Krzysztof Parzyszek | 7d37dd8 | 2017-12-06 16:40:37 +0000 | [diff] [blame] | 1 | //===-- HexagonISelLoweringHVX.cpp --- Lowering HVX operations ------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | |
| 10 | #include "HexagonISelLowering.h" |
| 11 | #include "HexagonRegisterInfo.h" |
| 12 | #include "HexagonSubtarget.h" |
| 13 | |
| 14 | using namespace llvm; |
| 15 | |
| 16 | SDValue |
| 17 | HexagonTargetLowering::getInt(unsigned IntId, MVT ResTy, ArrayRef<SDValue> Ops, |
| 18 | const SDLoc &dl, SelectionDAG &DAG) const { |
| 19 | SmallVector<SDValue,4> IntOps; |
| 20 | IntOps.push_back(DAG.getConstant(IntId, dl, MVT::i32)); |
| 21 | for (const SDValue &Op : Ops) |
| 22 | IntOps.push_back(Op); |
| 23 | return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, ResTy, IntOps); |
| 24 | } |
| 25 | |
| 26 | MVT |
| 27 | HexagonTargetLowering::typeJoin(const TypePair &Tys) const { |
| 28 | assert(Tys.first.getVectorElementType() == Tys.second.getVectorElementType()); |
| 29 | |
| 30 | MVT ElemTy = Tys.first.getVectorElementType(); |
| 31 | return MVT::getVectorVT(ElemTy, Tys.first.getVectorNumElements() + |
| 32 | Tys.second.getVectorNumElements()); |
| 33 | } |
| 34 | |
| 35 | HexagonTargetLowering::TypePair |
| 36 | HexagonTargetLowering::typeSplit(MVT VecTy) const { |
| 37 | assert(VecTy.isVector()); |
| 38 | unsigned NumElem = VecTy.getVectorNumElements(); |
| 39 | assert((NumElem % 2) == 0 && "Expecting even-sized vector type"); |
| 40 | MVT HalfTy = MVT::getVectorVT(VecTy.getVectorElementType(), NumElem/2); |
| 41 | return { HalfTy, HalfTy }; |
| 42 | } |
| 43 | |
| 44 | MVT |
| 45 | HexagonTargetLowering::typeExtElem(MVT VecTy, unsigned Factor) const { |
| 46 | MVT ElemTy = VecTy.getVectorElementType(); |
| 47 | MVT NewElemTy = MVT::getIntegerVT(ElemTy.getSizeInBits() * Factor); |
| 48 | return MVT::getVectorVT(NewElemTy, VecTy.getVectorNumElements()); |
| 49 | } |
| 50 | |
| 51 | MVT |
| 52 | HexagonTargetLowering::typeTruncElem(MVT VecTy, unsigned Factor) const { |
| 53 | MVT ElemTy = VecTy.getVectorElementType(); |
| 54 | MVT NewElemTy = MVT::getIntegerVT(ElemTy.getSizeInBits() / Factor); |
| 55 | return MVT::getVectorVT(NewElemTy, VecTy.getVectorNumElements()); |
| 56 | } |
| 57 | |
| 58 | SDValue |
| 59 | HexagonTargetLowering::opCastElem(SDValue Vec, MVT ElemTy, |
| 60 | SelectionDAG &DAG) const { |
| 61 | if (ty(Vec).getVectorElementType() == ElemTy) |
| 62 | return Vec; |
| 63 | MVT CastTy = tyVector(Vec.getValueType().getSimpleVT(), ElemTy); |
| 64 | return DAG.getBitcast(CastTy, Vec); |
| 65 | } |
| 66 | |
| 67 | SDValue |
| 68 | HexagonTargetLowering::opJoin(const VectorPair &Ops, const SDLoc &dl, |
| 69 | SelectionDAG &DAG) const { |
| 70 | return DAG.getNode(ISD::CONCAT_VECTORS, dl, typeJoin(ty(Ops)), |
| 71 | Ops.second, Ops.first); |
| 72 | } |
| 73 | |
| 74 | HexagonTargetLowering::VectorPair |
| 75 | HexagonTargetLowering::opSplit(SDValue Vec, const SDLoc &dl, |
| 76 | SelectionDAG &DAG) const { |
| 77 | TypePair Tys = typeSplit(ty(Vec)); |
| 78 | return DAG.SplitVector(Vec, dl, Tys.first, Tys.second); |
| 79 | } |
| 80 | |
| 81 | SDValue |
| 82 | HexagonTargetLowering::convertToByteIndex(SDValue ElemIdx, MVT ElemTy, |
| 83 | SelectionDAG &DAG) const { |
| 84 | if (ElemIdx.getValueType().getSimpleVT() != MVT::i32) |
| 85 | ElemIdx = DAG.getBitcast(MVT::i32, ElemIdx); |
| 86 | |
| 87 | unsigned ElemWidth = ElemTy.getSizeInBits(); |
| 88 | if (ElemWidth == 8) |
| 89 | return ElemIdx; |
| 90 | |
| 91 | unsigned L = Log2_32(ElemWidth/8); |
| 92 | const SDLoc &dl(ElemIdx); |
| 93 | return DAG.getNode(ISD::SHL, dl, MVT::i32, |
| 94 | {ElemIdx, DAG.getConstant(L, dl, MVT::i32)}); |
| 95 | } |
| 96 | |
| 97 | SDValue |
| 98 | HexagonTargetLowering::getIndexInWord32(SDValue Idx, MVT ElemTy, |
| 99 | SelectionDAG &DAG) const { |
| 100 | unsigned ElemWidth = ElemTy.getSizeInBits(); |
| 101 | assert(ElemWidth >= 8 && ElemWidth <= 32); |
| 102 | if (ElemWidth == 32) |
| 103 | return Idx; |
| 104 | |
| 105 | if (ty(Idx) != MVT::i32) |
| 106 | Idx = DAG.getBitcast(MVT::i32, Idx); |
| 107 | const SDLoc &dl(Idx); |
| 108 | SDValue Mask = DAG.getConstant(32/ElemWidth - 1, dl, MVT::i32); |
| 109 | SDValue SubIdx = DAG.getNode(ISD::AND, dl, MVT::i32, {Idx, Mask}); |
| 110 | return SubIdx; |
| 111 | } |
| 112 | |
| 113 | SDValue |
Krzysztof Parzyszek | 039d4d9 | 2017-12-07 17:37:28 +0000 | [diff] [blame] | 114 | HexagonTargetLowering::getByteShuffle(const SDLoc &dl, SDValue Op0, |
| 115 | SDValue Op1, ArrayRef<int> Mask, |
| 116 | SelectionDAG &DAG) const { |
| 117 | MVT OpTy = ty(Op0); |
| 118 | assert(OpTy == ty(Op1)); |
| 119 | |
| 120 | MVT ElemTy = OpTy.getVectorElementType(); |
| 121 | if (ElemTy == MVT::i8) |
| 122 | return DAG.getVectorShuffle(OpTy, dl, Op0, Op1, Mask); |
| 123 | assert(ElemTy.getSizeInBits() >= 8); |
| 124 | |
| 125 | MVT ResTy = tyVector(OpTy, MVT::i8); |
| 126 | unsigned ElemSize = ElemTy.getSizeInBits() / 8; |
| 127 | |
| 128 | SmallVector<int,128> ByteMask; |
| 129 | for (int M : Mask) { |
| 130 | if (M < 0) { |
| 131 | for (unsigned I = 0; I != ElemSize; ++I) |
| 132 | ByteMask.push_back(-1); |
| 133 | } else { |
| 134 | int NewM = M*ElemSize; |
| 135 | for (unsigned I = 0; I != ElemSize; ++I) |
| 136 | ByteMask.push_back(NewM+I); |
| 137 | } |
| 138 | } |
| 139 | assert(ResTy.getVectorNumElements() == ByteMask.size()); |
| 140 | return DAG.getVectorShuffle(ResTy, dl, opCastElem(Op0, MVT::i8, DAG), |
| 141 | opCastElem(Op1, MVT::i8, DAG), ByteMask); |
| 142 | } |
| 143 | |
Krzysztof Parzyszek | e4ce92c | 2017-12-20 20:49:43 +0000 | [diff] [blame] | 144 | SDValue |
Krzysztof Parzyszek | 3780a0e | 2018-01-23 17:53:59 +0000 | [diff] [blame] | 145 | HexagonTargetLowering::buildHvxVectorReg(ArrayRef<SDValue> Values, |
| 146 | const SDLoc &dl, MVT VecTy, |
| 147 | SelectionDAG &DAG) const { |
Krzysztof Parzyszek | e4ce92c | 2017-12-20 20:49:43 +0000 | [diff] [blame] | 148 | unsigned VecLen = Values.size(); |
| 149 | MachineFunction &MF = DAG.getMachineFunction(); |
| 150 | MVT ElemTy = VecTy.getVectorElementType(); |
| 151 | unsigned ElemWidth = ElemTy.getSizeInBits(); |
| 152 | unsigned HwLen = Subtarget.getVectorLength(); |
| 153 | |
Krzysztof Parzyszek | 3780a0e | 2018-01-23 17:53:59 +0000 | [diff] [blame] | 154 | // TODO: Recognize constant splats. |
Krzysztof Parzyszek | e4ce92c | 2017-12-20 20:49:43 +0000 | [diff] [blame] | 155 | SmallVector<ConstantInt*, 128> Consts(VecLen); |
| 156 | bool AllConst = getBuildVectorConstInts(Values, VecTy, DAG, Consts); |
| 157 | if (AllConst) { |
| 158 | if (llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); })) |
| 159 | return getZero(dl, VecTy, DAG); |
| 160 | |
| 161 | ArrayRef<Constant*> Tmp((Constant**)Consts.begin(), |
| 162 | (Constant**)Consts.end()); |
| 163 | Constant *CV = ConstantVector::get(Tmp); |
| 164 | unsigned Align = HwLen; |
