blob: 90df3903f54a10edc94bd038084175be7a1c0c78 [file] [log] [blame]
Jia Liub22310f2012-02-18 12:03:15 +00001//===-- HexagonInstrInfo.cpp - Hexagon Instruction Information ------------===//
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the Hexagon implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
Tony Linthicum1213a7a2011-12-12 21:14:40 +000014#include "HexagonInstrInfo.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000015#include "Hexagon.h"
Craig Topperb25fda92012-03-17 18:46:09 +000016#include "HexagonRegisterInfo.h"
Tony Linthicum1213a7a2011-12-12 21:14:40 +000017#include "HexagonSubtarget.h"
Tony Linthicum1213a7a2011-12-12 21:14:40 +000018#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallVector.h"
Benjamin Kramerae87d7b2012-02-06 10:19:29 +000020#include "llvm/CodeGen/DFAPacketizer.h"
Tony Linthicum1213a7a2011-12-12 21:14:40 +000021#include "llvm/CodeGen/MachineFrameInfo.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000022#include "llvm/CodeGen/MachineInstrBuilder.h"
Tony Linthicum1213a7a2011-12-12 21:14:40 +000023#include "llvm/CodeGen/MachineMemOperand.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000024#include "llvm/CodeGen/MachineRegisterInfo.h"
Tony Linthicum1213a7a2011-12-12 21:14:40 +000025#include "llvm/CodeGen/PseudoSourceValue.h"
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +000026#include "llvm/MC/MCAsmInfo.h"
Jyotsna Verma5ed51812013-05-01 21:37:34 +000027#include "llvm/Support/Debug.h"
Benjamin Kramerae87d7b2012-02-06 10:19:29 +000028#include "llvm/Support/MathExtras.h"
Reid Kleckner1c76f1552013-05-03 00:54:56 +000029#include "llvm/Support/raw_ostream.h"
Krzysztof Parzyszekaa935752015-11-24 15:11:13 +000030#include <cctype>
Tony Linthicum1213a7a2011-12-12 21:14:40 +000031
Tony Linthicum1213a7a2011-12-12 21:14:40 +000032using namespace llvm;
33
Chandler Carruthe96dd892014-04-21 22:55:11 +000034#define DEBUG_TYPE "hexagon-instrinfo"
35
Chandler Carruthd174b722014-04-22 02:03:14 +000036#define GET_INSTRINFO_CTOR_DTOR
37#define GET_INSTRMAP_INFO
38#include "HexagonGenInstrInfo.inc"
39#include "HexagonGenDFAPacketizer.inc"
40
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +000041using namespace llvm;
42
43static cl::opt<bool> ScheduleInlineAsm("hexagon-sched-inline-asm", cl::Hidden,
44 cl::init(false), cl::desc("Do not consider inline-asm a scheduling/"
45 "packetization boundary."));
46
47static cl::opt<bool> EnableBranchPrediction("hexagon-enable-branch-prediction",
48 cl::Hidden, cl::init(true), cl::desc("Enable branch prediction"));
49
50static cl::opt<bool> EnableTimingClassLatency(
51 "enable-timing-class-latency", cl::Hidden, cl::init(false),
52 cl::desc("Enable timing class latency"));
53
54static cl::opt<bool> EnableALUForwarding(
55 "enable-alu-forwarding", cl::Hidden, cl::init(true),
56 cl::desc("Enable vec alu forwarding"));
57
58static cl::opt<bool> EnableACCForwarding(
59 "enable-acc-forwarding", cl::Hidden, cl::init(true),
60 cl::desc("Enable vec acc forwarding"));
61
62static cl::opt<bool> BranchRelaxAsmLarge("branch-relax-asm-large",
63 cl::init(true), cl::Hidden, cl::ZeroOrMore, cl::desc("branch relax asm"));
64
Tony Linthicum1213a7a2011-12-12 21:14:40 +000065///
66/// Constants for Hexagon instructions.
67///
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +000068const int Hexagon_MEMV_OFFSET_MAX_128B = 2047; // #s7
69const int Hexagon_MEMV_OFFSET_MIN_128B = -2048; // #s7
70const int Hexagon_MEMV_OFFSET_MAX = 1023; // #s6
71const int Hexagon_MEMV_OFFSET_MIN = -1024; // #s6
Tony Linthicum1213a7a2011-12-12 21:14:40 +000072const int Hexagon_MEMW_OFFSET_MAX = 4095;
Sirish Pandef8e5e3c2012-05-03 21:52:53 +000073const int Hexagon_MEMW_OFFSET_MIN = -4096;
Tony Linthicum1213a7a2011-12-12 21:14:40 +000074const int Hexagon_MEMD_OFFSET_MAX = 8191;
Sirish Pandef8e5e3c2012-05-03 21:52:53 +000075const int Hexagon_MEMD_OFFSET_MIN = -8192;
Tony Linthicum1213a7a2011-12-12 21:14:40 +000076const int Hexagon_MEMH_OFFSET_MAX = 2047;
Sirish Pandef8e5e3c2012-05-03 21:52:53 +000077const int Hexagon_MEMH_OFFSET_MIN = -2048;
Tony Linthicum1213a7a2011-12-12 21:14:40 +000078const int Hexagon_MEMB_OFFSET_MAX = 1023;
Sirish Pandef8e5e3c2012-05-03 21:52:53 +000079const int Hexagon_MEMB_OFFSET_MIN = -1024;
Tony Linthicum1213a7a2011-12-12 21:14:40 +000080const int Hexagon_ADDI_OFFSET_MAX = 32767;
Sirish Pandef8e5e3c2012-05-03 21:52:53 +000081const int Hexagon_ADDI_OFFSET_MIN = -32768;
Tony Linthicum1213a7a2011-12-12 21:14:40 +000082const int Hexagon_MEMD_AUTOINC_MAX = 56;
Sirish Pandef8e5e3c2012-05-03 21:52:53 +000083const int Hexagon_MEMD_AUTOINC_MIN = -64;
Tony Linthicum1213a7a2011-12-12 21:14:40 +000084const int Hexagon_MEMW_AUTOINC_MAX = 28;
Sirish Pandef8e5e3c2012-05-03 21:52:53 +000085const int Hexagon_MEMW_AUTOINC_MIN = -32;
Tony Linthicum1213a7a2011-12-12 21:14:40 +000086const int Hexagon_MEMH_AUTOINC_MAX = 14;
Sirish Pandef8e5e3c2012-05-03 21:52:53 +000087const int Hexagon_MEMH_AUTOINC_MIN = -16;
Tony Linthicum1213a7a2011-12-12 21:14:40 +000088const int Hexagon_MEMB_AUTOINC_MAX = 7;
Sirish Pandef8e5e3c2012-05-03 21:52:53 +000089const int Hexagon_MEMB_AUTOINC_MIN = -8;
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +000090const int Hexagon_MEMV_AUTOINC_MAX = 192;
91const int Hexagon_MEMV_AUTOINC_MIN = -256;
92const int Hexagon_MEMV_AUTOINC_MAX_128B = 384;
93const int Hexagon_MEMV_AUTOINC_MIN_128B = -512;
Tony Linthicum1213a7a2011-12-12 21:14:40 +000094
Juergen Ributzkad12ccbd2013-11-19 00:57:56 +000095// Pin the vtable to this file.
96void HexagonInstrInfo::anchor() {}
Tony Linthicum1213a7a2011-12-12 21:14:40 +000097
98HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget &ST)
Eric Christopherc4d31402015-03-10 23:45:55 +000099 : HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN, Hexagon::ADJCALLSTACKUP),
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000100 RI() {}
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000101
102
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000103static bool isIntRegForSubInst(unsigned Reg) {
104 return (Reg >= Hexagon::R0 && Reg <= Hexagon::R7) ||
105 (Reg >= Hexagon::R16 && Reg <= Hexagon::R23);
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000106}
107
108
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000109static bool isDblRegForSubInst(unsigned Reg, const HexagonRegisterInfo &HRI) {
110 return isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::subreg_loreg)) &&
111 isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::subreg_hireg));
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000112}
113
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000114
115/// Calculate number of instructions excluding the debug instructions.
116static unsigned nonDbgMICount(MachineBasicBlock::const_instr_iterator MIB,
117 MachineBasicBlock::const_instr_iterator MIE) {
118 unsigned Count = 0;
119 for (; MIB != MIE; ++MIB) {
120 if (!MIB->isDebugValue())
121 ++Count;
122 }
123 return Count;
124}
125
126
127/// Find the hardware loop instruction used to set-up the specified loop.
128/// On Hexagon, we have two instructions used to set-up the hardware loop
129/// (LOOP0, LOOP1) with corresponding endloop (ENDLOOP0, ENDLOOP1) instructions
130/// to indicate the end of a loop.
131static MachineInstr *findLoopInstr(MachineBasicBlock *BB, int EndLoopOp,
132 SmallPtrSet<MachineBasicBlock *, 8> &Visited) {
Brendon Cahoondf43e682015-05-08 16:16:29 +0000133 int LOOPi;
134 int LOOPr;
135 if (EndLoopOp == Hexagon::ENDLOOP0) {
136 LOOPi = Hexagon::J2_loop0i;
137 LOOPr = Hexagon::J2_loop0r;
138 } else { // EndLoopOp == Hexagon::EndLOOP1
139 LOOPi = Hexagon::J2_loop1i;
140 LOOPr = Hexagon::J2_loop1r;
141 }
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000142
Brendon Cahoondf43e682015-05-08 16:16:29 +0000143 // The loop set-up instruction will be in a predecessor block
144 for (MachineBasicBlock::pred_iterator PB = BB->pred_begin(),
145 PE = BB->pred_end(); PB != PE; ++PB) {
146 // If this has been visited, already skip it.
147 if (!Visited.insert(*PB).second)
148 continue;
149 if (*PB == BB)
150 continue;
151 for (MachineBasicBlock::reverse_instr_iterator I = (*PB)->instr_rbegin(),
152 E = (*PB)->instr_rend(); I != E; ++I) {
153 int Opc = I->getOpcode();
154 if (Opc == LOOPi || Opc == LOOPr)
155 return &*I;
156 // We've reached a different loop, which means the loop0 has been removed.
157 if (Opc == EndLoopOp)
158 return 0;
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000159 }
Brendon Cahoondf43e682015-05-08 16:16:29 +0000160 // Check the predecessors for the LOOP instruction.
161 MachineInstr *loop = findLoopInstr(*PB, EndLoopOp, Visited);
162 if (loop)
163 return loop;
164 }
165 return 0;
166}
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000167
Brendon Cahoondf43e682015-05-08 16:16:29 +0000168
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000169/// Gather register def/uses from MI.
170/// This treats possible (predicated) defs as actually happening ones
171/// (conservatively).
172static inline void parseOperands(const MachineInstr *MI,
173 SmallVector<unsigned, 4> &Defs, SmallVector<unsigned, 8> &Uses) {
174 Defs.clear();
175 Uses.clear();
Brendon Cahoondf43e682015-05-08 16:16:29 +0000176
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000177 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
178 const MachineOperand &MO = MI->getOperand(i);
Brendon Cahoondf43e682015-05-08 16:16:29 +0000179
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000180 if (!MO.isReg())
181 continue;
Brendon Cahoondf43e682015-05-08 16:16:29 +0000182
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000183 unsigned Reg = MO.getReg();
184 if (!Reg)
185 continue;
186
187 if (MO.isUse())
188 Uses.push_back(MO.getReg());
189
190 if (MO.isDef())
191 Defs.push_back(MO.getReg());
192 }
193}
194
195
196// Position dependent, so check twice for swap.
197static bool isDuplexPairMatch(unsigned Ga, unsigned Gb) {
198 switch (Ga) {
199 case HexagonII::HSIG_None:
200 default:
201 return false;
202 case HexagonII::HSIG_L1:
203 return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_A);
204 case HexagonII::HSIG_L2:
205 return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
206 Gb == HexagonII::HSIG_A);
207 case HexagonII::HSIG_S1:
208 return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
209 Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_A);
210 case HexagonII::HSIG_S2:
211 return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
212 Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_S2 ||
213 Gb == HexagonII::HSIG_A);
214 case HexagonII::HSIG_A:
215 return (Gb == HexagonII::HSIG_A);
216 case HexagonII::HSIG_Compound:
217 return (Gb == HexagonII::HSIG_Compound);
218 }
219 return false;
220}
221
222
223
224/// isLoadFromStackSlot - If the specified machine instruction is a direct
225/// load from a stack slot, return the virtual or physical register number of
226/// the destination along with the FrameIndex of the loaded stack slot. If
227/// not, return 0. This predicate must return 0 if the instruction has
228/// any side effects other than loading from the stack slot.
229unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
230 int &FrameIndex) const {
231 switch (MI->getOpcode()) {
232 default: break;
233 case Hexagon::L2_loadri_io:
234 case Hexagon::L2_loadrd_io:
235 case Hexagon::L2_loadrh_io:
236 case Hexagon::L2_loadrb_io:
237 case Hexagon::L2_loadrub_io:
238 if (MI->getOperand(2).isFI() &&
239 MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
240 FrameIndex = MI->getOperand(2).getIndex();
241 return MI->getOperand(0).getReg();
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000242 }
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000243 break;
Brendon Cahoondf43e682015-05-08 16:16:29 +0000244 }
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000245 return 0;
246}
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000247
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000248
249/// isStoreToStackSlot - If the specified machine instruction is a direct
250/// store to a stack slot, return the virtual or physical register number of
251/// the source reg along with the FrameIndex of the loaded stack slot. If
252/// not, return 0. This predicate must return 0 if the instruction has
253/// any side effects other than storing to the stack slot.
254unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
255 int &FrameIndex) const {
256 switch (MI->getOpcode()) {
257 default: break;
258 case Hexagon::S2_storeri_io:
259 case Hexagon::S2_storerd_io:
260 case Hexagon::S2_storerh_io:
261 case Hexagon::S2_storerb_io:
262 if (MI->getOperand(2).isFI() &&
263 MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
264 FrameIndex = MI->getOperand(0).getIndex();
265 return MI->getOperand(2).getReg();
266 }
267 break;
268 }
269 return 0;
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000270}
271
272
Brendon Cahoondf43e682015-05-08 16:16:29 +0000273/// This function can analyze one/two way branching only and should (mostly) be
274/// called by target independent side.
275/// First entry is always the opcode of the branching instruction, except when
276/// the Cond vector is supposed to be empty, e.g., when AnalyzeBranch fails, a
277/// BB with only unconditional jump. Subsequent entries depend upon the opcode,
278/// e.g. Jump_c p will have
279/// Cond[0] = Jump_c
280/// Cond[1] = p
281/// HW-loop ENDLOOP:
282/// Cond[0] = ENDLOOP
283/// Cond[1] = MBB
284/// New value jump:
285/// Cond[0] = Hexagon::CMPEQri_f_Jumpnv_t_V4 -- specific opcode
286/// Cond[1] = R
287/// Cond[2] = Imm
Brendon Cahoondf43e682015-05-08 16:16:29 +0000288///
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000289bool HexagonInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
290 MachineBasicBlock *&TBB,
Brendon Cahoondf43e682015-05-08 16:16:29 +0000291 MachineBasicBlock *&FBB,
292 SmallVectorImpl<MachineOperand> &Cond,
293 bool AllowModify) const {
Craig Topper062a2ba2014-04-25 05:30:21 +0000294 TBB = nullptr;
295 FBB = nullptr;
Brendon Cahoondf43e682015-05-08 16:16:29 +0000296 Cond.clear();
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000297
298 // If the block has no terminators, it just falls into the block after it.
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000299 MachineBasicBlock::instr_iterator I = MBB.instr_end();
300 if (I == MBB.instr_begin())
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000301 return false;
302
303 // A basic block may looks like this:
304 //
305 // [ insn
306 // EH_LABEL
307 // insn
308 // insn
309 // insn
310 // EH_LABEL
311 // insn ]
312 //
313 // It has two succs but does not have a terminator
314 // Don't know how to handle it.
315 do {
316 --I;
317 if (I->isEHLabel())
Brendon Cahoondf43e682015-05-08 16:16:29 +0000318 // Don't analyze EH branches.
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000319 return true;
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000320 } while (I != MBB.instr_begin());
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000321
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000322 I = MBB.instr_end();
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000323 --I;
324
325 while (I->isDebugValue()) {
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000326 if (I == MBB.instr_begin())
327 return false;
328 --I;
329 }
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000330
Colin LeMahieu7b1799c2015-03-09 22:05:21 +0000331 bool JumpToBlock = I->getOpcode() == Hexagon::J2_jump &&
332 I->getOperand(0).isMBB();
Brendon Cahoondf43e682015-05-08 16:16:29 +0000333 // Delete the J2_jump if it's equivalent to a fall-through.
Colin LeMahieu7b1799c2015-03-09 22:05:21 +0000334 if (AllowModify && JumpToBlock &&
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000335 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
336 DEBUG(dbgs()<< "\nErasing the jump to successor block\n";);
337 I->eraseFromParent();
338 I = MBB.instr_end();
339 if (I == MBB.instr_begin())
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000340 return false;
341 --I;
342 }
Duncan P. N. Exon Smitha72c6e22015-10-20 00:46:39 +0000343 if (!isUnpredicatedTerminator(&*I))
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000344 return false;
345
346 // Get the last instruction in the block.
Duncan P. N. Exon Smitha72c6e22015-10-20 00:46:39 +0000347 MachineInstr *LastInst = &*I;
Craig Topper062a2ba2014-04-25 05:30:21 +0000348 MachineInstr *SecondLastInst = nullptr;
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000349 // Find one more terminator if present.
Duncan P. N. Exon Smitha72c6e22015-10-20 00:46:39 +0000350 for (;;) {
351 if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(&*I)) {
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000352 if (!SecondLastInst)
Duncan P. N. Exon Smitha72c6e22015-10-20 00:46:39 +0000353 SecondLastInst = &*I;
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000354 else
355 // This is a third branch.
356 return true;
357 }
358 if (I == MBB.instr_begin())
359 break;
360 --I;
Duncan P. N. Exon Smitha72c6e22015-10-20 00:46:39 +0000361 }
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000362
363 int LastOpcode = LastInst->getOpcode();
Colin LeMahieu7b1799c2015-03-09 22:05:21 +0000364 int SecLastOpcode = SecondLastInst ? SecondLastInst->getOpcode() : 0;
365 // If the branch target is not a basic block, it could be a tail call.
366 // (It is, if the target is a function.)
367 if (LastOpcode == Hexagon::J2_jump && !LastInst->getOperand(0).isMBB())
368 return true;
369 if (SecLastOpcode == Hexagon::J2_jump &&
370 !SecondLastInst->getOperand(0).isMBB())
371 return true;
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000372
373 bool LastOpcodeHasJMP_c = PredOpcodeHasJMP_c(LastOpcode);
Brendon Cahoondf43e682015-05-08 16:16:29 +0000374 bool LastOpcodeHasNVJump = isNewValueJump(LastInst);
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000375
376 // If there is only one terminator instruction, process it.
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000377 if (LastInst && !SecondLastInst) {
Colin LeMahieudb0b13c2014-12-10 21:24:10 +0000378 if (LastOpcode == Hexagon::J2_jump) {
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000379 TBB = LastInst->getOperand(0).getMBB();
380 return false;
381 }
Brendon Cahoondf43e682015-05-08 16:16:29 +0000382 if (isEndLoopN(LastOpcode)) {
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000383 TBB = LastInst->getOperand(0).getMBB();
Brendon Cahoondf43e682015-05-08 16:16:29 +0000384 Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000385 Cond.push_back(LastInst->getOperand(0));
386 return false;
387 }
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000388 if (LastOpcodeHasJMP_c) {
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000389 TBB = LastInst->getOperand(1).getMBB();
Brendon Cahoondf43e682015-05-08 16:16:29 +0000390 Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000391 Cond.push_back(LastInst->getOperand(0));
392 return false;
393 }
Brendon Cahoondf43e682015-05-08 16:16:29 +0000394 // Only supporting rr/ri versions of new-value jumps.
395 if (LastOpcodeHasNVJump && (LastInst->getNumExplicitOperands() == 3)) {
396 TBB = LastInst->getOperand(2).getMBB();
397 Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
398 Cond.push_back(LastInst->getOperand(0));
399 Cond.push_back(LastInst->getOperand(1));
400 return false;
401 }
402 DEBUG(dbgs() << "\nCant analyze BB#" << MBB.getNumber()
403 << " with one jump\n";);
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000404 // Otherwise, don't know what this is.
405 return true;
406 }
407
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000408 bool SecLastOpcodeHasJMP_c = PredOpcodeHasJMP_c(SecLastOpcode);
Brendon Cahoondf43e682015-05-08 16:16:29 +0000409 bool SecLastOpcodeHasNVJump = isNewValueJump(SecondLastInst);
Colin LeMahieudb0b13c2014-12-10 21:24:10 +0000410 if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::J2_jump)) {
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000411 TBB = SecondLastInst->getOperand(1).getMBB();
Brendon Cahoondf43e682015-05-08 16:16:29 +0000412 Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000413 Cond.push_back(SecondLastInst->getOperand(0));
414 FBB = LastInst->getOperand(0).getMBB();
415 return false;
416 }
417
Brendon Cahoondf43e682015-05-08 16:16:29 +0000418 // Only supporting rr/ri versions of new-value jumps.
