| 1822 | // A value of UINT_MAX means that we didn't find the field |
| 1823 | // |
| 1824 | unsigned __index; |
| 1825 | |
| 1826 | #define INIT_PROC_INFO(p) \ |
| 1827 | for (__index = 0; __index <= maxIndex; __index++) { \ |
| 1828 | (p)[__index] = UINT_MAX; \ |
| 1829 | } |
| 1830 | |
| 1831 | for (i = 0; i <= num_records; i++) { |
| 1832 | INIT_PROC_INFO(threadInfo[i]); |
| 1833 | } |
| 1834 | |
| 1835 | unsigned num_avail = 0; |
| 1836 | *line = 0; |
| 1837 | while (! feof(f)) { |
| 1838 | // |
| 1839 | // Create an inner scoping level, so that all the goto targets at the |
| 1840 | // end of the loop appear in an outer scoping level. This avoids |
| 1841 | // warnings about jumping past an initialization to a target in the |
| 1842 | // same block. |
| 1843 | // |
| 1844 | { |
| 1845 | buf[sizeof(buf) - 1] = 1; |
| 1846 | bool long_line = false; |
| 1847 | if (! fgets(buf, sizeof(buf), f)) { |
| 1848 | // |
| 1849 | // Read errors presumably because of EOF |
| 1850 | // |
| 1851 | // If there is valid data in threadInfo[num_avail], then fake |
| 1852 | // a blank line in ensure that the last address gets parsed. |
| 1853 | // |
| 1854 | bool valid = false; |
| 1855 | for (i = 0; i <= maxIndex; i++) { |
| 1856 | if (threadInfo[num_avail][i] != UINT_MAX) { |
| 1857 | valid = true; |
| 1858 | } |
| 1859 | } |
| 1860 | if (! valid) { |
| 1861 | break; |
| 1862 | } |
| 1863 | buf[0] = 0; |
| 1864 | } else if (!buf[sizeof(buf) - 1]) { |
| 1865 | // |
| 1866 | // The line is longer than the buffer. Set a flag and don't |
| 1867 | // emit an error if we were going to ignore the line, anyway. |
| 1868 | // |
| 1869 | long_line = true; |
| 1870 | |
| 1871 | #define CHECK_LINE \ |
| 1872 | if (long_line) { \ |
| 1873 | CLEANUP_THREAD_INFO; \ |
| 1874 | *msg_id = kmp_i18n_str_LongLineCpuinfo; \ |
| 1875 | return -1; \ |
| 1876 | } |
| 1877 | } |
| 1878 | (*line)++; |
| 1879 | |
| 1880 | char s1[] = "processor"; |
| 1881 | if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { |
| 1882 | CHECK_LINE; |
| 1883 | char *p = strchr(buf + sizeof(s1) - 1, ':'); |
| 1884 | unsigned val; |
| 1885 | if ((p == NULL) || (sscanf(p + 1, "%u\n", &val) != 1)) goto no_val; |
| 1886 | if (threadInfo[num_avail][osIdIndex] != UINT_MAX) goto dup_field; |
| 1887 | threadInfo[num_avail][osIdIndex] = val; |
Jim Cownie | 181b4bb | 2013-12-23 17:28:57 +0000 | [diff] [blame] | 1888 | #if KMP_OS_LINUX && USE_SYSFS_INFO |
| 1889 | char path[256]; |
| 1890 | snprintf(path, sizeof(path), |
| 1891 | "/sys/devices/system/cpu/cpu%u/topology/physical_package_id", |
| 1892 | threadInfo[num_avail][osIdIndex]); |
| 1893 | __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]); |
| 1894 | |
| 1895 | snprintf(path, sizeof(path), |
| 1896 | "/sys/devices/system/cpu/cpu%u/topology/core_id", |
| 1897 | threadInfo[num_avail][osIdIndex]); |
| 1898 | __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]); |
Jim Cownie | 5e8470a | 2013-09-27 10:38:44 +0000 | [diff] [blame] | 1899 | continue; |
Jim Cownie | 181b4bb | 2013-12-23 17:28:57 +0000 | [diff] [blame] | 1900 | #else |
Jim Cownie | 5e8470a | 2013-09-27 10:38:44 +0000 | [diff] [blame] | 1901 | } |
| 1902 | char s2[] = "physical id"; |
| 1903 | if (strncmp(buf, s2, sizeof(s2) - 1) == 0) { |
| 1904 | CHECK_LINE; |
| 1905 | char *p = strchr(buf + sizeof(s2) - 1, ':'); |
| 1906 | unsigned val; |
| 1907 | if ((p == NULL) || (sscanf(p + 1, "%u\n", &val) != 1)) goto no_val; |
| 1908 | if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX) goto dup_field; |
| 1909 | threadInfo[num_avail][pkgIdIndex] = val; |
| 1910 | continue; |
| 1911 | } |
| 1912 | char s3[] = "core id"; |
| 1913 | if (strncmp(buf, s3, sizeof(s3) - 1) == 0) { |
| 1914 | CHECK_LINE; |
| 1915 | char *p = strchr(buf + sizeof(s3) - 1, ':'); |
| 1916 | unsigned val; |
| 1917 | if ((p == NULL) || (sscanf(p + 1, "%u\n", &val) != 1)) goto no_val; |
| 1918 | if (threadInfo[num_avail][coreIdIndex] != UINT_MAX) goto dup_field; |
| 1919 | threadInfo[num_avail][coreIdIndex] = val; |
| 1920 | continue; |
Jim Cownie | 181b4bb | 2013-12-23 17:28:57 +0000 | [diff] [blame] | 1921 | #endif // KMP_OS_LINUX && USE_SYSFS_INFO |
Jim Cownie | 5e8470a | 2013-09-27 10:38:44 +0000 | [diff] [blame] | 1922 | } |
| 1923 | char s4[] = "thread id"; |
| 1924 | if (strncmp(buf, s4, sizeof(s4) - 1) == 0) { |
| 1925 | CHECK_LINE; |
| 1926 | char *p = strchr(buf + sizeof(s4) - 1, ':'); |
| 1927 | unsigned val; |
| 1928 | if ((p == NULL) || (sscanf(p + 1, "%u\n", &val) != 1)) goto no_val; |
| 1929 | if (threadInfo[num_avail][threadIdIndex] != UINT_MAX) goto dup_field; |
| 1930 | threadInfo[num_avail][threadIdIndex] = val; |
| 1931 | continue; |
| 1932 | } |
| 1933 | unsigned level; |
| 1934 | if (sscanf(buf, "node_%d id", &level) == 1) { |
| 1935 | CHECK_LINE; |
| 1936 | char *p = strchr(buf + sizeof(s4) - 1, ':'); |
| 1937 | unsigned val; |
| 1938 | if ((p == NULL) || (sscanf(p + 1, "%u\n", &val) != 1)) goto no_val; |
| 1939 | KMP_ASSERT(nodeIdIndex + level <= maxIndex); |
| 1940 | if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX) goto dup_field; |
| 1941 | threadInfo[num_avail][nodeIdIndex + level] = val; |
| 1942 | continue; |
| 1943 | } |
| 1944 | |
| 1945 | // |
| 1946 | // We didn't recognize the leading token on the line. |
| 1947 | // There are lots of leading tokens that we don't recognize - |
| 1948 | // if the line isn't empty, go on to the next line. |
| 1949 | // |
| 1950 | if ((*buf != 0) && (*buf != '\n')) { |
| 1951 | // |
| 1952 | // If the line is longer than the buffer, read characters |
| 1953 | // until we find a newline. |
| 1954 | // |
| 1955 | if (long_line) { |
| 1956 | int ch; |
| 1957 | while (((ch = fgetc(f)) != EOF) && (ch != '\n')); |
| 1958 | } |
| 1959 | continue; |
| 1960 | } |
| 1961 | |
| 1962 | // |
| 1963 | // A newline has signalled the end of the processor record. |
| 1964 | // Check that there aren't too many procs specified. |
| 1965 | // |
| 1966 | if (num_avail == __kmp_xproc) { |
| 1967 | CLEANUP_THREAD_INFO; |
| 1968 | *msg_id = kmp_i18n_str_TooManyEntries; |
| 1969 | return -1; |
| 1970 | } |
| 1971 | |
| 1972 | // |
| 1973 | // Check for missing fields. The osId field must be there, and we |
| 1974 | // currently require that the physical id field is specified, also. |
| 1975 | // |
| 1976 | if (threadInfo[num_avail][osIdIndex] == UINT_MAX) { |
| 1977 | CLEANUP_THREAD_INFO; |
| 1978 | *msg_id = kmp_i18n_str_MissingProcField; |
| 1979 | return -1; |
| 1980 | } |
| 1981 | if (threadInfo[0][pkgIdIndex] == UINT_MAX) { |
| 1982 | CLEANUP_THREAD_INFO; |
| 1983 | *msg_id = kmp_i18n_str_MissingPhysicalIDField; |
| 1984 | return -1; |
| 1985 | } |
| 1986 | |
| 1987 | // |
| 1988 | // Skip this proc if it is not included in the machine model. |
| 1989 | // |
| 1990 | if (! KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex], fullMask)) { |
| 1991 | INIT_PROC_INFO(threadInfo[num_avail]); |
| 1992 | continue; |
| 1993 | } |
| 1994 | |
| 1995 | // |
| 1996 | // We have a successful parse of this proc's info. |
| 1997 | // Increment the counter, and prepare for the next proc. |
| 1998 | // |
| 1999 | num_avail++; |
| 2000 | KMP_ASSERT(num_avail <= num_records); |
| 2001 | INIT_PROC_INFO(threadInfo[num_avail]); |
| 2002 | } |
| 2003 | continue; |
| 2004 | |
| 2005 | no_val: |
| 2006 | CLEANUP_THREAD_INFO; |
| 2007 | *msg_id = kmp_i18n_str_MissingValCpuinfo; |
| 2008 | return -1; |
| 2009 | |
| 2010 | dup_field: |
| 2011 | CLEANUP_THREAD_INFO; |
| 2012 | *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo; |
| 2013 | return -1; |
| 2014 | } |
| 2015 | *line = 0; |
| 2016 | |
| 2017 | # if KMP_MIC && REDUCE_TEAM_SIZE |
| 2018 | unsigned teamSize = 0; |
| 2019 | # endif // KMP_MIC && REDUCE_TEAM_SIZE |
| 2020 | |
| 2021 | // check for num_records == __kmp_xproc ??? |
| 2022 | |
| 2023 | // |
| 2024 | // If there's only one thread context to bind to, form an Address object |
| 2025 | // with depth 1 and return immediately (or, if affinity is off, set |
| 2026 | // address2os to NULL and return). |
| 2027 | // |
| 2028 | // If it is configured to omit the package level when there is only a |
| 2029 | // single package, the logic at the end of this routine won't work if |
| 2030 | // there is only a single thread - it would try to form an Address |
| 2031 | // object with depth 0. |
| 2032 | // |
| 2033 | KMP_ASSERT(num_avail > 0); |
| 2034 | KMP_ASSERT(num_avail <= num_records); |
| 2035 | if (num_avail == 1) { |
| 2036 | __kmp_ncores = 1; |
| 2037 | __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1; |
| 2038 | __kmp_ht_enabled = FALSE; |
| 2039 | if (__kmp_affinity_verbose) { |
| 2040 | if (! KMP_AFFINITY_CAPABLE()) { |
| 2041 | KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY"); |
| 2042 | KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); |
| 2043 | KMP_INFORM(Uniform, "KMP_AFFINITY"); |
| 2044 | } |
| 2045 | else { |
| 2046 | char buf[KMP_AFFIN_MASK_PRINT_LEN]; |
| 2047 | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, |
| 2048 | fullMask); |
| 2049 | KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY"); |
| 2050 | if (__kmp_affinity_respect_mask) { |
| 2051 | KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); |
| 2052 | } else { |
| 2053 | KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); |
| 2054 | } |
| 2055 | KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); |
| 2056 | KMP_INFORM(Uniform, "KMP_AFFINITY"); |
| 2057 | } |
| 2058 | int index; |
| 2059 | kmp_str_buf_t buf; |
| 2060 | __kmp_str_buf_init(&buf); |
| 2061 | __kmp_str_buf_print(&buf, "1"); |
| 2062 | for (index = maxIndex - 1; index > pkgIdIndex; index--) { |
| 2063 | __kmp_str_buf_print(&buf, " x 1"); |
| 2064 | } |
| 2065 | KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, 1, 1, 1); |
| 2066 | __kmp_str_buf_free(&buf); |
| 2067 | } |
| 2068 | |
| 2069 | if (__kmp_affinity_type == affinity_none) { |
| 2070 | CLEANUP_THREAD_INFO; |
| 2071 | return 0; |
| 2072 | } |
| 2073 | |
| 2074 | *address2os = (AddrUnsPair*)__kmp_allocate(sizeof(AddrUnsPair)); |
| 2075 | Address addr(1); |
| 2076 | addr.labels[0] = threadInfo[0][pkgIdIndex]; |
| 2077 | (*address2os)[0] = AddrUnsPair(addr, threadInfo[0][osIdIndex]); |
| 2078 | |
| 2079 | if (__kmp_affinity_gran_levels < 0) { |
| 2080 | __kmp_affinity_gran_levels = 0; |
| 2081 | } |
| 2082 | |
| 2083 | if (__kmp_affinity_verbose) { |
| 2084 | __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1); |
| 2085 | } |
| 2086 | |
| 2087 | CLEANUP_THREAD_INFO; |
| 2088 | return 1; |
| 2089 | } |
| 2090 | |
| 2091 | // |
| 2092 | // Sort the threadInfo table by physical Id. |
| 2093 | // |
| 2094 | qsort(threadInfo, num_avail, sizeof(*threadInfo), |
| 2095 | __kmp_affinity_cmp_ProcCpuInfo_phys_id); |
| 2096 | |
| 2097 | // |
| 2098 | // The table is now sorted by pkgId / coreId / threadId, but we really |
| 2099 | // don't know the radix of any of the fields. pkgId's may be sparsely |
| 2100 | // assigned among the chips on a system. Although coreId's are usually |
| 2101 | // assigned [0 .. coresPerPkg-1] and threadId's are usually assigned |
| 2102 | // [0..threadsPerCore-1], we don't want to make any such assumptions. |
| 2103 | // |
| 2104 | // For that matter, we don't know what coresPerPkg and threadsPerCore |
| 2105 | // (or the total # packages) are at this point - we want to determine |
| 2106 | // that now. We only have an upper bound on the first two figures. |
| 2107 | // |
| 2108 | unsigned *counts = (unsigned *)__kmp_allocate((maxIndex + 1) |
| 2109 | * sizeof(unsigned)); |
| 2110 | unsigned *maxCt = (unsigned *)__kmp_allocate((maxIndex + 1) |
| 2111 | * sizeof(unsigned)); |
| 2112 | unsigned *totals = (unsigned *)__kmp_allocate((maxIndex + 1) |
| 2113 | * sizeof(unsigned)); |
| 2114 | unsigned *lastId = (unsigned *)__kmp_allocate((maxIndex + 1) |
| 2115 | * sizeof(unsigned)); |
| 2116 | |
| 2117 | bool assign_thread_ids = false; |
| 2118 | unsigned threadIdCt; |
| 2119 | unsigned index; |
| 2120 | |
| 2121 | restart_radix_check: |
| 2122 | threadIdCt = 0; |
| 2123 | |
