Micah Villmow | ac34b5c | 2012-10-04 22:08:14 +0000 | [diff] [blame^] | 1 | //===-- TargetData.cpp - Data size & alignment routines --------------------==// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file defines target properties related to datatype size/offset/alignment |
| 11 | // information. |
| 12 | // |
| 13 | // This structure should be created once, filled in if the defaults are not |
| 14 | // correct and then passed around by const&. None of the members functions |
| 15 | // require modification to the object. |
| 16 | // |
| 17 | //===----------------------------------------------------------------------===// |
| 18 | |
| 19 | #include "llvm/Target/TargetData.h" |
| 20 | #include "llvm/Constants.h" |
| 21 | #include "llvm/DerivedTypes.h" |
| 22 | #include "llvm/Module.h" |
| 23 | #include "llvm/Support/GetElementPtrTypeIterator.h" |
| 24 | #include "llvm/Support/MathExtras.h" |
| 25 | #include "llvm/Support/ManagedStatic.h" |
| 26 | #include "llvm/Support/ErrorHandling.h" |
| 27 | #include "llvm/Support/raw_ostream.h" |
| 28 | #include "llvm/Support/Mutex.h" |
| 29 | #include "llvm/ADT/DenseMap.h" |
| 30 | #include <algorithm> |
| 31 | #include <cstdlib> |
| 32 | using namespace llvm; |
| 33 | |
| 34 | // Handle the Pass registration stuff necessary to use TargetData's. |
| 35 | |
| 36 | // Register the default SparcV9 implementation... |
| 37 | INITIALIZE_PASS(TargetData, "targetdata", "Target Data Layout", false, true) |
| 38 | char TargetData::ID = 0; |
| 39 | |
| 40 | //===----------------------------------------------------------------------===// |
| 41 | // Support for StructLayout |
| 42 | //===----------------------------------------------------------------------===// |
| 43 | |
| 44 | StructLayout::StructLayout(StructType *ST, const TargetData &TD) { |
| 45 | assert(!ST->isOpaque() && "Cannot get layout of opaque structs"); |
| 46 | StructAlignment = 0; |
| 47 | StructSize = 0; |
| 48 | NumElements = ST->getNumElements(); |
| 49 | |
| 50 | // Loop over each of the elements, placing them in memory. |
| 51 | for (unsigned i = 0, e = NumElements; i != e; ++i) { |
| 52 | Type *Ty = ST->getElementType(i); |
| 53 | unsigned TyAlign = ST->isPacked() ? 1 : TD.getABITypeAlignment(Ty); |
| 54 | |
| 55 | // Add padding if necessary to align the data element properly. |
| 56 | if ((StructSize & (TyAlign-1)) != 0) |
| 57 | StructSize = TargetData::RoundUpAlignment(StructSize, TyAlign); |
| 58 | |
| 59 | // Keep track of maximum alignment constraint. |
| 60 | StructAlignment = std::max(TyAlign, StructAlignment); |
| 61 | |
| 62 | MemberOffsets[i] = StructSize; |
| 63 | StructSize += TD.getTypeAllocSize(Ty); // Consume space for this data item |
| 64 | } |
| 65 | |
| 66 | // Empty structures have alignment of 1 byte. |
| 67 | if (StructAlignment == 0) StructAlignment = 1; |
| 68 | |
| 69 | // Add padding to the end of the struct so that it could be put in an array |
| 70 | // and all array elements would be aligned correctly. |
| 71 | if ((StructSize & (StructAlignment-1)) != 0) |
| 72 | StructSize = TargetData::RoundUpAlignment(StructSize, StructAlignment); |
| 73 | } |
| 74 | |
| 75 | |
| 76 | /// getElementContainingOffset - Given a valid offset into the structure, |
| 77 | /// return the structure index that contains it. |
| 78 | unsigned StructLayout::getElementContainingOffset(uint64_t Offset) const { |
| 79 | const uint64_t *SI = |
| 80 | std::upper_bound(&MemberOffsets[0], &MemberOffsets[NumElements], Offset); |
| 81 | assert(SI != &MemberOffsets[0] && "Offset not in structure type!"); |
| 82 | --SI; |
| 83 | assert(*SI <= Offset && "upper_bound didn't work"); |
| 84 | assert((SI == &MemberOffsets[0] || *(SI-1) <= Offset) && |
| 85 | (SI+1 == &MemberOffsets[NumElements] || *(SI+1) > Offset) && |
| 86 | "Upper bound didn't work!"); |
| 87 | |
| 88 | // Multiple fields can have the same offset if any of them are zero sized. |
| 89 | // For example, in { i32, [0 x i32], i32 }, searching for offset 4 will stop |
| 90 | // at the i32 element, because it is the last element at that offset. This is |
| 91 | // the right one to return, because anything after it will have a higher |
| 92 | // offset, implying that this element is non-empty. |
| 93 | return SI-&MemberOffsets[0]; |
| 94 | } |
| 95 | |
| 96 | //===----------------------------------------------------------------------===// |
| 97 | // TargetAlignElem, TargetAlign support |