Krzysztof Parzyszek | 7d37dd8 | 2017-12-06 16:40:37 +0000 | [diff] [blame] | 165 | SDValue CP = LowerConstantPool(DAG.getConstantPool(CV, VecTy, Align), DAG); |
| 166 | return DAG.getLoad(VecTy, dl, DAG.getEntryNode(), CP, |
| 167 | MachinePointerInfo::getConstantPool(MF), Align); |
| 168 | } |
| 169 | |
Krzysztof Parzyszek | e4ce92c | 2017-12-20 20:49:43 +0000 | [diff] [blame] | 170 | unsigned ElemSize = ElemWidth / 8; |
| 171 | assert(ElemSize*VecLen == HwLen); |
Krzysztof Parzyszek | 7d37dd8 | 2017-12-06 16:40:37 +0000 | [diff] [blame] | 172 | SmallVector<SDValue,32> Words; |
Krzysztof Parzyszek | 7d37dd8 | 2017-12-06 16:40:37 +0000 | [diff] [blame] | 173 | |
| 174 | if (VecTy.getVectorElementType() != MVT::i32) { |
Krzysztof Parzyszek | 7d37dd8 | 2017-12-06 16:40:37 +0000 | [diff] [blame] | 175 | assert((ElemSize == 1 || ElemSize == 2) && "Invalid element size"); |
| 176 | unsigned OpsPerWord = (ElemSize == 1) ? 4 : 2; |
| 177 | MVT PartVT = MVT::getVectorVT(VecTy.getVectorElementType(), OpsPerWord); |
Krzysztof Parzyszek | e4ce92c | 2017-12-20 20:49:43 +0000 | [diff] [blame] | 178 | for (unsigned i = 0; i != VecLen; i += OpsPerWord) { |
| 179 | SDValue W = buildVector32(Values.slice(i, OpsPerWord), dl, PartVT, DAG); |
Krzysztof Parzyszek | 7d37dd8 | 2017-12-06 16:40:37 +0000 | [diff] [blame] | 180 | Words.push_back(DAG.getBitcast(MVT::i32, W)); |
| 181 | } |
| 182 | } else { |
Krzysztof Parzyszek | e4ce92c | 2017-12-20 20:49:43 +0000 | [diff] [blame] | 183 | Words.assign(Values.begin(), Values.end()); |
Krzysztof Parzyszek | 7d37dd8 | 2017-12-06 16:40:37 +0000 | [diff] [blame] | 184 | } |
| 185 | |
Krzysztof Parzyszek | 3780a0e | 2018-01-23 17:53:59 +0000 | [diff] [blame] | 186 | unsigned NumWords = Words.size(); |
Eric Christopher | a8bdf53 | 2018-01-24 01:51:57 +0000 | [diff] [blame^] | 187 | bool IsSplat = true; |
Krzysztof Parzyszek | 3780a0e | 2018-01-23 17:53:59 +0000 | [diff] [blame] | 188 | SDValue SplatV; |
| 189 | for (unsigned i = 0; i != NumWords && IsSplat; ++i) { |
| 190 | if (isUndef(Words[i])) |
| 191 | continue; |
Krzysztof Parzyszek | 3780a0e | 2018-01-23 17:53:59 +0000 | [diff] [blame] | 192 | if (!SplatV.getNode()) |
| 193 | SplatV = Words[i]; |
| 194 | else if (SplatV != Words[i]) |
| 195 | IsSplat = false; |
| 196 | } |
| 197 | if (IsSplat) { |
| 198 | assert(SplatV.getNode()); |
| 199 | return DAG.getNode(HexagonISD::VSPLAT, dl, VecTy, SplatV); |
| 200 | } |
| 201 | |
Krzysztof Parzyszek | 7d37dd8 | 2017-12-06 16:40:37 +0000 | [diff] [blame] | 202 | // Construct two halves in parallel, then or them together. |
| 203 | assert(4*Words.size() == Subtarget.getVectorLength()); |
| 204 | SDValue HalfV0 = getNode(Hexagon::V6_vd0, dl, VecTy, {}, DAG); |
| 205 | SDValue HalfV1 = getNode(Hexagon::V6_vd0, dl, VecTy, {}, DAG); |
| 206 | SDValue S = DAG.getConstant(4, dl, MVT::i32); |
Krzysztof Parzyszek | 7d37dd8 | 2017-12-06 16:40:37 +0000 | [diff] [blame] | 207 | for (unsigned i = 0; i != NumWords/2; ++i) { |
| 208 | SDValue N = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy, |
| 209 | {HalfV0, Words[i]}); |
| 210 | SDValue M = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy, |
| 211 | {HalfV1, Words[i+NumWords/2]}); |
| 212 | HalfV0 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {N, S}); |
| 213 | HalfV1 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {M, S}); |
| 214 | } |
| 215 | |
| 216 | HalfV0 = DAG.getNode(HexagonISD::VROR, dl, VecTy, |
| 217 | {HalfV0, DAG.getConstant(HwLen/2, dl, MVT::i32)}); |
| 218 | SDValue DstV = DAG.getNode(ISD::OR, dl, VecTy, {HalfV0, HalfV1}); |
| 219 | return DstV; |
| 220 | } |
| 221 | |
| 222 | SDValue |
Krzysztof Parzyszek | 3780a0e | 2018-01-23 17:53:59 +0000 | [diff] [blame] | 223 | HexagonTargetLowering::createHvxPrefixPred(SDValue PredV, const SDLoc &dl, |
| 224 | unsigned BitBytes, bool ZeroFill, SelectionDAG &DAG) const { |
| 225 | MVT PredTy = ty(PredV); |
| 226 | unsigned HwLen = Subtarget.getVectorLength(); |
| 227 | MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); |
| 228 | |
| 229 | if (Subtarget.isHVXVectorType(PredTy, true)) { |
| 230 | // Move the vector predicate SubV to a vector register, and scale it |
| 231 | // down to match the representation (bytes per type element) that VecV |
| 232 | // uses. The scaling down will pick every 2nd or 4th (every Scale-th |
| 233 | // in general) element and put them at at the front of the resulting |
| 234 | // vector. This subvector will then be inserted into the Q2V of VecV. |
| 235 | // To avoid having an operation that generates an illegal type (short |
| 236 | // vector), generate a full size vector. |
| 237 | // |
| 238 | SDValue T = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, PredV); |
| 239 | SmallVector<int,128> Mask(HwLen); |
| 240 | // Scale = BitBytes(PredV) / Given BitBytes. |
| 241 | unsigned Scale = HwLen / (PredTy.getVectorNumElements() * BitBytes); |
| 242 | unsigned BlockLen = PredTy.getVectorNumElements() * BitBytes; |
| 243 | |
| 244 | for (unsigned i = 0; i != HwLen; ++i) { |
| 245 | unsigned Num = i % Scale; |
| 246 | unsigned Off = i / Scale; |
| 247 | Mask[BlockLen*Num + Off] = i; |
| 248 | } |
| 249 | SDValue S = DAG.getVectorShuffle(ByteTy, dl, T, DAG.getUNDEF(ByteTy), Mask); |
| 250 | if (!ZeroFill) |
| 251 | return S; |
| 252 | // Fill the bytes beyond BlockLen with 0s. |
| 253 | MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen); |
| 254 | SDValue Q = getNode(Hexagon::V6_pred_scalar2, dl, BoolTy, |
| 255 | {DAG.getConstant(BlockLen, dl, MVT::i32)}, DAG); |
| 256 | SDValue M = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, Q); |
| 257 | return DAG.getNode(ISD::AND, dl, ByteTy, S, M); |
| 258 | } |
| 259 | |
| 260 | // Make sure that this is a valid scalar predicate. |
| 261 | assert(PredTy == MVT::v2i1 || PredTy == MVT::v4i1 || PredTy == MVT::v8i1); |
| 262 | |
| 263 | unsigned Bytes = 8 / PredTy.getVectorNumElements(); |
| 264 | SmallVector<SDValue,4> Words[2]; |
| 265 | unsigned IdxW = 0; |
| 266 | |
| 267 | auto Lo32 = [&DAG, &dl] (SDValue P) { |
| 268 | return DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, P); |
| 269 | }; |
| 270 | auto Hi32 = [&DAG, &dl] (SDValue P) { |
| 271 | return DAG.getTargetExtractSubreg(Hexagon::isub_hi, dl, MVT::i32, P); |
| 272 | }; |
| 273 | |
| 274 | SDValue W0 = isUndef(PredV) |
| 275 | ? DAG.getUNDEF(MVT::i64) |
| 276 | : DAG.getNode(HexagonISD::P2D, dl, MVT::i64, PredV); |
| 277 | Words[IdxW].push_back(Hi32(W0)); |
| 278 | Words[IdxW].push_back(Lo32(W0)); |
| 279 | |
| 280 | while (Bytes < BitBytes) { |
| 281 | IdxW ^= 1; |
| 282 | Words[IdxW].clear(); |
| 283 | |
| 284 | if (Bytes < 4) { |
| 285 | for (const SDValue &W : Words[IdxW ^ 1]) { |
| 286 | SDValue T = expandPredicate(W, dl, DAG); |
| 287 | Words[IdxW].push_back(Hi32(T)); |
| 288 | Words[IdxW].push_back(Lo32(T)); |