419 if (SecLastOpcodeHasNVJump &&
420 (SecondLastInst->getNumExplicitOperands() == 3) &&
421 (LastOpcode == Hexagon::J2_jump)) {
422 TBB = SecondLastInst->getOperand(2).getMBB();
423 Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
424 Cond.push_back(SecondLastInst->getOperand(0));
425 Cond.push_back(SecondLastInst->getOperand(1));
426 FBB = LastInst->getOperand(0).getMBB();
427 return false;
428 }
429
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000430 // If the block ends with two Hexagon:JMPs, handle it. The second one is not
431 // executed, so remove it.
Colin LeMahieudb0b13c2014-12-10 21:24:10 +0000432 if (SecLastOpcode == Hexagon::J2_jump && LastOpcode == Hexagon::J2_jump) {
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000433 TBB = SecondLastInst->getOperand(0).getMBB();
Duncan P. N. Exon Smitha72c6e22015-10-20 00:46:39 +0000434 I = LastInst->getIterator();
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000435 if (AllowModify)
436 I->eraseFromParent();
437 return false;
438 }
439
Brendon Cahoondf43e682015-05-08 16:16:29 +0000440 // If the block ends with an ENDLOOP, and J2_jump, handle it.
441 if (isEndLoopN(SecLastOpcode) && LastOpcode == Hexagon::J2_jump) {
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000442 TBB = SecondLastInst->getOperand(0).getMBB();
Brendon Cahoondf43e682015-05-08 16:16:29 +0000443 Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
Jyotsna Verma5ed51812013-05-01 21:37:34 +0000444 Cond.push_back(SecondLastInst->getOperand(0));
445 FBB = LastInst->getOperand(0).getMBB();
446 return false;
447 }
Brendon Cahoondf43e682015-05-08 16:16:29 +0000448 DEBUG(dbgs() << "\nCant analyze BB#" << MBB.getNumber()
449 << " with two jumps";);
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000450 // Otherwise, can't handle this.
451 return true;
452}
453
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000454
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000455unsigned HexagonInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
Brendon Cahoondf43e682015-05-08 16:16:29 +0000456 DEBUG(dbgs() << "\nRemoving branches out of BB#" << MBB.getNumber());
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000457 MachineBasicBlock::iterator I = MBB.end();
Brendon Cahoondf43e682015-05-08 16:16:29 +0000458 unsigned Count = 0;
459 while (I != MBB.begin()) {
460 --I;
461 if (I->isDebugValue())
462 continue;
463 // Only removing branches from end of MBB.
464 if (!I->isBranch())
465 return Count;
466 if (Count && (I->getOpcode() == Hexagon::J2_jump))
467 llvm_unreachable("Malformed basic block: unconditional branch not last");
468 MBB.erase(&MBB.back());
469 I = MBB.end();
470 ++Count;
Krzysztof Parzyszek78cc36f2015-03-18 15:56:43 +0000471 }
Brendon Cahoondf43e682015-05-08 16:16:29 +0000472 return Count;
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000473}
474
Krzysztof Parzyszekcfe285e2013-02-11 20:04:29 +0000475
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000476unsigned HexagonInstrInfo::InsertBranch(MachineBasicBlock &MBB,
477 MachineBasicBlock *TBB, MachineBasicBlock *FBB,
478 ArrayRef<MachineOperand> Cond, DebugLoc DL) const {
479 unsigned BOpc = Hexagon::J2_jump;
480 unsigned BccOpc = Hexagon::J2_jumpt;
481 assert(validateBranchCond(Cond) && "Invalid branching condition");
482 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
483
484 // Check if ReverseBranchCondition has asked to reverse this branch
485 // If we want to reverse the branch an odd number of times, we want
486 // J2_jumpf.
487 if (!Cond.empty() && Cond[0].isImm())
488 BccOpc = Cond[0].getImm();
489
490 if (!FBB) {
491 if (Cond.empty()) {
492 // Due to a bug in TailMerging/CFG Optimization, we need to add a
493 // special case handling of a predicated jump followed by an
494 // unconditional jump. If not, Tail Merging and CFG Optimization go
495 // into an infinite loop.
496 MachineBasicBlock *NewTBB, *NewFBB;
497 SmallVector<MachineOperand, 4> Cond;
498 MachineInstr *Term = MBB.getFirstTerminator();
499 if (Term != MBB.end() && isPredicated(Term) &&
500 !AnalyzeBranch(MBB, NewTBB, NewFBB, Cond, false)) {
501 MachineBasicBlock *NextBB = &*++MBB.getIterator();
502 if (NewTBB == NextBB) {
503 ReverseBranchCondition(Cond);
504 RemoveBranch(MBB);
505 return InsertBranch(MBB, TBB, nullptr, Cond, DL);
506 }
507 }
508 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
509 } else if (isEndLoopN(Cond[0].getImm())) {
510 int EndLoopOp = Cond[0].getImm();
511 assert(Cond[1].isMBB());
512 // Since we're adding an ENDLOOP, there better be a LOOP instruction.
513 // Check for it, and change the BB target if needed.
514 SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
515 MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, VisitedBBs);
516 assert(Loop != 0 && "Inserting an ENDLOOP without a LOOP");
517 Loop->getOperand(0).setMBB(TBB);
518 // Add the ENDLOOP after the finding the LOOP0.
519 BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
520 } else if (isNewValueJump(Cond[0].getImm())) {
521 assert((Cond.size() == 3) && "Only supporting rr/ri version of nvjump");
522 // New value jump
523 // (ins IntRegs:$src1, IntRegs:$src2, brtarget:$offset)
524 // (ins IntRegs:$src1, u5Imm:$src2, brtarget:$offset)
525 unsigned Flags1 = getUndefRegState(Cond[1].isUndef());
526 DEBUG(dbgs() << "\nInserting NVJump for BB#" << MBB.getNumber(););
527 if (Cond[2].isReg()) {
528 unsigned Flags2 = getUndefRegState(Cond[2].isUndef());
529 BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
530 addReg(Cond[2].getReg(), Flags2).addMBB(TBB);
531 } else if(Cond[2].isImm()) {
532 BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
533 addImm(Cond[2].getImm()).addMBB(TBB);
534 } else
535 llvm_unreachable("Invalid condition for branching");
536 } else {
537 assert((Cond.size() == 2) && "Malformed cond vector");
538 const MachineOperand &RO = Cond[1];
539 unsigned Flags = getUndefRegState(RO.isUndef());
540 BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
541 }
542 return 1;
Krzysztof Parzyszekcfe285e2013-02-11 20:04:29 +0000543 }
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000544 assert((!Cond.empty()) &&
545 "Cond. cannot be empty when multiple branchings are required");
546 assert((!isNewValueJump(Cond[0].getImm())) &&
547 "NV-jump cannot be inserted with another branch");
548 // Special case for hardware loops. The condition is a basic block.
549 if (isEndLoopN(Cond[0].getImm())) {
550 int EndLoopOp = Cond[0].getImm();
551 assert(Cond[1].isMBB());
552 // Since we're adding an ENDLOOP, there better be a LOOP instruction.
553 // Check for it, and change the BB target if needed.
554 SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
555 MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, VisitedBBs);
556 assert(Loop != 0 && "Inserting an ENDLOOP without a LOOP");
557 Loop->getOperand(0).setMBB(TBB);
558 // Add the ENDLOOP after the finding the LOOP0.
559 BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
560 } else {
561 const MachineOperand &RO = Cond[1];
562 unsigned Flags = getUndefRegState(RO.isUndef());
563 BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
Krzysztof Parzyszekcfe285e2013-02-11 20:04:29 +0000564 }
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000565 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
Krzysztof Parzyszekcfe285e2013-02-11 20:04:29 +0000566
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000567 return 2;
568}
569
570
571bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &MBB,
572 unsigned NumCycles, unsigned ExtraPredCycles,
573 BranchProbability Probability) const {
574 return nonDbgBBSize(&MBB) <= 3;
575}
576
577
578bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
579 unsigned NumTCycles, unsigned ExtraTCycles, MachineBasicBlock &FMBB,
580 unsigned NumFCycles, unsigned ExtraFCycles, BranchProbability Probability)
581 const {
582 return nonDbgBBSize(&TMBB) <= 3 && nonDbgBBSize(&FMBB) <= 3;
583}
584
585
586bool HexagonInstrInfo::isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
587 unsigned NumInstrs, BranchProbability Probability) const {
588 return NumInstrs <= 4;
Krzysztof Parzyszekcfe285e2013-02-11 20:04:29 +0000589}
590
591
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000592void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000593 MachineBasicBlock::iterator I, DebugLoc DL, unsigned DestReg,
594 unsigned SrcReg, bool KillSrc) const {
595 auto &HRI = getRegisterInfo();
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000596 if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) {
Colin LeMahieu4af437f2014-12-09 20:23:30 +0000597 BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), DestReg).addReg(SrcReg);
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000598 return;
599 }
600 if (Hexagon::DoubleRegsRegClass.contains(SrcReg, DestReg)) {
Colin LeMahieu4af437f2014-12-09 20:23:30 +0000601 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrp), DestReg).addReg(SrcReg);
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000602 return;
603 }
604 if (Hexagon::PredRegsRegClass.contains(SrcReg, DestReg)) {
605 // Map Pd = Ps to Pd = or(Ps, Ps).
Colin LeMahieu5cf56322014-12-08 23:55:43 +0000606 BuildMI(MBB, I, DL, get(Hexagon::C2_or),
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000607 DestReg).addReg(SrcReg).addReg(SrcReg);
608 return;
609 }
Sirish Pande8bb97452012-05-12 05:54:15 +0000610 if (Hexagon::DoubleRegsRegClass.contains(DestReg) &&
611 Hexagon::IntRegsRegClass.contains(SrcReg)) {
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000612 // We can have an overlap between single and double reg: r1:0 = r0.
613 if(SrcReg == RI.getSubReg(DestReg, Hexagon::subreg_loreg)) {
614 // r1:0 = r0
Colin LeMahieu4af437f2014-12-09 20:23:30 +0000615 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrsi), (RI.getSubReg(DestReg,
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000616 Hexagon::subreg_hireg))).addImm(0);
617 } else {
618 // r1:0 = r1 or no overlap.
Colin LeMahieu4af437f2014-12-09 20:23:30 +0000619 BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), (RI.getSubReg(DestReg,
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000620 Hexagon::subreg_loreg))).addReg(SrcReg);
Colin LeMahieu4af437f2014-12-09 20:23:30 +0000621 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrsi), (RI.getSubReg(DestReg,
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000622 Hexagon::subreg_hireg))).addImm(0);
623 }
624 return;
625 }
Colin LeMahieu402f7722014-12-19 18:56:10 +0000626 if (Hexagon::CtrRegsRegClass.contains(DestReg) &&
Sirish Pande8bb97452012-05-12 05:54:15 +0000627 Hexagon::IntRegsRegClass.contains(SrcReg)) {
Colin LeMahieu0f850bd2014-12-19 20:29:29 +0000628 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg).addReg(SrcReg);
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000629 return;
Sirish Pande30804c22012-02-15 18:52:27 +0000630 }
Anshuman Dasguptae96f8042013-02-13 22:56:34 +0000631 if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
632 Hexagon::IntRegsRegClass.contains(DestReg)) {
Colin LeMahieu30dcb232014-12-09 18:16:49 +0000633 BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg).
Anshuman Dasguptae96f8042013-02-13 22:56:34 +0000634 addReg(SrcReg, getKillRegState(KillSrc));
635 return;
636 }
637 if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
638 Hexagon::PredRegsRegClass.contains(DestReg)) {
Colin LeMahieu30dcb232014-12-09 18:16:49 +0000639 BuildMI(MBB, I, DL, get(Hexagon::C2_tfrrp), DestReg).
Anshuman Dasguptae96f8042013-02-13 22:56:34 +0000640 addReg(SrcReg, getKillRegState(KillSrc));
641 return;
642 }
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000643 if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
644 Hexagon::IntRegsRegClass.contains(DestReg)) {
645 BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg).
646 addReg(SrcReg, getKillRegState(KillSrc));
647 return;
648 }
649 if (Hexagon::VectorRegsRegClass.contains(SrcReg, DestReg)) {
650 BuildMI(MBB, I, DL, get(Hexagon::V6_vassign), DestReg).
651 addReg(SrcReg, getKillRegState(KillSrc));
652 return;
653 }
654 if (Hexagon::VecDblRegsRegClass.contains(SrcReg, DestReg)) {
655 BuildMI(MBB, I, DL, get(Hexagon::V6_vcombine), DestReg).
656 addReg(HRI.getSubReg(SrcReg, Hexagon::subreg_hireg),
657 getKillRegState(KillSrc)).
658 addReg(HRI.getSubReg(SrcReg, Hexagon::subreg_loreg),
659 getKillRegState(KillSrc));
660 return;
661 }
662 if (Hexagon::VecPredRegsRegClass.contains(SrcReg, DestReg)) {
663 BuildMI(MBB, I, DL, get(Hexagon::V6_pred_and), DestReg).
664 addReg(SrcReg).
665 addReg(SrcReg, getKillRegState(KillSrc));
666 return;
667 }
668 if (Hexagon::VecPredRegsRegClass.contains(SrcReg) &&
669 Hexagon::VectorRegsRegClass.contains(DestReg)) {
670 llvm_unreachable("Unimplemented pred to vec");
671 return;
672 }
673 if (Hexagon::VecPredRegsRegClass.contains(DestReg) &&
674 Hexagon::VectorRegsRegClass.contains(SrcReg)) {
675 llvm_unreachable("Unimplemented vec to pred");
676 return;
677 }
678 if (Hexagon::VecPredRegs128BRegClass.contains(SrcReg, DestReg)) {
679 BuildMI(MBB, I, DL, get(Hexagon::V6_pred_and),
680 HRI.getSubReg(DestReg, Hexagon::subreg_hireg)).
681 addReg(HRI.getSubReg(SrcReg, Hexagon::subreg_hireg),
682 getKillRegState(KillSrc));
683 BuildMI(MBB, I, DL, get(Hexagon::V6_pred_and),
684 HRI.getSubReg(DestReg, Hexagon::subreg_loreg)).
685 addReg(HRI.getSubReg(SrcReg, Hexagon::subreg_loreg),
686 getKillRegState(KillSrc));
687 return;
688 }
Sirish Pande30804c22012-02-15 18:52:27 +0000689
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000690#ifndef NDEBUG
691 // Show the invalid registers to ease debugging.
692 dbgs() << "Invalid registers for copy in BB#" << MBB.getNumber()
693 << ": " << PrintReg(DestReg, &HRI)
694 << " = " << PrintReg(SrcReg, &HRI) << '\n';
695#endif
Sirish Pande30804c22012-02-15 18:52:27 +0000696 llvm_unreachable("Unimplemented");
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000697}
698
699
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000700void HexagonInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
701 MachineBasicBlock::iterator I, unsigned SrcReg, bool isKill, int FI,
702 const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const {
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000703 DebugLoc DL = MBB.findDebugLoc(I);
704 MachineFunction &MF = *MBB.getParent();
705 MachineFrameInfo &MFI = *MF.getFrameInfo();
706 unsigned Align = MFI.getObjectAlignment(FI);
707
Alex Lorenze40c8a22015-08-11 23:09:45 +0000708 MachineMemOperand *MMO = MF.getMachineMemOperand(
709 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
710 MFI.getObjectSize(FI), Align);
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000711
Craig Topperc7242e02012-04-20 07:30:17 +0000712 if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
Colin LeMahieubda31b42014-12-29 20:44:51 +0000713 BuildMI(MBB, I, DL, get(Hexagon::S2_storeri_io))
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000714 .addFrameIndex(FI).addImm(0)
715 .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
Craig Topperc7242e02012-04-20 07:30:17 +0000716 } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
Colin LeMahieubda31b42014-12-29 20:44:51 +0000717 BuildMI(MBB, I, DL, get(Hexagon::S2_storerd_io))
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000718 .addFrameIndex(FI).addImm(0)
719 .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
Craig Topperc7242e02012-04-20 07:30:17 +0000720 } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000721 BuildMI(MBB, I, DL, get(Hexagon::STriw_pred))
722 .addFrameIndex(FI).addImm(0)
723 .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
724 } else {
Craig Toppere55c5562012-02-07 02:50:20 +0000725 llvm_unreachable("Unimplemented");
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000726 }
727}
728
729
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000730void HexagonInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
731 MachineBasicBlock::iterator I, unsigned DestReg, int FI,
732 const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const {
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000733 DebugLoc DL = MBB.findDebugLoc(I);
734 MachineFunction &MF = *MBB.getParent();
735 MachineFrameInfo &MFI = *MF.getFrameInfo();
736 unsigned Align = MFI.getObjectAlignment(FI);
737
Alex Lorenze40c8a22015-08-11 23:09:45 +0000738 MachineMemOperand *MMO = MF.getMachineMemOperand(
739 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
740 MFI.getObjectSize(FI), Align);
Craig Topperc7242e02012-04-20 07:30:17 +0000741 if (RC == &Hexagon::IntRegsRegClass) {
Colin LeMahieu026e88d2014-12-23 20:02:16 +0000742 BuildMI(MBB, I, DL, get(Hexagon::L2_loadri_io), DestReg)
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000743 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
Craig Topperc7242e02012-04-20 07:30:17 +0000744 } else if (RC == &Hexagon::DoubleRegsRegClass) {
Colin LeMahieu947cd702014-12-23 20:44:59 +0000745 BuildMI(MBB, I, DL, get(Hexagon::L2_loadrd_io), DestReg)
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000746 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
Craig Topperc7242e02012-04-20 07:30:17 +0000747 } else if (RC == &Hexagon::PredRegsRegClass) {
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000748 BuildMI(MBB, I, DL, get(Hexagon::LDriw_pred), DestReg)
749 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
750 } else {
Craig Toppere55c5562012-02-07 02:50:20 +0000751 llvm_unreachable("Can't store this register to stack slot");
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000752 }
753}
754
755
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000756/// expandPostRAPseudo - This function is called for all pseudo instructions
757/// that remain after register allocation. Many pseudo instructions are
758/// created to help register allocation. This is the place to convert them
759/// into real instructions. The target can edit MI in place, or it can insert
760/// new instructions and erase MI. The function should return true if
761/// anything was changed.
762bool HexagonInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI)
763 const {
Krzysztof Parzyszekfb338242015-10-06 15:49:14 +0000764 const HexagonRegisterInfo &HRI = getRegisterInfo();
Krzysztof Parzyszek42113342015-03-19 16:33:08 +0000765 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
Krzysztof Parzyszek36ccfa52015-03-18 19:07:53 +0000766 MachineBasicBlock &MBB = *MI->getParent();
767 DebugLoc DL = MI->getDebugLoc();
Colin LeMahieu7b1799c2015-03-09 22:05:21 +0000768 unsigned Opc = MI->getOpcode();
769
770 switch (Opc) {
Krzysztof Parzyszek4fa2a9f2015-04-22 16:43:53 +0000771 case Hexagon::ALIGNA:
772 BuildMI(MBB, MI, DL, get(Hexagon::A2_andir), MI->getOperand(0).getReg())
Krzysztof Parzyszekfb338242015-10-06 15:49:14 +0000773 .addReg(HRI.getFrameRegister())
Krzysztof Parzyszek4fa2a9f2015-04-22 16:43:53 +0000774 .addImm(-MI->getOperand(1).getImm());
775 MBB.erase(MI);
776 return true;
Krzysztof Parzyszek36ccfa52015-03-18 19:07:53 +0000777 case Hexagon::TFR_PdTrue: {
778 unsigned Reg = MI->getOperand(0).getReg();
779 BuildMI(MBB, MI, DL, get(Hexagon::C2_orn), Reg)
780 .addReg(Reg, RegState::Undef)
781 .addReg(Reg, RegState::Undef);
782 MBB.erase(MI);
783 return true;
784 }
785 case Hexagon::TFR_PdFalse: {
786 unsigned Reg = MI->getOperand(0).getReg();
787 BuildMI(MBB, MI, DL, get(Hexagon::C2_andn), Reg)
788 .addReg(Reg, RegState::Undef)
789 .addReg(Reg, RegState::Undef);
790 MBB.erase(MI);
791 return true;
792 }
Krzysztof Parzyszek42113342015-03-19 16:33:08 +0000793 case Hexagon::VMULW: {
794 // Expand a 64-bit vector multiply into 2 32-bit scalar multiplies.
795 unsigned DstReg = MI->getOperand(0).getReg();
796 unsigned Src1Reg = MI->getOperand(1).getReg();
797 unsigned Src2Reg = MI->getOperand(2).getReg();
Krzysztof Parzyszekfb338242015-10-06 15:49:14 +0000798 unsigned Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::subreg_hireg);
799 unsigned Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::subreg_loreg);
800 unsigned Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::subreg_hireg);
801 unsigned Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::subreg_loreg);
Krzysztof Parzyszek42113342015-03-19 16:33:08 +0000802 BuildMI(MBB, MI, MI->getDebugLoc(), get(Hexagon::M2_mpyi),
Krzysztof Parzyszekfb338242015-10-06 15:49:14 +0000803 HRI.getSubReg(DstReg, Hexagon::subreg_hireg)).addReg(Src1SubHi)
Krzysztof Parzyszek42113342015-03-19 16:33:08 +0000804 .addReg(Src2SubHi);
805 BuildMI(MBB, MI, MI->getDebugLoc(), get(Hexagon::M2_mpyi),
Krzysztof Parzyszekfb338242015-10-06 15:49:14 +0000806 HRI.getSubReg(DstReg, Hexagon::subreg_loreg)).addReg(Src1SubLo)
Krzysztof Parzyszek42113342015-03-19 16:33:08 +0000807 .addReg(Src2SubLo);
808 MBB.erase(MI);
809 MRI.clearKillFlags(Src1SubHi);
810 MRI.clearKillFlags(Src1SubLo);
811 MRI.clearKillFlags(Src2SubHi);
812 MRI.clearKillFlags(Src2SubLo);
813 return true;
814 }
815 case Hexagon::VMULW_ACC: {
816 // Expand 64-bit vector multiply with addition into 2 scalar multiplies.