| 2124 | // |
| 2125 | // Initialize the counter arrays with data from threadInfo[0]. |
| 2126 | // |
| 2127 | if (assign_thread_ids) { |
| 2128 | if (threadInfo[0][threadIdIndex] == UINT_MAX) { |
| 2129 | threadInfo[0][threadIdIndex] = threadIdCt++; |
| 2130 | } |
| 2131 | else if (threadIdCt <= threadInfo[0][threadIdIndex]) { |
| 2132 | threadIdCt = threadInfo[0][threadIdIndex] + 1; |
| 2133 | } |
| 2134 | } |
| 2135 | for (index = 0; index <= maxIndex; index++) { |
| 2136 | counts[index] = 1; |
| 2137 | maxCt[index] = 1; |
| 2138 | totals[index] = 1; |
| 2139 | lastId[index] = threadInfo[0][index];; |
| 2140 | } |
| 2141 | |
| 2142 | // |
| 2143 | // Run through the rest of the OS procs. |
| 2144 | // |
| 2145 | for (i = 1; i < num_avail; i++) { |
| 2146 | // |
| 2147 | // Find the most significant index whose id differs |
| 2148 | // from the id for the previous OS proc. |
| 2149 | // |
| 2150 | for (index = maxIndex; index >= threadIdIndex; index--) { |
| 2151 | if (assign_thread_ids && (index == threadIdIndex)) { |
| 2152 | // |
| 2153 | // Auto-assign the thread id field if it wasn't specified. |
| 2154 | // |
| 2155 | if (threadInfo[i][threadIdIndex] == UINT_MAX) { |
| 2156 | threadInfo[i][threadIdIndex] = threadIdCt++; |
| 2157 | } |
| 2158 | |
| 2159 | // |
| 2160 | // Aparrently the thread id field was specified for some |
| 2161 | // entries and not others. Start the thread id counter |
| 2162 | // off at the next higher thread id. |
| 2163 | // |
| 2164 | else if (threadIdCt <= threadInfo[i][threadIdIndex]) { |
| 2165 | threadIdCt = threadInfo[i][threadIdIndex] + 1; |
| 2166 | } |
| 2167 | } |
| 2168 | if (threadInfo[i][index] != lastId[index]) { |
| 2169 | // |
| 2170 | // Run through all indices which are less significant, |
| 2171 | // and reset the counts to 1. |
| 2172 | // |
| 2173 | // At all levels up to and including index, we need to |
| 2174 | // increment the totals and record the last id. |
| 2175 | // |
| 2176 | unsigned index2; |
| 2177 | for (index2 = threadIdIndex; index2 < index; index2++) { |
| 2178 | totals[index2]++; |
| 2179 | if (counts[index2] > maxCt[index2]) { |
| 2180 | maxCt[index2] = counts[index2]; |
| 2181 | } |
| 2182 | counts[index2] = 1; |
| 2183 | lastId[index2] = threadInfo[i][index2]; |
| 2184 | } |
| 2185 | counts[index]++; |
| 2186 | totals[index]++; |
| 2187 | lastId[index] = threadInfo[i][index]; |
| 2188 | |
| 2189 | if (assign_thread_ids && (index > threadIdIndex)) { |
| 2190 | |
| 2191 | # if KMP_MIC && REDUCE_TEAM_SIZE |
| 2192 | // |
| 2193 | // The default team size is the total #threads in the machine |
| 2194 | // minus 1 thread for every core that has 3 or more threads. |
| 2195 | // |
| 2196 | teamSize += ( threadIdCt <= 2 ) ? ( threadIdCt ) : ( threadIdCt - 1 ); |
| 2197 | # endif // KMP_MIC && REDUCE_TEAM_SIZE |
| 2198 | |
| 2199 | // |
| 2200 | // Restart the thread counter, as we are on a new core. |
| 2201 | // |
| 2202 | threadIdCt = 0; |
| 2203 | |
| 2204 | // |
| 2205 | // Auto-assign the thread id field if it wasn't specified. |
| 2206 | // |
| 2207 | if (threadInfo[i][threadIdIndex] == UINT_MAX) { |
| 2208 | threadInfo[i][threadIdIndex] = threadIdCt++; |
| 2209 | } |
| 2210 | |
| 2211 | // |
| 2212 | // Aparrently the thread id field was specified for some |
| 2213 | // entries and not others. Start the thread id counter |
| 2214 | // off at the next higher thread id. |
| 2215 | // |
| 2216 | else if (threadIdCt <= threadInfo[i][threadIdIndex]) { |
| 2217 | threadIdCt = threadInfo[i][threadIdIndex] + 1; |
| 2218 | } |
| 2219 | } |
| 2220 | break; |
| 2221 | } |
| 2222 | } |
| 2223 | if (index < threadIdIndex) { |
| 2224 | // |
| 2225 | // If thread ids were specified, it is an error if they are not |
| 2226 | // unique. Also, check that we waven't already restarted the |
| 2227 | // loop (to be safe - shouldn't need to). |
| 2228 | // |
| 2229 | if ((threadInfo[i][threadIdIndex] != UINT_MAX) |
| 2230 | || assign_thread_ids) { |
| 2231 | __kmp_free(lastId); |
| 2232 | __kmp_free(totals); |
| 2233 | __kmp_free(maxCt); |
| 2234 | __kmp_free(counts); |
| 2235 | CLEANUP_THREAD_INFO; |
| 2236 | *msg_id = kmp_i18n_str_PhysicalIDsNotUnique; |
| 2237 | return -1; |
| 2238 | } |
| 2239 | |
| 2240 | // |
| 2241 | // If the thread ids were not specified and we see entries |
| 2242 | // entries that are duplicates, start the loop over and |
| 2243 | // assign the thread ids manually. |
| 2244 | // |
| 2245 | assign_thread_ids = true; |
| 2246 | goto restart_radix_check; |
| 2247 | } |
| 2248 | } |
| 2249 | |
| 2250 | # if KMP_MIC && REDUCE_TEAM_SIZE |
| 2251 | // |
| 2252 | // The default team size is the total #threads in the machine |
| 2253 | // minus 1 thread for every core that has 3 or more threads. |
| 2254 | // |
| 2255 | teamSize += ( threadIdCt <= 2 ) ? ( threadIdCt ) : ( threadIdCt - 1 ); |
| 2256 | # endif // KMP_MIC && REDUCE_TEAM_SIZE |
| 2257 | |
| 2258 | for (index = threadIdIndex; index <= maxIndex; index++) { |
| 2259 | if (counts[index] > maxCt[index]) { |
| 2260 | maxCt[index] = counts[index]; |
| 2261 | } |
| 2262 | } |
| 2263 | |
| 2264 | __kmp_nThreadsPerCore = maxCt[threadIdIndex]; |
| 2265 | nCoresPerPkg = maxCt[coreIdIndex]; |
| 2266 | nPackages = totals[pkgIdIndex]; |
| 2267 | |
| 2268 | // |
| 2269 | // Check to see if the machine topology is uniform |
| 2270 | // |
| 2271 | unsigned prod = totals[maxIndex]; |
| 2272 | for (index = threadIdIndex; index < maxIndex; index++) { |
| 2273 | prod *= maxCt[index]; |
| 2274 | } |
| 2275 | bool uniform = (prod == totals[threadIdIndex]); |
| 2276 | |
| 2277 | // |
| 2278 | // When affinity is off, this routine will still be called to set |
| 2279 | // __kmp_ht_enabled, & __kmp_ncores, as well as __kmp_nThreadsPerCore, |
| 2280 | // nCoresPerPkg, & nPackages. Make sure all these vars are set |
| 2281 | // correctly, and return now if affinity is not enabled. |
| 2282 | // |
| 2283 | __kmp_ht_enabled = (maxCt[threadIdIndex] > 1); // threads per core > 1 |
| 2284 | __kmp_ncores = totals[coreIdIndex]; |
| 2285 | |
| 2286 | if (__kmp_affinity_verbose) { |
| 2287 | if (! KMP_AFFINITY_CAPABLE()) { |
| 2288 | KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY"); |
| 2289 | KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); |
| 2290 | if (uniform) { |
| 2291 | KMP_INFORM(Uniform, "KMP_AFFINITY"); |
| 2292 | } else { |
| 2293 | KMP_INFORM(NonUniform, "KMP_AFFINITY"); |
| 2294 | } |
| 2295 | } |
| 2296 | else { |
| 2297 | char buf[KMP_AFFIN_MASK_PRINT_LEN]; |
| 2298 | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, fullMask); |
| 2299 | KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY"); |
| 2300 | if (__kmp_affinity_respect_mask) { |
| 2301 | KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); |
| 2302 | } else { |
| 2303 | KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); |
| 2304 | } |
| 2305 | KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); |
| 2306 | if (uniform) { |
| 2307 | KMP_INFORM(Uniform, "KMP_AFFINITY"); |
| 2308 | } else { |
| 2309 | KMP_INFORM(NonUniform, "KMP_AFFINITY"); |
| 2310 | } |
| 2311 | } |
| 2312 | kmp_str_buf_t buf; |
| 2313 | __kmp_str_buf_init(&buf); |
| 2314 | |
| 2315 | __kmp_str_buf_print(&buf, "%d", totals[maxIndex]); |
| 2316 | for (index = maxIndex - 1; index >= pkgIdIndex; index--) { |
| 2317 | __kmp_str_buf_print(&buf, " x %d", maxCt[index]); |
| 2318 | } |
| 2319 | KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, maxCt[coreIdIndex], |
| 2320 | maxCt[threadIdIndex], __kmp_ncores); |
| 2321 | |
| 2322 | __kmp_str_buf_free(&buf); |
| 2323 | } |
| 2324 | |
| 2325 | # if KMP_MIC && REDUCE_TEAM_SIZE |
| 2326 | // |
| 2327 | // Set the default team size. |
| 2328 | // |
| 2329 | if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) { |
| 2330 | __kmp_dflt_team_nth = teamSize; |
| 2331 | KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting __kmp_dflt_team_nth = %d\n", |
| 2332 | __kmp_dflt_team_nth)); |
| 2333 | } |
| 2334 | # endif // KMP_MIC && REDUCE_TEAM_SIZE |
| 2335 | |
| 2336 | if (__kmp_affinity_type == affinity_none) { |
| 2337 | __kmp_free(lastId); |
| 2338 | __kmp_free(totals); |
| 2339 | __kmp_free(maxCt); |
| 2340 | __kmp_free(counts); |
| 2341 | CLEANUP_THREAD_INFO; |
| 2342 | return 0; |
| 2343 | } |
| 2344 | |
| 2345 | // |
| 2346 | // Count the number of levels which have more nodes at that level than |
| 2347 | // at the parent's level (with there being an implicit root node of |
| 2348 | // the top level). This is equivalent to saying that there is at least |
| 2349 | // one node at this level which has a sibling. These levels are in the |
| 2350 | // map, and the package level is always in the map. |
| 2351 | // |
| 2352 | bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool)); |
| 2353 | int level = 0; |
| 2354 | for (index = threadIdIndex; index < maxIndex; index++) { |
| 2355 | KMP_ASSERT(totals[index] >= totals[index + 1]); |
| 2356 | inMap[index] = (totals[index] > totals[index + 1]); |
| 2357 | } |
| 2358 | inMap[maxIndex] = (totals[maxIndex] > 1); |
| 2359 | inMap[pkgIdIndex] = true; |
| 2360 | |
| 2361 | int depth = 0; |
| 2362 | for (index = threadIdIndex; index <= maxIndex; index++) { |
| 2363 | if (inMap[index]) { |
| 2364 | depth++; |
| 2365 | } |
| 2366 | } |
| 2367 | KMP_ASSERT(depth > 0); |
| 2368 | |
| 2369 | // |
| 2370 | // Construct the data structure that is to be returned. |
| 2371 | // |
| 2372 | *address2os = (AddrUnsPair*) |
| 2373 | __kmp_allocate(sizeof(AddrUnsPair) * num_avail); |
| 2374 | int pkgLevel = -1; |
| 2375 | int coreLevel = -1; |
| 2376 | int threadLevel = -1; |
| 2377 | |
| 2378 | for (i = 0; i < num_avail; ++i) { |
| 2379 | Address addr(depth); |
| 2380 | unsigned os = threadInfo[i][osIdIndex]; |
| 2381 | int src_index; |
| 2382 | int dst_index = 0; |
| 2383 | |
| 2384 | for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) { |
| 2385 | if (! inMap[src_index]) { |
| 2386 | continue; |
| 2387 | } |
| 2388 | addr.labels[dst_index] = threadInfo[i][src_index]; |
| 2389 | if (src_index == pkgIdIndex) { |
| 2390 | pkgLevel = dst_index; |
| 2391 | } |
| 2392 | else if (src_index == coreIdIndex) { |
| 2393 | coreLevel = dst_index; |
| 2394 | } |
| 2395 | else if (src_index == threadIdIndex) { |
| 2396 | threadLevel = dst_index; |
| 2397 | } |
| 2398 | dst_index++; |
| 2399 | } |
| 2400 | (*address2os)[i] = AddrUnsPair(addr, os); |
| 2401 | } |
| 2402 | |
| 2403 | if (__kmp_affinity_gran_levels < 0) { |
| 2404 | // |
| 2405 | // Set the granularity level based on what levels are modeled |
| 2406 | // in the machine topology map. |
| 2407 | // |
| 2408 | unsigned src_index; |
| 2409 | __kmp_affinity_gran_levels = 0; |
| 2410 | for (src_index = threadIdIndex; src_index <= maxIndex; src_index++) { |
| 2411 | if (! inMap[src_index]) { |
| 2412 | continue; |
| 2413 | } |
| 2414 | switch (src_index) { |
| 2415 | case threadIdIndex: |
| 2416 | if (__kmp_affinity_gran > affinity_gran_thread) { |
| 2417 | __kmp_affinity_gran_levels++; |
| 2418 | } |
| 2419 | |
| 2420 | break; |
| 2421 | case coreIdIndex: |
| 2422 | if (__kmp_affinity_gran > affinity_gran_core) { |
| 2423 | __kmp_affinity_gran_levels++; |
| 2424 | } |
| 2425 | break; |
| 2426 | |
| 2427 | case pkgIdIndex: |
| 2428 | if (__kmp_affinity_gran > affinity_gran_package) { |
| 2429 | __kmp_affinity_gran_levels++; |
| 2430 | } |
| 2431 | break; |
| 2432 | } |
| 2433 | } |
| 2434 | } |
| 2435 | |
| 2436 | if (__kmp_affinity_verbose) { |
| 2437 | __kmp_affinity_print_topology(*address2os, num_avail, depth, pkgLevel, |
| 2438 | coreLevel, threadLevel); |
| 2439 | } |
| 2440 | |
| 2441 | __kmp_free(inMap); |
| 2442 | __kmp_free(lastId); |
| 2443 | __kmp_free(totals); |
| 2444 | __kmp_free(maxCt); |
| 2445 | __kmp_free(counts); |
| 2446 | CLEANUP_THREAD_INFO; |
| 2447 | return depth; |
| 2448 | } |
| 2449 | |
| 2450 | |
| 2451 | // |
| 2452 | // Create and return a table of affinity masks, indexed by OS thread ID. |
| 2453 | // This routine handles OR'ing together all the affinity masks of threads |