| 289 | } |
| 290 | } else { |
| 291 | for (const SDValue &W : Words[IdxW ^ 1]) { |
| 292 | Words[IdxW].push_back(W); |
| 293 | Words[IdxW].push_back(W); |
| 294 | } |
| 295 | } |
| 296 | Bytes *= 2; |
| 297 | } |
| 298 | |
| 299 | assert(Bytes == BitBytes); |
| 300 | |
| 301 | SDValue Vec = ZeroFill ? getZero(dl, ByteTy, DAG) : DAG.getUNDEF(ByteTy); |
| 302 | SDValue S4 = DAG.getConstant(HwLen-4, dl, MVT::i32); |
| 303 | for (const SDValue &W : Words[IdxW]) { |
| 304 | Vec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, Vec, S4); |
| 305 | Vec = DAG.getNode(HexagonISD::VINSERTW0, dl, ByteTy, Vec, W); |
| 306 | } |
| 307 | |
| 308 | return Vec; |
| 309 | } |
| 310 | |
| 311 | SDValue |
Krzysztof Parzyszek | e4ce92c | 2017-12-20 20:49:43 +0000 | [diff] [blame] | 312 | HexagonTargetLowering::buildHvxVectorPred(ArrayRef<SDValue> Values, |
| 313 | const SDLoc &dl, MVT VecTy, |
| 314 | SelectionDAG &DAG) const { |
| 315 | // Construct a vector V of bytes, such that a comparison V >u 0 would |
| 316 | // produce the required vector predicate. |
| 317 | unsigned VecLen = Values.size(); |
| 318 | unsigned HwLen = Subtarget.getVectorLength(); |
| 319 | assert(VecLen <= HwLen || VecLen == 8*HwLen); |
| 320 | SmallVector<SDValue,128> Bytes; |
| 321 | |
| 322 | if (VecLen <= HwLen) { |
| 323 | // In the hardware, each bit of a vector predicate corresponds to a byte |
| 324 | // of a vector register. Calculate how many bytes does a bit of VecTy |
| 325 | // correspond to. |
| 326 | assert(HwLen % VecLen == 0); |
| 327 | unsigned BitBytes = HwLen / VecLen; |
| 328 | for (SDValue V : Values) { |
| 329 | SDValue Ext = !V.isUndef() ? DAG.getZExtOrTrunc(V, dl, MVT::i8) |
| 330 | : DAG.getConstant(0, dl, MVT::i8); |
| 331 | for (unsigned B = 0; B != BitBytes; ++B) |
| 332 | Bytes.push_back(Ext); |
| 333 | } |
| 334 | } else { |
| 335 | // There are as many i1 values, as there are bits in a vector register. |
| 336 | // Divide the values into groups of 8 and check that each group consists |
| 337 | // of the same value (ignoring undefs). |
| 338 | for (unsigned I = 0; I != VecLen; I += 8) { |
| 339 | unsigned B = 0; |
| 340 | // Find the first non-undef value in this group. |
| 341 | for (; B != 8; ++B) { |
| 342 | if (!Values[I+B].isUndef()) |
| 343 | break; |
| 344 | } |
| 345 | SDValue F = Values[I+B]; |
| 346 | SDValue Ext = (B < 8) ? DAG.getZExtOrTrunc(F, dl, MVT::i8) |
| 347 | : DAG.getConstant(0, dl, MVT::i8); |
| 348 | Bytes.push_back(Ext); |
| 349 | // Verify that the rest of values in the group are the same as the |
| 350 | // first. |
| 351 | for (; B != 8; ++B) |
| 352 | assert(Values[I+B].isUndef() || Values[I+B] == F); |
| 353 | } |
| 354 | } |
| 355 | |
| 356 | MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); |
Krzysztof Parzyszek | 3780a0e | 2018-01-23 17:53:59 +0000 | [diff] [blame] | 357 | SDValue ByteVec = buildHvxVectorReg(Bytes, dl, ByteTy, DAG); |
| 358 | return DAG.getNode(HexagonISD::V2Q, dl, VecTy, ByteVec); |
| 359 | } |
| 360 | |
| 361 | SDValue |
| 362 | HexagonTargetLowering::extractHvxElementReg(SDValue VecV, SDValue IdxV, |
| 363 | const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const { |
| 364 | MVT ElemTy = ty(VecV).getVectorElementType(); |
| 365 | |
| 366 | unsigned ElemWidth = ElemTy.getSizeInBits(); |
| 367 | assert(ElemWidth >= 8 && ElemWidth <= 32); |
| 368 | (void)ElemWidth; |
| 369 | |
| 370 | SDValue ByteIdx = convertToByteIndex(IdxV, ElemTy, DAG); |
| 371 | SDValue ExWord = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32, |
| 372 | {VecV, ByteIdx}); |
| 373 | if (ElemTy == MVT::i32) |
| 374 | return ExWord; |
| 375 | |
| 376 | // Have an extracted word, need to extract the smaller element out of it. |
| 377 | // 1. Extract the bits of (the original) IdxV that correspond to the index |
| 378 | // of the desired element in the 32-bit word. |
| 379 | SDValue SubIdx = getIndexInWord32(IdxV, ElemTy, DAG); |
| 380 | // 2. Extract the element from the word. |
| 381 | SDValue ExVec = DAG.getBitcast(tyVector(ty(ExWord), ElemTy), ExWord); |
| 382 | return extractVector(ExVec, SubIdx, dl, ElemTy, MVT::i32, DAG); |
| 383 | } |
| 384 | |
| 385 | SDValue |
| 386 | HexagonTargetLowering::extractHvxElementPred(SDValue VecV, SDValue IdxV, |
| 387 | const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const { |
| 388 | // Implement other return types if necessary. |
| 389 | assert(ResTy == MVT::i1); |
| 390 | |
| 391 | unsigned HwLen = Subtarget.getVectorLength(); |
| 392 | MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); |
| 393 | SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV); |
| 394 | |
| 395 | unsigned Scale = HwLen / ty(VecV).getVectorNumElements(); |
| 396 | SDValue ScV = DAG.getConstant(Scale, dl, MVT::i32); |
| 397 | IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, ScV); |
| 398 | |
| 399 | SDValue ExtB = extractHvxElementReg(ByteVec, IdxV, dl, MVT::i32, DAG); |
| 400 | SDValue Zero = DAG.getTargetConstant(0, dl, MVT::i32); |
| 401 | return getNode(Hexagon::C2_cmpgtui, dl, MVT::i1, {ExtB, Zero}, DAG); |
| 402 | } |
| 403 | |
| 404 | SDValue |
| 405 | HexagonTargetLowering::insertHvxElementReg(SDValue VecV, SDValue IdxV, |
| 406 | SDValue ValV, const SDLoc &dl, SelectionDAG &DAG) const { |
| 407 | MVT ElemTy = ty(VecV).getVectorElementType(); |
| 408 | |
| 409 | unsigned ElemWidth = ElemTy.getSizeInBits(); |
| 410 | assert(ElemWidth >= 8 && ElemWidth <= 32); |
| 411 | (void)ElemWidth; |
| 412 | |
| 413 | auto InsertWord = [&DAG,&dl,this] (SDValue VecV, SDValue ValV, |
| 414 | SDValue ByteIdxV) { |
| 415 | MVT VecTy = ty(VecV); |
| 416 | unsigned HwLen = Subtarget.getVectorLength(); |
| 417 | SDValue MaskV = DAG.getNode(ISD::AND, dl, MVT::i32, |
| 418 | {ByteIdxV, DAG.getConstant(-4, dl, MVT::i32)}); |
| 419 | SDValue RotV = DAG.getNode(HexagonISD::VROR, dl, VecTy, {VecV, MaskV}); |
| 420 | SDValue InsV = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy, {RotV, ValV}); |
| 421 | SDValue SubV = DAG.getNode(ISD::SUB, dl, MVT::i32, |
| 422 | {DAG.getConstant(HwLen, dl, MVT::i32), MaskV}); |
| 423 | SDValue TorV = DAG.getNode(HexagonISD::VROR, dl, VecTy, {InsV, SubV}); |
| 424 | return TorV; |
| 425 | }; |
| 426 | |
| 427 | SDValue ByteIdx = convertToByteIndex(IdxV, ElemTy, DAG); |
| 428 | if (ElemTy == MVT::i32) |
| 429 | return InsertWord(VecV, ValV, ByteIdx); |
| 430 | |
| 431 | // If this is not inserting a 32-bit word, convert it into such a thing. |
| 432 | // 1. Extract the existing word from the target vector. |
| 433 | SDValue WordIdx = DAG.getNode(ISD::SRL, dl, MVT::i32, |
| 434 | {ByteIdx, DAG.getConstant(2, dl, MVT::i32)}); |
| 435 | SDValue Ext = extractHvxElementReg(opCastElem(VecV, MVT::i32, DAG), WordIdx, |
| 436 | dl, MVT::i32, DAG); |
| 437 | |
| 438 | // 2. Treating the extracted word as a 32-bit vector, insert the given |