817 unsigned DstReg = MI->getOperand(0).getReg();
818 unsigned Src1Reg = MI->getOperand(1).getReg();
819 unsigned Src2Reg = MI->getOperand(2).getReg();
820 unsigned Src3Reg = MI->getOperand(3).getReg();
Krzysztof Parzyszekfb338242015-10-06 15:49:14 +0000821 unsigned Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::subreg_hireg);
822 unsigned Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::subreg_loreg);
823 unsigned Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::subreg_hireg);
824 unsigned Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::subreg_loreg);
825 unsigned Src3SubHi = HRI.getSubReg(Src3Reg, Hexagon::subreg_hireg);
826 unsigned Src3SubLo = HRI.getSubReg(Src3Reg, Hexagon::subreg_loreg);
Krzysztof Parzyszek42113342015-03-19 16:33:08 +0000827 BuildMI(MBB, MI, MI->getDebugLoc(), get(Hexagon::M2_maci),
Krzysztof Parzyszekfb338242015-10-06 15:49:14 +0000828 HRI.getSubReg(DstReg, Hexagon::subreg_hireg)).addReg(Src1SubHi)
Krzysztof Parzyszek42113342015-03-19 16:33:08 +0000829 .addReg(Src2SubHi).addReg(Src3SubHi);
830 BuildMI(MBB, MI, MI->getDebugLoc(), get(Hexagon::M2_maci),
Krzysztof Parzyszekfb338242015-10-06 15:49:14 +0000831 HRI.getSubReg(DstReg, Hexagon::subreg_loreg)).addReg(Src1SubLo)
Krzysztof Parzyszek42113342015-03-19 16:33:08 +0000832 .addReg(Src2SubLo).addReg(Src3SubLo);
833 MBB.erase(MI);
834 MRI.clearKillFlags(Src1SubHi);
835 MRI.clearKillFlags(Src1SubLo);
836 MRI.clearKillFlags(Src2SubHi);
837 MRI.clearKillFlags(Src2SubLo);
838 MRI.clearKillFlags(Src3SubHi);
839 MRI.clearKillFlags(Src3SubLo);
840 return true;
841 }
Krzysztof Parzyszekfb338242015-10-06 15:49:14 +0000842 case Hexagon::MUX64_rr: {
843 const MachineOperand &Op0 = MI->getOperand(0);
844 const MachineOperand &Op1 = MI->getOperand(1);
845 const MachineOperand &Op2 = MI->getOperand(2);
846 const MachineOperand &Op3 = MI->getOperand(3);
847 unsigned Rd = Op0.getReg();
848 unsigned Pu = Op1.getReg();
849 unsigned Rs = Op2.getReg();
850 unsigned Rt = Op3.getReg();
851 DebugLoc DL = MI->getDebugLoc();
852 unsigned K1 = getKillRegState(Op1.isKill());
853 unsigned K2 = getKillRegState(Op2.isKill());
854 unsigned K3 = getKillRegState(Op3.isKill());
855 if (Rd != Rs)
856 BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpt), Rd)
857 .addReg(Pu, (Rd == Rt) ? K1 : 0)
858 .addReg(Rs, K2);
859 if (Rd != Rt)
860 BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpf), Rd)
861 .addReg(Pu, K1)
862 .addReg(Rt, K3);
863 MBB.erase(MI);
864 return true;
865 }
Colin LeMahieu7b1799c2015-03-09 22:05:21 +0000866 case Hexagon::TCRETURNi:
867 MI->setDesc(get(Hexagon::J2_jump));
868 return true;
869 case Hexagon::TCRETURNr:
870 MI->setDesc(get(Hexagon::J2_jumpr));
871 return true;
872 }
873
874 return false;
875}
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000876
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000877
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000878// We indicate that we want to reverse the branch by
879// inserting the reversed branching opcode.
880bool HexagonInstrInfo::ReverseBranchCondition(
881 SmallVectorImpl<MachineOperand> &Cond) const {
882 if (Cond.empty())
Jyotsna Vermaf1214a82013-03-05 18:51:42 +0000883 return true;
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000884 assert(Cond[0].isImm() && "First entry in the cond vector not imm-val");
885 unsigned opcode = Cond[0].getImm();
886 //unsigned temp;
887 assert(get(opcode).isBranch() && "Should be a branching condition.");
888 if (isEndLoopN(opcode))
Jyotsna Vermaf1214a82013-03-05 18:51:42 +0000889 return true;
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000890 unsigned NewOpcode = getInvertedPredicatedOpcode(opcode);
891 Cond[0].setImm(NewOpcode);
Jyotsna Vermaf1214a82013-03-05 18:51:42 +0000892 return false;
893}
894
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000895
896void HexagonInstrInfo::insertNoop(MachineBasicBlock &MBB,
897 MachineBasicBlock::iterator MI) const {
898 DebugLoc DL;
899 BuildMI(MBB, MI, DL, get(Hexagon::A2_nop));
900}
901
902
903// Returns true if an instruction is predicated irrespective of the predicate
904// sense. For example, all of the following will return true.
905// if (p0) R1 = add(R2, R3)
906// if (!p0) R1 = add(R2, R3)
907// if (p0.new) R1 = add(R2, R3)
908// if (!p0.new) R1 = add(R2, R3)
909// Note: New-value stores are not included here as in the current
910// implementation, we don't need to check their predicate sense.
911bool HexagonInstrInfo::isPredicated(const MachineInstr *MI) const {
Brendon Cahoondf43e682015-05-08 16:16:29 +0000912 const uint64_t F = MI->getDesc().TSFlags;
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000913 return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask;
Brendon Cahoondf43e682015-05-08 16:16:29 +0000914}
915
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000916
917bool HexagonInstrInfo::PredicateInstruction(MachineInstr *MI,
918 ArrayRef<MachineOperand> Cond) const {
919 if (Cond.empty() || isNewValueJump(Cond[0].getImm()) ||
920 isEndLoopN(Cond[0].getImm())) {
921 DEBUG(dbgs() << "\nCannot predicate:"; MI->dump(););
922 return false;
923 }
924 int Opc = MI->getOpcode();
925 assert (isPredicable(MI) && "Expected predicable instruction");
926 bool invertJump = predOpcodeHasNot(Cond);
927
928 // We have to predicate MI "in place", i.e. after this function returns,
929 // MI will need to be transformed into a predicated form. To avoid com-
930 // plicated manipulations with the operands (handling tied operands,
931 // etc.), build a new temporary instruction, then overwrite MI with it.
932
933 MachineBasicBlock &B = *MI->getParent();
934 DebugLoc DL = MI->getDebugLoc();
935 unsigned PredOpc = getCondOpcode(Opc, invertJump);
936 MachineInstrBuilder T = BuildMI(B, MI, DL, get(PredOpc));
937 unsigned NOp = 0, NumOps = MI->getNumOperands();
938 while (NOp < NumOps) {
939 MachineOperand &Op = MI->getOperand(NOp);
940 if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
941 break;
942 T.addOperand(Op);
943 NOp++;
944 }
945
946 unsigned PredReg, PredRegPos, PredRegFlags;
947 bool GotPredReg = getPredReg(Cond, PredReg, PredRegPos, PredRegFlags);
948 (void)GotPredReg;
949 assert(GotPredReg);
950 T.addReg(PredReg, PredRegFlags);
951 while (NOp < NumOps)
952 T.addOperand(MI->getOperand(NOp++));
953
954 MI->setDesc(get(PredOpc));
955 while (unsigned n = MI->getNumOperands())
956 MI->RemoveOperand(n-1);
957 for (unsigned i = 0, n = T->getNumOperands(); i < n; ++i)
958 MI->addOperand(T->getOperand(i));
959
960 MachineBasicBlock::instr_iterator TI = T->getIterator();
961 B.erase(TI);
962
963 MachineRegisterInfo &MRI = B.getParent()->getRegInfo();
964 MRI.clearKillFlags(PredReg);
965 return true;
Brendon Cahoondf43e682015-05-08 16:16:29 +0000966}
967
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000968
969bool HexagonInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
970 ArrayRef<MachineOperand> Pred2) const {
971 // TODO: Fix this
972 return false;
973}
974
975
976bool HexagonInstrInfo::DefinesPredicate(MachineInstr *MI,
977 std::vector<MachineOperand> &Pred) const {
978 auto &HRI = getRegisterInfo();
979 for (unsigned oper = 0; oper < MI->getNumOperands(); ++oper) {
980 MachineOperand MO = MI->getOperand(oper);
981 if (MO.isReg() && MO.isDef()) {
982 const TargetRegisterClass* RC = HRI.getMinimalPhysRegClass(MO.getReg());
983 if (RC == &Hexagon::PredRegsRegClass) {
984 Pred.push_back(MO);
985 return true;
986 }
987 }
988 }
989 return false;
Sirish Pandef8e5e3c2012-05-03 21:52:53 +0000990}
Andrew Trickd06df962012-02-01 22:13:57 +0000991
Tony Linthicum1213a7a2011-12-12 21:14:40 +0000992bool HexagonInstrInfo::isPredicable(MachineInstr *MI) const {
993 bool isPred = MI->getDesc().isPredicable();
994
995 if (!isPred)
996 return false;
997
998 const int Opc = MI->getOpcode();
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +0000999 int NumOperands = MI->getNumOperands();
1000
1001 // Keep a flag for upto 4 operands in the instructions, to indicate if
1002 // that operand has been constant extended.
1003 bool OpCExtended[4];
1004 if (NumOperands > 4)
1005 NumOperands = 4;
1006
1007 for (int i = 0; i < NumOperands; i++)
1008 OpCExtended[i] = (isOperandExtended(MI, i) && isConstExtended(MI));
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001009
1010 switch(Opc) {
Colin LeMahieu4af437f2014-12-09 20:23:30 +00001011 case Hexagon::A2_tfrsi:
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001012 return (isOperandExtended(MI, 1) && isConstExtended(MI)) ||
1013 isInt<12>(MI->getOperand(1).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001014
Colin LeMahieubda31b42014-12-29 20:44:51 +00001015 case Hexagon::S2_storerd_io:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001016 return isShiftedUInt<6,3>(MI->getOperand(1).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001017
Colin LeMahieubda31b42014-12-29 20:44:51 +00001018 case Hexagon::S2_storeri_io:
Colin LeMahieu90148902014-12-30 22:28:31 +00001019 case Hexagon::S2_storerinew_io:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001020 return isShiftedUInt<6,2>(MI->getOperand(1).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001021
Colin LeMahieubda31b42014-12-29 20:44:51 +00001022 case Hexagon::S2_storerh_io:
Colin LeMahieu90148902014-12-30 22:28:31 +00001023 case Hexagon::S2_storerhnew_io:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001024 return isShiftedUInt<6,1>(MI->getOperand(1).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001025
Colin LeMahieubda31b42014-12-29 20:44:51 +00001026 case Hexagon::S2_storerb_io:
Colin LeMahieu90148902014-12-30 22:28:31 +00001027 case Hexagon::S2_storerbnew_io:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001028 return isUInt<6>(MI->getOperand(1).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001029
Colin LeMahieu947cd702014-12-23 20:44:59 +00001030 case Hexagon::L2_loadrd_io:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001031 return isShiftedUInt<6,3>(MI->getOperand(2).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001032
Colin LeMahieu026e88d2014-12-23 20:02:16 +00001033 case Hexagon::L2_loadri_io:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001034 return isShiftedUInt<6,2>(MI->getOperand(2).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001035
Colin LeMahieu8e39cad2014-12-23 17:25:57 +00001036 case Hexagon::L2_loadrh_io:
Colin LeMahieua9386d22014-12-23 16:42:57 +00001037 case Hexagon::L2_loadruh_io:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001038 return isShiftedUInt<6,1>(MI->getOperand(2).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001039
Colin LeMahieu4b1eac42014-12-22 21:40:43 +00001040 case Hexagon::L2_loadrb_io:
Colin LeMahieuaf1e5de2014-12-22 21:20:03 +00001041 case Hexagon::L2_loadrub_io:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001042 return isUInt<6>(MI->getOperand(2).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001043
Colin LeMahieuc83cbbf2014-12-26 19:31:46 +00001044 case Hexagon::L2_loadrd_pi:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001045 return isShiftedInt<4,3>(MI->getOperand(3).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001046
Colin LeMahieuc83cbbf2014-12-26 19:31:46 +00001047 case Hexagon::L2_loadri_pi:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001048 return isShiftedInt<4,2>(MI->getOperand(3).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001049
Colin LeMahieuc83cbbf2014-12-26 19:31:46 +00001050 case Hexagon::L2_loadrh_pi:
1051 case Hexagon::L2_loadruh_pi:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001052 return isShiftedInt<4,1>(MI->getOperand(3).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001053
Colin LeMahieu96976a12014-12-26 18:57:13 +00001054 case Hexagon::L2_loadrb_pi:
Colin LeMahieufe9612e2014-12-26 19:12:11 +00001055 case Hexagon::L2_loadrub_pi:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001056 return isInt<4>(MI->getOperand(3).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001057
Colin LeMahieu2bad4a72014-12-30 21:01:38 +00001058 case Hexagon::S4_storeirb_io:
1059 case Hexagon::S4_storeirh_io:
1060 case Hexagon::S4_storeiri_io:
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001061 return (OpCExtended[1] || isUInt<6>(MI->getOperand(1).getImm())) &&
1062 (OpCExtended[2] || isInt<6>(MI->getOperand(2).getImm()));
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001063
Colin LeMahieuf297dbe2015-02-05 17:49:13 +00001064 case Hexagon::A2_addi:
Brendon Cahoonf6b687e2012-05-14 19:35:42 +00001065 return isInt<8>(MI->getOperand(2).getImm());
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001066
Colin LeMahieu3b3197e2014-11-24 17:44:19 +00001067 case Hexagon::A2_aslh:
Colin LeMahieu397a25e2014-11-24 18:04:42 +00001068 case Hexagon::A2_asrh:
Colin LeMahieu91ffec92014-11-21 21:35:52 +00001069 case Hexagon::A2_sxtb:
Colin LeMahieu310991c2014-11-21 21:54:59 +00001070 case Hexagon::A2_sxth:
Colin LeMahieubb7d6f52014-11-24 16:48:43 +00001071 case Hexagon::A2_zxtb:
Colin LeMahieu098256c2014-11-24 17:11:34 +00001072 case Hexagon::A2_zxth:
Colin LeMahieu4fd203d2015-02-09 21:56:37 +00001073 return true;
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001074 }
1075
1076 return true;
1077}
1078
Jyotsna Verma84c47102013-05-06 18:49:23 +00001079
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001080bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
1081 const MachineBasicBlock *MBB, const MachineFunction &MF) const {
1082 // Debug info is never a scheduling boundary. It's necessary to be explicit
1083 // due to the special treatment of IT instructions below, otherwise a
1084 // dbg_value followed by an IT will result in the IT instruction being
1085 // considered a scheduling hazard, which is wrong. It should be the actual
1086 // instruction preceding the dbg_value instruction(s), just like it is
1087 // when debug info is not present.
1088 if (MI->isDebugValue())
Brendon Cahoondf43e682015-05-08 16:16:29 +00001089 return false;
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001090
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001091 // Throwing call is a boundary.
1092 if (MI->isCall()) {
1093 // If any of the block's successors is a landing pad, this could be a
1094 // throwing call.
1095 for (auto I : MBB->successors())
1096 if (I->isEHPad())
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001097 return true;
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001098 }
1099
1100 // Don't mess around with no return calls.
1101 if (MI->getOpcode() == Hexagon::CALLv3nr)
1102 return true;
1103
1104 // Terminators and labels can't be scheduled around.
1105 if (MI->getDesc().isTerminator() || MI->isPosition())
1106 return true;
1107
1108 if (MI->isInlineAsm() && !ScheduleInlineAsm)
1109 return true;
1110
1111 return false;
1112}
1113
1114
1115/// Measure the specified inline asm to determine an approximation of its
1116/// length.
1117/// Comments (which run till the next SeparatorString or newline) do not
1118/// count as an instruction.
1119/// Any other non-whitespace text is considered an instruction, with
1120/// multiple instructions separated by SeparatorString or newlines.
1121/// Variable-length instructions are not handled here; this function
1122/// may be overloaded in the target code to do that.
1123/// Hexagon counts the number of ##'s and adjust for that many
1124/// constant exenders.
1125unsigned HexagonInstrInfo::getInlineAsmLength(const char *Str,
1126 const MCAsmInfo &MAI) const {
1127 StringRef AStr(Str);
1128 // Count the number of instructions in the asm.
1129 bool atInsnStart = true;
1130 unsigned Length = 0;
1131 for (; *Str; ++Str) {
1132 if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
1133 strlen(MAI.getSeparatorString())) == 0)
1134 atInsnStart = true;
1135 if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) {
1136 Length += MAI.getMaxInstLength();
1137 atInsnStart = false;
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001138 }
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001139 if (atInsnStart && strncmp(Str, MAI.getCommentString(),
1140 strlen(MAI.getCommentString())) == 0)
1141 atInsnStart = false;
1142 }
1143
1144 // Add to size number of constant extenders seen * 4.
1145 StringRef Occ("##");
1146 Length += AStr.count(Occ)*4;
1147 return Length;
1148}
1149
1150
1151ScheduleHazardRecognizer*
1152HexagonInstrInfo::CreateTargetPostRAHazardRecognizer(
1153 const InstrItineraryData *II, const ScheduleDAG *DAG) const {
1154 return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
1155}
1156
1157
1158/// \brief For a comparison instruction, return the source registers in
1159/// \p SrcReg and \p SrcReg2 if having two register operands, and the value it
1160/// compares against in CmpValue. Return true if the comparison instruction
1161/// can be analyzed.
1162bool HexagonInstrInfo::analyzeCompare(const MachineInstr *MI,
1163 unsigned &SrcReg, unsigned &SrcReg2, int &Mask, int &Value) const {
1164 unsigned Opc = MI->getOpcode();
1165
1166 // Set mask and the first source register.
1167 switch (Opc) {
1168 case Hexagon::C2_cmpeq:
1169 case Hexagon::C2_cmpeqp:
1170 case Hexagon::C2_cmpgt:
1171 case Hexagon::C2_cmpgtp:
1172 case Hexagon::C2_cmpgtu:
1173 case Hexagon::C2_cmpgtup:
1174 case Hexagon::C4_cmpneq:
1175 case Hexagon::C4_cmplte:
1176 case Hexagon::C4_cmplteu:
1177 case Hexagon::C2_cmpeqi:
1178 case Hexagon::C2_cmpgti:
1179 case Hexagon::C2_cmpgtui:
1180 case Hexagon::C4_cmpneqi:
1181 case Hexagon::C4_cmplteui:
1182 case Hexagon::C4_cmpltei:
1183 SrcReg = MI->getOperand(1).getReg();
1184 Mask = ~0;
1185 break;
1186 case Hexagon::A4_cmpbeq:
1187 case Hexagon::A4_cmpbgt:
1188 case Hexagon::A4_cmpbgtu:
1189 case Hexagon::A4_cmpbeqi:
1190 case Hexagon::A4_cmpbgti:
1191 case Hexagon::A4_cmpbgtui:
1192 SrcReg = MI->getOperand(1).getReg();
1193 Mask = 0xFF;
1194 break;
1195 case Hexagon::A4_cmpheq:
1196 case Hexagon::A4_cmphgt:
1197 case Hexagon::A4_cmphgtu:
1198 case Hexagon::A4_cmpheqi:
1199 case Hexagon::A4_cmphgti:
1200 case Hexagon::A4_cmphgtui:
1201 SrcReg = MI->getOperand(1).getReg();
1202 Mask = 0xFFFF;
1203 break;
1204 }
1205
1206 // Set the value/second source register.
1207 switch (Opc) {
1208 case Hexagon::C2_cmpeq:
1209 case Hexagon::C2_cmpeqp:
1210 case Hexagon::C2_cmpgt:
1211 case Hexagon::C2_cmpgtp:
1212 case Hexagon::C2_cmpgtu:
1213 case Hexagon::C2_cmpgtup:
1214 case Hexagon::A4_cmpbeq:
1215 case Hexagon::A4_cmpbgt:
1216 case Hexagon::A4_cmpbgtu:
1217 case Hexagon::A4_cmpheq:
1218 case Hexagon::A4_cmphgt:
1219 case Hexagon::A4_cmphgtu:
1220 case Hexagon::C4_cmpneq:
1221 case Hexagon::C4_cmplte:
1222 case Hexagon::C4_cmplteu:
1223 SrcReg2 = MI->getOperand(2).getReg();
1224 return true;
1225
1226 case Hexagon::C2_cmpeqi:
1227 case Hexagon::C2_cmpgtui:
1228 case Hexagon::C2_cmpgti:
1229 case Hexagon::C4_cmpneqi:
1230 case Hexagon::C4_cmplteui:
1231 case Hexagon::C4_cmpltei:
1232 case Hexagon::A4_cmpbeqi:
1233 case Hexagon::A4_cmpbgti:
1234 case Hexagon::A4_cmpbgtui:
1235 case Hexagon::A4_cmpheqi:
1236 case Hexagon::A4_cmphgti:
1237 case Hexagon::A4_cmphgtui:
1238 SrcReg2 = 0;
1239 Value = MI->getOperand(2).getImm();
1240 return true;
1241 }
1242
1243 return false;
1244}
1245
1246
1247unsigned HexagonInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1248 const MachineInstr *MI, unsigned *PredCost) const {
1249 return getInstrTimingClassLatency(ItinData, MI);
1250}
1251
1252
1253DFAPacketizer *HexagonInstrInfo::CreateTargetScheduleState(
1254 const TargetSubtargetInfo &STI) const {
1255 const InstrItineraryData *II = STI.getInstrItineraryData();
1256 return static_cast<const HexagonSubtarget&>(STI).createDFAPacketizer(II);
1257}
1258
1259
1260// Inspired by this pair:
1261// %R13<def> = L2_loadri_io %R29, 136; mem:LD4[FixedStack0]
1262// S2_storeri_io %R29, 132, %R1<kill>; flags: mem:ST4[FixedStack1]
1263// Currently AA considers the addresses in these instructions to be aliasing.