| 2454 | // that are sufficiently close, if granularity > fine. |
| 2455 | // |
| 2456 | static kmp_affin_mask_t * |
| 2457 | __kmp_create_masks(unsigned *maxIndex, unsigned *numUnique, |
| 2458 | AddrUnsPair *address2os, unsigned numAddrs) |
| 2459 | { |
| 2460 | // |
| 2461 | // First form a table of affinity masks in order of OS thread id. |
| 2462 | // |
| 2463 | unsigned depth; |
| 2464 | unsigned maxOsId; |
| 2465 | unsigned i; |
| 2466 | |
| 2467 | KMP_ASSERT(numAddrs > 0); |
| 2468 | depth = address2os[0].first.depth; |
| 2469 | |
| 2470 | maxOsId = 0; |
| 2471 | for (i = 0; i < numAddrs; i++) { |
| 2472 | unsigned osId = address2os[i].second; |
| 2473 | if (osId > maxOsId) { |
| 2474 | maxOsId = osId; |
| 2475 | } |
| 2476 | } |
| 2477 | kmp_affin_mask_t *osId2Mask = (kmp_affin_mask_t *)__kmp_allocate( |
| 2478 | (maxOsId + 1) * __kmp_affin_mask_size); |
| 2479 | |
| 2480 | // |
| 2481 | // Sort the address2os table according to physical order. Doing so |
| 2482 | // will put all threads on the same core/package/node in consecutive |
| 2483 | // locations. |
| 2484 | // |
| 2485 | qsort(address2os, numAddrs, sizeof(*address2os), |
| 2486 | __kmp_affinity_cmp_Address_labels); |
| 2487 | |
| 2488 | KMP_ASSERT(__kmp_affinity_gran_levels >= 0); |
| 2489 | if (__kmp_affinity_verbose && (__kmp_affinity_gran_levels > 0)) { |
| 2490 | KMP_INFORM(ThreadsMigrate, "KMP_AFFINITY", __kmp_affinity_gran_levels); |
| 2491 | } |
| 2492 | if (__kmp_affinity_gran_levels >= (int)depth) { |
| 2493 | if (__kmp_affinity_verbose || (__kmp_affinity_warnings |
| 2494 | && (__kmp_affinity_type != affinity_none))) { |
| 2495 | KMP_WARNING(AffThreadsMayMigrate); |
| 2496 | } |
| 2497 | } |
| 2498 | |
| 2499 | // |
| 2500 | // Run through the table, forming the masks for all threads on each |
| 2501 | // core. Threads on the same core will have identical "Address" |
| 2502 | // objects, not considering the last level, which must be the thread |
| 2503 | // id. All threads on a core will appear consecutively. |
| 2504 | // |
| 2505 | unsigned unique = 0; |
| 2506 | unsigned j = 0; // index of 1st thread on core |
| 2507 | unsigned leader = 0; |
| 2508 | Address *leaderAddr = &(address2os[0].first); |
| 2509 | kmp_affin_mask_t *sum |
| 2510 | = (kmp_affin_mask_t *)alloca(__kmp_affin_mask_size); |
| 2511 | KMP_CPU_ZERO(sum); |
| 2512 | KMP_CPU_SET(address2os[0].second, sum); |
| 2513 | for (i = 1; i < numAddrs; i++) { |
| 2514 | // |
| 2515 | // If this thread is sufficiently close to the leader (withing the |
| 2516 | // granularity setting), then set the bit for this os thread in the |
| 2517 | // affinity mask for this group, and go on to the next thread. |
| 2518 | // |
| 2519 | if (leaderAddr->isClose(address2os[i].first, |
| 2520 | __kmp_affinity_gran_levels)) { |
| 2521 | KMP_CPU_SET(address2os[i].second, sum); |
| 2522 | continue; |
| 2523 | } |
| 2524 | |
| 2525 | // |
| 2526 | // For every thread in this group, copy the mask to the thread's |
| 2527 | // entry in the osId2Mask table. Mark the first address as a |
| 2528 | // leader. |
| 2529 | // |
| 2530 | for (; j < i; j++) { |
| 2531 | unsigned osId = address2os[j].second; |
| 2532 | KMP_DEBUG_ASSERT(osId <= maxOsId); |
| 2533 | kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId); |
| 2534 | KMP_CPU_COPY(mask, sum); |
| 2535 | address2os[j].first.leader = (j == leader); |
| 2536 | } |
| 2537 | unique++; |
| 2538 | |
| 2539 | // |
| 2540 | // Start a new mask. |
| 2541 | // |
| 2542 | leader = i; |
| 2543 | leaderAddr = &(address2os[i].first); |
| 2544 | KMP_CPU_ZERO(sum); |
| 2545 | KMP_CPU_SET(address2os[i].second, sum); |
| 2546 | } |
| 2547 | |
| 2548 | // |
| 2549 | // For every thread in last group, copy the mask to the thread's |
| 2550 | // entry in the osId2Mask table. |
| 2551 | // |
| 2552 | for (; j < i; j++) { |
| 2553 | unsigned osId = address2os[j].second; |
| 2554 | KMP_DEBUG_ASSERT(osId <= maxOsId); |
| 2555 | kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId); |
| 2556 | KMP_CPU_COPY(mask, sum); |
| 2557 | address2os[j].first.leader = (j == leader); |
| 2558 | } |
| 2559 | unique++; |
| 2560 | |
| 2561 | *maxIndex = maxOsId; |
| 2562 | *numUnique = unique; |
| 2563 | return osId2Mask; |
| 2564 | } |
| 2565 | |
| 2566 | |
| 2567 | // |
| 2568 | // Stuff for the affinity proclist parsers. It's easier to declare these vars |
| 2569 | // as file-static than to try and pass them through the calling sequence of |
| 2570 | // the recursive-descent OMP_PLACES parser. |
| 2571 | // |
| 2572 | static kmp_affin_mask_t *newMasks; |
| 2573 | static int numNewMasks; |
| 2574 | static int nextNewMask; |
| 2575 | |
| 2576 | #define ADD_MASK(_mask) \ |
| 2577 | { \ |
| 2578 | if (nextNewMask >= numNewMasks) { \ |
| 2579 | numNewMasks *= 2; \ |
| 2580 | newMasks = (kmp_affin_mask_t *)KMP_INTERNAL_REALLOC(newMasks, \ |
| 2581 | numNewMasks * __kmp_affin_mask_size); \ |
| 2582 | } \ |
| 2583 | KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \ |
| 2584 | nextNewMask++; \ |
| 2585 | } |
| 2586 | |
| 2587 | #define ADD_MASK_OSID(_osId,_osId2Mask,_maxOsId) \ |
| 2588 | { \ |
| 2589 | if (((_osId) > _maxOsId) || \ |
| 2590 | (! KMP_CPU_ISSET((_osId), KMP_CPU_INDEX(_osId2Mask, (_osId))))) {\ |
| 2591 | if (__kmp_affinity_verbose || (__kmp_affinity_warnings \ |
| 2592 | && (__kmp_affinity_type != affinity_none))) { \ |
| 2593 | KMP_WARNING(AffIgnoreInvalidProcID, _osId); \ |
| 2594 | } \ |
| 2595 | } \ |
| 2596 | else { \ |
| 2597 | ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \ |
| 2598 | } \ |
| 2599 | } |
| 2600 | |
| 2601 | |
| 2602 | // |
| 2603 | // Re-parse the proclist (for the explicit affinity type), and form the list |
| 2604 | // of affinity newMasks indexed by gtid. |
| 2605 | // |
| 2606 | static void |
| 2607 | __kmp_affinity_process_proclist(kmp_affin_mask_t **out_masks, |
| 2608 | unsigned int *out_numMasks, const char *proclist, |
| 2609 | kmp_affin_mask_t *osId2Mask, int maxOsId) |
| 2610 | { |
| 2611 | const char *scan = proclist; |
| 2612 | const char *next = proclist; |
| 2613 | |
| 2614 | // |
| 2615 | // We use malloc() for the temporary mask vector, |
| 2616 | // so that we can use realloc() to extend it. |
| 2617 | // |
| 2618 | numNewMasks = 2; |
| 2619 | newMasks = (kmp_affin_mask_t *)KMP_INTERNAL_MALLOC(numNewMasks |
| 2620 | * __kmp_affin_mask_size); |
| 2621 | nextNewMask = 0; |
| 2622 | kmp_affin_mask_t *sumMask = (kmp_affin_mask_t *)__kmp_allocate( |
| 2623 | __kmp_affin_mask_size); |
| 2624 | int setSize = 0; |
| 2625 | |
| 2626 | for (;;) { |
| 2627 | int start, end, stride; |
| 2628 | |
| 2629 | SKIP_WS(scan); |
| 2630 | next = scan; |
| 2631 | if (*next == '\0') { |
| 2632 | break; |
| 2633 | } |
| 2634 | |
| 2635 | if (*next == '{') { |
| 2636 | int num; |
| 2637 | setSize = 0; |
| 2638 | next++; // skip '{' |
| 2639 | SKIP_WS(next); |
| 2640 | scan = next; |
| 2641 | |
| 2642 | // |
| 2643 | // Read the first integer in the set. |
| 2644 | // |
| 2645 | KMP_ASSERT2((*next >= '0') && (*next <= '9'), |
| 2646 | "bad proclist"); |
| 2647 | SKIP_DIGITS(next); |
| 2648 | num = __kmp_str_to_int(scan, *next); |
| 2649 | KMP_ASSERT2(num >= 0, "bad explicit proc list"); |
| 2650 | |
| 2651 | // |
| 2652 | // Copy the mask for that osId to the sum (union) mask. |
| 2653 | // |
| 2654 | if ((num > maxOsId) || |
| 2655 | (! KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { |
| 2656 | if (__kmp_affinity_verbose || (__kmp_affinity_warnings |
| 2657 | && (__kmp_affinity_type != affinity_none))) { |
| 2658 | KMP_WARNING(AffIgnoreInvalidProcID, num); |
| 2659 | } |
| 2660 | KMP_CPU_ZERO(sumMask); |
| 2661 | } |
| 2662 | else { |
| 2663 | KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num)); |
| 2664 | setSize = 1; |
| 2665 | } |
| 2666 | |
| 2667 | for (;;) { |
| 2668 | // |
| 2669 | // Check for end of set. |
| 2670 | // |
| 2671 | SKIP_WS(next); |
| 2672 | if (*next == '}') { |
| 2673 | next++; // skip '}' |
| 2674 | break; |
| 2675 | } |
| 2676 | |
| 2677 | // |
| 2678 | // Skip optional comma. |
| 2679 | // |
| 2680 | if (*next == ',') { |
| 2681 | next++; |
| 2682 | } |
| 2683 | SKIP_WS(next); |
| 2684 | |
| 2685 | // |
| 2686 | // Read the next integer in the set. |
| 2687 | // |
| 2688 | scan = next; |
| 2689 | KMP_ASSERT2((*next >= '0') && (*next <= '9'), |
| 2690 | "bad explicit proc list"); |
| 2691 | |
| 2692 | SKIP_DIGITS(next); |
| 2693 | num = __kmp_str_to_int(scan, *next); |
| 2694 | KMP_ASSERT2(num >= 0, "bad explicit proc list"); |
| 2695 | |
| 2696 | // |
| 2697 | // Add the mask for that osId to the sum mask. |
| 2698 | // |
| 2699 | if ((num > maxOsId) || |
| 2700 | (! KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { |
| 2701 | if (__kmp_affinity_verbose || (__kmp_affinity_warnings |
| 2702 | && (__kmp_affinity_type != affinity_none))) { |
| 2703 | KMP_WARNING(AffIgnoreInvalidProcID, num); |
| 2704 | } |
| 2705 | } |
| 2706 | else { |
| 2707 | KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num)); |
| 2708 | setSize++; |
| 2709 | } |
| 2710 | } |
| 2711 | if (setSize > 0) { |
| 2712 | ADD_MASK(sumMask); |
| 2713 | } |
| 2714 | |
| 2715 | SKIP_WS(next); |
| 2716 | if (*next == ',') { |
| 2717 | next++; |
| 2718 | } |
| 2719 | scan = next; |
| 2720 | continue; |
| 2721 | } |
| 2722 | |
| 2723 | // |
| 2724 | // Read the first integer. |
| 2725 | // |
| 2726 | KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); |
| 2727 | SKIP_DIGITS(next); |
| 2728 | start = __kmp_str_to_int(scan, *next); |
| 2729 | KMP_ASSERT2(start >= 0, "bad explicit proc list"); |
| 2730 | SKIP_WS(next); |
| 2731 | |
| 2732 | // |
| 2733 | // If this isn't a range, then add a mask to the list and go on. |
| 2734 | // |
| 2735 | if (*next != '-') { |
| 2736 | ADD_MASK_OSID(start, osId2Mask, maxOsId); |
| 2737 | |
| 2738 | // |
| 2739 | // Skip optional comma. |
| 2740 | // |
| 2741 | if (*next == ',') { |
| 2742 | next++; |
| 2743 | } |
| 2744 | scan = next; |
| 2745 | continue; |
| 2746 | } |
| 2747 | |
| 2748 | // |
| 2749 | // This is a range. Skip over the '-' and read in the 2nd int. |
| 2750 | // |
| 2751 | next++; // skip '-' |
| 2752 | SKIP_WS(next); |
| 2753 | scan = next; |
| 2754 | KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); |
| 2755 | SKIP_DIGITS(next); |
| 2756 | end = __kmp_str_to_int(scan, *next); |
| 2757 | KMP_ASSERT2(end >= 0, "bad explicit proc list"); |
| 2758 | |
| 2759 | // |
| 2760 | // Check for a stride parameter |
| 2761 | // |
| 2762 | stride = 1; |
| 2763 | SKIP_WS(next); |
| 2764 | if (*next == ':') { |
| 2765 | // |
| 2766 | // A stride is specified. Skip over the ':" and read the 3rd int. |
| 2767 | // |
| 2768 | int sign = +1; |
| 2769 | next++; // skip ':' |
| 2770 | SKIP_WS(next); |
| 2771 | scan = next; |
| 2772 | if (*next == '-') { |
| 2773 | sign = -1; |
| 2774 | next++; |
| 2775 | SKIP_WS(next); |
| 2776 | scan = next; |
| 2777 | } |
| 2778 | KMP_ASSERT2((*next >= '0') && (*next <= '9'), |
| 2779 | "bad explicit proc list"); |
| 2780 | SKIP_DIGITS(next); |
| 2781 | stride = __kmp_str_to_int(scan, *next); |
| 2782 | KMP_ASSERT2(stride >= 0, "bad explicit proc list"); |
| 2783 | stride *= sign; |
| 2784 | } |
| 2785 | |
| 2786 | // |
| 2787 | // Do some range checks. |
| 2788 | // |
| 2789 | KMP_ASSERT2(stride != 0, "bad explicit proc list"); |
| 2790 | if (stride > 0) { |
| 2791 | KMP_ASSERT2(start <= end, "bad explicit proc list"); |
| 2792 | } |
| 2793 | else { |
| 2794 | KMP_ASSERT2(start >= end, "bad explicit proc list"); |
| 2795 | } |
| 2796 | KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list"); |
| 2797 | |
| 2798 | // |
| 2799 | // Add the mask for each OS proc # to the list. |
| 2800 | // |
| 2801 | if (stride > 0) { |
| 2802 | do { |
| 2803 | ADD_MASK_OSID(start, osId2Mask, maxOsId); |
| 2804 | start += stride; |
| 2805 | } while (start <= end); |
| 2806 | } |
| 2807 | else { |
| 2808 | do { |
| 2809 | ADD_MASK_OSID(start, osId2Mask, maxOsId); |
| 2810 | start += stride; |
| 2811 | } while (start >= end); |
| 2812 | } |
| 2813 | |
| 2814 | // |
| 2815 | // Skip optional comma. |