| 439 | // value into it. |
| 440 | SDValue SubIdx = getIndexInWord32(IdxV, ElemTy, DAG); |
| 441 | MVT SubVecTy = tyVector(ty(Ext), ElemTy); |
| 442 | SDValue Ins = insertVector(DAG.getBitcast(SubVecTy, Ext), |
| 443 | ValV, SubIdx, dl, ElemTy, DAG); |
| 444 | |
| 445 | // 3. Insert the 32-bit word back into the original vector. |
| 446 | return InsertWord(VecV, Ins, ByteIdx); |
| 447 | } |
| 448 | |
| 449 | SDValue |
| 450 | HexagonTargetLowering::insertHvxElementPred(SDValue VecV, SDValue IdxV, |
| 451 | SDValue ValV, const SDLoc &dl, SelectionDAG &DAG) const { |
| 452 | unsigned HwLen = Subtarget.getVectorLength(); |
| 453 | MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); |
| 454 | SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV); |
| 455 | |
| 456 | unsigned Scale = HwLen / ty(VecV).getVectorNumElements(); |
| 457 | SDValue ScV = DAG.getConstant(Scale, dl, MVT::i32); |
| 458 | IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, ScV); |
| 459 | ValV = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, ValV); |
| 460 | |
| 461 | SDValue InsV = insertHvxElementReg(ByteVec, IdxV, ValV, dl, DAG); |
| 462 | return DAG.getNode(HexagonISD::V2Q, dl, ty(VecV), InsV); |
| 463 | } |
| 464 | |
| 465 | SDValue |
| 466 | HexagonTargetLowering::extractHvxSubvectorReg(SDValue VecV, SDValue IdxV, |
| 467 | const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const { |
| 468 | MVT VecTy = ty(VecV); |
| 469 | unsigned HwLen = Subtarget.getVectorLength(); |
| 470 | unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue(); |
| 471 | MVT ElemTy = VecTy.getVectorElementType(); |
| 472 | unsigned ElemWidth = ElemTy.getSizeInBits(); |
| 473 | |
| 474 | // If the source vector is a vector pair, get the single vector containing |
| 475 | // the subvector of interest. The subvector will never overlap two single |
| 476 | // vectors. |
| 477 | if (VecTy.getSizeInBits() == 16*HwLen) { |
| 478 | unsigned SubIdx; |
| 479 | if (Idx * ElemWidth >= 8*HwLen) { |
| 480 | SubIdx = Hexagon::vsub_hi; |
| 481 | Idx -= VecTy.getVectorNumElements() / 2; |
| 482 | } else { |
| 483 | SubIdx = Hexagon::vsub_lo; |
| 484 | } |
| 485 | VecTy = typeSplit(VecTy).first; |
| 486 | VecV = DAG.getTargetExtractSubreg(SubIdx, dl, VecTy, VecV); |
| 487 | if (VecTy == ResTy) |
| 488 | return VecV; |
| 489 | } |
| 490 | |
| 491 | // The only meaningful subvectors of a single HVX vector are those that |
| 492 | // fit in a scalar register. |
| 493 | assert(ResTy.getSizeInBits() == 32 || ResTy.getSizeInBits() == 64); |
| 494 | |
| 495 | MVT WordTy = tyVector(VecTy, MVT::i32); |
| 496 | SDValue WordVec = DAG.getBitcast(WordTy, VecV); |
| 497 | unsigned WordIdx = (Idx*ElemWidth) / 32; |
| 498 | |
| 499 | SDValue W0Idx = DAG.getConstant(WordIdx, dl, MVT::i32); |
| 500 | SDValue W0 = extractHvxElementReg(WordVec, W0Idx, dl, MVT::i32, DAG); |
| 501 | if (ResTy.getSizeInBits() == 32) |
| 502 | return DAG.getBitcast(ResTy, W0); |
| 503 | |
| 504 | SDValue W1Idx = DAG.getConstant(WordIdx+1, dl, MVT::i32); |
| 505 | SDValue W1 = extractHvxElementReg(WordVec, W1Idx, dl, MVT::i32, DAG); |
| 506 | SDValue WW = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64, {W1, W0}); |
| 507 | return DAG.getBitcast(ResTy, WW); |
| 508 | } |
| 509 | |
| 510 | SDValue |
| 511 | HexagonTargetLowering::extractHvxSubvectorPred(SDValue VecV, SDValue IdxV, |
| 512 | const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const { |
| 513 | MVT VecTy = ty(VecV); |
| 514 | unsigned HwLen = Subtarget.getVectorLength(); |
| 515 | MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); |
| 516 | SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV); |
| 517 | // IdxV is required to be a constant. |
| 518 | unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue(); |
| 519 | |
| 520 | unsigned ResLen = ResTy.getVectorNumElements(); |
| 521 | unsigned BitBytes = HwLen / VecTy.getVectorNumElements(); |
| 522 | unsigned Offset = Idx * BitBytes; |
| 523 | SDValue Undef = DAG.getUNDEF(ByteTy); |
| 524 | SmallVector<int,128> Mask; |
| 525 | |
| 526 | if (Subtarget.isHVXVectorType(ResTy, true)) { |
| 527 | // Converting between two vector predicates. Since the result is shorter |
| 528 | // than the source, it will correspond to a vector predicate with the |
| 529 | // relevant bits replicated. The replication count is the ratio of the |
| 530 | // source and target vector lengths. |
| 531 | unsigned Rep = VecTy.getVectorNumElements() / ResLen; |
| 532 | assert(isPowerOf2_32(Rep) && HwLen % Rep == 0); |
| 533 | for (unsigned i = 0; i != HwLen/Rep; ++i) { |
| 534 | for (unsigned j = 0; j != Rep; ++j) |
| 535 | Mask.push_back(i + Offset); |
| 536 | } |
| 537 | SDValue ShuffV = DAG.getVectorShuffle(ByteTy, dl, ByteVec, Undef, Mask); |
| 538 | return DAG.getNode(HexagonISD::V2Q, dl, ResTy, ShuffV); |
| 539 | } |
| 540 | |
| 541 | // Converting between a vector predicate and a scalar predicate. In the |
| 542 | // vector predicate, a group of BitBytes bits will correspond to a single |
| 543 | // i1 element of the source vector type. Those bits will all have the same |
| 544 | // value. The same will be true for ByteVec, where each byte corresponds |
| 545 | // to a bit in the vector predicate. |
| 546 | // The algorithm is to traverse the ByteVec, going over the i1 values from |
| 547 | // the source vector, and generate the corresponding representation in an |
| 548 | // 8-byte vector. To avoid repeated extracts from ByteVec, shuffle the |
| 549 | // elements so that the interesting 8 bytes will be in the low end of the |
| 550 | // vector. |
| 551 | unsigned Rep = 8 / ResLen; |
| 552 | // Make sure the output fill the entire vector register, so repeat the |
| 553 | // 8-byte groups as many times as necessary. |
| 554 | for (unsigned r = 0; r != HwLen/ResLen; ++r) { |
| 555 | // This will generate the indexes of the 8 interesting bytes. |
| 556 | for (unsigned i = 0; i != ResLen; ++i) { |
| 557 | for (unsigned j = 0; j != Rep; ++j) |
| 558 | Mask.push_back(Offset + i*BitBytes); |
| 559 | } |
| 560 | } |
| 561 | |
| 562 | SDValue Zero = getZero(dl, MVT::i32, DAG); |
| 563 | SDValue ShuffV = DAG.getVectorShuffle(ByteTy, dl, ByteVec, Undef, Mask); |
| 564 | // Combine the two low words from ShuffV into a v8i8, and byte-compare |
| 565 | // them against 0. |
| 566 | SDValue W0 = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32, {ShuffV, Zero}); |
| 567 | SDValue W1 = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32, |
| 568 | {ShuffV, DAG.getConstant(4, dl, MVT::i32)}); |
| 569 | SDValue Vec64 = DAG.getNode(HexagonISD::COMBINE, dl, MVT::v8i8, {W1, W0}); |
| 570 | return getNode(Hexagon::A4_vcmpbgtui, dl, ResTy, |
| 571 | {Vec64, DAG.getTargetConstant(0, dl, MVT::i32)}, DAG); |
| 572 | } |
| 573 | |
| 574 | SDValue |