1264bool HexagonInstrInfo::areMemAccessesTriviallyDisjoint(MachineInstr *MIa,
1265 MachineInstr *MIb, AliasAnalysis *AA) const {
1266 int OffsetA = 0, OffsetB = 0;
1267 unsigned SizeA = 0, SizeB = 0;
1268
1269 if (MIa->hasUnmodeledSideEffects() || MIb->hasUnmodeledSideEffects() ||
1270 MIa->hasOrderedMemoryRef() || MIa->hasOrderedMemoryRef())
1271 return false;
1272
1273 // Instructions that are pure loads, not loads and stores like memops are not
1274 // dependent.
1275 if (MIa->mayLoad() && !isMemOp(MIa) && MIb->mayLoad() && !isMemOp(MIb))
1276 return true;
1277
1278 // Get base, offset, and access size in MIa.
1279 unsigned BaseRegA = getBaseAndOffset(MIa, OffsetA, SizeA);
1280 if (!BaseRegA || !SizeA)
1281 return false;
1282
1283 // Get base, offset, and access size in MIb.
1284 unsigned BaseRegB = getBaseAndOffset(MIb, OffsetB, SizeB);
1285 if (!BaseRegB || !SizeB)
1286 return false;
1287
1288 if (BaseRegA != BaseRegB)
1289 return false;
1290
1291 // This is a mem access with the same base register and known offsets from it.
1292 // Reason about it.
1293 if (OffsetA > OffsetB) {
1294 uint64_t offDiff = (uint64_t)((int64_t)OffsetA - (int64_t)OffsetB);
1295 return (SizeB <= offDiff);
1296 } else if (OffsetA < OffsetB) {
1297 uint64_t offDiff = (uint64_t)((int64_t)OffsetB - (int64_t)OffsetA);
1298 return (SizeA <= offDiff);
1299 }
1300
1301 return false;
1302}
1303
1304
1305unsigned HexagonInstrInfo::createVR(MachineFunction* MF, MVT VT) const {
1306 MachineRegisterInfo &MRI = MF->getRegInfo();
1307 const TargetRegisterClass *TRC;
1308 if (VT == MVT::i1) {
1309 TRC = &Hexagon::PredRegsRegClass;
1310 } else if (VT == MVT::i32 || VT == MVT::f32) {
1311 TRC = &Hexagon::IntRegsRegClass;
1312 } else if (VT == MVT::i64 || VT == MVT::f64) {
1313 TRC = &Hexagon::DoubleRegsRegClass;
1314 } else {
1315 llvm_unreachable("Cannot handle this register class");
1316 }
1317
1318 unsigned NewReg = MRI.createVirtualRegister(TRC);
1319 return NewReg;
1320}
1321
1322
1323bool HexagonInstrInfo::isAbsoluteSet(const MachineInstr* MI) const {
1324 return (getAddrMode(MI) == HexagonII::AbsoluteSet);
1325}
1326
1327
1328bool HexagonInstrInfo::isAccumulator(const MachineInstr *MI) const {
1329 const uint64_t F = MI->getDesc().TSFlags;
1330 return((F >> HexagonII::AccumulatorPos) & HexagonII::AccumulatorMask);
1331}
1332
1333
1334bool HexagonInstrInfo::isComplex(const MachineInstr *MI) const {
1335 const MachineFunction *MF = MI->getParent()->getParent();
1336 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1337 const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
1338
1339 if (!(isTC1(MI))
1340 && !(QII->isTC2Early(MI))
1341 && !(MI->getDesc().mayLoad())
1342 && !(MI->getDesc().mayStore())
1343 && (MI->getDesc().getOpcode() != Hexagon::S2_allocframe)
1344 && (MI->getDesc().getOpcode() != Hexagon::L2_deallocframe)
1345 && !(QII->isMemOp(MI))
1346 && !(MI->isBranch())
1347 && !(MI->isReturn())
1348 && !MI->isCall())
1349 return true;
1350
1351 return false;
1352}
1353
1354
1355// Return true if the the instruction is a compund branch instruction.
1356bool HexagonInstrInfo::isCompoundBranchInstr(const MachineInstr *MI) const {
1357 return (getType(MI) == HexagonII::TypeCOMPOUND && MI->isBranch());
1358}
1359
1360
1361bool HexagonInstrInfo::isCondInst(const MachineInstr *MI) const {
1362 return (MI->isBranch() && isPredicated(MI)) ||
1363 isConditionalTransfer(MI) ||
1364 isConditionalALU32(MI) ||
1365 isConditionalLoad(MI) ||
1366 // Predicated stores which don't have a .new on any operands.
1367 (MI->mayStore() && isPredicated(MI) && !isNewValueStore(MI) &&
1368 !isPredicatedNew(MI));
1369}
1370
1371
1372bool HexagonInstrInfo::isConditionalALU32(const MachineInstr* MI) const {
1373 switch (MI->getOpcode()) {
1374 case Hexagon::A2_paddf:
1375 case Hexagon::A2_paddfnew:
1376 case Hexagon::A2_paddif:
1377 case Hexagon::A2_paddifnew:
1378 case Hexagon::A2_paddit:
1379 case Hexagon::A2_padditnew:
1380 case Hexagon::A2_paddt:
1381 case Hexagon::A2_paddtnew:
1382 case Hexagon::A2_pandf:
1383 case Hexagon::A2_pandfnew:
1384 case Hexagon::A2_pandt:
1385 case Hexagon::A2_pandtnew:
1386 case Hexagon::A2_porf:
1387 case Hexagon::A2_porfnew:
1388 case Hexagon::A2_port:
1389 case Hexagon::A2_portnew:
1390 case Hexagon::A2_psubf:
1391 case Hexagon::A2_psubfnew:
1392 case Hexagon::A2_psubt:
1393 case Hexagon::A2_psubtnew:
1394 case Hexagon::A2_pxorf:
1395 case Hexagon::A2_pxorfnew:
1396 case Hexagon::A2_pxort:
1397 case Hexagon::A2_pxortnew:
1398 case Hexagon::A4_paslhf:
1399 case Hexagon::A4_paslhfnew:
1400 case Hexagon::A4_paslht:
1401 case Hexagon::A4_paslhtnew:
1402 case Hexagon::A4_pasrhf:
1403 case Hexagon::A4_pasrhfnew:
1404 case Hexagon::A4_pasrht:
1405 case Hexagon::A4_pasrhtnew:
1406 case Hexagon::A4_psxtbf:
1407 case Hexagon::A4_psxtbfnew:
1408 case Hexagon::A4_psxtbt:
1409 case Hexagon::A4_psxtbtnew:
1410 case Hexagon::A4_psxthf:
1411 case Hexagon::A4_psxthfnew:
1412 case Hexagon::A4_psxtht:
1413 case Hexagon::A4_psxthtnew:
1414 case Hexagon::A4_pzxtbf:
1415 case Hexagon::A4_pzxtbfnew:
1416 case Hexagon::A4_pzxtbt:
1417 case Hexagon::A4_pzxtbtnew:
1418 case Hexagon::A4_pzxthf:
1419 case Hexagon::A4_pzxthfnew:
1420 case Hexagon::A4_pzxtht:
1421 case Hexagon::A4_pzxthtnew:
1422 case Hexagon::C2_ccombinewf:
1423 case Hexagon::C2_ccombinewt:
1424 return true;
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001425 }
1426 return false;
1427}
1428
1429
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001430// FIXME - Function name and it's functionality don't match.
1431// It should be renamed to hasPredNewOpcode()
1432bool HexagonInstrInfo::isConditionalLoad(const MachineInstr* MI) const {
1433 if (!MI->getDesc().mayLoad() || !isPredicated(MI))
1434 return false;
1435
1436 int PNewOpcode = Hexagon::getPredNewOpcode(MI->getOpcode());
1437 // Instruction with valid predicated-new opcode can be promoted to .new.
1438 return PNewOpcode >= 0;
1439}
1440
1441
1442// Returns true if an instruction is a conditional store.
1443//
1444// Note: It doesn't include conditional new-value stores as they can't be
1445// converted to .new predicate.
1446bool HexagonInstrInfo::isConditionalStore(const MachineInstr* MI) const {
1447 switch (MI->getOpcode()) {
1448 default: return false;
1449 case Hexagon::S4_storeirbt_io:
1450 case Hexagon::S4_storeirbf_io:
1451 case Hexagon::S4_pstorerbt_rr:
1452 case Hexagon::S4_pstorerbf_rr:
1453 case Hexagon::S2_pstorerbt_io:
1454 case Hexagon::S2_pstorerbf_io:
1455 case Hexagon::S2_pstorerbt_pi:
1456 case Hexagon::S2_pstorerbf_pi:
1457 case Hexagon::S2_pstorerdt_io:
1458 case Hexagon::S2_pstorerdf_io:
1459 case Hexagon::S4_pstorerdt_rr:
1460 case Hexagon::S4_pstorerdf_rr:
1461 case Hexagon::S2_pstorerdt_pi:
1462 case Hexagon::S2_pstorerdf_pi:
1463 case Hexagon::S2_pstorerht_io:
1464 case Hexagon::S2_pstorerhf_io:
1465 case Hexagon::S4_storeirht_io:
1466 case Hexagon::S4_storeirhf_io:
1467 case Hexagon::S4_pstorerht_rr:
1468 case Hexagon::S4_pstorerhf_rr:
1469 case Hexagon::S2_pstorerht_pi:
1470 case Hexagon::S2_pstorerhf_pi:
1471 case Hexagon::S2_pstorerit_io:
1472 case Hexagon::S2_pstorerif_io:
1473 case Hexagon::S4_storeirit_io:
1474 case Hexagon::S4_storeirif_io:
1475 case Hexagon::S4_pstorerit_rr:
1476 case Hexagon::S4_pstorerif_rr:
1477 case Hexagon::S2_pstorerit_pi:
1478 case Hexagon::S2_pstorerif_pi:
1479
1480 // V4 global address store before promoting to dot new.
1481 case Hexagon::S4_pstorerdt_abs:
1482 case Hexagon::S4_pstorerdf_abs:
1483 case Hexagon::S4_pstorerbt_abs:
1484 case Hexagon::S4_pstorerbf_abs:
1485 case Hexagon::S4_pstorerht_abs:
1486 case Hexagon::S4_pstorerhf_abs:
1487 case Hexagon::S4_pstorerit_abs:
1488 case Hexagon::S4_pstorerif_abs:
1489 return true;
1490
1491 // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
1492 // from the "Conditional Store" list. Because a predicated new value store
1493 // would NOT be promoted to a double dot new store.
1494 // This function returns yes for those stores that are predicated but not
1495 // yet promoted to predicate dot new instructions.
1496 }
1497}
1498
1499
1500bool HexagonInstrInfo::isConditionalTransfer(const MachineInstr *MI) const {
1501 switch (MI->getOpcode()) {
1502 case Hexagon::A2_tfrt:
1503 case Hexagon::A2_tfrf:
1504 case Hexagon::C2_cmoveit:
1505 case Hexagon::C2_cmoveif:
1506 case Hexagon::A2_tfrtnew:
1507 case Hexagon::A2_tfrfnew:
1508 case Hexagon::C2_cmovenewit:
1509 case Hexagon::C2_cmovenewif:
1510 case Hexagon::A2_tfrpt:
1511 case Hexagon::A2_tfrpf:
1512 return true;
1513
1514 default:
1515 return false;
1516 }
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001517 return false;
1518}
1519
1520
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001521// TODO: In order to have isExtendable for fpimm/f32Ext, we need to handle
1522// isFPImm and later getFPImm as well.
1523bool HexagonInstrInfo::isConstExtended(const MachineInstr *MI) const {
1524 const uint64_t F = MI->getDesc().TSFlags;
1525 unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
1526 if (isExtended) // Instruction must be extended.
Krzysztof Parzyszekc6f19332015-03-19 15:18:57 +00001527 return true;
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001528
1529 unsigned isExtendable =
1530 (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask;
1531 if (!isExtendable)
1532 return false;
1533
1534 if (MI->isCall())
1535 return false;
1536
1537 short ExtOpNum = getCExtOpNum(MI);
1538 const MachineOperand &MO = MI->getOperand(ExtOpNum);
1539 // Use MO operand flags to determine if MO
1540 // has the HMOTF_ConstExtended flag set.
1541 if (MO.getTargetFlags() && HexagonII::HMOTF_ConstExtended)
Brendon Cahoondf43e682015-05-08 16:16:29 +00001542 return true;
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001543 // If this is a Machine BB address we are talking about, and it is
1544 // not marked as extended, say so.
1545 if (MO.isMBB())
1546 return false;
1547
1548 // We could be using an instruction with an extendable immediate and shoehorn
1549 // a global address into it. If it is a global address it will be constant
1550 // extended. We do this for COMBINE.
1551 // We currently only handle isGlobal() because it is the only kind of
1552 // object we are going to end up with here for now.
1553 // In the future we probably should add isSymbol(), etc.
1554 if (MO.isGlobal() || MO.isSymbol() || MO.isBlockAddress() ||
1555 MO.isJTI() || MO.isCPI())
1556 return true;
1557
1558 // If the extendable operand is not 'Immediate' type, the instruction should
1559 // have 'isExtended' flag set.
1560 assert(MO.isImm() && "Extendable operand must be Immediate type");
1561
1562 int MinValue = getMinValue(MI);
1563 int MaxValue = getMaxValue(MI);
1564 int ImmValue = MO.getImm();
1565
1566 return (ImmValue < MinValue || ImmValue > MaxValue);
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001567}
1568
1569
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001570bool HexagonInstrInfo::isDeallocRet(const MachineInstr *MI) const {
1571 switch (MI->getOpcode()) {
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001572 case Hexagon::L4_return :
1573 case Hexagon::L4_return_t :
1574 case Hexagon::L4_return_f :
1575 case Hexagon::L4_return_tnew_pnt :
1576 case Hexagon::L4_return_fnew_pnt :
1577 case Hexagon::L4_return_tnew_pt :
1578 case Hexagon::L4_return_fnew_pt :
Tony Linthicum1213a7a2011-12-12 21:14:40 +00001579 return true;
1580 }
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00001581 return false;
1582}
1583
1584
1585// Return true when ConsMI uses a register defined by ProdMI.
1586bool HexagonInstrInfo::isDependent(const MachineInstr *ProdMI,
1587 const MachineInstr *ConsMI) const {
1588 const MCInstrDesc &ProdMCID = ProdMI->getDesc();
1589 if (!ProdMCID.getNumDefs())
1590 return false;
1591
1592 auto &HRI = getRegisterInfo();
1593
1594 SmallVector<unsigned, 4> DefsA;
1595 SmallVector<unsigned, 4> DefsB;
1596 SmallVector<unsigned, 8> UsesA;
1597 SmallVector<unsigned, 8> UsesB;
1598
1599 parseOperands(ProdMI, DefsA, UsesA);
1600 parseOperands(ConsMI, DefsB, UsesB);
1601
1602 for (auto &RegA : DefsA)
1603 for (auto &RegB : UsesB) {
1604 // True data dependency.
1605 if (RegA == RegB)
1606 return true;
1607
1608 if (Hexagon::DoubleRegsRegClass.contains(RegA))
1609 for (MCSubRegIterator SubRegs(RegA, &HRI); SubRegs.isValid(); ++SubRegs)
1610 if (RegB == *SubRegs)
1611 return true;
1612
1613 if (Hexagon::DoubleRegsRegClass.contains(RegB))
1614 for (MCSubRegIterator SubRegs(RegB, &HRI); SubRegs.isValid(); ++SubRegs)
1615 if (RegA == *SubRegs)
1616 return true;
1617 }
1618
1619 return false;
1620}
1621
1622
1623// Returns true if the instruction is alread a .cur.
1624bool HexagonInstrInfo::isDotCurInst(const MachineInstr* MI) const {
1625 switch (MI->getOpcode()) {
1626 case Hexagon::V6_vL32b_cur_pi:
1627 case Hexagon::V6_vL32b_cur_ai:
1628 case Hexagon::V6_vL32b_cur_pi_128B:
1629 case Hexagon::V6_vL32b_cur_ai_128B:
1630 return true;
1631 }
1632 return false;
1633}
1634
1635
1636// Returns true, if any one of the operands is a dot new
1637// insn, whether it is predicated dot new or register dot new.
1638bool HexagonInstrInfo::isDotNewInst(const MachineInstr* MI) const {
1639 if (isNewValueInst(MI) ||
1640 (isPredicated(MI) && isPredicatedNew(MI)))
1641 return true;
1642
1643 return false;
1644}
1645
1646
1647/// Symmetrical. See if these two instructions are fit for duplex pair.
1648bool HexagonInstrInfo::isDuplexPair(const MachineInstr *MIa,
1649 const MachineInstr *MIb) const {
1650 HexagonII::SubInstructionGroup MIaG = getDuplexCandidateGroup(MIa);
1651 HexagonII::SubInstructionGroup MIbG = getDuplexCandidateGroup(MIb);
1652 return (isDuplexPairMatch(MIaG, MIbG) || isDuplexPairMatch(MIbG, MIaG));
1653}
1654
1655
1656bool HexagonInstrInfo::isEarlySourceInstr(MachineInstr *MI) const {
1657 if (!MI)
1658 return false;
1659
1660 if (MI->mayLoad() || MI->mayStore() || MI->isCompare())
1661 return true;
1662
1663 // Multiply
1664 unsigned SchedClass = MI->getDesc().getSchedClass();
1665 if (SchedClass == Hexagon::Sched::M_tc_3or4x_SLOT23)
1666 return true;
1667 return false;
1668}
1669
1670
1671bool HexagonInstrInfo::isEndLoopN(unsigned Opcode) const {
1672 return (Opcode == Hexagon::ENDLOOP0 ||
1673 Opcode == Hexagon::ENDLOOP1);
1674}
1675
1676
1677bool HexagonInstrInfo::isExpr(unsigned OpType) const {
1678 switch(OpType) {
1679 case MachineOperand::MO_MachineBasicBlock:
1680 case MachineOperand::MO_GlobalAddress:
1681 case MachineOperand::MO_ExternalSymbol:
1682 case MachineOperand::MO_JumpTableIndex:
1683 case MachineOperand::MO_ConstantPoolIndex:
1684 case MachineOperand::MO_BlockAddress:
1685 return true;
1686 default:
1687 return false;
1688 }
1689}
1690
1691
1692bool HexagonInstrInfo::isExtendable(const MachineInstr *MI) const {
1693 const MCInstrDesc &MID = MI->getDesc();
1694 const uint64_t F = MID.TSFlags;
1695 if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask)
1696 return true;
1697
1698 // TODO: This is largely obsolete now. Will need to be removed
1699 // in consecutive patches.
1700 switch(MI->getOpcode()) {
1701 // TFR_FI Remains a special case.
1702 case Hexagon::TFR_FI:
1703 return true;
1704 default:
1705 return false;
1706 }
1707 return false;
1708}
1709
1710
1711// This returns true in two cases:
1712// - The OP code itself indicates that this is an extended instruction.
1713// - One of MOs has been marked with HMOTF_ConstExtended flag.
1714bool HexagonInstrInfo::isExtended(const MachineInstr *MI) const {
1715 // First check if this is permanently extended op code.
1716 const uint64_t F = MI->getDesc().TSFlags;
1717 if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask)
1718 return true;
1719 // Use MO operand flags to determine if one of MI's operands
1720 // has HMOTF_ConstExtended flag set.
1721 for (MachineInstr::const_mop_iterator I = MI->operands_begin(),
1722 E = MI->operands_end(); I != E; ++I) {
1723 if (I->getTargetFlags() && HexagonII::HMOTF_ConstExtended)
1724 return true;
1725 }
1726 return false;
1727}
1728
1729
1730bool HexagonInstrInfo::isFloat(MachineInstr *MI) const {
1731 unsigned Opcode = MI->getOpcode();
1732 const uint64_t F = get(Opcode).TSFlags;
1733 return (F >> HexagonII::FPPos) & HexagonII::FPMask;
1734}
1735
1736
1737bool HexagonInstrInfo::isIndirectCall(const MachineInstr *MI) const {
1738 switch (MI->getOpcode()) {
1739 case Hexagon::J2_callr :
1740 case Hexagon::J2_callrf :
1741 case Hexagon::J2_callrt :
1742 return true;
1743 }
1744 return false;
1745}
1746
1747
1748bool HexagonInstrInfo::isIndirectL4Return(const MachineInstr *MI) const {
1749 switch (MI->getOpcode()) {
1750 case Hexagon::L4_return :
1751 case Hexagon::L4_return_t :
1752 case Hexagon::L4_return_f :
1753 case Hexagon::L4_return_fnew_pnt :
1754 case Hexagon::L4_return_fnew_pt :
1755 case Hexagon::L4_return_tnew_pnt :
1756 case Hexagon::L4_return_tnew_pt :
1757 return true;
1758 }
1759 return false;
1760}
1761
1762
1763bool HexagonInstrInfo::isJumpR(const MachineInstr *MI) const {
1764 switch (MI->getOpcode()) {
1765 case Hexagon::J2_jumpr :
1766 case Hexagon::J2_jumprt :
1767 case Hexagon::J2_jumprf :
1768 case Hexagon::J2_jumprtnewpt :
1769 case Hexagon::J2_jumprfnewpt :
1770 case Hexagon::J2_jumprtnew :
1771 case Hexagon::J2_jumprfnew :
1772 return true;
1773 }
1774 return false;
1775}
1776
1777
1778// Return true if a given MI can accomodate given offset.