| 2816 | // |
| 2817 | SKIP_WS(next); |
| 2818 | if (*next == ',') { |
| 2819 | next++; |
| 2820 | } |
| 2821 | scan = next; |
| 2822 | } |
| 2823 | |
| 2824 | *out_numMasks = nextNewMask; |
| 2825 | if (nextNewMask == 0) { |
| 2826 | *out_masks = NULL; |
| 2827 | KMP_INTERNAL_FREE(newMasks); |
| 2828 | return; |
| 2829 | } |
| 2830 | *out_masks |
| 2831 | = (kmp_affin_mask_t *)__kmp_allocate(nextNewMask * __kmp_affin_mask_size); |
| 2832 | memcpy(*out_masks, newMasks, nextNewMask * __kmp_affin_mask_size); |
| 2833 | __kmp_free(sumMask); |
| 2834 | KMP_INTERNAL_FREE(newMasks); |
| 2835 | } |
| 2836 | |
| 2837 | |
| 2838 | # if OMP_40_ENABLED |
| 2839 | |
| 2840 | /*----------------------------------------------------------------------------- |
| 2841 | |
| 2842 | Re-parse the OMP_PLACES proc id list, forming the newMasks for the different |
| 2843 | places. Again, Here is the grammar: |
| 2844 | |
| 2845 | place_list := place |
| 2846 | place_list := place , place_list |
| 2847 | place := num |
| 2848 | place := place : num |
| 2849 | place := place : num : signed |
| 2850 | place := { subplacelist } |
| 2851 | place := ! place // (lowest priority) |
| 2852 | subplace_list := subplace |
| 2853 | subplace_list := subplace , subplace_list |
| 2854 | subplace := num |
| 2855 | subplace := num : num |
| 2856 | subplace := num : num : signed |
| 2857 | signed := num |
| 2858 | signed := + signed |
| 2859 | signed := - signed |
| 2860 | |
| 2861 | -----------------------------------------------------------------------------*/ |
| 2862 | |
| 2863 | static void |
| 2864 | __kmp_process_subplace_list(const char **scan, kmp_affin_mask_t *osId2Mask, |
| 2865 | int maxOsId, kmp_affin_mask_t *tempMask, int *setSize) |
| 2866 | { |
| 2867 | const char *next; |
| 2868 | |
| 2869 | for (;;) { |
| 2870 | int start, count, stride, i; |
| 2871 | |
| 2872 | // |
| 2873 | // Read in the starting proc id |
| 2874 | // |
| 2875 | SKIP_WS(*scan); |
| 2876 | KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), |
| 2877 | "bad explicit places list"); |
| 2878 | next = *scan; |
| 2879 | SKIP_DIGITS(next); |
| 2880 | start = __kmp_str_to_int(*scan, *next); |
| 2881 | KMP_ASSERT(start >= 0); |
| 2882 | *scan = next; |
| 2883 | |
| 2884 | // |
| 2885 | // valid follow sets are ',' ':' and '}' |
| 2886 | // |
| 2887 | SKIP_WS(*scan); |
| 2888 | if (**scan == '}' || **scan == ',') { |
| 2889 | if ((start > maxOsId) || |
| 2890 | (! KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { |
| 2891 | if (__kmp_affinity_verbose || (__kmp_affinity_warnings |
| 2892 | && (__kmp_affinity_type != affinity_none))) { |
| 2893 | KMP_WARNING(AffIgnoreInvalidProcID, start); |
| 2894 | } |
| 2895 | } |
| 2896 | else { |
| 2897 | KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); |
| 2898 | (*setSize)++; |
| 2899 | } |
| 2900 | if (**scan == '}') { |
| 2901 | break; |
| 2902 | } |
| 2903 | (*scan)++; // skip ',' |
| 2904 | continue; |
| 2905 | } |
| 2906 | KMP_ASSERT2(**scan == ':', "bad explicit places list"); |
| 2907 | (*scan)++; // skip ':' |
| 2908 | |
| 2909 | // |
| 2910 | // Read count parameter |
| 2911 | // |
| 2912 | SKIP_WS(*scan); |
| 2913 | KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), |
| 2914 | "bad explicit places list"); |
| 2915 | next = *scan; |
| 2916 | SKIP_DIGITS(next); |
| 2917 | count = __kmp_str_to_int(*scan, *next); |
| 2918 | KMP_ASSERT(count >= 0); |
| 2919 | *scan = next; |
| 2920 | |
| 2921 | // |
| 2922 | // valid follow sets are ',' ':' and '}' |
| 2923 | // |
| 2924 | SKIP_WS(*scan); |
| 2925 | if (**scan == '}' || **scan == ',') { |
| 2926 | for (i = 0; i < count; i++) { |
| 2927 | if ((start > maxOsId) || |
| 2928 | (! KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { |
| 2929 | if (__kmp_affinity_verbose || (__kmp_affinity_warnings |
| 2930 | && (__kmp_affinity_type != affinity_none))) { |
| 2931 | KMP_WARNING(AffIgnoreInvalidProcID, start); |
| 2932 | } |
| 2933 | break; // don't proliferate warnings for large count |
| 2934 | } |
| 2935 | else { |
| 2936 | KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); |
| 2937 | start++; |
| 2938 | (*setSize)++; |
| 2939 | } |
| 2940 | } |
| 2941 | if (**scan == '}') { |
| 2942 | break; |
| 2943 | } |
| 2944 | (*scan)++; // skip ',' |
| 2945 | continue; |
| 2946 | } |
| 2947 | KMP_ASSERT2(**scan == ':', "bad explicit places list"); |
| 2948 | (*scan)++; // skip ':' |
| 2949 | |
| 2950 | // |
| 2951 | // Read stride parameter |
| 2952 | // |
| 2953 | int sign = +1; |
| 2954 | for (;;) { |
| 2955 | SKIP_WS(*scan); |
| 2956 | if (**scan == '+') { |
| 2957 | (*scan)++; // skip '+' |
| 2958 | continue; |
| 2959 | } |
| 2960 | if (**scan == '-') { |
| 2961 | sign *= -1; |
| 2962 | (*scan)++; // skip '-' |
| 2963 | continue; |
| 2964 | } |
| 2965 | break; |
| 2966 | } |
| 2967 | SKIP_WS(*scan); |
| 2968 | KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), |
| 2969 | "bad explicit places list"); |
| 2970 | next = *scan; |
| 2971 | SKIP_DIGITS(next); |
| 2972 | stride = __kmp_str_to_int(*scan, *next); |
| 2973 | KMP_ASSERT(stride >= 0); |
| 2974 | *scan = next; |
| 2975 | stride *= sign; |
| 2976 | |
| 2977 | // |
| 2978 | // valid follow sets are ',' and '}' |
| 2979 | // |
| 2980 | SKIP_WS(*scan); |
| 2981 | if (**scan == '}' || **scan == ',') { |
| 2982 | for (i = 0; i < count; i++) { |
| 2983 | if ((start > maxOsId) || |
| 2984 | (! KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { |
| 2985 | if (__kmp_affinity_verbose || (__kmp_affinity_warnings |
| 2986 | && (__kmp_affinity_type != affinity_none))) { |
| 2987 | KMP_WARNING(AffIgnoreInvalidProcID, start); |
| 2988 | } |
| 2989 | break; // don't proliferate warnings for large count |
| 2990 | } |
| 2991 | else { |
| 2992 | KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); |
| 2993 | start += stride; |
| 2994 | (*setSize)++; |
| 2995 | } |
| 2996 | } |
| 2997 | if (**scan == '}') { |
| 2998 | break; |
| 2999 | } |
| 3000 | (*scan)++; // skip ',' |
| 3001 | continue; |
| 3002 | } |
| 3003 | |
| 3004 | KMP_ASSERT2(0, "bad explicit places list"); |
| 3005 | } |
| 3006 | } |
| 3007 | |
| 3008 | |
| 3009 | static void |
| 3010 | __kmp_process_place(const char **scan, kmp_affin_mask_t *osId2Mask, |
| 3011 | int maxOsId, kmp_affin_mask_t *tempMask, int *setSize) |
| 3012 | { |
| 3013 | const char *next; |
| 3014 | |
| 3015 | // |
| 3016 | // valid follow sets are '{' '!' and num |
| 3017 | // |
| 3018 | SKIP_WS(*scan); |
| 3019 | if (**scan == '{') { |
| 3020 | (*scan)++; // skip '{' |
| 3021 | __kmp_process_subplace_list(scan, osId2Mask, maxOsId , tempMask, |
| 3022 | setSize); |
| 3023 | KMP_ASSERT2(**scan == '}', "bad explicit places list"); |
| 3024 | (*scan)++; // skip '}' |
| 3025 | } |
| 3026 | else if (**scan == '!') { |
| 3027 | __kmp_process_place(scan, osId2Mask, maxOsId, tempMask, setSize); |
| 3028 | KMP_CPU_COMPLEMENT(tempMask); |
| 3029 | (*scan)++; // skip '!' |
| 3030 | } |
| 3031 | else if ((**scan >= '0') && (**scan <= '9')) { |
| 3032 | next = *scan; |
| 3033 | SKIP_DIGITS(next); |
| 3034 | int num = __kmp_str_to_int(*scan, *next); |
| 3035 | KMP_ASSERT(num >= 0); |
| 3036 | if ((num > maxOsId) || |
| 3037 | (! KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { |
| 3038 | if (__kmp_affinity_verbose || (__kmp_affinity_warnings |
| 3039 | && (__kmp_affinity_type != affinity_none))) { |
| 3040 | KMP_WARNING(AffIgnoreInvalidProcID, num); |
| 3041 | } |
| 3042 | } |
| 3043 | else { |
| 3044 | KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num)); |
| 3045 | (*setSize)++; |
| 3046 | } |
| 3047 | *scan = next; // skip num |
| 3048 | } |
| 3049 | else { |
| 3050 | KMP_ASSERT2(0, "bad explicit places list"); |
| 3051 | } |
| 3052 | } |
| 3053 | |
| 3054 | |
| 3055 | static void |
| 3056 | __kmp_affinity_process_placelist(kmp_affin_mask_t **out_masks, |
| 3057 | unsigned int *out_numMasks, const char *placelist, |
| 3058 | kmp_affin_mask_t *osId2Mask, int maxOsId) |
| 3059 | { |
| 3060 | const char *scan = placelist; |
| 3061 | const char *next = placelist; |
| 3062 | |
| 3063 | numNewMasks = 2; |
| 3064 | newMasks = (kmp_affin_mask_t *)KMP_INTERNAL_MALLOC(numNewMasks |
| 3065 | * __kmp_affin_mask_size); |
| 3066 | nextNewMask = 0; |
| 3067 | |
| 3068 | kmp_affin_mask_t *tempMask = (kmp_affin_mask_t *)__kmp_allocate( |
| 3069 | __kmp_affin_mask_size); |
| 3070 | KMP_CPU_ZERO(tempMask); |
| 3071 | int setSize = 0; |
| 3072 | |
| 3073 | for (;;) { |
Jim Cownie | 5e8470a | 2013-09-27 10:38:44 +0000 | [diff] [blame] | 3074 | __kmp_process_place(&scan, osId2Mask, maxOsId, tempMask, &setSize); |
| 3075 | |
| 3076 | // |
| 3077 | // valid follow sets are ',' ':' and EOL |
| 3078 | // |
| 3079 | SKIP_WS(scan); |
| 3080 | if (*scan == '\0' || *scan == ',') { |
| 3081 | if (setSize > 0) { |
| 3082 | ADD_MASK(tempMask); |
| 3083 | } |
| 3084 | KMP_CPU_ZERO(tempMask); |
| 3085 | setSize = 0; |
| 3086 | if (*scan == '\0') { |
| 3087 | break; |
| 3088 | } |
| 3089 | scan++; // skip ',' |
| 3090 | continue; |
| 3091 | } |
| 3092 | |
| 3093 | KMP_ASSERT2(*scan == ':', "bad explicit places list"); |
| 3094 | scan++; // skip ':' |
| 3095 | |
| 3096 | // |
| 3097 | // Read count parameter |
| 3098 | // |
| 3099 | SKIP_WS(scan); |
| 3100 | KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), |
| 3101 | "bad explicit places list"); |
| 3102 | next = scan; |
| 3103 | SKIP_DIGITS(next); |
Jim Cownie | 181b4bb | 2013-12-23 17:28:57 +0000 | [diff] [blame] | 3104 | int count = __kmp_str_to_int(scan, *next); |
Jim Cownie | 5e8470a | 2013-09-27 10:38:44 +0000 | [diff] [blame] | 3105 | KMP_ASSERT(count >= 0); |
| 3106 | scan = next; |
| 3107 | |
| 3108 | // |
| 3109 | // valid follow sets are ',' ':' and EOL |
| 3110 | // |
| 3111 | SKIP_WS(scan); |
| 3112 | if (*scan == '\0' || *scan == ',') { |
| 3113 | int i; |
| 3114 | for (i = 0; i < count; i++) { |
| 3115 | int j; |
| 3116 | if (setSize == 0) { |
| 3117 | break; |
| 3118 | } |
| 3119 | ADD_MASK(tempMask); |
| 3120 | setSize = 0; |
| 3121 | for (j = __kmp_affin_mask_size * CHAR_BIT - 1; j > 0; j--) { |
| 3122 | // |
| 3123 | // Use a temp var in case macro is changed to evaluate |
| 3124 | // args multiple times. |
| 3125 | // |
Jim Cownie | 181b4bb | 2013-12-23 17:28:57 +0000 | [diff] [blame] | 3126 | if (KMP_CPU_ISSET(j - 1, tempMask)) { |
Jim Cownie | 5e8470a | 2013-09-27 10:38:44 +0000 | [diff] [blame] | 3127 | KMP_CPU_SET(j, tempMask); |
| 3128 | setSize++; |
| 3129 | } |
| 3130 | else { |
| 3131 | KMP_CPU_CLR(j, tempMask); |
| 3132 | } |
| 3133 | } |
| 3134 | for (; j >= 0; j--) { |
| 3135 | KMP_CPU_CLR(j, tempMask); |
| 3136 | } |
| 3137 | } |
| 3138 | KMP_CPU_ZERO(tempMask); |
| 3139 | setSize = 0; |
| 3140 | |
| 3141 | if (*scan == '\0') { |
| 3142 | break; |
| 3143 | } |
| 3144 | scan++; // skip ',' |
| 3145 | continue; |
| 3146 | } |
| 3147 | |
| 3148 | KMP_ASSERT2(*scan == ':', "bad explicit places list"); |
| 3149 | scan++; // skip ':' |
| 3150 | |
| 3151 | // |
| 3152 | // Read stride parameter |
| 3153 | // |
| 3154 | int sign = +1; |
| 3155 | for (;;) { |
| 3156 | SKIP_WS(scan); |
| 3157 | if (*scan == '+') { |
| 3158 | scan++; // skip '+' |
| 3159 | continue; |
| 3160 | } |
| 3161 | if (*scan == '-') { |
| 3162 | sign *= -1; |
| 3163 | scan++; // skip '-' |
| 3164 | continue; |
| 3165 | } |
| 3166 | break; |
| 3167 | } |
| 3168 | SKIP_WS(scan); |
| 3169 | KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), |
| 3170 | "bad explicit places list"); |
| 3171 | next = scan; |
| 3172 | SKIP_DIGITS(next); |
Jim Cownie | 181b4bb | 2013-12-23 17:28:57 +0000 | [diff] [blame] | 3173 | int stride = __kmp_str_to_int(scan, *next); |
Jim Cownie | 5e8470a | 2013-09-27 10:38:44 +0000 | [diff] [blame] | 3174 | KMP_DEBUG_ASSERT(stride >= 0); |
| 3175 | scan = next; |
| 3176 | stride *= sign; |
| 3177 | |
| 3178 | if (stride > 0) { |
| 3179 | int i; |
| 3180 | for (i = 0; i < count; i++) { |
| 3181 | int j; |
| 3182 | if (setSize == 0) { |
| 3183 | break; |
| 3184 | } |
| 3185 | ADD_MASK(tempMask); |
| 3186 | setSize = 0; |