| 575 | HexagonTargetLowering::insertHvxSubvectorReg(SDValue VecV, SDValue SubV, |
| 576 | SDValue IdxV, const SDLoc &dl, SelectionDAG &DAG) const { |
| 577 | MVT VecTy = ty(VecV); |
| 578 | MVT SubTy = ty(SubV); |
| 579 | unsigned HwLen = Subtarget.getVectorLength(); |
| 580 | MVT ElemTy = VecTy.getVectorElementType(); |
| 581 | unsigned ElemWidth = ElemTy.getSizeInBits(); |
| 582 | |
| 583 | bool IsPair = VecTy.getSizeInBits() == 16*HwLen; |
| 584 | MVT SingleTy = MVT::getVectorVT(ElemTy, (8*HwLen)/ElemWidth); |
| 585 | // The two single vectors that VecV consists of, if it's a pair. |
| 586 | SDValue V0, V1; |
| 587 | SDValue SingleV = VecV; |
| 588 | SDValue PickHi; |
| 589 | |
| 590 | if (IsPair) { |
| 591 | V0 = DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, SingleTy, VecV); |
| 592 | V1 = DAG.getTargetExtractSubreg(Hexagon::vsub_hi, dl, SingleTy, VecV); |
| 593 | |
| 594 | SDValue HalfV = DAG.getConstant(SingleTy.getVectorNumElements(), |
| 595 | dl, MVT::i32); |
| 596 | PickHi = DAG.getSetCC(dl, MVT::i1, IdxV, HalfV, ISD::SETUGT); |
| 597 | if (SubTy.getSizeInBits() == 8*HwLen) { |
| 598 | if (const auto *CN = dyn_cast<const ConstantSDNode>(IdxV.getNode())) { |
| 599 | unsigned Idx = CN->getZExtValue(); |
| 600 | assert(Idx == 0 || Idx == VecTy.getVectorNumElements()/2); |
| 601 | unsigned SubIdx = (Idx == 0) ? Hexagon::vsub_lo : Hexagon::vsub_hi; |
| 602 | return DAG.getTargetInsertSubreg(SubIdx, dl, VecTy, VecV, SubV); |
| 603 | } |
| 604 | // If IdxV is not a constant, generate the two variants: with the |
| 605 | // SubV as the high and as the low subregister, and select the right |
| 606 | // pair based on the IdxV. |
| 607 | SDValue InLo = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {SubV, V1}); |
| 608 | SDValue InHi = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {V0, SubV}); |
| 609 | return DAG.getNode(ISD::SELECT, dl, VecTy, PickHi, InHi, InLo); |
| 610 | } |
| 611 | // The subvector being inserted must be entirely contained in one of |
| 612 | // the vectors V0 or V1. Set SingleV to the correct one, and update |
| 613 | // IdxV to be the index relative to the beginning of that vector. |
| 614 | SDValue S = DAG.getNode(ISD::SUB, dl, MVT::i32, IdxV, HalfV); |
| 615 | IdxV = DAG.getNode(ISD::SELECT, dl, MVT::i32, PickHi, S, IdxV); |
| 616 | SingleV = DAG.getNode(ISD::SELECT, dl, SingleTy, PickHi, V1, V0); |
| 617 | } |
| 618 | |
| 619 | // The only meaningful subvectors of a single HVX vector are those that |
| 620 | // fit in a scalar register. |
| 621 | assert(SubTy.getSizeInBits() == 32 || SubTy.getSizeInBits() == 64); |
| 622 | // Convert IdxV to be index in bytes. |
| 623 | auto *IdxN = dyn_cast<ConstantSDNode>(IdxV.getNode()); |
| 624 | if (!IdxN || !IdxN->isNullValue()) { |
| 625 | IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, |
| 626 | DAG.getConstant(ElemWidth/8, dl, MVT::i32)); |
| 627 | SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV, IdxV); |
| 628 | } |
| 629 | // When inserting a single word, the rotation back to the original position |
| 630 | // would be by HwLen-Idx, but if two words are inserted, it will need to be |
| 631 | // by (HwLen-4)-Idx. |
| 632 | unsigned RolBase = HwLen; |
| 633 | if (VecTy.getSizeInBits() == 32) { |
| 634 | SDValue V = DAG.getBitcast(MVT::i32, SubV); |
| 635 | SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, V); |
| 636 | } else { |
| 637 | SDValue V = DAG.getBitcast(MVT::i64, SubV); |
| 638 | SDValue R0 = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, V); |
| 639 | SDValue R1 = DAG.getTargetExtractSubreg(Hexagon::isub_hi, dl, MVT::i32, V); |
| 640 | SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, SingleV, R0); |
| 641 | SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV, |
| 642 | DAG.getConstant(4, dl, MVT::i32)); |
| 643 | SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, SingleV, R1); |
| 644 | RolBase = HwLen-4; |
| 645 | } |
| 646 | // If the vector wasn't ror'ed, don't ror it back. |
| 647 | if (RolBase != 4 || !IdxN || !IdxN->isNullValue()) { |
| 648 | SDValue RolV = DAG.getNode(ISD::SUB, dl, MVT::i32, |
| 649 | DAG.getConstant(RolBase, dl, MVT::i32), IdxV); |
| 650 | SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV, RolV); |
| 651 | } |
| 652 | |
| 653 | if (IsPair) { |
| 654 | SDValue InLo = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {SingleV, V1}); |
| 655 | SDValue InHi = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {V0, SingleV}); |
| 656 | return DAG.getNode(ISD::SELECT, dl, VecTy, PickHi, InHi, InLo); |
| 657 | } |
| 658 | return SingleV; |
| 659 | } |
| 660 | |
| 661 | SDValue |
| 662 | HexagonTargetLowering::insertHvxSubvectorPred(SDValue VecV, SDValue SubV, |
| 663 | SDValue IdxV, const SDLoc &dl, SelectionDAG &DAG) const { |
| 664 | MVT VecTy = ty(VecV); |
| 665 | MVT SubTy = ty(SubV); |
| 666 | assert(Subtarget.isHVXVectorType(VecTy, true)); |
| 667 | // VecV is an HVX vector predicate. SubV may be either an HVX vector |
| 668 | // predicate as well, or it can be a scalar predicate. |
| 669 | |
| 670 | unsigned VecLen = VecTy.getVectorNumElements(); |
| 671 | unsigned HwLen = Subtarget.getVectorLength(); |
| 672 | assert(HwLen % VecLen == 0 && "Unexpected vector type"); |
| 673 | |
| 674 | unsigned Scale = VecLen / SubTy.getVectorNumElements(); |
| 675 | unsigned BitBytes = HwLen / VecLen; |
| 676 | unsigned BlockLen = HwLen / Scale; |
| 677 | |
| 678 | MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); |
| 679 | SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV); |
| 680 | SDValue ByteSub = createHvxPrefixPred(SubV, dl, BitBytes, false, DAG); |
| 681 | SDValue ByteIdx; |
| 682 | |
| 683 | auto *IdxN = dyn_cast<ConstantSDNode>(IdxV.getNode()); |
| 684 | if (!IdxN || !IdxN->isNullValue()) { |
| 685 | ByteIdx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, |
| 686 | DAG.getConstant(BitBytes, dl, MVT::i32)); |
| 687 | ByteVec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, ByteVec, ByteIdx); |
| 688 | } |
| 689 | |
| 690 | // ByteVec is the target vector VecV rotated in such a way that the |
| 691 | // subvector should be inserted at index 0. Generate a predicate mask |
| 692 | // and use vmux to do the insertion. |
| 693 | MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen); |
| 694 | SDValue Q = getNode(Hexagon::V6_pred_scalar2, dl, BoolTy, |
| 695 | {DAG.getConstant(BlockLen, dl, MVT::i32)}, DAG); |
| 696 | ByteVec = getNode(Hexagon::V6_vmux, dl, ByteTy, {Q, ByteSub, ByteVec}, DAG); |
| 697 | // Rotate ByteVec back, and convert to a vector predicate. |
| 698 | if (!IdxN || !IdxN->isNullValue()) { |
| 699 | SDValue HwLenV = DAG.getConstant(HwLen, dl, MVT::i32); |
| 700 | SDValue ByteXdi = DAG.getNode(ISD::SUB, dl, MVT::i32, HwLenV, ByteIdx); |
| 701 | ByteVec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, ByteVec, ByteXdi); |
