blob: 9f358e1d60a384b429b62996c2f19843206fd419 [file] [log] [blame]
Michael Zolotukhin52b064f2018-04-09 23:37:20 +00001//===- SSAUpdaterBulk.cpp - Unstructured SSA Update Tool ------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SSAUpdaterBulk class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Transforms/Utils/SSAUpdaterBulk.h"
15#include "llvm/Analysis/IteratedDominanceFrontier.h"
16#include "llvm/IR/BasicBlock.h"
17#include "llvm/IR/Dominators.h"
18#include "llvm/IR/IRBuilder.h"
19#include "llvm/IR/Instructions.h"
20#include "llvm/IR/Use.h"
21#include "llvm/IR/Value.h"
22
23using namespace llvm;
24
25#define DEBUG_TYPE "ssaupdaterbulk"
26
27/// Add a new variable to the SSA rewriter. This needs to be called before
28/// AddAvailableValue or AddUse calls.
29void SSAUpdaterBulk::AddVariable(unsigned Var, StringRef Name, Type *Ty) {
30 assert(Rewrites.find(Var) == Rewrites.end() && "Variable added twice!");
31 RewriteInfo RI(Name, Ty);
32 Rewrites[Var] = RI;
33}
34
35/// Indicate that a rewritten value is available in the specified block with the
36/// specified value.
37void SSAUpdaterBulk::AddAvailableValue(unsigned Var, BasicBlock *BB, Value *V) {
38 assert(Rewrites.find(Var) != Rewrites.end() && "Should add variable first!");
39 Rewrites[Var].Defines[BB] = V;
40}
41
42/// Record a use of the symbolic value. This use will be updated with a
43/// rewritten value when RewriteAllUses is called.
44void SSAUpdaterBulk::AddUse(unsigned Var, Use *U) {
45 assert(Rewrites.find(Var) != Rewrites.end() && "Should add variable first!");
46 Rewrites[Var].Uses.insert(U);
47}
48
49/// Return true if the SSAUpdater already has a value for the specified variable
50/// in the specified block.
51bool SSAUpdaterBulk::HasValueForBlock(unsigned Var, BasicBlock *BB) {
52 return Rewrites.count(Var) ? Rewrites[Var].Defines.count(BB) : false;
53}
54
55// Compute value at the given block BB. We either should already know it, or we
56// should be able to recursively reach it going up dominator tree.
57Value *SSAUpdaterBulk::computeValueAt(BasicBlock *BB, RewriteInfo &R,
58 DominatorTree *DT) {
59 if (!R.Defines.count(BB)) {
Michael Zolotukhinaa786852018-04-10 02:16:29 +000060 if (DT->isReachableFromEntry(BB) && PredCache.get(BB).size()) {
Michael Zolotukhin52b064f2018-04-09 23:37:20 +000061 BasicBlock *IDom = DT->getNode(BB)->getIDom()->getBlock();
62 R.Defines[BB] = computeValueAt(IDom, R, DT);
63 } else
64 R.Defines[BB] = UndefValue::get(R.Ty);
65 }
66 return R.Defines[BB];
67}
68
69/// Given sets of UsingBlocks and DefBlocks, compute the set of LiveInBlocks.
70/// This is basically a subgraph limited by DefBlocks and UsingBlocks.
71static void
72ComputeLiveInBlocks(const SmallPtrSetImpl<BasicBlock *> &UsingBlocks,
73 const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
74 SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) {
75 // To determine liveness, we must iterate through the predecessors of blocks
76 // where the def is live. Blocks are added to the worklist if we need to
77 // check their predecessors. Start with all the using blocks.
78 SmallVector<BasicBlock *, 64> LiveInBlockWorklist(UsingBlocks.begin(),
79 UsingBlocks.end());
80
81 // Now that we have a set of blocks where the phi is live-in, recursively add
82 // their predecessors until we find the full region the value is live.