1779// Use abs estimate as oppose to the exact number.
1780// TODO: This will need to be changed to use MC level
1781// definition of instruction extendable field size.
1782bool HexagonInstrInfo::isJumpWithinBranchRange(const MachineInstr *MI,
1783 unsigned offset) const {
1784 // This selection of jump instructions matches to that what
1785 // AnalyzeBranch can parse, plus NVJ.
1786 if (isNewValueJump(MI)) // r9:2
1787 return isInt<11>(offset);
1788
1789 switch (MI->getOpcode()) {
1790 // Still missing Jump to address condition on register value.
1791 default:
1792 return false;
1793 case Hexagon::J2_jump: // bits<24> dst; // r22:2
1794 case Hexagon::J2_call:
1795 case Hexagon::CALLv3nr:
1796 return isInt<24>(offset);
1797 case Hexagon::J2_jumpt: //bits<17> dst; // r15:2
1798 case Hexagon::J2_jumpf:
1799 case Hexagon::J2_jumptnew:
1800 case Hexagon::J2_jumptnewpt:
1801 case Hexagon::J2_jumpfnew:
1802 case Hexagon::J2_jumpfnewpt:
1803 case Hexagon::J2_callt:
1804 case Hexagon::J2_callf:
1805 return isInt<17>(offset);
1806 case Hexagon::J2_loop0i:
1807 case Hexagon::J2_loop0iext:
1808 case Hexagon::J2_loop0r:
1809 case Hexagon::J2_loop0rext:
1810 case Hexagon::J2_loop1i:
1811 case Hexagon::J2_loop1iext:
1812 case Hexagon::J2_loop1r:
1813 case Hexagon::J2_loop1rext:
1814 return isInt<9>(offset);
1815 // TODO: Add all the compound branches here. Can we do this in Relation model?
1816 case Hexagon::J4_cmpeqi_tp0_jump_nt:
1817 case Hexagon::J4_cmpeqi_tp1_jump_nt:
1818 return isInt<11>(offset);
1819 }
1820}
1821
1822
1823bool HexagonInstrInfo::isLateInstrFeedsEarlyInstr(MachineInstr *LRMI,
1824 MachineInstr *ESMI) const {
1825 if (!LRMI || !ESMI)
1826 return false;
1827
1828 bool isLate = isLateResultInstr(LRMI);
1829 bool isEarly = isEarlySourceInstr(ESMI);
1830
1831 DEBUG(dbgs() << "V60" << (isLate ? "-LR " : " -- "));
1832 DEBUG(LRMI->dump());
1833 DEBUG(dbgs() << "V60" << (isEarly ? "-ES " : " -- "));
1834 DEBUG(ESMI->dump());
1835
1836 if (isLate && isEarly) {
1837 DEBUG(dbgs() << "++Is Late Result feeding Early Source\n");
1838 return true;
1839 }
1840
1841 return false;
1842}
1843
1844
1845bool HexagonInstrInfo::isLateResultInstr(MachineInstr *MI) const {
1846 if (!MI)
1847 return false;
1848
1849 switch (MI->getOpcode()) {
1850 case TargetOpcode::EXTRACT_SUBREG:
1851 case TargetOpcode::INSERT_SUBREG:
1852 case TargetOpcode::SUBREG_TO_REG:
1853 case TargetOpcode::REG_SEQUENCE:
1854 case TargetOpcode::IMPLICIT_DEF:
1855 case TargetOpcode::COPY:
1856 case TargetOpcode::INLINEASM:
1857 case TargetOpcode::PHI:
1858 return false;
1859 default:
1860 break;
1861 }
1862
1863 unsigned SchedClass = MI->getDesc().getSchedClass();
1864
1865 switch (SchedClass) {
1866 case Hexagon::Sched::ALU32_2op_tc_1_SLOT0123:
1867 case Hexagon::Sched::ALU32_3op_tc_1_SLOT0123:
1868 case Hexagon::Sched::ALU32_ADDI_tc_1_SLOT0123:
1869 case Hexagon::Sched::ALU64_tc_1_SLOT23:
1870 case Hexagon::Sched::EXTENDER_tc_1_SLOT0123:
1871 case Hexagon::Sched::S_2op_tc_1_SLOT23:
1872 case Hexagon::Sched::S_3op_tc_1_SLOT23:
1873 case Hexagon::Sched::V2LDST_tc_ld_SLOT01:
1874 case Hexagon::Sched::V2LDST_tc_st_SLOT0:
1875 case Hexagon::Sched::V2LDST_tc_st_SLOT01:
1876 case Hexagon::Sched::V4LDST_tc_ld_SLOT01:
1877 case Hexagon::Sched::V4LDST_tc_st_SLOT0:
1878 case Hexagon::Sched::V4LDST_tc_st_SLOT01:
1879 return false;
1880 }
1881 return true;
1882}
1883
1884
1885bool HexagonInstrInfo::isLateSourceInstr(const MachineInstr *MI) const {
1886 if (!MI)
1887 return false;
1888
1889 // Instructions with iclass A_CVI_VX and attribute A_CVI_LATE uses a multiply
1890 // resource, but all operands can be received late like an ALU instruction.
1891 return MI->getDesc().getSchedClass() == Hexagon::Sched::CVI_VX_LATE;
1892}
1893
1894
1895bool HexagonInstrInfo::isLoopN(unsigned Opcode) const {
1896 return (Opcode == Hexagon::J2_loop0i ||
1897 Opcode == Hexagon::J2_loop0r ||
1898 Opcode == Hexagon::J2_loop0iext ||
1899 Opcode == Hexagon::J2_loop0rext ||
1900 Opcode == Hexagon::J2_loop1i ||
1901 Opcode == Hexagon::J2_loop1r ||
1902 Opcode == Hexagon::J2_loop1iext ||
1903 Opcode == Hexagon::J2_loop1rext);
1904}
1905
1906
1907bool HexagonInstrInfo::isMemOp(const MachineInstr *MI) const {
1908 switch (MI->getOpcode()) {
1909 default: return false;
1910 case Hexagon::L4_iadd_memopw_io :
1911 case Hexagon::L4_isub_memopw_io :
1912 case Hexagon::L4_add_memopw_io :
1913 case Hexagon::L4_sub_memopw_io :
1914 case Hexagon::L4_and_memopw_io :
1915 case Hexagon::L4_or_memopw_io :
1916 case Hexagon::L4_iadd_memoph_io :
1917 case Hexagon::L4_isub_memoph_io :
1918 case Hexagon::L4_add_memoph_io :
1919 case Hexagon::L4_sub_memoph_io :
1920 case Hexagon::L4_and_memoph_io :
1921 case Hexagon::L4_or_memoph_io :
1922 case Hexagon::L4_iadd_memopb_io :
1923 case Hexagon::L4_isub_memopb_io :
1924 case Hexagon::L4_add_memopb_io :
1925 case Hexagon::L4_sub_memopb_io :
1926 case Hexagon::L4_and_memopb_io :
1927 case Hexagon::L4_or_memopb_io :
1928 case Hexagon::L4_ior_memopb_io:
1929 case Hexagon::L4_ior_memoph_io:
1930 case Hexagon::L4_ior_memopw_io:
1931 case Hexagon::L4_iand_memopb_io:
1932 case Hexagon::L4_iand_memoph_io:
1933 case Hexagon::L4_iand_memopw_io:
1934 return true;
1935 }
1936 return false;
1937}
1938
1939
1940bool HexagonInstrInfo::isNewValue(const MachineInstr* MI) const {
1941 const uint64_t F = MI->getDesc().TSFlags;
1942 return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask;
1943}
1944
1945
1946bool HexagonInstrInfo::isNewValue(unsigned Opcode) const {
1947 const uint64_t F = get(Opcode).TSFlags;
1948 return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask;
1949}
1950
1951
1952bool HexagonInstrInfo::isNewValueInst(const MachineInstr *MI) const {
1953 return isNewValueJump(MI) || isNewValueStore(MI);
1954}
1955
1956
1957bool HexagonInstrInfo::isNewValueJump(const MachineInstr *MI) const {
1958 return isNewValue(MI) && MI->isBranch();
1959}
1960
1961
1962bool HexagonInstrInfo::isNewValueJump(unsigned Opcode) const {
1963 return isNewValue(Opcode) && get(Opcode).isBranch() && isPredicated(Opcode);
1964}
1965
1966
1967bool HexagonInstrInfo::isNewValueStore(const MachineInstr *MI) const {
1968 const uint64_t F = MI->getDesc().TSFlags;
1969 return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask;
1970}
1971
1972
1973bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const {
1974 const uint64_t F = get(Opcode).TSFlags;
1975 return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask;
1976}
1977
1978
1979// Returns true if a particular operand is extendable for an instruction.
1980bool HexagonInstrInfo::isOperandExtended(const MachineInstr *MI,
1981 unsigned OperandNum) const {
1982 const uint64_t F = MI->getDesc().TSFlags;
1983 return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask)
1984 == OperandNum;
1985}
1986
1987
1988bool HexagonInstrInfo::isPostIncrement(const MachineInstr* MI) const {
1989 return getAddrMode(MI) == HexagonII::PostInc;
1990}
1991
1992
1993bool HexagonInstrInfo::isPredicatedNew(const MachineInstr *MI) const {
1994 const uint64_t F = MI->getDesc().TSFlags;
1995 assert(isPredicated(MI));
1996 return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask;
1997}
1998
1999
2000bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const {
2001 const uint64_t F = get(Opcode).TSFlags;
2002 assert(isPredicated(Opcode));
2003 return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask;
2004}
2005
2006
2007bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr *MI) const {
2008 const uint64_t F = MI->getDesc().TSFlags;
2009 return !((F >> HexagonII::PredicatedFalsePos) &
2010 HexagonII::PredicatedFalseMask);
2011}
2012
2013
2014bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const {
2015 const uint64_t F = get(Opcode).TSFlags;
2016 // Make sure that the instruction is predicated.
2017 assert((F>> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
2018 return !((F >> HexagonII::PredicatedFalsePos) &
2019 HexagonII::PredicatedFalseMask);
2020}
2021
2022
2023bool HexagonInstrInfo::isPredicated(unsigned Opcode) const {
2024 const uint64_t F = get(Opcode).TSFlags;
2025 return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask;
2026}
2027
2028
2029bool HexagonInstrInfo::isPredicateLate(unsigned Opcode) const {
2030 const uint64_t F = get(Opcode).TSFlags;
2031 return ~(F >> HexagonII::PredicateLatePos) & HexagonII::PredicateLateMask;
2032}
2033
2034
2035bool HexagonInstrInfo::isPredictedTaken(unsigned Opcode) const {
2036 const uint64_t F = get(Opcode).TSFlags;
2037 assert(get(Opcode).isBranch() &&
2038 (isPredicatedNew(Opcode) || isNewValue(Opcode)));
2039 return (F >> HexagonII::TakenPos) & HexagonII::TakenMask;
2040}
2041
2042
2043bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr *MI) const {
2044 return MI->getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4 ||
2045 MI->getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT;
2046}
2047
2048
2049bool HexagonInstrInfo::isSolo(const MachineInstr* MI) const {
2050 const uint64_t F = MI->getDesc().TSFlags;
2051 return (F >> HexagonII::SoloPos) & HexagonII::SoloMask;
2052}
2053
2054
2055bool HexagonInstrInfo::isSpillPredRegOp(const MachineInstr *MI) const {
2056 switch (MI->getOpcode()) {
2057 case Hexagon::STriw_pred :
2058 case Hexagon::LDriw_pred :
2059 return true;
2060 default:
2061 return false;
2062 }
2063}
2064
2065
2066// Returns true when SU has a timing class TC1.
2067bool HexagonInstrInfo::isTC1(const MachineInstr *MI) const {
2068 unsigned SchedClass = MI->getDesc().getSchedClass();
2069 switch (SchedClass) {
2070 case Hexagon::Sched::ALU32_2op_tc_1_SLOT0123:
2071 case Hexagon::Sched::ALU32_3op_tc_1_SLOT0123:
2072 case Hexagon::Sched::ALU32_ADDI_tc_1_SLOT0123:
2073 case Hexagon::Sched::ALU64_tc_1_SLOT23:
2074 case Hexagon::Sched::EXTENDER_tc_1_SLOT0123:
2075 //case Hexagon::Sched::M_tc_1_SLOT23:
2076 case Hexagon::Sched::S_2op_tc_1_SLOT23:
2077 case Hexagon::Sched::S_3op_tc_1_SLOT23:
2078 return true;
2079
2080 default:
2081 return false;
2082 }
2083}
2084
2085
2086bool HexagonInstrInfo::isTC2(const MachineInstr *MI) const {
2087 unsigned SchedClass = MI->getDesc().getSchedClass();
2088 switch (SchedClass) {
2089 case Hexagon::Sched::ALU32_3op_tc_2_SLOT0123:
2090 case Hexagon::Sched::ALU64_tc_2_SLOT23:
2091 case Hexagon::Sched::CR_tc_2_SLOT3:
2092 case Hexagon::Sched::M_tc_2_SLOT23:
2093 case Hexagon::Sched::S_2op_tc_2_SLOT23:
2094 case Hexagon::Sched::S_3op_tc_2_SLOT23:
2095 return true;
2096
2097 default:
2098 return false;
2099 }
2100}
2101
2102
2103bool HexagonInstrInfo::isTC2Early(const MachineInstr *MI) const {
2104 unsigned SchedClass = MI->getDesc().getSchedClass();
2105 switch (SchedClass) {
2106 case Hexagon::Sched::ALU32_2op_tc_2early_SLOT0123:
2107 case Hexagon::Sched::ALU32_3op_tc_2early_SLOT0123:
2108 case Hexagon::Sched::ALU64_tc_2early_SLOT23:
2109 case Hexagon::Sched::CR_tc_2early_SLOT23:
2110 case Hexagon::Sched::CR_tc_2early_SLOT3:
2111 case Hexagon::Sched::J_tc_2early_SLOT0123:
2112 case Hexagon::Sched::J_tc_2early_SLOT2:
2113 case Hexagon::Sched::J_tc_2early_SLOT23:
2114 case Hexagon::Sched::S_2op_tc_2early_SLOT23:
2115 case Hexagon::Sched::S_3op_tc_2early_SLOT23:
2116 return true;
2117
2118 default:
2119 return false;
2120 }
2121}
2122
2123
2124bool HexagonInstrInfo::isTC4x(const MachineInstr *MI) const {
2125 if (!MI)
2126 return false;
2127
2128 unsigned SchedClass = MI->getDesc().getSchedClass();
2129 return SchedClass == Hexagon::Sched::M_tc_3or4x_SLOT23;
2130}
2131
2132
2133bool HexagonInstrInfo::isV60VectorInstruction(const MachineInstr *MI) const {
2134 if (!MI)
2135 return false;
2136
2137 const uint64_t V = getType(MI);
2138 return HexagonII::TypeCVI_FIRST <= V && V <= HexagonII::TypeCVI_LAST;
2139}
2140
2141
2142// Check if the Offset is a valid auto-inc imm by Load/Store Type.
2143//
2144bool HexagonInstrInfo::isValidAutoIncImm(const EVT VT, const int Offset) const {
2145 if (VT == MVT::v16i32 || VT == MVT::v8i64 ||
2146 VT == MVT::v32i16 || VT == MVT::v64i8) {
2147 return (Offset >= Hexagon_MEMV_AUTOINC_MIN &&
2148 Offset <= Hexagon_MEMV_AUTOINC_MAX &&
2149 (Offset & 0x3f) == 0);
2150 }
2151 // 128B
2152 if (VT == MVT::v32i32 || VT == MVT::v16i64 ||
2153 VT == MVT::v64i16 || VT == MVT::v128i8) {
2154 return (Offset >= Hexagon_MEMV_AUTOINC_MIN_128B &&
2155 Offset <= Hexagon_MEMV_AUTOINC_MAX_128B &&
2156 (Offset & 0x7f) == 0);
2157 }
2158 if (VT == MVT::i64) {
2159 return (Offset >= Hexagon_MEMD_AUTOINC_MIN &&
2160 Offset <= Hexagon_MEMD_AUTOINC_MAX &&
2161 (Offset & 0x7) == 0);
2162 }
2163 if (VT == MVT::i32) {
2164 return (Offset >= Hexagon_MEMW_AUTOINC_MIN &&
2165 Offset <= Hexagon_MEMW_AUTOINC_MAX &&
2166 (Offset & 0x3) == 0);
2167 }
2168 if (VT == MVT::i16) {
2169 return (Offset >= Hexagon_MEMH_AUTOINC_MIN &&
2170 Offset <= Hexagon_MEMH_AUTOINC_MAX &&
2171 (Offset & 0x1) == 0);
2172 }
2173 if (VT == MVT::i8) {
2174 return (Offset >= Hexagon_MEMB_AUTOINC_MIN &&
2175 Offset <= Hexagon_MEMB_AUTOINC_MAX);
2176 }
2177 llvm_unreachable("Not an auto-inc opc!");
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002178}
2179
2180
Krzysztof Parzyszek05902162015-04-22 17:51:26 +00002181bool HexagonInstrInfo::isValidOffset(unsigned Opcode, int Offset,
2182 bool Extend) const {
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002183 // This function is to check whether the "Offset" is in the correct range of
Krzysztof Parzyszek05902162015-04-22 17:51:26 +00002184 // the given "Opcode". If "Offset" is not in the correct range, "A2_addi" is
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002185 // inserted to calculate the final address. Due to this reason, the function
2186 // assumes that the "Offset" has correct alignment.
Jyotsna Vermaec613662013-03-14 19:08:03 +00002187 // We used to assert if the offset was not properly aligned, however,
2188 // there are cases where a misaligned pointer recast can cause this
2189 // problem, and we need to allow for it. The front end warns of such
2190 // misaligns with respect to load size.