| 702 | } |
| 703 | return DAG.getNode(HexagonISD::V2Q, dl, VecTy, ByteVec); |
| 704 | } |
| 705 | |
| 706 | SDValue |
| 707 | HexagonTargetLowering::extendHvxVectorPred(SDValue VecV, const SDLoc &dl, |
| 708 | MVT ResTy, bool ZeroExt, SelectionDAG &DAG) const { |
| 709 | // Sign- and any-extending of a vector predicate to a vector register is |
| 710 | // equivalent to Q2V. For zero-extensions, generate a vmux between 0 and |
| 711 | // a vector of 1s (where the 1s are of type matching the vector type). |
| 712 | assert(Subtarget.isHVXVectorType(ResTy)); |
| 713 | if (!ZeroExt) |
| 714 | return DAG.getNode(HexagonISD::Q2V, dl, ResTy, VecV); |
| 715 | |
| 716 | assert(ty(VecV).getVectorNumElements() == ResTy.getVectorNumElements()); |
| 717 | SDValue True = DAG.getNode(HexagonISD::VSPLAT, dl, ResTy, |
| 718 | DAG.getConstant(1, dl, MVT::i32)); |
| 719 | SDValue False = getZero(dl, ResTy, DAG); |
| 720 | return DAG.getSelect(dl, ResTy, VecV, True, False); |
Krzysztof Parzyszek | e4ce92c | 2017-12-20 20:49:43 +0000 | [diff] [blame] | 721 | } |
| 722 | |
| 723 | SDValue |
| 724 | HexagonTargetLowering::LowerHvxBuildVector(SDValue Op, SelectionDAG &DAG) |
| 725 | const { |
| 726 | const SDLoc &dl(Op); |
| 727 | MVT VecTy = ty(Op); |
| 728 | |
| 729 | unsigned Size = Op.getNumOperands(); |
| 730 | SmallVector<SDValue,128> Ops; |
| 731 | for (unsigned i = 0; i != Size; ++i) |
| 732 | Ops.push_back(Op.getOperand(i)); |
| 733 | |
| 734 | if (VecTy.getVectorElementType() == MVT::i1) |
| 735 | return buildHvxVectorPred(Ops, dl, VecTy, DAG); |
| 736 | |
| 737 | if (VecTy.getSizeInBits() == 16*Subtarget.getVectorLength()) { |
| 738 | ArrayRef<SDValue> A(Ops); |
| 739 | MVT SingleTy = typeSplit(VecTy).first; |
Krzysztof Parzyszek | 3780a0e | 2018-01-23 17:53:59 +0000 | [diff] [blame] | 740 | SDValue V0 = buildHvxVectorReg(A.take_front(Size/2), dl, SingleTy, DAG); |
| 741 | SDValue V1 = buildHvxVectorReg(A.drop_front(Size/2), dl, SingleTy, DAG); |
Krzysztof Parzyszek | e4ce92c | 2017-12-20 20:49:43 +0000 | [diff] [blame] | 742 | return DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, V0, V1); |
| 743 | } |
| 744 | |
Krzysztof Parzyszek | 3780a0e | 2018-01-23 17:53:59 +0000 | [diff] [blame] | 745 | return buildHvxVectorReg(Ops, dl, VecTy, DAG); |
| 746 | } |
| 747 | |
| 748 | SDValue |
| 749 | HexagonTargetLowering::LowerHvxConcatVectors(SDValue Op, SelectionDAG &DAG) |
| 750 | const { |
| 751 | // This should only be called for vectors of i1. The "scalar" vector |
| 752 | // concatenation does not need special lowering (assuming that only |
| 753 | // two vectors are concatenated at a time). |
| 754 | MVT VecTy = ty(Op); |
| 755 | assert(VecTy.getVectorElementType() == MVT::i1); |
| 756 | |
| 757 | const SDLoc &dl(Op); |
| 758 | unsigned HwLen = Subtarget.getVectorLength(); |
| 759 | unsigned NumOp = Op.getNumOperands(); |
| 760 | assert(isPowerOf2_32(NumOp) && HwLen % NumOp == 0); |
Krzysztof Parzyszek | ae3e934 | 2018-01-23 18:16:52 +0000 | [diff] [blame] | 761 | (void)NumOp; |
Krzysztof Parzyszek | 3780a0e | 2018-01-23 17:53:59 +0000 | [diff] [blame] | 762 | |
| 763 | // Count how many bytes (in a vector register) each bit in VecTy |
| 764 | // corresponds to. |
| 765 | unsigned BitBytes = HwLen / VecTy.getVectorNumElements(); |
| 766 | |
| 767 | SmallVector<SDValue,8> Prefixes; |
| 768 | for (SDValue V : Op.getNode()->op_values()) { |
| 769 | SDValue P = createHvxPrefixPred(V, dl, BitBytes, true, DAG); |
| 770 | Prefixes.push_back(P); |
| 771 | } |
| 772 | |
| 773 | unsigned InpLen = ty(Op.getOperand(0)).getVectorNumElements(); |
| 774 | MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen); |
| 775 | SDValue S = DAG.getConstant(InpLen*BitBytes, dl, MVT::i32); |
| 776 | SDValue Res = getZero(dl, ByteTy, DAG); |
| 777 | for (unsigned i = 0, e = Prefixes.size(); i != e; ++i) { |
| 778 | Res = DAG.getNode(HexagonISD::VROR, dl, ByteTy, Res, S); |
| 779 | Res = DAG.getNode(ISD::OR, dl, ByteTy, Res, Prefixes[e-i-1]); |
| 780 | } |
| 781 | return DAG.getNode(HexagonISD::V2Q, dl, VecTy, Res); |
Krzysztof Parzyszek | e4ce92c | 2017-12-20 20:49:43 +0000 | [diff] [blame] | 782 | } |
| 783 | |
| 784 | SDValue |
Krzysztof Parzyszek | 7d37dd8 | 2017-12-06 16:40:37 +0000 | [diff] [blame] | 785 | HexagonTargetLowering::LowerHvxExtractElement(SDValue Op, SelectionDAG &DAG) |
| 786 | const { |
| 787 | // Change the type of the extracted element to i32. |
| 788 | SDValue VecV = Op.getOperand(0); |
| 789 | MVT ElemTy = ty(VecV).getVectorElementType(); |
Krzysztof Parzyszek | 7d37dd8 | 2017-12-06 16:40:37 +0000 | [diff] [blame] | 790 | const SDLoc &dl(Op); |
| 791 | SDValue IdxV = Op.getOperand(1); |
Krzysztof Parzyszek | 3780a0e | 2018-01-23 17:53:59 +0000 | [diff] [blame] | 792 | if (ElemTy == MVT::i1) |
| 793 | return extractHvxElementPred(VecV, IdxV, dl, ty(Op), DAG); |
Krzysztof Parzyszek | 7d37dd8 | 2017-12-06 16:40:37 +0000 | [diff] [blame] | 794 | |
Krzysztof Parzyszek | 3780a0e | 2018-01-23 17:53:59 +0000 | [diff] [blame] | 795 | return extractHvxElementReg(VecV, IdxV, dl, ty(Op), DAG); |
Krzysztof Parzyszek | 7d37dd8 | 2017-12-06 16:40:37 +0000 | [diff] [blame] | 796 | } |
| 797 | |
| 798 | SDValue |
| 799 | HexagonTargetLowering::LowerHvxInsertElement(SDValue Op, SelectionDAG &DAG) |
| 800 | const { |
| 801 | const SDLoc &dl(Op); |
| 802 | SDValue VecV = Op.getOperand(0); |
| 803 | SDValue ValV = Op.getOperand(1); |
| 804 | SDValue IdxV = Op.getOperand(2); |
| 805 | MVT ElemTy = ty(VecV).getVectorElementType(); |
Krzysztof Parzyszek | 3780a0e | 2018-01-23 17:53:59 +0000 | [diff] [blame] | 806 | if (ElemTy == MVT::i1) |
| 807 | return insertHvxElementPred(VecV, IdxV, ValV, dl, DAG); |
Krzysztof Parzyszek | 7d37dd8 | 2017-12-06 16:40:37 +0000 | [diff] [blame] | 808 | |
Krzysztof Parzyszek | 3780a0e | 2018-01-23 17:53:59 +0000 | [diff] [blame] | 809 | return insertHvxElementReg(VecV, IdxV, ValV, dl, DAG); |
Krzysztof Parzyszek | 7d37dd8 | 2017-12-06 16:40:37 +0000 | [diff] [blame] | 810 | } |
| 811 | |
| 812 | SDValue |
| 813 | HexagonTargetLowering::LowerHvxExtractSubvector(SDValue Op, SelectionDAG &DAG) |
| 814 | const { |
| 815 | SDValue SrcV = Op.getOperand(0); |
| 816 | MVT SrcTy = ty(SrcV); |
Krzysztof Parzyszek | 3780a0e | 2018-01-23 17:53:59 +0000 | [diff] [blame] | 817 | MVT DstTy = ty(Op); |
Krzysztof Parzyszek | 7d37dd8 | 2017-12-06 16:40:37 +0000 | [diff] [blame] | 818 | SDValue IdxV = Op.getOperand(1); |
| 819 | unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue(); |
Krzysztof Parzyszek | 3780a0e | 2018-01-23 17:53:59 +0000 | [diff] [blame] | 820 | assert(Idx % DstTy.getVectorNumElements() == 0); |
| 821 | (void)Idx; |
Krzysztof Parzyszek | 7d37dd8 | 2017-12-06 16:40:37 +0000 | [diff] [blame] | 822 | const SDLoc &dl(Op); |
Krzysztof Parzyszek | 3780a0e | 2018-01-23 17:53:59 +0000 | [diff] [blame] | 823 | |