| 3187 | for (j = __kmp_affin_mask_size * CHAR_BIT - 1; j >= stride; j--) { |
| 3188 | if (KMP_CPU_ISSET(j - stride, tempMask)) { |
| 3189 | KMP_CPU_SET(j, tempMask); |
| 3190 | setSize++; |
| 3191 | } |
| 3192 | else { |
| 3193 | KMP_CPU_CLR(j, tempMask); |
| 3194 | } |
| 3195 | } |
| 3196 | for (; j >= 0; j--) { |
| 3197 | KMP_CPU_CLR(j, tempMask); |
| 3198 | } |
| 3199 | } |
| 3200 | } |
| 3201 | else { |
| 3202 | int i; |
| 3203 | for (i = 0; i < count; i++) { |
| 3204 | unsigned j; |
| 3205 | if (setSize == 0) { |
| 3206 | break; |
| 3207 | } |
| 3208 | ADD_MASK(tempMask); |
| 3209 | setSize = 0; |
| 3210 | for (j = 0; j < (__kmp_affin_mask_size * CHAR_BIT) + stride; |
| 3211 | j++) { |
| 3212 | if (KMP_CPU_ISSET(j - stride, tempMask)) { |
| 3213 | KMP_CPU_SET(j, tempMask); |
| 3214 | setSize++; |
| 3215 | } |
| 3216 | else { |
| 3217 | KMP_CPU_CLR(j, tempMask); |
| 3218 | } |
| 3219 | } |
| 3220 | for (; j < __kmp_affin_mask_size * CHAR_BIT; j++) { |
| 3221 | KMP_CPU_CLR(j, tempMask); |
| 3222 | } |
| 3223 | } |
| 3224 | } |
| 3225 | KMP_CPU_ZERO(tempMask); |
| 3226 | setSize = 0; |
| 3227 | |
| 3228 | // |
| 3229 | // valid follow sets are ',' and EOL |
| 3230 | // |
| 3231 | SKIP_WS(scan); |
| 3232 | if (*scan == '\0') { |
| 3233 | break; |
| 3234 | } |
| 3235 | if (*scan == ',') { |
| 3236 | scan++; // skip ',' |
| 3237 | continue; |
| 3238 | } |
| 3239 | |
| 3240 | KMP_ASSERT2(0, "bad explicit places list"); |
| 3241 | } |
| 3242 | |
| 3243 | *out_numMasks = nextNewMask; |
| 3244 | if (nextNewMask == 0) { |
| 3245 | *out_masks = NULL; |
| 3246 | KMP_INTERNAL_FREE(newMasks); |
| 3247 | return; |
| 3248 | } |
| 3249 | *out_masks |
| 3250 | = (kmp_affin_mask_t *)__kmp_allocate(nextNewMask * __kmp_affin_mask_size); |
| 3251 | memcpy(*out_masks, newMasks, nextNewMask * __kmp_affin_mask_size); |
| 3252 | __kmp_free(tempMask); |
| 3253 | KMP_INTERNAL_FREE(newMasks); |
| 3254 | } |
| 3255 | |
| 3256 | # endif /* OMP_40_ENABLED */ |
| 3257 | |
| 3258 | #undef ADD_MASK |
| 3259 | #undef ADD_MASK_OSID |
| 3260 | |
| 3261 | |
| 3262 | # if KMP_MIC |
| 3263 | |
| 3264 | static void |
| 3265 | __kmp_apply_thread_places(AddrUnsPair **pAddr, int depth) |
| 3266 | { |
| 3267 | if ( __kmp_place_num_cores == 0 ) { |
| 3268 | if ( __kmp_place_num_threads_per_core == 0 ) { |
| 3269 | return; // no cores limiting actions requested, exit |
| 3270 | } |
| 3271 | __kmp_place_num_cores = nCoresPerPkg; // use all available cores |
| 3272 | } |
| 3273 | if ( !__kmp_affinity_uniform_topology() || depth != 3 ) { |
| 3274 | KMP_WARNING( AffThrPlaceUnsupported ); |
| 3275 | return; // don't support non-uniform topology or not-3-level architecture |
| 3276 | } |
| 3277 | if ( __kmp_place_num_threads_per_core == 0 ) { |
| 3278 | __kmp_place_num_threads_per_core = __kmp_nThreadsPerCore; // use all HW contexts |
| 3279 | } |
| 3280 | if ( __kmp_place_core_offset + __kmp_place_num_cores > nCoresPerPkg ) { |
| 3281 | KMP_WARNING( AffThrPlaceManyCores ); |
| 3282 | return; |
| 3283 | } |
| 3284 | |
| 3285 | AddrUnsPair *newAddr = (AddrUnsPair *)__kmp_allocate( sizeof(AddrUnsPair) * |
| 3286 | nPackages * __kmp_place_num_cores * __kmp_place_num_threads_per_core); |
| 3287 | int i, j, k, n_old = 0, n_new = 0; |
| 3288 | for ( i = 0; i < nPackages; ++i ) { |
| 3289 | for ( j = 0; j < nCoresPerPkg; ++j ) { |
| 3290 | if ( j < __kmp_place_core_offset || j >= __kmp_place_core_offset + __kmp_place_num_cores ) { |
| 3291 | n_old += __kmp_nThreadsPerCore; // skip not-requested core |
| 3292 | } else { |
| 3293 | for ( k = 0; k < __kmp_nThreadsPerCore; ++k ) { |
| 3294 | if ( k < __kmp_place_num_threads_per_core ) { |
| 3295 | newAddr[n_new] = (*pAddr)[n_old]; // copy requested core' data to new location |
| 3296 | n_new++; |
| 3297 | } |
| 3298 | n_old++; |
| 3299 | } |
| 3300 | } |
| 3301 | } |
| 3302 | } |
| 3303 | nCoresPerPkg = __kmp_place_num_cores; // correct nCoresPerPkg |
| 3304 | __kmp_nThreadsPerCore = __kmp_place_num_threads_per_core; // correct __kmp_nThreadsPerCore |
| 3305 | __kmp_avail_proc = n_new; // correct avail_proc |
| 3306 | __kmp_ncores = nPackages * __kmp_place_num_cores; // correct ncores |
| 3307 | |
| 3308 | __kmp_free( *pAddr ); |
| 3309 | *pAddr = newAddr; // replace old topology with new one |
| 3310 | } |
| 3311 | |
| 3312 | # endif /* KMP_MIC */ |
| 3313 | |
| 3314 | |
| 3315 | static AddrUnsPair *address2os = NULL; |
| 3316 | static int * procarr = NULL; |
| 3317 | static int __kmp_aff_depth = 0; |
| 3318 | |
| 3319 | static void |
| 3320 | __kmp_aux_affinity_initialize(void) |
| 3321 | { |
| 3322 | if (__kmp_affinity_masks != NULL) { |
| 3323 | KMP_ASSERT(fullMask != NULL); |
| 3324 | return; |
| 3325 | } |
| 3326 | |
| 3327 | // |
| 3328 | // Create the "full" mask - this defines all of the processors that we |
| 3329 | // consider to be in the machine model. If respect is set, then it is |
| 3330 | // the initialization thread's affinity mask. Otherwise, it is all |
| 3331 | // processors that we know about on the machine. |
| 3332 | // |
| 3333 | if (fullMask == NULL) { |
| 3334 | fullMask = (kmp_affin_mask_t *)__kmp_allocate(__kmp_affin_mask_size); |
| 3335 | } |
| 3336 | if (KMP_AFFINITY_CAPABLE()) { |
| 3337 | if (__kmp_affinity_respect_mask) { |
| 3338 | __kmp_get_system_affinity(fullMask, TRUE); |
| 3339 | |
| 3340 | // |
| 3341 | // Count the number of available processors. |
| 3342 | // |
| 3343 | unsigned i; |
| 3344 | __kmp_avail_proc = 0; |
| 3345 | for (i = 0; i < KMP_CPU_SETSIZE; ++i) { |
| 3346 | if (! KMP_CPU_ISSET(i, fullMask)) { |
| 3347 | continue; |
| 3348 | } |
| 3349 | __kmp_avail_proc++; |
| 3350 | } |
| 3351 | if (__kmp_avail_proc > __kmp_xproc) { |
| 3352 | if (__kmp_affinity_verbose || (__kmp_affinity_warnings |
| 3353 | && (__kmp_affinity_type != affinity_none))) { |
| 3354 | KMP_WARNING(ErrorInitializeAffinity); |
| 3355 | } |
| 3356 | __kmp_affinity_type = affinity_none; |
| 3357 | __kmp_affin_mask_size = 0; |
| 3358 | return; |
| 3359 | } |
| 3360 | } |
| 3361 | else { |
| 3362 | __kmp_affinity_entire_machine_mask(fullMask); |
| 3363 | __kmp_avail_proc = __kmp_xproc; |
| 3364 | } |
| 3365 | } |
| 3366 | |
| 3367 | int depth = -1; |
| 3368 | kmp_i18n_id_t msg_id = kmp_i18n_null; |
| 3369 | |
| 3370 | // |
| 3371 | // For backward compatiblity, setting KMP_CPUINFO_FILE => |
| 3372 | // KMP_TOPOLOGY_METHOD=cpuinfo |
| 3373 | // |
| 3374 | if ((__kmp_cpuinfo_file != NULL) && |
| 3375 | (__kmp_affinity_top_method == affinity_top_method_all)) { |
| 3376 | __kmp_affinity_top_method = affinity_top_method_cpuinfo; |
| 3377 | } |
| 3378 | |
| 3379 | if (__kmp_affinity_top_method == affinity_top_method_all) { |
| 3380 | // |
| 3381 | // In the default code path, errors are not fatal - we just try using |
| 3382 | // another method. We only emit a warning message if affinity is on, |
| 3383 | // or the verbose flag is set, an the nowarnings flag was not set. |
| 3384 | // |
| 3385 | const char *file_name = NULL; |
| 3386 | int line = 0; |
| 3387 | |
| 3388 | # if KMP_ARCH_X86 || KMP_ARCH_X86_64 |
| 3389 | |
| 3390 | if (__kmp_affinity_verbose) { |
| 3391 | KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC)); |
| 3392 | } |
| 3393 | |
| 3394 | file_name = NULL; |
| 3395 | depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id); |
| 3396 | if (depth == 0) { |
| 3397 | KMP_ASSERT(__kmp_affinity_type == affinity_none); |
| 3398 | KMP_ASSERT(address2os == NULL); |
| 3399 | return; |
| 3400 | } |
| 3401 | |
| 3402 | if (depth < 0) { |
| 3403 | if ((msg_id != kmp_i18n_null) |
| 3404 | && (__kmp_affinity_verbose || (__kmp_affinity_warnings |
| 3405 | && (__kmp_affinity_type != affinity_none)))) { |
| 3406 | # if KMP_MIC |
| 3407 | if (__kmp_affinity_verbose) { |
| 3408 | KMP_INFORM(AffInfoStrStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id), |
| 3409 | KMP_I18N_STR(DecodingLegacyAPIC)); |
| 3410 | } |
| 3411 | # else |
| 3412 | KMP_WARNING(AffInfoStrStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id), |
| 3413 | KMP_I18N_STR(DecodingLegacyAPIC)); |
| 3414 | # endif |
| 3415 | } |
| 3416 | |
| 3417 | file_name = NULL; |
| 3418 | depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id); |
| 3419 | if (depth == 0) { |
| 3420 | KMP_ASSERT(__kmp_affinity_type == affinity_none); |
| 3421 | KMP_ASSERT(address2os == NULL); |
| 3422 | return; |
| 3423 | } |
| 3424 | } |
| 3425 | |
| 3426 | # endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ |
| 3427 | |
| 3428 | # if KMP_OS_LINUX |
| 3429 | |
| 3430 | if (depth < 0) { |
| 3431 | if ((msg_id != kmp_i18n_null) |
| 3432 | && (__kmp_affinity_verbose || (__kmp_affinity_warnings |
| 3433 | && (__kmp_affinity_type != affinity_none)))) { |
| 3434 | # if KMP_MIC |
| 3435 | if (__kmp_affinity_verbose) { |
| 3436 | KMP_INFORM(AffStrParseFilename, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id), "/proc/cpuinfo"); |
| 3437 | } |
| 3438 | # else |
| 3439 | KMP_WARNING(AffStrParseFilename, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id), "/proc/cpuinfo"); |
| 3440 | # endif |
| 3441 | } |
| 3442 | else if (__kmp_affinity_verbose) { |
| 3443 | KMP_INFORM(AffParseFilename, "KMP_AFFINITY", "/proc/cpuinfo"); |
| 3444 | } |
| 3445 | |
| 3446 | FILE *f = fopen("/proc/cpuinfo", "r"); |
| 3447 | if (f == NULL) { |
| 3448 | msg_id = kmp_i18n_str_CantOpenCpuinfo; |
| 3449 | } |
| 3450 | else { |
| 3451 | file_name = "/proc/cpuinfo"; |
| 3452 | depth = __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f); |
| 3453 | fclose(f); |
| 3454 | if (depth == 0) { |
| 3455 | KMP_ASSERT(__kmp_affinity_type == affinity_none); |
| 3456 | KMP_ASSERT(address2os == NULL); |
| 3457 | return; |
| 3458 | } |
| 3459 | } |
| 3460 | } |
| 3461 | |
| 3462 | # endif /* KMP_OS_LINUX */ |
| 3463 | |
| 3464 | if (depth < 0) { |
| 3465 | if (msg_id != kmp_i18n_null |
| 3466 | && (__kmp_affinity_verbose || (__kmp_affinity_warnings |
| 3467 | && (__kmp_affinity_type != affinity_none)))) { |
| 3468 | if (file_name == NULL) { |
| 3469 | KMP_WARNING(UsingFlatOS, __kmp_i18n_catgets(msg_id)); |
| 3470 | } |
| 3471 | else if (line == 0) { |
| 3472 | KMP_WARNING(UsingFlatOSFile, file_name, __kmp_i18n_catgets(msg_id)); |
| 3473 | } |
| 3474 | else { |
| 3475 | KMP_WARNING(UsingFlatOSFileLine, file_name, line, __kmp_i18n_catgets(msg_id)); |
| 3476 | } |
| 3477 | } |
| 3478 | |
| 3479 | file_name = ""; |
| 3480 | depth = __kmp_affinity_create_flat_map(&address2os, &msg_id); |
| 3481 | if (depth == 0) { |
| 3482 | KMP_ASSERT(__kmp_affinity_type == affinity_none); |
| 3483 | KMP_ASSERT(address2os == NULL); |
| 3484 | return; |
| 3485 | } |
| 3486 | KMP_ASSERT(depth > 0); |
| 3487 | KMP_ASSERT(address2os != NULL); |
| 3488 | } |
| 3489 | } |
| 3490 | |
| 3491 | // |
| 3492 | // If the user has specified that a paricular topology discovery method |
| 3493 | // is to be used, then we abort if that method fails. The exception is |
| 3494 | // group affinity, which might have been implicitly set. |
| 3495 | // |
| 3496 | |
| 3497 | # if KMP_ARCH_X86 || KMP_ARCH_X86_64 |
| 3498 | |
| 3499 | else if (__kmp_affinity_top_method == affinity_top_method_x2apicid) { |
| 3500 | if (__kmp_affinity_verbose) { |
| 3501 | KMP_INFORM(AffInfoStr, "KMP_AFFINITY", |
| 3502 | KMP_I18N_STR(Decodingx2APIC)); |
| 3503 | } |
| 3504 | |
| 3505 | depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id); |
| 3506 | if (depth == 0) { |
| 3507 | KMP_ASSERT(__kmp_affinity_type == affinity_none); |
| 3508 | KMP_ASSERT(address2os == NULL); |
| 3509 | return; |
| 3510 | } |
| 3511 | |
| 3512 | if (depth < 0) { |
| 3513 | KMP_ASSERT(msg_id != kmp_i18n_null); |
| 3514 | KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); |
| 3515 | } |
| 3516 | } |
| 3517 | else if (__kmp_affinity_top_method == affinity_top_method_apicid) { |
| 3518 | if (__kmp_affinity_verbose) { |
| 3519 | KMP_INFORM(AffInfoStr, "KMP_AFFINITY", |
| 3520 | KMP_I18N_STR(DecodingLegacyAPIC)); |
| 3521 | } |
| 3522 | |
| 3523 | depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id); |
| 3524 | if (depth == 0) { |
| 3525 | KMP_ASSERT(__kmp_affinity_type == affinity_none); |