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002191
Krzysztof Parzyszek05902162015-04-22 17:51:26 +00002192 switch (Opcode) {
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002193 case Hexagon::STriq_pred_V6:
2194 case Hexagon::STriq_pred_vec_V6:
2195 case Hexagon::STriv_pseudo_V6:
2196 case Hexagon::STrivv_pseudo_V6:
2197 case Hexagon::LDriq_pred_V6:
2198 case Hexagon::LDriq_pred_vec_V6:
2199 case Hexagon::LDriv_pseudo_V6:
2200 case Hexagon::LDrivv_pseudo_V6:
2201 case Hexagon::LDrivv_indexed:
2202 case Hexagon::STrivv_indexed:
2203 case Hexagon::V6_vL32b_ai:
2204 case Hexagon::V6_vS32b_ai:
2205 case Hexagon::V6_vL32Ub_ai:
2206 case Hexagon::V6_vS32Ub_ai:
2207 return (Offset >= Hexagon_MEMV_OFFSET_MIN) &&
2208 (Offset <= Hexagon_MEMV_OFFSET_MAX);
2209
2210 case Hexagon::STriq_pred_V6_128B:
2211 case Hexagon::STriq_pred_vec_V6_128B:
2212 case Hexagon::STriv_pseudo_V6_128B:
2213 case Hexagon::STrivv_pseudo_V6_128B:
2214 case Hexagon::LDriq_pred_V6_128B:
2215 case Hexagon::LDriq_pred_vec_V6_128B:
2216 case Hexagon::LDriv_pseudo_V6_128B:
2217 case Hexagon::LDrivv_pseudo_V6_128B:
2218 case Hexagon::LDrivv_indexed_128B:
2219 case Hexagon::STrivv_indexed_128B:
2220 case Hexagon::V6_vL32b_ai_128B:
2221 case Hexagon::V6_vS32b_ai_128B:
2222 case Hexagon::V6_vL32Ub_ai_128B:
2223 case Hexagon::V6_vS32Ub_ai_128B:
2224 return (Offset >= Hexagon_MEMV_OFFSET_MIN_128B) &&
2225 (Offset <= Hexagon_MEMV_OFFSET_MAX_128B);
2226
Krzysztof Parzyszek05902162015-04-22 17:51:26 +00002227 case Hexagon::J2_loop0i:
2228 case Hexagon::J2_loop1i:
2229 return isUInt<10>(Offset);
2230 }
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002231
Krzysztof Parzyszek05902162015-04-22 17:51:26 +00002232 if (Extend)
2233 return true;
2234
2235 switch (Opcode) {
Colin LeMahieu026e88d2014-12-23 20:02:16 +00002236 case Hexagon::L2_loadri_io:
Colin LeMahieubda31b42014-12-29 20:44:51 +00002237 case Hexagon::S2_storeri_io:
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002238 return (Offset >= Hexagon_MEMW_OFFSET_MIN) &&
2239 (Offset <= Hexagon_MEMW_OFFSET_MAX);
2240
Colin LeMahieu947cd702014-12-23 20:44:59 +00002241 case Hexagon::L2_loadrd_io:
Colin LeMahieubda31b42014-12-29 20:44:51 +00002242 case Hexagon::S2_storerd_io:
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002243 return (Offset >= Hexagon_MEMD_OFFSET_MIN) &&
2244 (Offset <= Hexagon_MEMD_OFFSET_MAX);
2245
Colin LeMahieu8e39cad2014-12-23 17:25:57 +00002246 case Hexagon::L2_loadrh_io:
Colin LeMahieua9386d22014-12-23 16:42:57 +00002247 case Hexagon::L2_loadruh_io:
Colin LeMahieubda31b42014-12-29 20:44:51 +00002248 case Hexagon::S2_storerh_io:
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002249 return (Offset >= Hexagon_MEMH_OFFSET_MIN) &&
2250 (Offset <= Hexagon_MEMH_OFFSET_MAX);
2251
Colin LeMahieu4b1eac42014-12-22 21:40:43 +00002252 case Hexagon::L2_loadrb_io:
Colin LeMahieuaf1e5de2014-12-22 21:20:03 +00002253 case Hexagon::L2_loadrub_io:
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002254 case Hexagon::S2_storerb_io:
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002255 return (Offset >= Hexagon_MEMB_OFFSET_MIN) &&
2256 (Offset <= Hexagon_MEMB_OFFSET_MAX);
2257
Colin LeMahieuf297dbe2015-02-05 17:49:13 +00002258 case Hexagon::A2_addi:
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002259 return (Offset >= Hexagon_ADDI_OFFSET_MIN) &&
2260 (Offset <= Hexagon_ADDI_OFFSET_MAX);
2261
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002262 case Hexagon::L4_iadd_memopw_io :
2263 case Hexagon::L4_isub_memopw_io :
2264 case Hexagon::L4_add_memopw_io :
2265 case Hexagon::L4_sub_memopw_io :
2266 case Hexagon::L4_and_memopw_io :
2267 case Hexagon::L4_or_memopw_io :
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002268 return (0 <= Offset && Offset <= 255);
2269
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002270 case Hexagon::L4_iadd_memoph_io :
2271 case Hexagon::L4_isub_memoph_io :
2272 case Hexagon::L4_add_memoph_io :
2273 case Hexagon::L4_sub_memoph_io :
2274 case Hexagon::L4_and_memoph_io :
2275 case Hexagon::L4_or_memoph_io :
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002276 return (0 <= Offset && Offset <= 127);
2277
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002278 case Hexagon::L4_iadd_memopb_io :
2279 case Hexagon::L4_isub_memopb_io :
2280 case Hexagon::L4_add_memopb_io :
2281 case Hexagon::L4_sub_memopb_io :
2282 case Hexagon::L4_and_memopb_io :
2283 case Hexagon::L4_or_memopb_io :
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002284 return (0 <= Offset && Offset <= 63);
2285
2286 // LDri_pred and STriw_pred are pseudo operations, so it has to take offset of
2287 // any size. Later pass knows how to handle it.
2288 case Hexagon::STriw_pred:
2289 case Hexagon::LDriw_pred:
2290 return true;
2291
Krzysztof Parzyszek05902162015-04-22 17:51:26 +00002292 case Hexagon::TFR_FI:
2293 case Hexagon::TFR_FIA:
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002294 case Hexagon::INLINEASM:
2295 return true;
Krzysztof Parzyszekfb338242015-10-06 15:49:14 +00002296
2297 case Hexagon::L2_ploadrbt_io:
2298 case Hexagon::L2_ploadrbf_io:
2299 case Hexagon::L2_ploadrubt_io:
2300 case Hexagon::L2_ploadrubf_io:
2301 case Hexagon::S2_pstorerbt_io:
2302 case Hexagon::S2_pstorerbf_io:
2303 case Hexagon::S4_storeirb_io:
2304 case Hexagon::S4_storeirbt_io:
2305 case Hexagon::S4_storeirbf_io:
2306 return isUInt<6>(Offset);
2307
2308 case Hexagon::L2_ploadrht_io:
2309 case Hexagon::L2_ploadrhf_io:
2310 case Hexagon::L2_ploadruht_io:
2311 case Hexagon::L2_ploadruhf_io:
2312 case Hexagon::S2_pstorerht_io:
2313 case Hexagon::S2_pstorerhf_io:
2314 case Hexagon::S4_storeirh_io:
2315 case Hexagon::S4_storeirht_io:
2316 case Hexagon::S4_storeirhf_io:
2317 return isShiftedUInt<6,1>(Offset);
2318
2319 case Hexagon::L2_ploadrit_io:
2320 case Hexagon::L2_ploadrif_io:
2321 case Hexagon::S2_pstorerit_io:
2322 case Hexagon::S2_pstorerif_io:
2323 case Hexagon::S4_storeiri_io:
2324 case Hexagon::S4_storeirit_io:
2325 case Hexagon::S4_storeirif_io:
2326 return isShiftedUInt<6,2>(Offset);
2327
2328 case Hexagon::L2_ploadrdt_io:
2329 case Hexagon::L2_ploadrdf_io:
2330 case Hexagon::S2_pstorerdt_io:
2331 case Hexagon::S2_pstorerdf_io:
2332 return isShiftedUInt<6,3>(Offset);
2333 } // switch
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002334
Benjamin Kramerb6684012011-12-27 11:41:05 +00002335 llvm_unreachable("No offset range is defined for this opcode. "
2336 "Please define it in the above switch statement!");
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002337}
2338
2339
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002340bool HexagonInstrInfo::isVecAcc(const MachineInstr *MI) const {
2341 return MI && isV60VectorInstruction(MI) && isAccumulator(MI);
Tony Linthicum1213a7a2011-12-12 21:14:40 +00002342}
2343
2344
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002345bool HexagonInstrInfo::isVecALU(const MachineInstr *MI) const {
2346 if (!MI)
Andrew Trickd06df962012-02-01 22:13:57 +00002347 return false;
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002348 const uint64_t F = get(MI->getOpcode()).TSFlags;
2349 const uint64_t V = ((F >> HexagonII::TypePos) & HexagonII::TypeMask);
2350 return
2351 V == HexagonII::TypeCVI_VA ||
2352 V == HexagonII::TypeCVI_VA_DV;
2353}
Andrew Trickd06df962012-02-01 22:13:57 +00002354
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002355
2356bool HexagonInstrInfo::isVecUsableNextPacket(const MachineInstr *ProdMI,
2357 const MachineInstr *ConsMI) const {
2358 if (EnableACCForwarding && isVecAcc(ProdMI) && isVecAcc(ConsMI))
2359 return true;
2360
2361 if (EnableALUForwarding && (isVecALU(ConsMI) || isLateSourceInstr(ConsMI)))
2362 return true;
2363
2364 if (mayBeNewStore(ConsMI))
Andrew Trickd06df962012-02-01 22:13:57 +00002365 return true;
2366
2367 return false;
2368}
Jyotsna Verma84256432013-03-01 17:37:13 +00002369
Jyotsna Verma84256432013-03-01 17:37:13 +00002370
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002371bool HexagonInstrInfo::hasEHLabel(const MachineBasicBlock *B) const {
2372 for (auto &I : *B)
2373 if (I.isEHLabel())
2374 return true;
2375 return false;
Jyotsna Verma84256432013-03-01 17:37:13 +00002376}
2377
Jyotsna Verma84256432013-03-01 17:37:13 +00002378
2379// Returns true if an instruction can be converted into a non-extended
2380// equivalent instruction.
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002381bool HexagonInstrInfo::hasNonExtEquivalent(const MachineInstr *MI) const {
Jyotsna Verma84256432013-03-01 17:37:13 +00002382 short NonExtOpcode;
2383 // Check if the instruction has a register form that uses register in place
2384 // of the extended operand, if so return that as the non-extended form.
2385 if (Hexagon::getRegForm(MI->getOpcode()) >= 0)
2386 return true;
2387
2388 if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
Alp Tokercb402912014-01-24 17:20:08 +00002389 // Check addressing mode and retrieve non-ext equivalent instruction.
Jyotsna Verma84256432013-03-01 17:37:13 +00002390
2391 switch (getAddrMode(MI)) {
2392 case HexagonII::Absolute :
2393 // Load/store with absolute addressing mode can be converted into
2394 // base+offset mode.
Krzysztof Parzyszek02579052015-10-20 19:21:05 +00002395 NonExtOpcode = Hexagon::getBaseWithImmOffset(MI->getOpcode());
Jyotsna Verma84256432013-03-01 17:37:13 +00002396 break;
2397 case HexagonII::BaseImmOffset :
2398 // Load/store with base+offset addressing mode can be converted into
2399 // base+register offset addressing mode. However left shift operand should
2400 // be set to 0.
2401 NonExtOpcode = Hexagon::getBaseWithRegOffset(MI->getOpcode());
2402 break;
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002403 case HexagonII::BaseLongOffset:
2404 NonExtOpcode = Hexagon::getRegShlForm(MI->getOpcode());
2405 break;
Jyotsna Verma84256432013-03-01 17:37:13 +00002406 default:
2407 return false;
2408 }
2409 if (NonExtOpcode < 0)
2410 return false;
2411 return true;
2412 }
2413 return false;
2414}
2415
Jyotsna Verma84256432013-03-01 17:37:13 +00002416
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00002417bool HexagonInstrInfo::hasPseudoInstrPair(MachineInstr *MI) const {
2418 return Hexagon::getRealHWInstr(MI->getOpcode(),
2419 Hexagon::InstrType_Pseudo) >= 0;
2420}
2421
2422
2423bool HexagonInstrInfo::hasUncondBranch(const MachineBasicBlock *B)
2424 const {
2425 MachineBasicBlock::const_iterator I = B->getFirstTerminator(), E = B->end();
2426 while (I != E) {
2427 if (I->isBarrier())
2428 return true;
2429 ++I;
2430 }
2431 return false;
2432}
2433
2434
2435// Returns true, if a LD insn can be promoted to a cur load.
2436bool HexagonInstrInfo::mayBeCurLoad(const MachineInstr *MI) const {
2437 auto &HST = MI->getParent()->getParent()->getSubtarget<HexagonSubtarget>();
2438 const uint64_t F = MI->getDesc().TSFlags;
2439 return ((F >> HexagonII::mayCVLoadPos) & HexagonII::mayCVLoadMask) &&
2440 HST.hasV60TOps();
2441}
2442
2443
2444// Returns true, if a ST insn can be promoted to a new-value store.
2445bool HexagonInstrInfo::mayBeNewStore(const MachineInstr *MI) const {
2446 const uint64_t F = MI->getDesc().TSFlags;
2447 return (F >> HexagonII::mayNVStorePos) & HexagonII::mayNVStoreMask;
2448}
2449
2450
2451bool HexagonInstrInfo::producesStall(const MachineInstr *ProdMI,
2452 const MachineInstr *ConsMI) const {
2453 // There is no stall when ProdMI is not a V60 vector.
2454 if (!isV60VectorInstruction(ProdMI))
2455 return false;
2456
2457 // There is no stall when ProdMI and ConsMI are not dependent.
2458 if (!isDependent(ProdMI, ConsMI))
2459 return false;
2460
2461 // When Forward Scheduling is enabled, there is no stall if ProdMI and ConsMI
2462 // are scheduled in consecutive packets.
2463 if (isVecUsableNextPacket(ProdMI, ConsMI))
2464 return false;
2465
2466 return true;
2467}
2468
2469
2470bool HexagonInstrInfo::producesStall(const MachineInstr *MI,
2471 MachineBasicBlock::const_instr_iterator BII) const {
2472 // There is no stall when I is not a V60 vector.
2473 if (!isV60VectorInstruction(MI))
2474 return false;
2475
2476 MachineBasicBlock::const_instr_iterator MII = BII;
2477 MachineBasicBlock::const_instr_iterator MIE = MII->getParent()->instr_end();
2478
2479 if (!(*MII).isBundle()) {
2480 const MachineInstr *J = &*MII;
2481 if (!isV60VectorInstruction(J))
2482 return false;
2483 else if (isVecUsableNextPacket(J, MI))
2484 return false;
2485 return true;
2486 }
2487
2488 for (++MII; MII != MIE && MII->isInsideBundle(); ++MII) {
2489 const MachineInstr *J = &*MII;
2490 if (producesStall(J, MI))
2491 return true;
2492 }
2493 return false;
2494}
2495
2496
2497bool HexagonInstrInfo::predCanBeUsedAsDotNew(MachineInstr *MI,
2498 unsigned PredReg) const {
2499 for (unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++) {
2500 MachineOperand &MO = MI->getOperand(opNum);
2501 if (MO.isReg() && MO.isDef() && MO.isImplicit() && (MO.getReg() == PredReg))
2502 return false; // Predicate register must be explicitly defined.
2503 }
2504
2505 // Hexagon Programmer's Reference says that decbin, memw_locked, and
2506 // memd_locked cannot be used as .new as well,
2507 // but we don't seem to have these instructions defined.
2508 return MI->getOpcode() != Hexagon::A4_tlbmatch;
2509}
2510
2511
2512bool HexagonInstrInfo::PredOpcodeHasJMP_c(unsigned Opcode) const {
2513 return (Opcode == Hexagon::J2_jumpt) ||
2514 (Opcode == Hexagon::J2_jumpf) ||
2515 (Opcode == Hexagon::J2_jumptnew) ||
2516 (Opcode == Hexagon::J2_jumpfnew) ||
2517 (Opcode == Hexagon::J2_jumptnewpt) ||
2518 (Opcode == Hexagon::J2_jumpfnewpt);
2519}
2520
2521
2522bool HexagonInstrInfo::predOpcodeHasNot(ArrayRef<MachineOperand> Cond) const {
2523 if (Cond.empty() || !isPredicated(Cond[0].getImm()))
2524 return false;
2525 return !isPredicatedTrue(Cond[0].getImm());
2526}
2527
2528
2529unsigned HexagonInstrInfo::getAddrMode(const MachineInstr* MI) const {
2530 const uint64_t F = MI->getDesc().TSFlags;
2531 return (F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask;
2532}
2533
2534
2535// Returns the base register in a memory access (load/store). The offset is
2536// returned in Offset and the access size is returned in AccessSize.
2537unsigned HexagonInstrInfo::getBaseAndOffset(const MachineInstr *MI,
2538 int &Offset, unsigned &AccessSize) const {
2539 // Return if it is not a base+offset type instruction or a MemOp.
2540 if (getAddrMode(MI) != HexagonII::BaseImmOffset &&
2541 getAddrMode(MI) != HexagonII::BaseLongOffset &&
2542 !isMemOp(MI) && !isPostIncrement(MI))
2543 return 0;
2544
2545 // Since it is a memory access instruction, getMemAccessSize() should never
2546 // return 0.
2547 assert (getMemAccessSize(MI) &&
2548 "BaseImmOffset or BaseLongOffset or MemOp without accessSize");
2549
2550 // Return Values of getMemAccessSize() are
2551 // 0 - Checked in the assert above.
2552 // 1, 2, 3, 4 & 7, 8 - The statement below is correct for all these.
2553 // MemAccessSize is represented as 1+log2(N) where N is size in bits.
2554 AccessSize = (1U << (getMemAccessSize(MI) - 1));
2555
2556 unsigned basePos = 0, offsetPos = 0;
2557 if (!getBaseAndOffsetPosition(MI, basePos, offsetPos))
2558 return 0;
2559
2560 // Post increment updates its EA after the mem access,
2561 // so we need to treat its offset as zero.
2562 if (isPostIncrement(MI))
2563 Offset = 0;
2564 else {
2565 Offset = MI->getOperand(offsetPos).getImm();
2566 }
2567
2568 return MI->getOperand(basePos).getReg();
2569}
2570
2571
2572/// Return the position of the base and offset operands for this instruction.
2573bool HexagonInstrInfo::getBaseAndOffsetPosition(const MachineInstr *MI,
2574 unsigned &BasePos, unsigned &OffsetPos) const {
2575 // Deal with memops first.
2576 if (isMemOp(MI)) {
2577 assert (MI->getOperand(0).isReg() && MI->getOperand(1).isImm() &&
2578 "Bad Memop.");
2579 BasePos = 0;
2580 OffsetPos = 1;
2581 } else if (MI->mayStore()) {
2582 BasePos = 0;
2583 OffsetPos = 1;
2584 } else if (MI->mayLoad()) {
2585 BasePos = 1;
2586 OffsetPos = 2;
2587 } else
2588 return false;
2589
2590 if (isPredicated(MI)) {
2591 BasePos++;
2592 OffsetPos++;
2593 }
2594 if (isPostIncrement(MI)) {
2595 BasePos++;
2596 OffsetPos++;
2597 }
2598
2599 if (!MI->getOperand(BasePos).isReg() || !MI->getOperand(OffsetPos).isImm())
2600 return false;
2601
2602 return true;
2603}
2604
2605
2606// Inserts branching instructions in reverse order of their occurence.
2607// e.g. jump_t t1 (i1)
2608// jump t2 (i2)
2609// Jumpers = {i2, i1}
2610SmallVector<MachineInstr*, 2> HexagonInstrInfo::getBranchingInstrs(
2611 MachineBasicBlock& MBB) const {
2612 SmallVector<MachineInstr*, 2> Jumpers;
2613 // If the block has no terminators, it just falls into the block after it.
2614 MachineBasicBlock::instr_iterator I = MBB.instr_end();
2615 if (I == MBB.instr_begin())
2616 return Jumpers;
2617
2618 // A basic block may looks like this:
2619 //
2620 // [ insn
2621 // EH_LABEL
2622 // insn
2623 // insn
2624 // insn
2625 // EH_LABEL
2626 // insn ]
2627 //
2628 // It has two succs but does not have a terminator
2629 // Don't know how to handle it.
2630 do {
2631 --I;
2632 if (I->isEHLabel())
2633 return Jumpers;
2634 } while (I != MBB.instr_begin());
2635
2636 I = MBB.instr_end();
2637 --I;
2638
2639 while (I->isDebugValue()) {
2640 if (I == MBB.instr_begin())
2641 return Jumpers;
2642 --I;
2643 }
2644 if (!isUnpredicatedTerminator(&*I))
2645 return Jumpers;
2646
2647 // Get the last instruction in the block.
2648 MachineInstr *LastInst = &*I;
2649 Jumpers.push_back(LastInst);
2650 MachineInstr *SecondLastInst = nullptr;
2651 // Find one more terminator if present.
2652 do {
2653 if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(&*I)) {
2654 if (!SecondLastInst) {
2655 SecondLastInst = &*I;
2656 Jumpers.push_back(SecondLastInst);
2657 } else // This is a third branch.
2658 return Jumpers;
2659 }
2660 if (I == MBB.instr_begin())
2661 break;
2662 --I;
2663 } while (true);
2664 return Jumpers;
2665}
2666
2667
2668// Returns Operand Index for the constant extended instruction.
2669unsigned HexagonInstrInfo::getCExtOpNum(const MachineInstr *MI) const {
2670 const uint64_t F = MI->getDesc().TSFlags;
2671 return (F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask;
2672}
2673
2674// See if instruction could potentially be a duplex candidate.
2675// If so, return its group. Zero otherwise.
2676HexagonII::CompoundGroup HexagonInstrInfo::getCompoundCandidateGroup(
2677 const MachineInstr *MI) const {
2678 unsigned DstReg, SrcReg, Src1Reg, Src2Reg;
2679
2680 switch (MI->getOpcode()) {
2681 default:
2682 return HexagonII::HCG_None;
2683 //
2684 // Compound pairs.
2685 // "p0=cmp.eq(Rs16,Rt16); if (p0.new) jump:nt #r9:2"
2686 // "Rd16=#U6 ; jump #r9:2"
2687 // "Rd16=Rs16 ; jump #r9:2"
2688 //
2689 case Hexagon::C2_cmpeq:
2690 case Hexagon::C2_cmpgt:
2691 case Hexagon::C2_cmpgtu:
2692 DstReg = MI->getOperand(0).getReg();
2693 Src1Reg = MI->getOperand(1).getReg();
2694 Src2Reg = MI->getOperand(2).getReg();
2695 if (Hexagon::PredRegsRegClass.contains(DstReg) &&
2696 (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
2697 isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg))
2698 return HexagonII::HCG_A;
2699 break;
2700 case Hexagon::C2_cmpeqi:
2701 case Hexagon::C2_cmpgti:
2702 case Hexagon::C2_cmpgtui:
2703 // P0 = cmp.eq(Rs,#u2)
2704 DstReg = MI->getOperand(0).getReg();
2705 SrcReg = MI->getOperand(1).getReg();
2706 if (Hexagon::PredRegsRegClass.contains(DstReg) &&
2707 (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
2708 isIntRegForSubInst(SrcReg) && MI->getOperand(2).isImm() &&
2709 ((isUInt<5>(MI->getOperand(2).getImm())) ||
2710 (MI->getOperand(2).getImm() == -1)))
2711 return HexagonII::HCG_A;
2712 break;
2713 case Hexagon::A2_tfr:
2714 // Rd = Rs
2715 DstReg = MI->getOperand(0).getReg();
2716 SrcReg = MI->getOperand(1).getReg();
2717 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
2718 return HexagonII::HCG_A;
2719 break;
2720 case Hexagon::A2_tfrsi:
2721 // Rd = #u6
2722 // Do not test for #u6 size since the const is getting extended
2723 // regardless and compound could be formed.