| 824 | MVT ElemTy = SrcTy.getVectorElementType(); |
| 825 | if (ElemTy == MVT::i1) |
| 826 | return extractHvxSubvectorPred(SrcV, IdxV, dl, DstTy, DAG); |
| 827 | |
| 828 | return extractHvxSubvectorReg(SrcV, IdxV, dl, DstTy, DAG); |
Krzysztof Parzyszek | 7d37dd8 | 2017-12-06 16:40:37 +0000 | [diff] [blame] | 829 | } |
| 830 | |
| 831 | SDValue |
| 832 | HexagonTargetLowering::LowerHvxInsertSubvector(SDValue Op, SelectionDAG &DAG) |
| 833 | const { |
Krzysztof Parzyszek | 3780a0e | 2018-01-23 17:53:59 +0000 | [diff] [blame] | 834 | // Idx does not need to be a constant. |
| 835 | SDValue VecV = Op.getOperand(0); |
| 836 | SDValue ValV = Op.getOperand(1); |
Krzysztof Parzyszek | 7d37dd8 | 2017-12-06 16:40:37 +0000 | [diff] [blame] | 837 | SDValue IdxV = Op.getOperand(2); |
Krzysztof Parzyszek | 7d37dd8 | 2017-12-06 16:40:37 +0000 | [diff] [blame] | 838 | |
| 839 | const SDLoc &dl(Op); |
Krzysztof Parzyszek | 3780a0e | 2018-01-23 17:53:59 +0000 | [diff] [blame] | 840 | MVT VecTy = ty(VecV); |
| 841 | MVT ElemTy = VecTy.getVectorElementType(); |
| 842 | if (ElemTy == MVT::i1) |
| 843 | return insertHvxSubvectorPred(VecV, ValV, IdxV, dl, DAG); |
| 844 | |
| 845 | return insertHvxSubvectorReg(VecV, ValV, IdxV, dl, DAG); |
Krzysztof Parzyszek | 7d37dd8 | 2017-12-06 16:40:37 +0000 | [diff] [blame] | 846 | } |
Krzysztof Parzyszek | 039d4d9 | 2017-12-07 17:37:28 +0000 | [diff] [blame] | 847 | |
| 848 | SDValue |
| 849 | HexagonTargetLowering::LowerHvxMul(SDValue Op, SelectionDAG &DAG) const { |
| 850 | MVT ResTy = ty(Op); |
Krzysztof Parzyszek | 7fb738a | 2018-01-15 18:43:55 +0000 | [diff] [blame] | 851 | assert(ResTy.isVector()); |
Krzysztof Parzyszek | 039d4d9 | 2017-12-07 17:37:28 +0000 | [diff] [blame] | 852 | const SDLoc &dl(Op); |
| 853 | SmallVector<int,256> ShuffMask; |
| 854 | |
| 855 | MVT ElemTy = ResTy.getVectorElementType(); |
| 856 | unsigned VecLen = ResTy.getVectorNumElements(); |
| 857 | SDValue Vs = Op.getOperand(0); |
| 858 | SDValue Vt = Op.getOperand(1); |
| 859 | |
| 860 | switch (ElemTy.SimpleTy) { |
| 861 | case MVT::i8: |
Krzysztof Parzyszek | 7fb738a | 2018-01-15 18:43:55 +0000 | [diff] [blame] | 862 | case MVT::i16: { // V6_vmpyih |
Krzysztof Parzyszek | 039d4d9 | 2017-12-07 17:37:28 +0000 | [diff] [blame] | 863 | // For i8 vectors Vs = (a0, a1, ...), Vt = (b0, b1, ...), |
| 864 | // V6_vmpybv Vs, Vt produces a pair of i16 vectors Hi:Lo, |
| 865 | // where Lo = (a0*b0, a2*b2, ...), Hi = (a1*b1, a3*b3, ...). |
| 866 | // For i16, use V6_vmpyhv, which behaves in an analogous way to |
| 867 | // V6_vmpybv: results Lo and Hi are products of even/odd elements |
| 868 | // respectively. |
| 869 | MVT ExtTy = typeExtElem(ResTy, 2); |
| 870 | unsigned MpyOpc = ElemTy == MVT::i8 ? Hexagon::V6_vmpybv |
| 871 | : Hexagon::V6_vmpyhv; |
| 872 | SDValue M = getNode(MpyOpc, dl, ExtTy, {Vs, Vt}, DAG); |
| 873 | |
| 874 | // Discard high halves of the resulting values, collect the low halves. |
| 875 | for (unsigned I = 0; I < VecLen; I += 2) { |
| 876 | ShuffMask.push_back(I); // Pick even element. |
| 877 | ShuffMask.push_back(I+VecLen); // Pick odd element. |
| 878 | } |
| 879 | VectorPair P = opSplit(opCastElem(M, ElemTy, DAG), dl, DAG); |
Krzysztof Parzyszek | 0f5d976 | 2018-01-05 20:45:34 +0000 | [diff] [blame] | 880 | SDValue BS = getByteShuffle(dl, P.first, P.second, ShuffMask, DAG); |
| 881 | return DAG.getBitcast(ResTy, BS); |
Krzysztof Parzyszek | 039d4d9 | 2017-12-07 17:37:28 +0000 | [diff] [blame] | 882 | } |
| 883 | case MVT::i32: { |
| 884 | // Use the following sequence for signed word multiply: |
| 885 | // T0 = V6_vmpyiowh Vs, Vt |
| 886 | // T1 = V6_vaslw T0, 16 |
| 887 | // T2 = V6_vmpyiewuh_acc T1, Vs, Vt |
| 888 | SDValue S16 = DAG.getConstant(16, dl, MVT::i32); |
| 889 | SDValue T0 = getNode(Hexagon::V6_vmpyiowh, dl, ResTy, {Vs, Vt}, DAG); |
| 890 | SDValue T1 = getNode(Hexagon::V6_vaslw, dl, ResTy, {T0, S16}, DAG); |
| 891 | SDValue T2 = getNode(Hexagon::V6_vmpyiewuh_acc, dl, ResTy, |
| 892 | {T1, Vs, Vt}, DAG); |
| 893 | return T2; |
| 894 | } |
| 895 | default: |
| 896 | break; |
| 897 | } |
| 898 | return SDValue(); |
| 899 | } |
Krzysztof Parzyszek | 4707605 | 2017-12-14 21:28:48 +0000 | [diff] [blame] | 900 | |
| 901 | SDValue |
Krzysztof Parzyszek | 7fb738a | 2018-01-15 18:43:55 +0000 | [diff] [blame] | 902 | HexagonTargetLowering::LowerHvxMulh(SDValue Op, SelectionDAG &DAG) const { |
| 903 | MVT ResTy = ty(Op); |
| 904 | assert(ResTy.isVector()); |
| 905 | const SDLoc &dl(Op); |
| 906 | SmallVector<int,256> ShuffMask; |
| 907 | |
| 908 | MVT ElemTy = ResTy.getVectorElementType(); |
| 909 | unsigned VecLen = ResTy.getVectorNumElements(); |
| 910 | SDValue Vs = Op.getOperand(0); |
| 911 | SDValue Vt = Op.getOperand(1); |
| 912 | bool IsSigned = Op.getOpcode() == ISD::MULHS; |
| 913 | |
| 914 | if (ElemTy == MVT::i8 || ElemTy == MVT::i16) { |
| 915 | // For i8 vectors Vs = (a0, a1, ...), Vt = (b0, b1, ...), |
| 916 | // V6_vmpybv Vs, Vt produces a pair of i16 vectors Hi:Lo, |
| 917 | // where Lo = (a0*b0, a2*b2, ...), Hi = (a1*b1, a3*b3, ...). |
| 918 | // For i16, use V6_vmpyhv, which behaves in an analogous way to |
| 919 | // V6_vmpybv: results Lo and Hi are products of even/odd elements |
| 920 | // respectively. |
| 921 | MVT ExtTy = typeExtElem(ResTy, 2); |
| 922 | unsigned MpyOpc = ElemTy == MVT::i8 |
| 923 | ? (IsSigned ? Hexagon::V6_vmpybv : Hexagon::V6_vmpyubv) |
| 924 | : (IsSigned ? Hexagon::V6_vmpyhv : Hexagon::V6_vmpyuhv); |
| 925 | SDValue M = getNode(MpyOpc, dl, ExtTy, {Vs, Vt}, DAG); |
| 926 | |
| 927 | // Discard low halves of the resulting values, collect the high halves. |
| 928 | for (unsigned I = 0; I < VecLen; I += 2) { |
| 929 | ShuffMask.push_back(I+1); // Pick even element. |
| 930 | ShuffMask.push_back(I+VecLen+1); // Pick odd element. |
| 931 | } |
| 932 | VectorPair P = opSplit(opCastElem(M, ElemTy, DAG), dl, DAG); |
| 933 | SDValue BS = getByteShuffle(dl, P.first, P.second, ShuffMask, DAG); |
| 934 | return DAG.getBitcast(ResTy, BS); |
| 935 | } |
| 936 | |
| 937 | assert(ElemTy == MVT::i32); |
| 938 | SDValue S16 = DAG.getConstant(16, dl, MVT::i32); |
| 939 | |
| 940 | if (IsSigned) { |
| 941 | // mulhs(Vs,Vt) = |
| 942 | // = [(Hi(Vs)*2^16 + Lo(Vs)) *s (Hi(Vt)*2^16 + Lo(Vt))] >> 32 |
| 943 | // = [Hi(Vs)*2^16 *s Hi(Vt)*2^16 + Hi(Vs) *su Lo(Vt)*2^16 |
| 944 | // + Lo(Vs) *us (Hi(Vt)*2^16 + Lo(Vt))] >> 32 |
| 945 | // = [Hi(Vs) *s Hi(Vt)*2^32 + Hi(Vs) *su Lo(Vt)*2^16 |
| 946 | // + Lo(Vs) *us Vt] >> 32 |
| 947 | // The low half of Lo(Vs)*Lo(Vt) will be discarded (it's not added to |
| 948 | // anything, so it cannot produce any carry over to higher bits), |
| 949 | // so everything in [] can be shifted by 16 without loss of precision. |
| 950 | // = [Hi(Vs) *s Hi(Vt)*2^16 + Hi(Vs)*su Lo(Vt) + Lo(Vs)*Vt >> 16] >> 16 |