| 3526 | KMP_ASSERT(address2os == NULL); |
| 3527 | return; |
| 3528 | } |
| 3529 | |
| 3530 | if (depth < 0) { |
| 3531 | KMP_ASSERT(msg_id != kmp_i18n_null); |
| 3532 | KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); |
| 3533 | } |
| 3534 | } |
| 3535 | |
| 3536 | # endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ |
| 3537 | |
| 3538 | else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) { |
| 3539 | const char *filename; |
| 3540 | if (__kmp_cpuinfo_file != NULL) { |
| 3541 | filename = __kmp_cpuinfo_file; |
| 3542 | } |
| 3543 | else { |
| 3544 | filename = "/proc/cpuinfo"; |
| 3545 | } |
| 3546 | |
| 3547 | if (__kmp_affinity_verbose) { |
| 3548 | KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename); |
| 3549 | } |
| 3550 | |
| 3551 | FILE *f = fopen(filename, "r"); |
| 3552 | if (f == NULL) { |
| 3553 | int code = errno; |
| 3554 | if (__kmp_cpuinfo_file != NULL) { |
| 3555 | __kmp_msg( |
| 3556 | kmp_ms_fatal, |
| 3557 | KMP_MSG(CantOpenFileForReading, filename), |
| 3558 | KMP_ERR(code), |
| 3559 | KMP_HNT(NameComesFrom_CPUINFO_FILE), |
| 3560 | __kmp_msg_null |
| 3561 | ); |
| 3562 | } |
| 3563 | else { |
| 3564 | __kmp_msg( |
| 3565 | kmp_ms_fatal, |
| 3566 | KMP_MSG(CantOpenFileForReading, filename), |
| 3567 | KMP_ERR(code), |
| 3568 | __kmp_msg_null |
| 3569 | ); |
| 3570 | } |
| 3571 | } |
| 3572 | int line = 0; |
| 3573 | depth = __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f); |
| 3574 | fclose(f); |
| 3575 | if (depth < 0) { |
| 3576 | KMP_ASSERT(msg_id != kmp_i18n_null); |
| 3577 | if (line > 0) { |
| 3578 | KMP_FATAL(FileLineMsgExiting, filename, line, __kmp_i18n_catgets(msg_id)); |
| 3579 | } |
| 3580 | else { |
| 3581 | KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id)); |
| 3582 | } |
| 3583 | } |
| 3584 | if (__kmp_affinity_type == affinity_none) { |
| 3585 | KMP_ASSERT(depth == 0); |
| 3586 | KMP_ASSERT(address2os == NULL); |
| 3587 | return; |
| 3588 | } |
| 3589 | } |
| 3590 | |
| 3591 | # if KMP_OS_WINDOWS && KMP_ARCH_X86_64 |
| 3592 | |
| 3593 | else if (__kmp_affinity_top_method == affinity_top_method_group) { |
| 3594 | if (__kmp_affinity_verbose) { |
| 3595 | KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY"); |
| 3596 | } |
| 3597 | |
| 3598 | depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id); |
| 3599 | KMP_ASSERT(depth != 0); |
| 3600 | |
| 3601 | if (depth < 0) { |
| 3602 | if ((msg_id != kmp_i18n_null) |
| 3603 | && (__kmp_affinity_verbose || (__kmp_affinity_warnings |
| 3604 | && (__kmp_affinity_type != affinity_none)))) { |
| 3605 | KMP_WARNING(UsingFlatOS, __kmp_i18n_catgets(msg_id)); |
| 3606 | } |
| 3607 | |
| 3608 | depth = __kmp_affinity_create_flat_map(&address2os, &msg_id); |
| 3609 | if (depth == 0) { |
| 3610 | KMP_ASSERT(__kmp_affinity_type == affinity_none); |
| 3611 | KMP_ASSERT(address2os == NULL); |
| 3612 | return; |
| 3613 | } |
| 3614 | // should not fail |
| 3615 | KMP_ASSERT(depth > 0); |
| 3616 | KMP_ASSERT(address2os != NULL); |
| 3617 | } |
| 3618 | } |
| 3619 | |
| 3620 | # endif /* KMP_OS_WINDOWS && KMP_ARCH_X86_64 */ |
| 3621 | |
| 3622 | else if (__kmp_affinity_top_method == affinity_top_method_flat) { |
| 3623 | if (__kmp_affinity_verbose) { |
| 3624 | KMP_INFORM(AffUsingFlatOS, "KMP_AFFINITY"); |
| 3625 | } |
| 3626 | |
| 3627 | depth = __kmp_affinity_create_flat_map(&address2os, &msg_id); |
| 3628 | if (depth == 0) { |
| 3629 | KMP_ASSERT(__kmp_affinity_type == affinity_none); |
| 3630 | KMP_ASSERT(address2os == NULL); |
| 3631 | return; |
| 3632 | } |
| 3633 | // should not fail |
| 3634 | KMP_ASSERT(depth > 0); |
| 3635 | KMP_ASSERT(address2os != NULL); |
| 3636 | } |
| 3637 | |
| 3638 | if (address2os == NULL) { |
| 3639 | if (KMP_AFFINITY_CAPABLE() |
| 3640 | && (__kmp_affinity_verbose || (__kmp_affinity_warnings |
| 3641 | && (__kmp_affinity_type != affinity_none)))) { |
| 3642 | KMP_WARNING(ErrorInitializeAffinity); |
| 3643 | } |
| 3644 | __kmp_affinity_type = affinity_none; |
| 3645 | __kmp_affin_mask_size = 0; |
| 3646 | return; |
| 3647 | } |
| 3648 | |
| 3649 | # if KMP_MIC |
| 3650 | __kmp_apply_thread_places(&address2os, depth); |
| 3651 | # endif |
| 3652 | |
| 3653 | // |
| 3654 | // Create the table of masks, indexed by thread Id. |
| 3655 | // |
| 3656 | unsigned maxIndex; |
| 3657 | unsigned numUnique; |
| 3658 | kmp_affin_mask_t *osId2Mask = __kmp_create_masks(&maxIndex, &numUnique, |
| 3659 | address2os, __kmp_avail_proc); |
| 3660 | if (__kmp_affinity_gran_levels == 0) { |
| 3661 | KMP_DEBUG_ASSERT(numUnique == __kmp_avail_proc); |
| 3662 | } |
| 3663 | |
| 3664 | // |
| 3665 | // Set the childNums vector in all Address objects. This must be done |
| 3666 | // before we can sort using __kmp_affinity_cmp_Address_child_num(), |
| 3667 | // which takes into account the setting of __kmp_affinity_compact. |
| 3668 | // |
| 3669 | __kmp_affinity_assign_child_nums(address2os, __kmp_avail_proc); |
| 3670 | |
| 3671 | switch (__kmp_affinity_type) { |
| 3672 | |
| 3673 | case affinity_explicit: |
| 3674 | KMP_DEBUG_ASSERT(__kmp_affinity_proclist != NULL); |
| 3675 | # if OMP_40_ENABLED |
| 3676 | if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) |
| 3677 | # endif |
| 3678 | { |
| 3679 | __kmp_affinity_process_proclist(&__kmp_affinity_masks, |
| 3680 | &__kmp_affinity_num_masks, __kmp_affinity_proclist, osId2Mask, |
| 3681 | maxIndex); |
| 3682 | } |
| 3683 | # if OMP_40_ENABLED |
| 3684 | else { |
| 3685 | __kmp_affinity_process_placelist(&__kmp_affinity_masks, |
| 3686 | &__kmp_affinity_num_masks, __kmp_affinity_proclist, osId2Mask, |
| 3687 | maxIndex); |
| 3688 | } |
| 3689 | # endif |
| 3690 | if (__kmp_affinity_num_masks == 0) { |
| 3691 | if (__kmp_affinity_verbose || (__kmp_affinity_warnings |
| 3692 | && (__kmp_affinity_type != affinity_none))) { |
| 3693 | KMP_WARNING(AffNoValidProcID); |
| 3694 | } |
| 3695 | __kmp_affinity_type = affinity_none; |
| 3696 | return; |
| 3697 | } |
| 3698 | break; |
| 3699 | |
| 3700 | // |
| 3701 | // The other affinity types rely on sorting the Addresses according |
| 3702 | // to some permutation of the machine topology tree. Set |
| 3703 | // __kmp_affinity_compact and __kmp_affinity_offset appropriately, |
| 3704 | // then jump to a common code fragment to do the sort and create |
| 3705 | // the array of affinity masks. |
| 3706 | // |
| 3707 | |
| 3708 | case affinity_logical: |
| 3709 | __kmp_affinity_compact = 0; |
| 3710 | if (__kmp_affinity_offset) { |
| 3711 | __kmp_affinity_offset = __kmp_nThreadsPerCore * __kmp_affinity_offset |
| 3712 | % __kmp_avail_proc; |
| 3713 | } |
| 3714 | goto sortAddresses; |
| 3715 | |
| 3716 | case affinity_physical: |
| 3717 | if (__kmp_nThreadsPerCore > 1) { |
| 3718 | __kmp_affinity_compact = 1; |
| 3719 | if (__kmp_affinity_compact >= depth) { |
| 3720 | __kmp_affinity_compact = 0; |
| 3721 | } |
| 3722 | } else { |
| 3723 | __kmp_affinity_compact = 0; |
| 3724 | } |
| 3725 | if (__kmp_affinity_offset) { |
| 3726 | __kmp_affinity_offset = __kmp_nThreadsPerCore * __kmp_affinity_offset |
| 3727 | % __kmp_avail_proc; |
| 3728 | } |
| 3729 | goto sortAddresses; |
| 3730 | |
| 3731 | case affinity_scatter: |
| 3732 | if (__kmp_affinity_compact >= depth) { |
| 3733 | __kmp_affinity_compact = 0; |
| 3734 | } |
| 3735 | else { |
| 3736 | __kmp_affinity_compact = depth - 1 - __kmp_affinity_compact; |
| 3737 | } |
| 3738 | goto sortAddresses; |
| 3739 | |
| 3740 | case affinity_compact: |
| 3741 | if (__kmp_affinity_compact >= depth) { |
| 3742 | __kmp_affinity_compact = depth - 1; |
| 3743 | } |
| 3744 | goto sortAddresses; |
| 3745 | |
| 3746 | # if KMP_MIC |
| 3747 | case affinity_balanced: |
| 3748 | // Balanced works only for the case of a single package and uniform topology |
| 3749 | if( nPackages > 1 ) { |
| 3750 | if( __kmp_affinity_verbose || __kmp_affinity_warnings ) { |
| 3751 | KMP_WARNING( AffBalancedNotAvail, "KMP_AFFINITY" ); |
| 3752 | } |
| 3753 | __kmp_affinity_type = affinity_none; |
| 3754 | return; |
| 3755 | } else if( __kmp_affinity_uniform_topology() ) { |
| 3756 | break; |
| 3757 | } else { // Non-uniform topology |
| 3758 | |
| 3759 | // Save the depth for further usage |
| 3760 | __kmp_aff_depth = depth; |
| 3761 | |
| 3762 | // Number of hyper threads per core in HT machine |
| 3763 | int nth_per_core = __kmp_nThreadsPerCore; |
| 3764 | |
| 3765 | int core_level; |
| 3766 | if( nth_per_core > 1 ) { |
| 3767 | core_level = depth - 2; |
| 3768 | } else { |
| 3769 | core_level = depth - 1; |
| 3770 | } |
| 3771 | int ncores = address2os[ __kmp_avail_proc - 1 ].first.labels[ core_level ] + 1; |
| 3772 | int nproc = nth_per_core * ncores; |
| 3773 | |
| 3774 | procarr = ( int * )__kmp_allocate( sizeof( int ) * nproc ); |
| 3775 | for( int i = 0; i < nproc; i++ ) { |
| 3776 | procarr[ i ] = -1; |
| 3777 | } |
| 3778 | |
| 3779 | for( int i = 0; i < __kmp_avail_proc; i++ ) { |
| 3780 | int proc = address2os[ i ].second; |
| 3781 | // If depth == 3 then level=0 - package, level=1 - core, level=2 - thread. |
| 3782 | // If there is only one thread per core then depth == 2: level 0 - package, |
| 3783 | // level 1 - core. |
| 3784 | int level = depth - 1; |
| 3785 | |
| 3786 | // __kmp_nth_per_core == 1 |
| 3787 | int thread = 0; |
| 3788 | int core = address2os[ i ].first.labels[ level ]; |
| 3789 | // If the thread level exists, that is we have more than one thread context per core |
| 3790 | if( nth_per_core > 1 ) { |
| 3791 | thread = address2os[ i ].first.labels[ level ] % nth_per_core; |
| 3792 | core = address2os[ i ].first.labels[ level - 1 ]; |
| 3793 | } |
| 3794 | procarr[ core * nth_per_core + thread ] = proc; |
| 3795 | } |
| 3796 | |
| 3797 | break; |
| 3798 | } |
| 3799 | # endif |
| 3800 | |
| 3801 | sortAddresses: |
| 3802 | // |
| 3803 | // Allocate the gtid->affinity mask table. |
| 3804 | // |
| 3805 | if (__kmp_affinity_dups) { |
| 3806 | __kmp_affinity_num_masks = __kmp_avail_proc; |
| 3807 | } |
| 3808 | else { |
| 3809 | __kmp_affinity_num_masks = numUnique; |
| 3810 | } |
| 3811 | |
| 3812 | # if OMP_40_ENABLED |
| 3813 | if ( ( __kmp_nested_proc_bind.bind_types[0] != proc_bind_intel ) |
| 3814 | && ( __kmp_affinity_num_places > 0 ) |
| 3815 | && ( (unsigned)__kmp_affinity_num_places < __kmp_affinity_num_masks ) ) { |
| 3816 | __kmp_affinity_num_masks = __kmp_affinity_num_places; |
| 3817 | } |
| 3818 | # endif |
| 3819 | |
| 3820 | __kmp_affinity_masks = (kmp_affin_mask_t*)__kmp_allocate( |
| 3821 | __kmp_affinity_num_masks * __kmp_affin_mask_size); |
| 3822 | |
| 3823 | // |
| 3824 | // Sort the address2os table according to the current setting of |
| 3825 | // __kmp_affinity_compact, then fill out __kmp_affinity_masks. |
| 3826 | // |
| 3827 | qsort(address2os, __kmp_avail_proc, sizeof(*address2os), |
| 3828 | __kmp_affinity_cmp_Address_child_num); |
| 3829 | { |
| 3830 | int i; |
| 3831 | unsigned j; |
| 3832 | for (i = 0, j = 0; i < __kmp_avail_proc; i++) { |
| 3833 | if ((! __kmp_affinity_dups) && (! address2os[i].first.leader)) { |
| 3834 | continue; |
| 3835 | } |
| 3836 | unsigned osId = address2os[i].second; |
| 3837 | kmp_affin_mask_t *src = KMP_CPU_INDEX(osId2Mask, osId); |
| 3838 | kmp_affin_mask_t *dest |
| 3839 | = KMP_CPU_INDEX(__kmp_affinity_masks, j); |
| 3840 | KMP_ASSERT(KMP_CPU_ISSET(osId, src)); |
| 3841 | KMP_CPU_COPY(dest, src); |
| 3842 | if (++j >= __kmp_affinity_num_masks) { |
| 3843 | break; |
| 3844 | } |
| 3845 | } |
| 3846 | KMP_DEBUG_ASSERT(j == __kmp_affinity_num_masks); |
| 3847 | } |
| 3848 | break; |
| 3849 | |
| 3850 | default: |
| 3851 | KMP_ASSERT2(0, "Unexpected affinity setting"); |
| 3852 | } |
| 3853 | |
| 3854 | __kmp_free(osId2Mask); |
| 3855 | } |
| 3856 | |
| 3857 | |
| 3858 | void |
| 3859 | __kmp_affinity_initialize(void) |
| 3860 | { |
| 3861 | // |
| 3862 | // Much of the code above was written assumming that if a machine was not |
| 3863 | // affinity capable, then __kmp_affinity_type == affinity_none. We now |
| 3864 | // explicitly represent this as __kmp_affinity_type == affinity_disabled. |