2724 DstReg = MI->getOperand(0).getReg();
2725 if (isIntRegForSubInst(DstReg))
2726 return HexagonII::HCG_A;
2727 break;
2728 case Hexagon::S2_tstbit_i:
2729 DstReg = MI->getOperand(0).getReg();
2730 Src1Reg = MI->getOperand(1).getReg();
2731 if (Hexagon::PredRegsRegClass.contains(DstReg) &&
2732 (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
2733 MI->getOperand(2).isImm() &&
2734 isIntRegForSubInst(Src1Reg) && (MI->getOperand(2).getImm() == 0))
2735 return HexagonII::HCG_A;
2736 break;
2737 // The fact that .new form is used pretty much guarantees
2738 // that predicate register will match. Nevertheless,
2739 // there could be some false positives without additional
2740 // checking.
2741 case Hexagon::J2_jumptnew:
2742 case Hexagon::J2_jumpfnew:
2743 case Hexagon::J2_jumptnewpt:
2744 case Hexagon::J2_jumpfnewpt:
2745 Src1Reg = MI->getOperand(0).getReg();
2746 if (Hexagon::PredRegsRegClass.contains(Src1Reg) &&
2747 (Hexagon::P0 == Src1Reg || Hexagon::P1 == Src1Reg))
2748 return HexagonII::HCG_B;
2749 break;
2750 // Transfer and jump:
2751 // Rd=#U6 ; jump #r9:2
2752 // Rd=Rs ; jump #r9:2
2753 // Do not test for jump range here.
2754 case Hexagon::J2_jump:
2755 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
2756 return HexagonII::HCG_C;
2757 break;
2758 }
2759
2760 return HexagonII::HCG_None;
2761}
2762
2763
2764// Returns -1 when there is no opcode found.
2765unsigned HexagonInstrInfo::getCompoundOpcode(const MachineInstr *GA,
2766 const MachineInstr *GB) const {
2767 assert(getCompoundCandidateGroup(GA) == HexagonII::HCG_A);
2768 assert(getCompoundCandidateGroup(GB) == HexagonII::HCG_B);
2769 if ((GA->getOpcode() != Hexagon::C2_cmpeqi) ||
2770 (GB->getOpcode() != Hexagon::J2_jumptnew))
2771 return -1;
2772 unsigned DestReg = GA->getOperand(0).getReg();
2773 if (!GB->readsRegister(DestReg))
2774 return -1;
2775 if (DestReg == Hexagon::P0)
2776 return Hexagon::J4_cmpeqi_tp0_jump_nt;
2777 if (DestReg == Hexagon::P1)
2778 return Hexagon::J4_cmpeqi_tp1_jump_nt;
2779 return -1;
2780}
2781
2782
2783int HexagonInstrInfo::getCondOpcode(int Opc, bool invertPredicate) const {
2784 enum Hexagon::PredSense inPredSense;
2785 inPredSense = invertPredicate ? Hexagon::PredSense_false :
2786 Hexagon::PredSense_true;
2787 int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense);
2788 if (CondOpcode >= 0) // Valid Conditional opcode/instruction
2789 return CondOpcode;
2790
2791 // This switch case will be removed once all the instructions have been
2792 // modified to use relation maps.
2793 switch(Opc) {
2794 case Hexagon::TFRI_f:
2795 return !invertPredicate ? Hexagon::TFRI_cPt_f :
2796 Hexagon::TFRI_cNotPt_f;
2797 }
2798
2799 llvm_unreachable("Unexpected predicable instruction");
2800}
2801
2802
2803// Return the cur value instruction for a given store.
2804int HexagonInstrInfo::getDotCurOp(const MachineInstr* MI) const {
2805 switch (MI->getOpcode()) {
2806 default: llvm_unreachable("Unknown .cur type");
2807 case Hexagon::V6_vL32b_pi:
2808 return Hexagon::V6_vL32b_cur_pi;
2809 case Hexagon::V6_vL32b_ai:
2810 return Hexagon::V6_vL32b_cur_ai;
2811 //128B
2812 case Hexagon::V6_vL32b_pi_128B:
2813 return Hexagon::V6_vL32b_cur_pi_128B;
2814 case Hexagon::V6_vL32b_ai_128B:
2815 return Hexagon::V6_vL32b_cur_ai_128B;
2816 }
2817 return 0;
2818}
2819
2820
2821
2822// The diagram below shows the steps involved in the conversion of a predicated
2823// store instruction to its .new predicated new-value form.
2824//
2825// p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ]
2826// ^ ^
2827// / \ (not OK. it will cause new-value store to be
2828// / X conditional on p0.new while R2 producer is
2829// / \ on p0)
2830// / \.
2831// p.new store p.old NV store
2832// [if(p0.new)memw(R0+#0)=R2] [if(p0)memw(R0+#0)=R2.new]
2833// ^ ^
2834// \ /
2835// \ /
2836// \ /
2837// p.old store
2838// [if (p0)memw(R0+#0)=R2]
2839//
2840//
2841// The following set of instructions further explains the scenario where
2842// conditional new-value store becomes invalid when promoted to .new predicate
2843// form.
2844//
2845// { 1) if (p0) r0 = add(r1, r2)
2846// 2) p0 = cmp.eq(r3, #0) }
2847//
2848// 3) if (p0) memb(r1+#0) = r0 --> this instruction can't be grouped with
2849// the first two instructions because in instr 1, r0 is conditional on old value
2850// of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which
2851// is not valid for new-value stores.
2852// Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
2853// from the "Conditional Store" list. Because a predicated new value store
2854// would NOT be promoted to a double dot new store. See diagram below:
2855// This function returns yes for those stores that are predicated but not
2856// yet promoted to predicate dot new instructions.
2857//
2858// +---------------------+
2859// /-----| if (p0) memw(..)=r0 |---------\~
2860// || +---------------------+ ||
2861// promote || /\ /\ || promote
2862// || /||\ /||\ ||
2863// \||/ demote || \||/
2864// \/ || || \/
2865// +-------------------------+ || +-------------------------+
2866// | if (p0.new) memw(..)=r0 | || | if (p0) memw(..)=r0.new |
2867// +-------------------------+ || +-------------------------+
2868// || || ||
2869// || demote \||/
2870// promote || \/ NOT possible
2871// || || /\~
2872// \||/ || /||\~
2873// \/ || ||
2874// +-----------------------------+
2875// | if (p0.new) memw(..)=r0.new |
2876// +-----------------------------+
2877// Double Dot New Store
2878//
2879// Returns the most basic instruction for the .new predicated instructions and
2880// new-value stores.
2881// For example, all of the following instructions will be converted back to the
2882// same instruction:
2883// 1) if (p0.new) memw(R0+#0) = R1.new --->
2884// 2) if (p0) memw(R0+#0)= R1.new -------> if (p0) memw(R0+#0) = R1
2885// 3) if (p0.new) memw(R0+#0) = R1 --->
2886//
2887// To understand the translation of instruction 1 to its original form, consider
2888// a packet with 3 instructions.
2889// { p0 = cmp.eq(R0,R1)
2890// if (p0.new) R2 = add(R3, R4)
2891// R5 = add (R3, R1)
2892// }
2893// if (p0) memw(R5+#0) = R2 <--- trying to include it in the previous packet
2894//
2895// This instruction can be part of the previous packet only if both p0 and R2
2896// are promoted to .new values. This promotion happens in steps, first
2897// predicate register is promoted to .new and in the next iteration R2 is
2898// promoted. Therefore, in case of dependence check failure (due to R5) during
2899// next iteration, it should be converted back to its most basic form.
2900
2901
2902// Return the new value instruction for a given store.
2903int HexagonInstrInfo::getDotNewOp(const MachineInstr* MI) const {
2904 int NVOpcode = Hexagon::getNewValueOpcode(MI->getOpcode());
2905 if (NVOpcode >= 0) // Valid new-value store instruction.
2906 return NVOpcode;
2907
2908 switch (MI->getOpcode()) {
2909 default: llvm_unreachable("Unknown .new type");
2910 case Hexagon::S4_storerb_ur:
2911 return Hexagon::S4_storerbnew_ur;
2912
2913 case Hexagon::S2_storerb_pci:
2914 return Hexagon::S2_storerb_pci;
2915
2916 case Hexagon::S2_storeri_pci:
2917 return Hexagon::S2_storeri_pci;
2918
2919 case Hexagon::S2_storerh_pci:
2920 return Hexagon::S2_storerh_pci;
2921
2922 case Hexagon::S2_storerd_pci:
2923 return Hexagon::S2_storerd_pci;
2924
2925 case Hexagon::S2_storerf_pci:
2926 return Hexagon::S2_storerf_pci;
2927
2928 case Hexagon::V6_vS32b_ai:
2929 return Hexagon::V6_vS32b_new_ai;
2930
2931 case Hexagon::V6_vS32b_pi:
2932 return Hexagon::V6_vS32b_new_pi;
2933
2934 // 128B
2935 case Hexagon::V6_vS32b_ai_128B:
2936 return Hexagon::V6_vS32b_new_ai_128B;
2937
2938 case Hexagon::V6_vS32b_pi_128B:
2939 return Hexagon::V6_vS32b_new_pi_128B;
2940 }
2941 return 0;
2942}
2943
2944// Returns the opcode to use when converting MI, which is a conditional jump,
2945// into a conditional instruction which uses the .new value of the predicate.
2946// We also use branch probabilities to add a hint to the jump.
2947int HexagonInstrInfo::getDotNewPredJumpOp(MachineInstr *MI,
2948 const MachineBranchProbabilityInfo *MBPI) const {
2949 // We assume that block can have at most two successors.
2950 bool taken = false;
2951 MachineBasicBlock *Src = MI->getParent();
2952 MachineOperand *BrTarget = &MI->getOperand(1);
2953 MachineBasicBlock *Dst = BrTarget->getMBB();
2954
2955 const BranchProbability Prediction = MBPI->getEdgeProbability(Src, Dst);
2956 if (Prediction >= BranchProbability(1,2))
2957 taken = true;
2958
2959 switch (MI->getOpcode()) {
2960 case Hexagon::J2_jumpt:
2961 return taken ? Hexagon::J2_jumptnewpt : Hexagon::J2_jumptnew;
2962 case Hexagon::J2_jumpf:
2963 return taken ? Hexagon::J2_jumpfnewpt : Hexagon::J2_jumpfnew;
2964
2965 default:
2966 llvm_unreachable("Unexpected jump instruction.");
2967 }
2968}
2969
2970
2971// Return .new predicate version for an instruction.
2972int HexagonInstrInfo::getDotNewPredOp(MachineInstr *MI,
2973 const MachineBranchProbabilityInfo *MBPI) const {
2974 int NewOpcode = Hexagon::getPredNewOpcode(MI->getOpcode());
2975 if (NewOpcode >= 0) // Valid predicate new instruction
2976 return NewOpcode;
2977
2978 switch (MI->getOpcode()) {
2979 // Condtional Jumps
2980 case Hexagon::J2_jumpt:
2981 case Hexagon::J2_jumpf:
2982 return getDotNewPredJumpOp(MI, MBPI);
2983
2984 default:
2985 assert(0 && "Unknown .new type");
2986 }
2987 return 0;
2988}
2989
2990
2991int HexagonInstrInfo::getDotOldOp(const int opc) const {
2992 int NewOp = opc;
2993 if (isPredicated(NewOp) && isPredicatedNew(NewOp)) { // Get predicate old form
2994 NewOp = Hexagon::getPredOldOpcode(NewOp);
2995 assert(NewOp >= 0 &&
2996 "Couldn't change predicate new instruction to its old form.");
2997 }
2998
2999 if (isNewValueStore(NewOp)) { // Convert into non-new-value format
3000 NewOp = Hexagon::getNonNVStore(NewOp);
3001 assert(NewOp >= 0 && "Couldn't change new-value store to its old form.");
3002 }
3003 return NewOp;
3004}
3005
3006
3007// See if instruction could potentially be a duplex candidate.
3008// If so, return its group. Zero otherwise.
3009HexagonII::SubInstructionGroup HexagonInstrInfo::getDuplexCandidateGroup(
3010 const MachineInstr *MI) const {
3011 unsigned DstReg, SrcReg, Src1Reg, Src2Reg;
3012 auto &HRI = getRegisterInfo();
3013
3014 switch (MI->getOpcode()) {
3015 default:
3016 return HexagonII::HSIG_None;
3017 //
3018 // Group L1:
3019 //
3020 // Rd = memw(Rs+#u4:2)
3021 // Rd = memub(Rs+#u4:0)
3022 case Hexagon::L2_loadri_io:
3023 DstReg = MI->getOperand(0).getReg();
3024 SrcReg = MI->getOperand(1).getReg();
3025 // Special case this one from Group L2.
3026 // Rd = memw(r29+#u5:2)
3027 if (isIntRegForSubInst(DstReg)) {
3028 if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
3029 HRI.getStackRegister() == SrcReg &&
3030 MI->getOperand(2).isImm() &&
3031 isShiftedUInt<5,2>(MI->getOperand(2).getImm()))
3032 return HexagonII::HSIG_L2;
3033 // Rd = memw(Rs+#u4:2)
3034 if (isIntRegForSubInst(SrcReg) &&
3035 (MI->getOperand(2).isImm() &&
3036 isShiftedUInt<4,2>(MI->getOperand(2).getImm())))
3037 return HexagonII::HSIG_L1;
3038 }
3039 break;
3040 case Hexagon::L2_loadrub_io:
3041 // Rd = memub(Rs+#u4:0)
3042 DstReg = MI->getOperand(0).getReg();
3043 SrcReg = MI->getOperand(1).getReg();
3044 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3045 MI->getOperand(2).isImm() && isUInt<4>(MI->getOperand(2).getImm()))
3046 return HexagonII::HSIG_L1;
3047 break;
3048 //
3049 // Group L2:
3050 //
3051 // Rd = memh/memuh(Rs+#u3:1)
3052 // Rd = memb(Rs+#u3:0)
3053 // Rd = memw(r29+#u5:2) - Handled above.
3054 // Rdd = memd(r29+#u5:3)
3055 // deallocframe
3056 // [if ([!]p0[.new])] dealloc_return
3057 // [if ([!]p0[.new])] jumpr r31
3058 case Hexagon::L2_loadrh_io:
3059 case Hexagon::L2_loadruh_io:
3060 // Rd = memh/memuh(Rs+#u3:1)
3061 DstReg = MI->getOperand(0).getReg();
3062 SrcReg = MI->getOperand(1).getReg();
3063 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3064 MI->getOperand(2).isImm() &&
3065 isShiftedUInt<3,1>(MI->getOperand(2).getImm()))
3066 return HexagonII::HSIG_L2;
3067 break;
3068 case Hexagon::L2_loadrb_io:
3069 // Rd = memb(Rs+#u3:0)
3070 DstReg = MI->getOperand(0).getReg();
3071 SrcReg = MI->getOperand(1).getReg();
3072 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3073 MI->getOperand(2).isImm() &&
3074 isUInt<3>(MI->getOperand(2).getImm()))
3075 return HexagonII::HSIG_L2;
3076 break;
3077 case Hexagon::L2_loadrd_io:
3078 // Rdd = memd(r29+#u5:3)
3079 DstReg = MI->getOperand(0).getReg();
3080 SrcReg = MI->getOperand(1).getReg();
3081 if (isDblRegForSubInst(DstReg, HRI) &&
3082 Hexagon::IntRegsRegClass.contains(SrcReg) &&
3083 HRI.getStackRegister() == SrcReg &&
3084 MI->getOperand(2).isImm() &&
3085 isShiftedUInt<5,3>(MI->getOperand(2).getImm()))
3086 return HexagonII::HSIG_L2;
3087 break;
3088 // dealloc_return is not documented in Hexagon Manual, but marked
3089 // with A_SUBINSN attribute in iset_v4classic.py.
3090 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
3091 case Hexagon::L4_return:
3092 case Hexagon::L2_deallocframe:
3093 return HexagonII::HSIG_L2;
3094 case Hexagon::EH_RETURN_JMPR:
3095 case Hexagon::JMPret :
3096 // jumpr r31
3097 // Actual form JMPR %PC<imp-def>, %R31<imp-use>, %R0<imp-use,internal>.
3098 DstReg = MI->getOperand(0).getReg();
3099 if (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg))
3100 return HexagonII::HSIG_L2;
3101 break;
3102 case Hexagon::JMPrett:
3103 case Hexagon::JMPretf:
3104 case Hexagon::JMPrettnewpt:
3105 case Hexagon::JMPretfnewpt :
3106 case Hexagon::JMPrettnew :
3107 case Hexagon::JMPretfnew :
3108 DstReg = MI->getOperand(1).getReg();
3109 SrcReg = MI->getOperand(0).getReg();
3110 // [if ([!]p0[.new])] jumpr r31
3111 if ((Hexagon::PredRegsRegClass.contains(SrcReg) &&
3112 (Hexagon::P0 == SrcReg)) &&
3113 (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg)))
3114 return HexagonII::HSIG_L2;
3115 break;
3116 case Hexagon::L4_return_t :
3117 case Hexagon::L4_return_f :
3118 case Hexagon::L4_return_tnew_pnt :
3119 case Hexagon::L4_return_fnew_pnt :
3120 case Hexagon::L4_return_tnew_pt :
3121 case Hexagon::L4_return_fnew_pt :
3122 // [if ([!]p0[.new])] dealloc_return
3123 SrcReg = MI->getOperand(0).getReg();
3124 if (Hexagon::PredRegsRegClass.contains(SrcReg) && (Hexagon::P0 == SrcReg))
3125 return HexagonII::HSIG_L2;
3126 break;
3127 //
3128 // Group S1:
3129 //
3130 // memw(Rs+#u4:2) = Rt
3131 // memb(Rs+#u4:0) = Rt
3132 case Hexagon::S2_storeri_io:
3133 // Special case this one from Group S2.
3134 // memw(r29+#u5:2) = Rt
3135 Src1Reg = MI->getOperand(0).getReg();
3136 Src2Reg = MI->getOperand(2).getReg();
3137 if (Hexagon::IntRegsRegClass.contains(Src1Reg) &&
3138 isIntRegForSubInst(Src2Reg) &&
3139 HRI.getStackRegister() == Src1Reg && MI->getOperand(1).isImm() &&
3140 isShiftedUInt<5,2>(MI->getOperand(1).getImm()))
3141 return HexagonII::HSIG_S2;
3142 // memw(Rs+#u4:2) = Rt
3143 if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
3144 MI->getOperand(1).isImm() &&
3145 isShiftedUInt<4,2>(MI->getOperand(1).getImm()))
3146 return HexagonII::HSIG_S1;
3147 break;
3148 case Hexagon::S2_storerb_io:
3149 // memb(Rs+#u4:0) = Rt
3150 Src1Reg = MI->getOperand(0).getReg();
3151 Src2Reg = MI->getOperand(2).getReg();
3152 if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
3153 MI->getOperand(1).isImm() && isUInt<4>(MI->getOperand(1).getImm()))
3154 return HexagonII::HSIG_S1;
3155 break;
3156 //
3157 // Group S2:
3158 //
3159 // memh(Rs+#u3:1) = Rt
3160 // memw(r29+#u5:2) = Rt
3161 // memd(r29+#s6:3) = Rtt
3162 // memw(Rs+#u4:2) = #U1
3163 // memb(Rs+#u4) = #U1
3164 // allocframe(#u5:3)
3165 case Hexagon::S2_storerh_io:
3166 // memh(Rs+#u3:1) = Rt
3167 Src1Reg = MI->getOperand(0).getReg();
3168 Src2Reg = MI->getOperand(2).getReg();
3169 if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
3170 MI->getOperand(1).isImm() &&
3171 isShiftedUInt<3,1>(MI->getOperand(1).getImm()))
3172 return HexagonII::HSIG_S1;
3173 break;
3174 case Hexagon::S2_storerd_io:
3175 // memd(r29+#s6:3) = Rtt
3176 Src1Reg = MI->getOperand(0).getReg();
3177 Src2Reg = MI->getOperand(2).getReg();
3178 if (isDblRegForSubInst(Src2Reg, HRI) &&
3179 Hexagon::IntRegsRegClass.contains(Src1Reg) &&
3180 HRI.getStackRegister() == Src1Reg && MI->getOperand(1).isImm() &&
3181 isShiftedInt<6,3>(MI->getOperand(1).getImm()))
3182 return HexagonII::HSIG_S2;
3183 break;
3184 case Hexagon::S4_storeiri_io:
3185 // memw(Rs+#u4:2) = #U1
3186 Src1Reg = MI->getOperand(0).getReg();
3187 if (isIntRegForSubInst(Src1Reg) && MI->getOperand(1).isImm() &&
3188 isShiftedUInt<4,2>(MI->getOperand(1).getImm()) &&
3189 MI->getOperand(2).isImm() && isUInt<1>(MI->getOperand(2).getImm()))
3190 return HexagonII::HSIG_S2;
3191 break;
3192 case Hexagon::S4_storeirb_io:
3193 // memb(Rs+#u4) = #U1
3194 Src1Reg = MI->getOperand(0).getReg();
3195 if (isIntRegForSubInst(Src1Reg) && MI->getOperand(1).isImm() &&
3196 isUInt<4>(MI->getOperand(1).getImm()) && MI->getOperand(2).isImm() &&
3197 MI->getOperand(2).isImm() && isUInt<1>(MI->getOperand(2).getImm()))
3198 return HexagonII::HSIG_S2;
3199 break;
3200 case Hexagon::S2_allocframe:
3201 if (MI->getOperand(0).isImm() &&
3202 isShiftedUInt<5,3>(MI->getOperand(0).getImm()))
3203 return HexagonII::HSIG_S1;
3204 break;
3205 //
3206 // Group A:
3207 //
3208 // Rx = add(Rx,#s7)
3209 // Rd = Rs
3210 // Rd = #u6
3211 // Rd = #-1
3212 // if ([!]P0[.new]) Rd = #0
3213 // Rd = add(r29,#u6:2)
3214 // Rx = add(Rx,Rs)
3215 // P0 = cmp.eq(Rs,#u2)
3216 // Rdd = combine(#0,Rs)
3217 // Rdd = combine(Rs,#0)
3218 // Rdd = combine(#u2,#U2)
3219 // Rd = add(Rs,#1)
3220 // Rd = add(Rs,#-1)
3221 // Rd = sxth/sxtb/zxtb/zxth(Rs)
3222 // Rd = and(Rs,#1)
3223 case Hexagon::A2_addi:
3224 DstReg = MI->getOperand(0).getReg();
3225 SrcReg = MI->getOperand(1).getReg();
3226 if (isIntRegForSubInst(DstReg)) {
3227 // Rd = add(r29,#u6:2)
3228 if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
3229 HRI.getStackRegister() == SrcReg && MI->getOperand(2).isImm() &&
3230 isShiftedUInt<6,2>(MI->getOperand(2).getImm()))
3231 return HexagonII::HSIG_A;
3232 // Rx = add(Rx,#s7)
3233 if ((DstReg == SrcReg) && MI->getOperand(2).isImm() &&
3234 isInt<7>(MI->getOperand(2).getImm()))
3235 return HexagonII::HSIG_A;
3236 // Rd = add(Rs,#1)
3237 // Rd = add(Rs,#-1)
3238 if (isIntRegForSubInst(SrcReg) && MI->getOperand(2).isImm() &&
3239 ((MI->getOperand(2).getImm() == 1) ||
3240 (MI->getOperand(2).getImm() == -1)))
3241 return HexagonII::HSIG_A;
3242 }
3243 break;
3244 case Hexagon::A2_add:
3245 // Rx = add(Rx,Rs)
3246 DstReg = MI->getOperand(0).getReg();
3247 Src1Reg = MI->getOperand(1).getReg();
3248 Src2Reg = MI->getOperand(2).getReg();
3249 if (isIntRegForSubInst(DstReg) && (DstReg == Src1Reg) &&
3250 isIntRegForSubInst(Src2Reg))
3251 return HexagonII::HSIG_A;
3252 break;
3253 case Hexagon::A2_andir:
3254 // Same as zxtb.