| 951 | // = [Hi(Vs) *s Hi(Vt)*2^16 + Hi(Vs)*su Lo(Vt) + V6_vmpyewuh(Vs,Vt)] >> 16 |
| 952 | // Denote Hi(Vs) = Vs': |
| 953 | // = [Vs'*s Hi(Vt)*2^16 + Vs' *su Lo(Vt) + V6_vmpyewuh(Vt,Vs)] >> 16 |
| 954 | // = Vs'*s Hi(Vt) + (V6_vmpyiewuh(Vs',Vt) + V6_vmpyewuh(Vt,Vs)) >> 16 |
| 955 | SDValue T0 = getNode(Hexagon::V6_vmpyewuh, dl, ResTy, {Vt, Vs}, DAG); |
| 956 | // Get Vs': |
| 957 | SDValue S0 = getNode(Hexagon::V6_vasrw, dl, ResTy, {Vs, S16}, DAG); |
| 958 | SDValue T1 = getNode(Hexagon::V6_vmpyiewuh_acc, dl, ResTy, |
| 959 | {T0, S0, Vt}, DAG); |
| 960 | // Shift by 16: |
| 961 | SDValue S2 = getNode(Hexagon::V6_vasrw, dl, ResTy, {T1, S16}, DAG); |
| 962 | // Get Vs'*Hi(Vt): |
| 963 | SDValue T2 = getNode(Hexagon::V6_vmpyiowh, dl, ResTy, {S0, Vt}, DAG); |
| 964 | // Add: |
| 965 | SDValue T3 = DAG.getNode(ISD::ADD, dl, ResTy, {S2, T2}); |
| 966 | return T3; |
| 967 | } |
| 968 | |
| 969 | // Unsigned mulhw. (Would expansion using signed mulhw be better?) |
| 970 | |
| 971 | auto LoVec = [&DAG,ResTy,dl] (SDValue Pair) { |
| 972 | return DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, ResTy, Pair); |
| 973 | }; |
| 974 | auto HiVec = [&DAG,ResTy,dl] (SDValue Pair) { |
| 975 | return DAG.getTargetExtractSubreg(Hexagon::vsub_hi, dl, ResTy, Pair); |
| 976 | }; |
| 977 | |
| 978 | MVT PairTy = typeJoin({ResTy, ResTy}); |
| 979 | SDValue P = getNode(Hexagon::V6_lvsplatw, dl, ResTy, |
| 980 | {DAG.getConstant(0x02020202, dl, MVT::i32)}, DAG); |
| 981 | // Multiply-unsigned halfwords: |
| 982 | // LoVec = Vs.uh[2i] * Vt.uh[2i], |
| 983 | // HiVec = Vs.uh[2i+1] * Vt.uh[2i+1] |
| 984 | SDValue T0 = getNode(Hexagon::V6_vmpyuhv, dl, PairTy, {Vs, Vt}, DAG); |
| 985 | // The low halves in the LoVec of the pair can be discarded. They are |
| 986 | // not added to anything (in the full-precision product), so they cannot |
| 987 | // produce a carry into the higher bits. |
| 988 | SDValue T1 = getNode(Hexagon::V6_vlsrw, dl, ResTy, {LoVec(T0), S16}, DAG); |
| 989 | // Swap low and high halves in Vt, and do the halfword multiplication |
| 990 | // to get products Vs.uh[2i] * Vt.uh[2i+1] and Vs.uh[2i+1] * Vt.uh[2i]. |
| 991 | SDValue D0 = getNode(Hexagon::V6_vdelta, dl, ResTy, {Vt, P}, DAG); |
| 992 | SDValue T2 = getNode(Hexagon::V6_vmpyuhv, dl, PairTy, {Vs, D0}, DAG); |
| 993 | // T2 has mixed products of halfwords: Lo(Vt)*Hi(Vs) and Hi(Vt)*Lo(Vs). |
| 994 | // These products are words, but cannot be added directly because the |
| 995 | // sums could overflow. Add these products, by halfwords, where each sum |
| 996 | // of a pair of halfwords gives a word. |
| 997 | SDValue T3 = getNode(Hexagon::V6_vadduhw, dl, PairTy, |
| 998 | {LoVec(T2), HiVec(T2)}, DAG); |
| 999 | // Add the high halfwords from the products of the low halfwords. |
| 1000 | SDValue T4 = DAG.getNode(ISD::ADD, dl, ResTy, {T1, LoVec(T3)}); |
| 1001 | SDValue T5 = getNode(Hexagon::V6_vlsrw, dl, ResTy, {T4, S16}, DAG); |
| 1002 | SDValue T6 = DAG.getNode(ISD::ADD, dl, ResTy, {HiVec(T0), HiVec(T3)}); |
| 1003 | SDValue T7 = DAG.getNode(ISD::ADD, dl, ResTy, {T5, T6}); |
| 1004 | return T7; |
| 1005 | } |
| 1006 | |
| 1007 | SDValue |
Krzysztof Parzyszek | 4707605 | 2017-12-14 21:28:48 +0000 | [diff] [blame] | 1008 | HexagonTargetLowering::LowerHvxSetCC(SDValue Op, SelectionDAG &DAG) const { |
| 1009 | MVT VecTy = ty(Op.getOperand(0)); |
| 1010 | assert(VecTy == ty(Op.getOperand(1))); |
| 1011 | |
| 1012 | SDValue Cmp = Op.getOperand(2); |
| 1013 | ISD::CondCode CC = cast<CondCodeSDNode>(Cmp)->get(); |
| 1014 | bool Negate = false, Swap = false; |
| 1015 | |
| 1016 | // HVX has instructions for SETEQ, SETGT, SETUGT. The other comparisons |
| 1017 | // can be arranged as operand-swapped/negated versions of these. Since |
| 1018 | // the generated code will have the original CC expressed as |
| 1019 | // (negate (swap-op NewCmp)), |
| 1020 | // the condition code for the NewCmp should be calculated from the original |
| 1021 | // CC by applying these operations in the reverse order. |
Krzysztof Parzyszek | e4ce92c | 2017-12-20 20:49:43 +0000 | [diff] [blame] | 1022 | // |
| 1023 | // This could also be done through setCondCodeAction, but for negation it |
| 1024 | // uses a xor with a vector of -1s, which it obtains from BUILD_VECTOR. |
| 1025 | // That is far too expensive for what can be done with a single instruction. |
Krzysztof Parzyszek | 4707605 | 2017-12-14 21:28:48 +0000 | [diff] [blame] | 1026 | |
| 1027 | switch (CC) { |
| 1028 | case ISD::SETNE: // !eq |
| 1029 | case ISD::SETLE: // !gt |
| 1030 | case ISD::SETGE: // !lt |
| 1031 | case ISD::SETULE: // !ugt |
| 1032 | case ISD::SETUGE: // !ult |
| 1033 | CC = ISD::getSetCCInverse(CC, true); |
| 1034 | Negate = true; |
| 1035 | break; |
| 1036 | default: |
| 1037 | break; |
| 1038 | } |
| 1039 | |
| 1040 | switch (CC) { |
| 1041 | case ISD::SETLT: // swap gt |
| 1042 | case ISD::SETULT: // swap ugt |
| 1043 | CC = ISD::getSetCCSwappedOperands(CC); |
| 1044 | Swap = true; |
| 1045 | break; |
| 1046 | default: |
| 1047 | break; |
| 1048 | } |
| 1049 | |
| 1050 | assert(CC == ISD::SETEQ || CC == ISD::SETGT || CC == ISD::SETUGT); |
| 1051 | |
| 1052 | MVT ElemTy = VecTy.getVectorElementType(); |
| 1053 | unsigned ElemWidth = ElemTy.getSizeInBits(); |
| 1054 | assert(isPowerOf2_32(ElemWidth)); |
| 1055 | |
| 1056 | auto getIdx = [] (unsigned Code) { |
| 1057 | static const unsigned Idx[] = { ISD::SETEQ, ISD::SETGT, ISD::SETUGT }; |
| 1058 | for (unsigned I = 0, E = array_lengthof(Idx); I != E; ++I) |
| 1059 | if (Code == Idx[I]) |
| 1060 | return I; |
| 1061 | llvm_unreachable("Unhandled CondCode"); |
| 1062 | }; |
| 1063 | |
| 1064 | static unsigned OpcTable[3][3] = { |
| 1065 | // SETEQ SETGT, SETUGT |
| 1066 | /* Byte */ { Hexagon::V6_veqb, Hexagon::V6_vgtb, Hexagon::V6_vgtub }, |
| 1067 | /* Half */ { Hexagon::V6_veqh, Hexagon::V6_vgth, Hexagon::V6_vgtuh }, |
| 1068 | /* Word */ { Hexagon::V6_veqw, Hexagon::V6_vgtw, Hexagon::V6_vgtuw } |
| 1069 | }; |
| 1070 | |
| 1071 | unsigned CmpOpc = OpcTable[Log2_32(ElemWidth)-3][getIdx(CC)]; |
| 1072 | |
| 1073 | MVT ResTy = ty(Op); |
| 1074 | const SDLoc &dl(Op); |
| 1075 | SDValue OpL = Swap ? Op.getOperand(1) : Op.getOperand(0); |
| 1076 | SDValue OpR = Swap ? Op.getOperand(0) : Op.getOperand(1); |
| 1077 | SDValue CmpV = getNode(CmpOpc, dl, ResTy, {OpL, OpR}, DAG); |
| 1078 | return Negate ? getNode(Hexagon::V6_pred_not, dl, ResTy, {CmpV}, DAG) |
| 1079 | : CmpV; |
| 1080 | } |
Krzysztof Parzyszek | 6b589e5 | 2017-12-18 18:32:27 +0000 | [diff] [blame] | 1081 | |
| 1082 | SDValue |
| 1083 | HexagonTargetLowering::LowerHvxExtend(SDValue Op, SelectionDAG &DAG) const { |
| 1084 | // Sign- and zero-extends are legal. |
| 1085 | assert(Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG); |
| 1086 | return DAG.getZeroExtendVectorInReg(Op.getOperand(0), SDLoc(Op), ty(Op)); |
| 1087 | } |