83 while (!LiveInBlockWorklist.empty()) {
84 BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
85
86 // The block really is live in here, insert it into the set. If already in
87 // the set, then it has already been processed.
88 if (!LiveInBlocks.insert(BB).second)
89 continue;
90
91 // Since the value is live into BB, it is either defined in a predecessor or
92 // live into it to. Add the preds to the worklist unless they are a
93 // defining block.
94 for (BasicBlock *P : predecessors(BB)) {
95 // The value is not live into a predecessor if it defines the value.
96 if (DefBlocks.count(P))
97 continue;
98
99 // Otherwise it is, add to the worklist.
100 LiveInBlockWorklist.push_back(P);
101 }
102 }
103}
104
105/// Helper function for finding a block which should have a value for the given
106/// user. For PHI-nodes this block is the corresponding predecessor, for other
107/// instructions it's their parent block.
108static BasicBlock *getUserBB(Use *U) {
109 auto *User = cast<Instruction>(U->getUser());
110
111 if (auto *UserPN = dyn_cast<PHINode>(User))
112 return UserPN->getIncomingBlock(*U);
113 else
114 return User->getParent();
115}
116
117/// Perform all the necessary updates, including new PHI-nodes insertion and the
118/// requested uses update.
119void SSAUpdaterBulk::RewriteAllUses(DominatorTree *DT,
120 SmallVectorImpl<PHINode *> *InsertedPHIs) {
121 for (auto P : Rewrites) {
122 // Compute locations for new phi-nodes.
123 // For that we need to initialize DefBlocks from definitions in R.Defines,
124 // UsingBlocks from uses in R.Uses, then compute LiveInBlocks, and then use
125 // this set for computing iterated dominance frontier (IDF).
126 // The IDF blocks are the blocks where we need to insert new phi-nodes.
127 ForwardIDFCalculator IDF(*DT);
128 RewriteInfo &R = P.second;
129 SmallPtrSet<BasicBlock *, 2> DefBlocks;
130 for (auto Def : R.Defines)
131 DefBlocks.insert(Def.first);
132 IDF.setDefiningBlocks(DefBlocks);
133
134 SmallPtrSet<BasicBlock *, 2> UsingBlocks;
135 for (auto U : R.Uses)
136 UsingBlocks.insert(getUserBB(U));
137
138 SmallVector<BasicBlock *, 32> IDFBlocks;
139 SmallPtrSet<BasicBlock *, 32> LiveInBlocks;
140 ComputeLiveInBlocks(UsingBlocks, DefBlocks, LiveInBlocks);
141 IDF.resetLiveInBlocks();
142 IDF.setLiveInBlocks(LiveInBlocks);
143 IDF.calculate(IDFBlocks);
144
145 // We've computed IDF, now insert new phi-nodes there.
146 SmallVector<PHINode *, 4> InsertedPHIsForVar;
147 for (auto FrontierBB : IDFBlocks) {
148 IRBuilder<> B(FrontierBB, FrontierBB->begin());
149 PHINode *PN = B.CreatePHI(R.Ty, 0, R.Name);
150 R.Defines[FrontierBB] = PN;
151 InsertedPHIsForVar.push_back(PN);
152 if (InsertedPHIs)
153 InsertedPHIs->push_back(PN);
154 }
155
156 // Fill in arguments of the inserted PHIs.
157 for (auto PN : InsertedPHIsForVar) {
158 BasicBlock *PBB = PN->getParent();
159 for (BasicBlock *Pred : PredCache.get(PBB))
160 PN->addIncoming(computeValueAt(Pred, R, DT), Pred);
161 }
162
163 // Rewrite actual uses with the inserted definitions.
164 for (auto U : R.Uses) {
165 Value *V = computeValueAt(getUserBB(U), R, DT);
166 Value *OldVal = U->get();
167 // Notify that users of the existing value that it is being replaced.
168 if (OldVal != V && OldVal->hasValueHandle())
169 ValueHandleBase::ValueIsRAUWd(OldVal, V);
170 U->set(V);
171 }
172 }
173}