3255 // Rd16=and(Rs16,#255)
3256 // Rd16=and(Rs16,#1)
3257 DstReg = MI->getOperand(0).getReg();
3258 SrcReg = MI->getOperand(1).getReg();
3259 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3260 MI->getOperand(2).isImm() &&
3261 ((MI->getOperand(2).getImm() == 1) ||
3262 (MI->getOperand(2).getImm() == 255)))
3263 return HexagonII::HSIG_A;
3264 break;
3265 case Hexagon::A2_tfr:
3266 // Rd = Rs
3267 DstReg = MI->getOperand(0).getReg();
3268 SrcReg = MI->getOperand(1).getReg();
3269 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
3270 return HexagonII::HSIG_A;
3271 break;
3272 case Hexagon::A2_tfrsi:
3273 // Rd = #u6
3274 // Do not test for #u6 size since the const is getting extended
3275 // regardless and compound could be formed.
3276 // Rd = #-1
3277 DstReg = MI->getOperand(0).getReg();
3278 if (isIntRegForSubInst(DstReg))
3279 return HexagonII::HSIG_A;
3280 break;
3281 case Hexagon::C2_cmoveit:
3282 case Hexagon::C2_cmovenewit:
3283 case Hexagon::C2_cmoveif:
3284 case Hexagon::C2_cmovenewif:
3285 // if ([!]P0[.new]) Rd = #0
3286 // Actual form:
3287 // %R16<def> = C2_cmovenewit %P0<internal>, 0, %R16<imp-use,undef>;
3288 DstReg = MI->getOperand(0).getReg();
3289 SrcReg = MI->getOperand(1).getReg();
3290 if (isIntRegForSubInst(DstReg) &&
3291 Hexagon::PredRegsRegClass.contains(SrcReg) && Hexagon::P0 == SrcReg &&
3292 MI->getOperand(2).isImm() && MI->getOperand(2).getImm() == 0)
3293 return HexagonII::HSIG_A;
3294 break;
3295 case Hexagon::C2_cmpeqi:
3296 // P0 = cmp.eq(Rs,#u2)
3297 DstReg = MI->getOperand(0).getReg();
3298 SrcReg = MI->getOperand(1).getReg();
3299 if (Hexagon::PredRegsRegClass.contains(DstReg) &&
3300 Hexagon::P0 == DstReg && isIntRegForSubInst(SrcReg) &&
3301 MI->getOperand(2).isImm() && isUInt<2>(MI->getOperand(2).getImm()))
3302 return HexagonII::HSIG_A;
3303 break;
3304 case Hexagon::A2_combineii:
3305 case Hexagon::A4_combineii:
3306 // Rdd = combine(#u2,#U2)
3307 DstReg = MI->getOperand(0).getReg();
3308 if (isDblRegForSubInst(DstReg, HRI) &&
3309 ((MI->getOperand(1).isImm() && isUInt<2>(MI->getOperand(1).getImm())) ||
3310 (MI->getOperand(1).isGlobal() &&
3311 isUInt<2>(MI->getOperand(1).getOffset()))) &&
3312 ((MI->getOperand(2).isImm() && isUInt<2>(MI->getOperand(2).getImm())) ||
3313 (MI->getOperand(2).isGlobal() &&
3314 isUInt<2>(MI->getOperand(2).getOffset()))))
3315 return HexagonII::HSIG_A;
3316 break;
3317 case Hexagon::A4_combineri:
3318 // Rdd = combine(Rs,#0)
3319 DstReg = MI->getOperand(0).getReg();
3320 SrcReg = MI->getOperand(1).getReg();
3321 if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) &&
3322 ((MI->getOperand(2).isImm() && MI->getOperand(2).getImm() == 0) ||
3323 (MI->getOperand(2).isGlobal() && MI->getOperand(2).getOffset() == 0)))
3324 return HexagonII::HSIG_A;
3325 break;
3326 case Hexagon::A4_combineir:
3327 // Rdd = combine(#0,Rs)
3328 DstReg = MI->getOperand(0).getReg();
3329 SrcReg = MI->getOperand(2).getReg();
3330 if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) &&
3331 ((MI->getOperand(1).isImm() && MI->getOperand(1).getImm() == 0) ||
3332 (MI->getOperand(1).isGlobal() && MI->getOperand(1).getOffset() == 0)))
3333 return HexagonII::HSIG_A;
3334 break;
3335 case Hexagon::A2_sxtb:
3336 case Hexagon::A2_sxth:
3337 case Hexagon::A2_zxtb:
3338 case Hexagon::A2_zxth:
3339 // Rd = sxth/sxtb/zxtb/zxth(Rs)
3340 DstReg = MI->getOperand(0).getReg();
3341 SrcReg = MI->getOperand(1).getReg();
3342 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
3343 return HexagonII::HSIG_A;
3344 break;
3345 }
3346
3347 return HexagonII::HSIG_None;
3348}
3349
3350
3351short HexagonInstrInfo::getEquivalentHWInstr(MachineInstr *MI) const {
3352 return Hexagon::getRealHWInstr(MI->getOpcode(), Hexagon::InstrType_Real);
3353}
3354
3355
3356// Return first non-debug instruction in the basic block.
3357MachineInstr *HexagonInstrInfo::getFirstNonDbgInst(MachineBasicBlock *BB)
3358 const {
3359 for (auto MII = BB->instr_begin(), End = BB->instr_end(); MII != End; MII++) {
3360 MachineInstr *MI = &*MII;
3361 if (MI->isDebugValue())
3362 continue;
3363 return MI;
3364 }
3365 return nullptr;
3366}
3367
3368
3369unsigned HexagonInstrInfo::getInstrTimingClassLatency(
3370 const InstrItineraryData *ItinData, const MachineInstr *MI) const {
3371 // Default to one cycle for no itinerary. However, an "empty" itinerary may
3372 // still have a MinLatency property, which getStageLatency checks.
3373 if (!ItinData)
3374 return getInstrLatency(ItinData, MI);
3375
3376 // Get the latency embedded in the itinerary. If we're not using timing class
3377 // latencies or if we using BSB scheduling, then restrict the maximum latency
3378 // to 1 (that is, either 0 or 1).
3379 if (MI->isTransient())
3380 return 0;
3381 unsigned Latency = ItinData->getStageLatency(MI->getDesc().getSchedClass());
3382 if (!EnableTimingClassLatency ||
3383 MI->getParent()->getParent()->getSubtarget<HexagonSubtarget>().
3384 useBSBScheduling())
3385 if (Latency > 1)
3386 Latency = 1;
3387 return Latency;
3388}
3389
3390
3391// inverts the predication logic.
3392// p -> NotP
3393// NotP -> P
3394bool HexagonInstrInfo::getInvertedPredSense(
3395 SmallVectorImpl<MachineOperand> &Cond) const {
3396 if (Cond.empty())
3397 return false;
3398 unsigned Opc = getInvertedPredicatedOpcode(Cond[0].getImm());
3399 Cond[0].setImm(Opc);
3400 return true;
3401}
3402
3403
3404unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const {
3405 int InvPredOpcode;
3406 InvPredOpcode = isPredicatedTrue(Opc) ? Hexagon::getFalsePredOpcode(Opc)
3407 : Hexagon::getTruePredOpcode(Opc);
3408 if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate.
3409 return InvPredOpcode;
3410
3411 llvm_unreachable("Unexpected predicated instruction");
3412}
3413
3414
3415// Returns the max value that doesn't need to be extended.
3416int HexagonInstrInfo::getMaxValue(const MachineInstr *MI) const {
3417 const uint64_t F = MI->getDesc().TSFlags;
3418 unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
3419 & HexagonII::ExtentSignedMask;
3420 unsigned bits = (F >> HexagonII::ExtentBitsPos)
3421 & HexagonII::ExtentBitsMask;
3422
3423 if (isSigned) // if value is signed
3424 return ~(-1U << (bits - 1));
3425 else
3426 return ~(-1U << bits);
3427}
3428
3429
3430unsigned HexagonInstrInfo::getMemAccessSize(const MachineInstr* MI) const {
3431 const uint64_t F = MI->getDesc().TSFlags;
3432 return (F >> HexagonII::MemAccessSizePos) & HexagonII::MemAccesSizeMask;
3433}
3434
3435
3436// Returns the min value that doesn't need to be extended.
3437int HexagonInstrInfo::getMinValue(const MachineInstr *MI) const {
3438 const uint64_t F = MI->getDesc().TSFlags;
3439 unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
3440 & HexagonII::ExtentSignedMask;
3441 unsigned bits = (F >> HexagonII::ExtentBitsPos)
3442 & HexagonII::ExtentBitsMask;
3443
3444 if (isSigned) // if value is signed
3445 return -1U << (bits - 1);
3446 else
3447 return 0;
3448}
3449
3450
3451// Returns opcode of the non-extended equivalent instruction.
3452short HexagonInstrInfo::getNonExtOpcode(const MachineInstr *MI) const {
Jyotsna Verma84256432013-03-01 17:37:13 +00003453 // Check if the instruction has a register form that uses register in place
3454 // of the extended operand, if so return that as the non-extended form.
3455 short NonExtOpcode = Hexagon::getRegForm(MI->getOpcode());
3456 if (NonExtOpcode >= 0)
3457 return NonExtOpcode;
3458
3459 if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
Alp Tokercb402912014-01-24 17:20:08 +00003460 // Check addressing mode and retrieve non-ext equivalent instruction.
Jyotsna Verma84256432013-03-01 17:37:13 +00003461 switch (getAddrMode(MI)) {
3462 case HexagonII::Absolute :
Krzysztof Parzyszek02579052015-10-20 19:21:05 +00003463 return Hexagon::getBaseWithImmOffset(MI->getOpcode());
Jyotsna Verma84256432013-03-01 17:37:13 +00003464 case HexagonII::BaseImmOffset :
3465 return Hexagon::getBaseWithRegOffset(MI->getOpcode());
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00003466 case HexagonII::BaseLongOffset:
3467 return Hexagon::getRegShlForm(MI->getOpcode());
3468
Jyotsna Verma84256432013-03-01 17:37:13 +00003469 default:
3470 return -1;
3471 }
3472 }
3473 return -1;
3474}
Jyotsna Verma5ed51812013-05-01 21:37:34 +00003475
Brendon Cahoondf43e682015-05-08 16:16:29 +00003476
Ahmed Bougachac88bf542015-06-11 19:30:37 +00003477bool HexagonInstrInfo::getPredReg(ArrayRef<MachineOperand> Cond,
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00003478 unsigned &PredReg, unsigned &PredRegPos, unsigned &PredRegFlags) const {
Brendon Cahoondf43e682015-05-08 16:16:29 +00003479 if (Cond.empty())
3480 return false;
3481 assert(Cond.size() == 2);
3482 if (isNewValueJump(Cond[0].getImm()) || Cond[1].isMBB()) {
3483 DEBUG(dbgs() << "No predregs for new-value jumps/endloop");
3484 return false;
3485 }
3486 PredReg = Cond[1].getReg();
3487 PredRegPos = 1;
3488 // See IfConversion.cpp why we add RegState::Implicit | RegState::Undef
3489 PredRegFlags = 0;
3490 if (Cond[1].isImplicit())
3491 PredRegFlags = RegState::Implicit;
3492 if (Cond[1].isUndef())
3493 PredRegFlags |= RegState::Undef;
3494 return true;
3495}
3496
Krzysztof Parzyszekb9a1c3a2015-11-24 14:55:26 +00003497
3498short HexagonInstrInfo::getPseudoInstrPair(MachineInstr *MI) const {
3499 return Hexagon::getRealHWInstr(MI->getOpcode(), Hexagon::InstrType_Pseudo);
3500}
3501
3502
3503short HexagonInstrInfo::getRegForm(const MachineInstr *MI) const {
3504 return Hexagon::getRegForm(MI->getOpcode());
3505}
3506
3507
3508// Return the number of bytes required to encode the instruction.
3509// Hexagon instructions are fixed length, 4 bytes, unless they
3510// use a constant extender, which requires another 4 bytes.
3511// For debug instructions and prolog labels, return 0.
3512unsigned HexagonInstrInfo::getSize(const MachineInstr *MI) const {
3513 if (MI->isDebugValue() || MI->isPosition())
3514 return 0;
3515
3516 unsigned Size = MI->getDesc().getSize();
3517 if (!Size)
3518 // Assume the default insn size in case it cannot be determined
3519 // for whatever reason.
3520 Size = HEXAGON_INSTR_SIZE;
3521
3522 if (isConstExtended(MI) || isExtended(MI))
3523 Size += HEXAGON_INSTR_SIZE;
3524
3525 // Try and compute number of instructions in asm.
3526 if (BranchRelaxAsmLarge && MI->getOpcode() == Hexagon::INLINEASM) {
3527 const MachineBasicBlock &MBB = *MI->getParent();
3528 const MachineFunction *MF = MBB.getParent();
3529 const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
3530
3531 // Count the number of register definitions to find the asm string.
3532 unsigned NumDefs = 0;
3533 for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
3534 ++NumDefs)
3535 assert(NumDefs != MI->getNumOperands()-2 && "No asm string?");
3536
3537 assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?");
3538 // Disassemble the AsmStr and approximate number of instructions.
3539 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
3540 Size = getInlineAsmLength(AsmStr, *MAI);
3541 }
3542
3543 return Size;
3544}
3545
3546
3547uint64_t HexagonInstrInfo::getType(const MachineInstr* MI) const {
3548 const uint64_t F = MI->getDesc().TSFlags;
3549 return (F >> HexagonII::TypePos) & HexagonII::TypeMask;
3550}
3551
3552
3553unsigned HexagonInstrInfo::getUnits(const MachineInstr* MI) const {
3554 const TargetSubtargetInfo &ST = MI->getParent()->getParent()->getSubtarget();
3555 const InstrItineraryData &II = *ST.getInstrItineraryData();
3556 const InstrStage &IS = *II.beginStage(MI->getDesc().getSchedClass());
3557
3558 return IS.getUnits();
3559}
3560
3561
3562unsigned HexagonInstrInfo::getValidSubTargets(const unsigned Opcode) const {
3563 const uint64_t F = get(Opcode).TSFlags;
3564 return (F >> HexagonII::validSubTargetPos) & HexagonII::validSubTargetMask;
3565}
3566
3567
3568// Calculate size of the basic block without debug instructions.
3569unsigned HexagonInstrInfo::nonDbgBBSize(const MachineBasicBlock *BB) const {
3570 return nonDbgMICount(BB->instr_begin(), BB->instr_end());
3571}
3572
3573
3574unsigned HexagonInstrInfo::nonDbgBundleSize(
3575 MachineBasicBlock::const_iterator BundleHead) const {
3576 assert(BundleHead->isBundle() && "Not a bundle header");
3577 auto MII = BundleHead.getInstrIterator();
3578 // Skip the bundle header.
3579 return nonDbgMICount(++MII, getBundleEnd(BundleHead));
3580}
3581
3582
3583/// immediateExtend - Changes the instruction in place to one using an immediate
3584/// extender.
3585void HexagonInstrInfo::immediateExtend(MachineInstr *MI) const {
3586 assert((isExtendable(MI)||isConstExtended(MI)) &&
3587 "Instruction must be extendable");
3588 // Find which operand is extendable.
3589 short ExtOpNum = getCExtOpNum(MI);
3590 MachineOperand &MO = MI->getOperand(ExtOpNum);
3591 // This needs to be something we understand.
3592 assert((MO.isMBB() || MO.isImm()) &&
3593 "Branch with unknown extendable field type");
3594 // Mark given operand as extended.
3595 MO.addTargetFlag(HexagonII::HMOTF_ConstExtended);
3596}
3597
3598
3599bool HexagonInstrInfo::invertAndChangeJumpTarget(
3600 MachineInstr* MI, MachineBasicBlock* NewTarget) const {
3601 DEBUG(dbgs() << "\n[invertAndChangeJumpTarget] to BB#"
3602 << NewTarget->getNumber(); MI->dump(););
3603 assert(MI->isBranch());
3604 unsigned NewOpcode = getInvertedPredicatedOpcode(MI->getOpcode());
3605 int TargetPos = MI->getNumOperands() - 1;
3606 // In general branch target is the last operand,
3607 // but some implicit defs added at the end might change it.
3608 while ((TargetPos > -1) && !MI->getOperand(TargetPos).isMBB())
3609 --TargetPos;
3610 assert((TargetPos >= 0) && MI->getOperand(TargetPos).isMBB());
3611 MI->getOperand(TargetPos).setMBB(NewTarget);
3612 if (EnableBranchPrediction && isPredicatedNew(MI)) {
3613 NewOpcode = reversePrediction(NewOpcode);
3614 }
3615 MI->setDesc(get(NewOpcode));
3616 return true;
3617}
3618
3619
3620void HexagonInstrInfo::genAllInsnTimingClasses(MachineFunction &MF) const {
3621 /* +++ The code below is used to generate complete set of Hexagon Insn +++ */
3622 MachineFunction::iterator A = MF.begin();
3623 MachineBasicBlock &B = *A;
3624 MachineBasicBlock::iterator I = B.begin();
3625 MachineInstr *MI = &*I;
3626 DebugLoc DL = MI->getDebugLoc();
3627 MachineInstr *NewMI;
3628
3629 for (unsigned insn = TargetOpcode::GENERIC_OP_END+1;
3630 insn < Hexagon::INSTRUCTION_LIST_END; ++insn) {
3631 NewMI = BuildMI(B, MI, DL, get(insn));
3632 DEBUG(dbgs() << "\n" << getName(NewMI->getOpcode()) <<
3633 " Class: " << NewMI->getDesc().getSchedClass());
3634 NewMI->eraseFromParent();
3635 }
3636 /* --- The code above is used to generate complete set of Hexagon Insn --- */
3637}
3638
3639
3640// inverts the predication logic.
3641// p -> NotP
3642// NotP -> P
3643bool HexagonInstrInfo::reversePredSense(MachineInstr* MI) const {
3644 DEBUG(dbgs() << "\nTrying to reverse pred. sense of:"; MI->dump());
3645 MI->setDesc(get(getInvertedPredicatedOpcode(MI->getOpcode())));
3646 return true;
3647}
3648
3649
3650// Reverse the branch prediction.
3651unsigned HexagonInstrInfo::reversePrediction(unsigned Opcode) const {
3652 int PredRevOpcode = -1;
3653 if (isPredictedTaken(Opcode))
3654 PredRevOpcode = Hexagon::notTakenBranchPrediction(Opcode);
3655 else
3656 PredRevOpcode = Hexagon::takenBranchPrediction(Opcode);
3657 assert(PredRevOpcode > 0);
3658 return PredRevOpcode;
3659}
3660
3661
3662// TODO: Add more rigorous validation.
3663bool HexagonInstrInfo::validateBranchCond(const ArrayRef<MachineOperand> &Cond)
3664 const {
3665 return Cond.empty() || (Cond[0].isImm() && (Cond.size() != 1));
3666}
3667