| 3865 | // |
| 3866 | // There are too many checks for __kmp_affinity_type == affinity_none |
| 3867 | // in this code. Instead of trying to change them all, check if |
| 3868 | // __kmp_affinity_type == affinity_disabled, and if so, slam it with |
| 3869 | // affinity_none, call the real initialization routine, then restore |
| 3870 | // __kmp_affinity_type to affinity_disabled. |
| 3871 | // |
| 3872 | int disabled = (__kmp_affinity_type == affinity_disabled); |
| 3873 | if (! KMP_AFFINITY_CAPABLE()) { |
| 3874 | KMP_ASSERT(disabled); |
| 3875 | } |
| 3876 | if (disabled) { |
| 3877 | __kmp_affinity_type = affinity_none; |
| 3878 | } |
| 3879 | __kmp_aux_affinity_initialize(); |
| 3880 | if (disabled) { |
| 3881 | __kmp_affinity_type = affinity_disabled; |
| 3882 | } |
| 3883 | } |
| 3884 | |
| 3885 | |
| 3886 | void |
| 3887 | __kmp_affinity_uninitialize(void) |
| 3888 | { |
| 3889 | if (__kmp_affinity_masks != NULL) { |
| 3890 | __kmp_free(__kmp_affinity_masks); |
| 3891 | __kmp_affinity_masks = NULL; |
| 3892 | } |
| 3893 | if (fullMask != NULL) { |
| 3894 | KMP_CPU_FREE(fullMask); |
| 3895 | fullMask = NULL; |
| 3896 | } |
| 3897 | __kmp_affinity_num_masks = 0; |
| 3898 | # if OMP_40_ENABLED |
| 3899 | __kmp_affinity_num_places = 0; |
| 3900 | # endif |
| 3901 | if (__kmp_affinity_proclist != NULL) { |
| 3902 | __kmp_free(__kmp_affinity_proclist); |
| 3903 | __kmp_affinity_proclist = NULL; |
| 3904 | } |
| 3905 | if( address2os != NULL ) { |
| 3906 | __kmp_free( address2os ); |
| 3907 | address2os = NULL; |
| 3908 | } |
| 3909 | if( procarr != NULL ) { |
| 3910 | __kmp_free( procarr ); |
| 3911 | procarr = NULL; |
| 3912 | } |
| 3913 | } |
| 3914 | |
| 3915 | |
| 3916 | void |
| 3917 | __kmp_affinity_set_init_mask(int gtid, int isa_root) |
| 3918 | { |
| 3919 | if (! KMP_AFFINITY_CAPABLE()) { |
| 3920 | return; |
| 3921 | } |
| 3922 | |
| 3923 | kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); |
| 3924 | if (th->th.th_affin_mask == NULL) { |
| 3925 | KMP_CPU_ALLOC(th->th.th_affin_mask); |
| 3926 | } |
| 3927 | else { |
| 3928 | KMP_CPU_ZERO(th->th.th_affin_mask); |
| 3929 | } |
| 3930 | |
| 3931 | // |
| 3932 | // Copy the thread mask to the kmp_info_t strucuture. |
| 3933 | // If __kmp_affinity_type == affinity_none, copy the "full" mask, i.e. one |
| 3934 | // that has all of the OS proc ids set, or if __kmp_affinity_respect_mask |
| 3935 | // is set, then the full mask is the same as the mask of the initialization |
| 3936 | // thread. |
| 3937 | // |
| 3938 | kmp_affin_mask_t *mask; |
| 3939 | int i; |
| 3940 | |
| 3941 | # if OMP_40_ENABLED |
| 3942 | if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) |
| 3943 | # endif |
| 3944 | { |
| 3945 | if ((__kmp_affinity_type == affinity_none) |
| 3946 | # if KMP_MIC |
| 3947 | || (__kmp_affinity_type == affinity_balanced) |
| 3948 | # endif |
| 3949 | ) { |
| 3950 | # if KMP_OS_WINDOWS && KMP_ARCH_X86_64 |
| 3951 | if (__kmp_num_proc_groups > 1) { |
| 3952 | return; |
| 3953 | } |
| 3954 | # endif |
| 3955 | KMP_ASSERT(fullMask != NULL); |
| 3956 | i = -1; |
| 3957 | mask = fullMask; |
| 3958 | } |
| 3959 | else { |
| 3960 | KMP_DEBUG_ASSERT( __kmp_affinity_num_masks > 0 ); |
| 3961 | i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks; |
| 3962 | mask = KMP_CPU_INDEX(__kmp_affinity_masks, i); |
| 3963 | } |
| 3964 | } |
| 3965 | # if OMP_40_ENABLED |
| 3966 | else { |
| 3967 | if ((! isa_root) |
| 3968 | || (__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) { |
| 3969 | # if KMP_OS_WINDOWS && KMP_ARCH_X86_64 |
| 3970 | if (__kmp_num_proc_groups > 1) { |
| 3971 | return; |
| 3972 | } |
| 3973 | # endif |
| 3974 | KMP_ASSERT(fullMask != NULL); |
| 3975 | i = KMP_PLACE_ALL; |
| 3976 | mask = fullMask; |
| 3977 | } |
| 3978 | else { |
| 3979 | // |
| 3980 | // int i = some hash function or just a counter that doesn't |
| 3981 | // always start at 0. Use gtid for now. |
| 3982 | // |
| 3983 | KMP_DEBUG_ASSERT( __kmp_affinity_num_masks > 0 ); |
| 3984 | i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks; |
| 3985 | mask = KMP_CPU_INDEX(__kmp_affinity_masks, i); |
| 3986 | } |
| 3987 | } |
| 3988 | # endif |
| 3989 | |
| 3990 | # if OMP_40_ENABLED |
| 3991 | th->th.th_current_place = i; |
| 3992 | if (isa_root) { |
| 3993 | th->th.th_new_place = i; |
| 3994 | th->th.th_first_place = 0; |
| 3995 | th->th.th_last_place = __kmp_affinity_num_masks - 1; |
| 3996 | } |
| 3997 | |
| 3998 | if (i == KMP_PLACE_ALL) { |
| 3999 | KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n", |
| 4000 | gtid)); |
| 4001 | } |
| 4002 | else { |
| 4003 | KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n", |
| 4004 | gtid, i)); |
| 4005 | } |
| 4006 | # else |
| 4007 | if (i == -1) { |
| 4008 | KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to fullMask\n", |
| 4009 | gtid)); |
| 4010 | } |
| 4011 | else { |
| 4012 | KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to mask %d\n", |
| 4013 | gtid, i)); |
| 4014 | } |
| 4015 | # endif /* OMP_40_ENABLED */ |
| 4016 | |
| 4017 | KMP_CPU_COPY(th->th.th_affin_mask, mask); |
| 4018 | |
| 4019 | if (__kmp_affinity_verbose) { |
| 4020 | char buf[KMP_AFFIN_MASK_PRINT_LEN]; |
| 4021 | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, |
| 4022 | th->th.th_affin_mask); |
| 4023 | KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", gtid, buf); |
| 4024 | } |
| 4025 | |
| 4026 | # if KMP_OS_WINDOWS |
| 4027 | // |
| 4028 | // On Windows* OS, the process affinity mask might have changed. |
| 4029 | // If the user didn't request affinity and this call fails, |
| 4030 | // just continue silently. See CQ171393. |
| 4031 | // |
| 4032 | if ( __kmp_affinity_type == affinity_none ) { |
| 4033 | __kmp_set_system_affinity(th->th.th_affin_mask, FALSE); |
| 4034 | } |
| 4035 | else |
| 4036 | # endif |
| 4037 | __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); |
| 4038 | } |
| 4039 | |
| 4040 | |
| 4041 | # if OMP_40_ENABLED |
| 4042 | |
| 4043 | void |
| 4044 | __kmp_affinity_set_place(int gtid) |
| 4045 | { |
| 4046 | int retval; |
| 4047 | |
| 4048 | if (! KMP_AFFINITY_CAPABLE()) { |
| 4049 | return; |
| 4050 | } |
| 4051 | |
| 4052 | kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); |
| 4053 | |
| 4054 | KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current place = %d)\n", |
| 4055 | gtid, th->th.th_new_place, th->th.th_current_place)); |
| 4056 | |
| 4057 | // |
| 4058 | // Check that the new place is withing this thread's partition. |
| 4059 | // |
| 4060 | KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); |
| 4061 | KMP_DEBUG_ASSERT(th->th.th_new_place >= 0); |
| 4062 | KMP_DEBUG_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity_num_masks); |
| 4063 | if (th->th.th_first_place <= th->th.th_last_place) { |
| 4064 | KMP_DEBUG_ASSERT((th->th.th_new_place >= th->th.th_first_place) |
| 4065 | && (th->th.th_new_place <= th->th.th_last_place)); |
| 4066 | } |
| 4067 | else { |
| 4068 | KMP_DEBUG_ASSERT((th->th.th_new_place <= th->th.th_first_place) |
| 4069 | || (th->th.th_new_place >= th->th.th_last_place)); |
| 4070 | } |
| 4071 | |
| 4072 | // |
| 4073 | // Copy the thread mask to the kmp_info_t strucuture, |
| 4074 | // and set this thread's affinity. |
| 4075 | // |
| 4076 | kmp_affin_mask_t *mask = KMP_CPU_INDEX(__kmp_affinity_masks, |
| 4077 | th->th.th_new_place); |
| 4078 | KMP_CPU_COPY(th->th.th_affin_mask, mask); |
| 4079 | th->th.th_current_place = th->th.th_new_place; |
| 4080 | |
| 4081 | if (__kmp_affinity_verbose) { |
| 4082 | char buf[KMP_AFFIN_MASK_PRINT_LEN]; |
| 4083 | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, |
| 4084 | th->th.th_affin_mask); |
| 4085 | KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", gtid, buf); |
| 4086 | } |
| 4087 | __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); |
| 4088 | } |
| 4089 | |
| 4090 | # endif /* OMP_40_ENABLED */ |
| 4091 | |
| 4092 | |
| 4093 | int |
| 4094 | __kmp_aux_set_affinity(void **mask) |
| 4095 | { |
| 4096 | int gtid; |
| 4097 | kmp_info_t *th; |
| 4098 | int retval; |
| 4099 | |
| 4100 | if (! KMP_AFFINITY_CAPABLE()) { |
| 4101 | return -1; |
| 4102 | } |
| 4103 | |
| 4104 | gtid = __kmp_entry_gtid(); |
| 4105 | KA_TRACE(1000, ;{ |
| 4106 | char buf[KMP_AFFIN_MASK_PRINT_LEN]; |
| 4107 | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, |
| 4108 | (kmp_affin_mask_t *)(*mask)); |
| 4109 | __kmp_debug_printf("kmp_set_affinity: setting affinity mask for thread %d = %s\n", |
| 4110 | gtid, buf); |
| 4111 | }); |
| 4112 | |
| 4113 | if (__kmp_env_consistency_check) { |
| 4114 | if ((mask == NULL) || (*mask == NULL)) { |
| 4115 | KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); |
| 4116 | } |
| 4117 | else { |
| 4118 | unsigned proc; |
| 4119 | int num_procs = 0; |
| 4120 | |
| 4121 | for (proc = 0; proc < KMP_CPU_SETSIZE; proc++) { |
| 4122 | if (! KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) { |
| 4123 | continue; |
| 4124 | } |
| 4125 | num_procs++; |
| 4126 | if (! KMP_CPU_ISSET(proc, fullMask)) { |
| 4127 | KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); |
| 4128 | break; |
| 4129 | } |
| 4130 | } |
| 4131 | if (num_procs == 0) { |
| 4132 | KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); |
| 4133 | } |
| 4134 | |
| 4135 | # if KMP_OS_WINDOWS && KMP_ARCH_X86_64 |
| 4136 | if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) { |
| 4137 | KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); |
| 4138 | } |
| 4139 | # endif /* KMP_OS_WINDOWS && KMP_ARCH_X86_64 */ |
| 4140 | |
| 4141 | } |
| 4142 | } |
| 4143 | |
| 4144 | th = __kmp_threads[gtid]; |
| 4145 | KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); |
| 4146 | retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); |
| 4147 | if (retval == 0) { |
| 4148 | KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask)); |
| 4149 | } |
| 4150 | |
| 4151 | # if OMP_40_ENABLED |
| 4152 | th->th.th_current_place = KMP_PLACE_UNDEFINED; |
| 4153 | th->th.th_new_place = KMP_PLACE_UNDEFINED; |
| 4154 | th->th.th_first_place = 0; |
| 4155 | th->th.th_last_place = __kmp_affinity_num_masks - 1; |
| 4156 | # endif |
| 4157 | |
| 4158 | return retval; |
| 4159 | } |
| 4160 | |
| 4161 | |
| 4162 | int |
| 4163 | __kmp_aux_get_affinity(void **mask) |
| 4164 | { |
| 4165 | int gtid; |
| 4166 | int retval; |
| 4167 | kmp_info_t *th; |
| 4168 | |
| 4169 | if (! KMP_AFFINITY_CAPABLE()) { |
| 4170 | return -1; |
| 4171 | } |
| 4172 | |
| 4173 | gtid = __kmp_entry_gtid(); |
| 4174 | th = __kmp_threads[gtid]; |
| 4175 | KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); |
| 4176 | |
| 4177 | KA_TRACE(1000, ;{ |
| 4178 | char buf[KMP_AFFIN_MASK_PRINT_LEN]; |
| 4179 | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, |
| 4180 | th->th.th_affin_mask); |
| 4181 | __kmp_printf("kmp_get_affinity: stored affinity mask for thread %d = %s\n", gtid, buf); |
| 4182 | }); |
| 4183 | |
| 4184 | if (__kmp_env_consistency_check) { |
| 4185 | if ((mask == NULL) || (*mask == NULL)) { |
| 4186 | KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity"); |
| 4187 | } |
| 4188 | } |
| 4189 | |
| 4190 | # if !KMP_OS_WINDOWS |
| 4191 | |
| 4192 | retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); |
| 4193 | KA_TRACE(1000, ;{ |
| 4194 | char buf[KMP_AFFIN_MASK_PRINT_LEN]; |
| 4195 | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, |
| 4196 | (kmp_affin_mask_t *)(*mask)); |
| 4197 | __kmp_printf("kmp_get_affinity: system affinity mask for thread %d = %s\n", gtid, buf); |
| 4198 | }); |
| 4199 | return retval; |
| 4200 | |
| 4201 | # else |
| 4202 | |
| 4203 | KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask); |
| 4204 | return 0; |
| 4205 | |
| 4206 | # endif /* KMP_OS_WINDOWS */ |
| 4207 | |
| 4208 | } |
| 4209 | |
| 4210 | |
| 4211 | int |
| 4212 | __kmp_aux_set_affinity_mask_proc(int proc, void **mask) |
| 4213 | { |
| 4214 | int retval; |
| 4215 | |
| 4216 | if (! KMP_AFFINITY_CAPABLE()) { |
| 4217 | return -1; |
| 4218 | } |
| 4219 | |
| 4220 | KA_TRACE(1000, ;{ |
| 4221 | int gtid = __kmp_entry_gtid(); |
| 4222 | char buf[KMP_AFFIN_MASK_PRINT_LEN]; |
| 4223 | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, |
| 4224 | (kmp_affin_mask_t *)(*mask)); |
| 4225 | __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in affinity mask for thread %d = %s\n", |
| 4226 | proc, gtid, buf); |
| 4227 | }); |
| 4228 | |
| 4229 | if (__kmp_env_consistency_check) { |
| 4230 | if ((mask == NULL) || (*mask == NULL)) { |
| 4231 | KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc"); |
| 4232 | } |
| 4233 | } |
| 4234 | |
| 4235 | if ((proc < 0) || ((unsigned)proc >= KMP_CPU_SETSIZE)) { |
| 4236 | return -1; |
| 4237 | } |
| 4238 | if (! KMP_CPU_ISSET(proc, fullMask)) { |
| 4239 | return -2; |
| 4240 | } |
| 4241 | |
| 4242 | KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask)); |
| 4243 | return 0; |
| 4244 | } |
| 4245 | |
| 4246 | |
| 4247 | int |
| 4248 | __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) |
| 4249 | { |
| 4250 | int retval; |
| 4251 | |
| 4252 | if (! KMP_AFFINITY_CAPABLE()) { |
| 4253 | return -1; |
| 4254 | } |
| 4255 | |
| 4256 | KA_TRACE(1000, ;{ |
| 4257 | int gtid = __kmp_entry_gtid(); |
| 4258 | char buf[KMP_AFFIN_MASK_PRINT_LEN]; |
| 4259 | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, |
| 4260 | (kmp_affin_mask_t *)(*mask)); |
| 4261 | __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in affinity mask for thread %d = %s\n", |
| 4262 | proc, gtid, buf); |
| 4263 | }); |
| 4264 | |
| 4265 | if (__kmp_env_consistency_check) { |
| 4266 | if ((mask == NULL) || (*mask == NULL)) { |
| 4267 | KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc"); |
| 4268 | } |
| 4269 | } |
| 4270 | |
| 4271 | if ((proc < 0) || ((unsigned)proc >= KMP_CPU_SETSIZE)) { |
| 4272 | return -1; |
| 4273 | } |
| 4274 | if (! KMP_CPU_ISSET(proc, fullMask)) { |
| 4275 | return -2; |
| 4276 | } |
| 4277 | |
| 4278 | KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask)); |
| 4279 | return 0; |
| 4280 | } |
| 4281 | |
| 4282 | |
| 4283 | int |
| 4284 | __kmp_aux_get_affinity_mask_proc(int proc, void **mask) |
| 4285 | { |
| 4286 | int retval; |
| 4287 | |
| 4288 | if (! KMP_AFFINITY_CAPABLE()) { |
| 4289 | return -1; |
| 4290 | } |
| 4291 | |
| 4292 | KA_TRACE(1000, ;{ |
| 4293 | int gtid = __kmp_entry_gtid(); |
| 4294 | char buf[KMP_AFFIN_MASK_PRINT_LEN]; |
| 4295 | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, |
| 4296 | (kmp_affin_mask_t *)(*mask)); |
| 4297 | __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in affinity mask for thread %d = %s\n", |
| 4298 | proc, gtid, buf); |
| 4299 | }); |
| 4300 | |
| 4301 | if (__kmp_env_consistency_check) { |
| 4302 | if ((mask == NULL) || (*mask == NULL)) { |
| 4303 | KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc"); |
| 4304 | } |
| 4305 | } |
| 4306 | |
| 4307 | if ((proc < 0) || ((unsigned)proc >= KMP_CPU_SETSIZE)) { |
| 4308 | return 0; |
| 4309 | } |
| 4310 | if (! KMP_CPU_ISSET(proc, fullMask)) { |
| 4311 | return 0; |
| 4312 | } |
| 4313 | |
| 4314 | return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask)); |
| 4315 | } |
| 4316 | |
| 4317 | # if KMP_MIC |
| 4318 | |
| 4319 | // Dynamic affinity settings - Affinity balanced |
| 4320 | void __kmp_balanced_affinity( int tid, int nthreads ) |
| 4321 | { |
| 4322 | if( __kmp_affinity_uniform_topology() ) { |
| 4323 | int coreID; |
| 4324 | int threadID; |
| 4325 | // Number of hyper threads per core in HT machine |
| 4326 | int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores; |
| 4327 | // Number of cores |
| 4328 | int ncores = __kmp_ncores; |
| 4329 | // How many threads will be bound to each core |
| 4330 | int chunk = nthreads / ncores; |
| 4331 | // How many cores will have an additional thread bound to it - "big cores" |
| 4332 | int big_cores = nthreads % ncores; |
| 4333 | // Number of threads on the big cores |
| 4334 | int big_nth = ( chunk + 1 ) * big_cores; |
| 4335 | if( tid < big_nth ) { |
| 4336 | coreID = tid / (chunk + 1 ); |
| 4337 | threadID = ( tid % (chunk + 1 ) ) % __kmp_nth_per_core ; |
| 4338 | } else { //tid >= big_nth |
| 4339 | coreID = ( tid - big_cores ) / chunk; |
| 4340 | threadID = ( ( tid - big_cores ) % chunk ) % __kmp_nth_per_core ; |
| 4341 | } |
| 4342 | |
| 4343 | KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(), |
| 4344 | "Illegal set affinity operation when not capable"); |
| 4345 | |
| 4346 | kmp_affin_mask_t *mask = (kmp_affin_mask_t *)alloca(__kmp_affin_mask_size); |
| 4347 | KMP_CPU_ZERO(mask); |
| 4348 | |
| 4349 | // Granularity == thread |
| 4350 | if( __kmp_affinity_gran == affinity_gran_fine || __kmp_affinity_gran == affinity_gran_thread) { |
| 4351 | int osID = address2os[ coreID * __kmp_nth_per_core + threadID ].second; |
| 4352 | KMP_CPU_SET( osID, mask); |
| 4353 | } else if( __kmp_affinity_gran == affinity_gran_core ) { // Granularity == core |
| 4354 | for( int i = 0; i < __kmp_nth_per_core; i++ ) { |
| 4355 | int osID; |
| 4356 | osID = address2os[ coreID * __kmp_nth_per_core + i ].second; |
| 4357 | KMP_CPU_SET( osID, mask); |
| 4358 | } |
| 4359 | } |
| 4360 | if (__kmp_affinity_verbose) { |
| 4361 | char buf[KMP_AFFIN_MASK_PRINT_LEN]; |
| 4362 | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); |
| 4363 | KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", tid, buf); |
| 4364 | } |
| 4365 | __kmp_set_system_affinity( mask, TRUE ); |
| 4366 | } else { // Non-uniform topology |
| 4367 | |
| 4368 | kmp_affin_mask_t *mask = (kmp_affin_mask_t *)alloca(__kmp_affin_mask_size); |
| 4369 | KMP_CPU_ZERO(mask); |
| 4370 | |
| 4371 | // Number of hyper threads per core in HT machine |
| 4372 | int nth_per_core = __kmp_nThreadsPerCore; |
| 4373 | int core_level; |
| 4374 | if( nth_per_core > 1 ) { |
| 4375 | core_level = __kmp_aff_depth - 2; |
| 4376 | } else { |
| 4377 | core_level = __kmp_aff_depth - 1; |
| 4378 | } |
| 4379 | |
| 4380 | // Number of cores - maximum value; it does not count trail cores with 0 processors |
| 4381 | int ncores = address2os[ __kmp_avail_proc - 1 ].first.labels[ core_level ] + 1; |
| 4382 | |
| 4383 | // For performance gain consider the special case nthreads == __kmp_avail_proc |
| 4384 | if( nthreads == __kmp_avail_proc ) { |
| 4385 | if( __kmp_affinity_gran == affinity_gran_fine || __kmp_affinity_gran == affinity_gran_thread) { |
| 4386 | int osID = address2os[ tid ].second; |
| 4387 | KMP_CPU_SET( osID, mask); |
| 4388 | } else if( __kmp_affinity_gran == affinity_gran_core ) { // Granularity == core |
| 4389 | int coreID = address2os[ tid ].first.labels[ core_level ]; |
| 4390 | // We'll count found osIDs for the current core; they can be not more than nth_per_core; |
| 4391 | // since the address2os is sortied we can break when cnt==nth_per_core |
| 4392 | int cnt = 0; |
| 4393 | for( int i = 0; i < __kmp_avail_proc; i++ ) { |
| 4394 | int osID = address2os[ i ].second; |
| 4395 | int core = address2os[ i ].first.labels[ core_level ]; |
| 4396 | if( core == coreID ) { |
| 4397 | KMP_CPU_SET( osID, mask); |
| 4398 | cnt++; |
| 4399 | if( cnt == nth_per_core ) { |
| 4400 | break; |
| 4401 | } |
| 4402 | } |
| 4403 | } |
| 4404 | } |
| 4405 | } else if( nthreads <= __kmp_ncores ) { |
| 4406 | |
| 4407 | int core = 0; |
| 4408 | for( int i = 0; i < ncores; i++ ) { |
| 4409 | // Check if this core from procarr[] is in the mask |
| 4410 | int in_mask = 0; |
| 4411 | for( int j = 0; j < nth_per_core; j++ ) { |
| 4412 | if( procarr[ i * nth_per_core + j ] != - 1 ) { |
| 4413 | in_mask = 1; |
| 4414 | break; |
| 4415 | } |
| 4416 | } |
| 4417 | if( in_mask ) { |
| 4418 | if( tid == core ) { |
| 4419 | for( int j = 0; j < nth_per_core; j++ ) { |
| 4420 | int osID = procarr[ i * nth_per_core + j ]; |
| 4421 | if( osID != -1 ) { |
| 4422 | KMP_CPU_SET( osID, mask ); |
| 4423 | // For granularity=thread it is enough to set the first available osID for this core |
| 4424 | if( __kmp_affinity_gran == affinity_gran_fine || __kmp_affinity_gran == affinity_gran_thread) { |
| 4425 | break; |
| 4426 | } |
| 4427 | } |
| 4428 | } |
| 4429 | break; |
| 4430 | } else { |
| 4431 | core++; |
| 4432 | } |
| 4433 | } |
| 4434 | } |
| 4435 | |
| 4436 | } else { // nthreads > __kmp_ncores |
| 4437 | |
| 4438 | // Array to save the number of processors at each core |
| 4439 | int nproc_at_core[ ncores ]; |
| 4440 | // Array to save the number of cores with "x" available processors; |
| 4441 | int ncores_with_x_procs[ nth_per_core + 1 ]; |
| 4442 | // Array to save the number of cores with # procs from x to nth_per_core |
| 4443 | int ncores_with_x_to_max_procs[ nth_per_core + 1 ]; |
| 4444 | |
| 4445 | for( int i = 0; i <= nth_per_core; i++ ) { |
| 4446 | ncores_with_x_procs[ i ] = 0; |
| 4447 | ncores_with_x_to_max_procs[ i ] = 0; |
| 4448 | } |
| 4449 | |
| 4450 | for( int i = 0; i < ncores; i++ ) { |
| 4451 | int cnt = 0; |
| 4452 | for( int j = 0; j < nth_per_core; j++ ) { |
| 4453 | if( procarr[ i * nth_per_core + j ] != -1 ) { |
| 4454 | cnt++; |
| 4455 | } |
| 4456 | } |
| 4457 | nproc_at_core[ i ] = cnt; |
| 4458 | ncores_with_x_procs[ cnt ]++; |
| 4459 | } |
| 4460 | |
| 4461 | for( int i = 0; i <= nth_per_core; i++ ) { |
| 4462 | for( int j = i; j <= nth_per_core; j++ ) { |
| 4463 | ncores_with_x_to_max_procs[ i ] += ncores_with_x_procs[ j ]; |
| 4464 | } |
| 4465 | } |
| 4466 | |
| 4467 | // Max number of processors |
| 4468 | int nproc = nth_per_core * ncores; |
| 4469 | // An array to keep number of threads per each context |
| 4470 | int * newarr = ( int * )__kmp_allocate( sizeof( int ) * nproc ); |
| 4471 | for( int i = 0; i < nproc; i++ ) { |
| 4472 | newarr[ i ] = 0; |
| 4473 | } |
| 4474 | |
| 4475 | int nth = nthreads; |
| 4476 | int flag = 0; |
| 4477 | while( nth > 0 ) { |
| 4478 | for( int j = 1; j <= nth_per_core; j++ ) { |
| 4479 | int cnt = ncores_with_x_to_max_procs[ j ]; |
| 4480 | for( int i = 0; i < ncores; i++ ) { |
| 4481 | // Skip the core with 0 processors |
| 4482 | if( nproc_at_core[ i ] == 0 ) { |
| 4483 | continue; |
| 4484 | } |
| 4485 | for( int k = 0; k < nth_per_core; k++ ) { |
| 4486 | if( procarr[ i * nth_per_core + k ] != -1 ) { |
| 4487 | if( newarr[ i * nth_per_core + k ] == 0 ) { |
| 4488 | newarr[ i * nth_per_core + k ] = 1; |
| 4489 | cnt--; |
| 4490 | nth--; |
| 4491 | break; |
| 4492 | } else { |
| 4493 | if( flag != 0 ) { |
| 4494 | newarr[ i * nth_per_core + k ] ++; |
| 4495 | cnt--; |
| 4496 | nth--; |
| 4497 | break; |
| 4498 | } |
| 4499 | } |
| 4500 | } |
| 4501 | } |
| 4502 | if( cnt == 0 || nth == 0 ) { |
| 4503 | break; |
| 4504 | } |
| 4505 | } |
| 4506 | if( nth == 0 ) { |
| 4507 | break; |
| 4508 | } |
| 4509 | } |
| 4510 | flag = 1; |
| 4511 | } |
| 4512 | int sum = 0; |
| 4513 | for( int i = 0; i < nproc; i++ ) { |
| 4514 | sum += newarr[ i ]; |
| 4515 | if( sum > tid ) { |
| 4516 | // Granularity == thread |
| 4517 | if( __kmp_affinity_gran == affinity_gran_fine || __kmp_affinity_gran == affinity_gran_thread) { |
| 4518 | int osID = procarr[ i ]; |
| 4519 | KMP_CPU_SET( osID, mask); |
| 4520 | } else if( __kmp_affinity_gran == affinity_gran_core ) { // Granularity == core |
| 4521 | int coreID = i / nth_per_core; |
| 4522 | for( int ii = 0; ii < nth_per_core; ii++ ) { |
| 4523 | int osID = procarr[ coreID * nth_per_core + ii ]; |
| 4524 | if( osID != -1 ) { |
| 4525 | KMP_CPU_SET( osID, mask); |
| 4526 | } |
| 4527 | } |
| 4528 | } |
| 4529 | break; |
| 4530 | } |
| 4531 | } |
| 4532 | __kmp_free( newarr ); |
| 4533 | } |
| 4534 | |
| 4535 | if (__kmp_affinity_verbose) { |
| 4536 | char buf[KMP_AFFIN_MASK_PRINT_LEN]; |
| 4537 | __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); |
| 4538 | KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", tid, buf); |
| 4539 | } |
| 4540 | __kmp_set_system_affinity( mask, TRUE ); |
| 4541 | } |
| 4542 | } |
| 4543 | |
| 4544 | # endif /* KMP_MIC */ |
| 4545 | |
| 4546 | #elif KMP_OS_DARWIN |
| 4547 | // affinity not supported |
| 4548 | #else |
| 4549 | #error "Unknown or unsupported OS" |
| 4550 | #endif // KMP_OS_WINDOWS || KMP_OS_LINUX |
| 4551 | |