| 98 | //===----------------------------------------------------------------------===// |
| 99 | |
| 100 | TargetAlignElem |
| 101 | TargetAlignElem::get(AlignTypeEnum align_type, unsigned abi_align, |
| 102 | unsigned pref_align, uint32_t bit_width) { |
| 103 | assert(abi_align <= pref_align && "Preferred alignment worse than ABI!"); |
| 104 | TargetAlignElem retval; |
| 105 | retval.AlignType = align_type; |
| 106 | retval.ABIAlign = abi_align; |
| 107 | retval.PrefAlign = pref_align; |
| 108 | retval.TypeBitWidth = bit_width; |
| 109 | return retval; |
| 110 | } |
| 111 | |
| 112 | bool |
| 113 | TargetAlignElem::operator==(const TargetAlignElem &rhs) const { |
| 114 | return (AlignType == rhs.AlignType |
| 115 | && ABIAlign == rhs.ABIAlign |
| 116 | && PrefAlign == rhs.PrefAlign |
| 117 | && TypeBitWidth == rhs.TypeBitWidth); |
| 118 | } |
| 119 | |
| 120 | const TargetAlignElem |
| 121 | TargetData::InvalidAlignmentElem = { (AlignTypeEnum)0xFF, 0, 0, 0 }; |
| 122 | |
| 123 | //===----------------------------------------------------------------------===// |
| 124 | // TargetData Class Implementation |
| 125 | //===----------------------------------------------------------------------===// |
| 126 | |
| 127 | /// getInt - Get an integer ignoring errors. |
| 128 | static int getInt(StringRef R) { |
| 129 | int Result = 0; |
| 130 | R.getAsInteger(10, Result); |
| 131 | return Result; |
| 132 | } |
| 133 | |
| 134 | void TargetData::init() { |
| 135 | initializeTargetDataPass(*PassRegistry::getPassRegistry()); |
| 136 | |
| 137 | LayoutMap = 0; |
| 138 | LittleEndian = false; |
| 139 | PointerMemSize = 8; |
| 140 | PointerABIAlign = 8; |
| 141 | PointerPrefAlign = PointerABIAlign; |
| 142 | StackNaturalAlign = 0; |
| 143 | |
| 144 | // Default alignments |
| 145 | setAlignment(INTEGER_ALIGN, 1, 1, 1); // i1 |
| 146 | setAlignment(INTEGER_ALIGN, 1, 1, 8); // i8 |
| 147 | setAlignment(INTEGER_ALIGN, 2, 2, 16); // i16 |
| 148 | setAlignment(INTEGER_ALIGN, 4, 4, 32); // i32 |
| 149 | setAlignment(INTEGER_ALIGN, 4, 8, 64); // i64 |
| 150 | setAlignment(FLOAT_ALIGN, 2, 2, 16); // half |
| 151 | setAlignment(FLOAT_ALIGN, 4, 4, 32); // float |
| 152 | setAlignment(FLOAT_ALIGN, 8, 8, 64); // double |
| 153 | setAlignment(FLOAT_ALIGN, 16, 16, 128); // ppcf128, quad, ... |
| 154 | setAlignment(VECTOR_ALIGN, 8, 8, 64); // v2i32, v1i64, ... |
| 155 | setAlignment(VECTOR_ALIGN, 16, 16, 128); // v16i8, v8i16, v4i32, ... |
| 156 | setAlignment(AGGREGATE_ALIGN, 0, 8, 0); // struct |
| 157 | } |
| 158 | |
| 159 | std::string TargetData::parseSpecifier(StringRef Desc, TargetData *td) { |
| 160 | |
| 161 | if (td) |
| 162 | td->init(); |
| 163 | |
| 164 | while (!Desc.empty()) { |
| 165 | std::pair<StringRef, StringRef> Split = Desc.split('-'); |
| 166 | StringRef Token = Split.first; |
| 167 | Desc = Split.second; |
| 168 | |
| 169 | if (Token.empty()) |
| 170 | continue; |
| 171 | |
| 172 | Split = Token.split(':'); |
| 173 | StringRef Specifier = Split.first; |
| 174 | Token = Split.second; |
| 175 | |
| 176 | assert(!Specifier.empty() && "Can't be empty here"); |
| 177 | |
| 178 | switch (Specifier[0]) { |
| 179 | case 'E': |
| 180 | if (td) |
| 181 | td->LittleEndian = false; |
| 182 | break; |
| 183 | case 'e': |
| 184 | if (td) |
| 185 | td->LittleEndian = true; |
| 186 | break; |
| 187 | case 'p': { |
| 188 | // Pointer size. |
| 189 | Split = Token.split(':'); |
| 190 | int PointerMemSizeBits = getInt(Split.first); |
| 191 | if (PointerMemSizeBits < 0 || PointerMemSizeBits % 8 != 0) |
| 192 | return "invalid pointer size, must be a positive 8-bit multiple"; |
| 193 | if (td) |
| 194 | td->PointerMemSize = PointerMemSizeBits / 8; |
| 195 | |
| 196 | // Pointer ABI alignment. |
| 197 | Split = Split.second.split(':'); |
| 198 | int PointerABIAlignBits = getInt(Split.first); |
| 199 | if (PointerABIAlignBits < 0 || PointerABIAlignBits % 8 != 0) { |
| 200 | return "invalid pointer ABI alignment, " |
| 201 | "must be a positive 8-bit multiple"; |
| 202 | } |
| 203 | if (td) |
| 204 | td->PointerABIAlign = PointerABIAlignBits / 8; |
| 205 | |
| 206 | // Pointer preferred alignment. |
| 207 | Split = Split.second.split(':'); |
| 208 | int PointerPrefAlignBits = getInt(Split.first); |
| 209 | if (PointerPrefAlignBits < 0 || PointerPrefAlignBits % 8 != 0) { |
| 210 | return "invalid pointer preferred alignment, " |
| 211 | "must be a positive 8-bit multiple"; |
| 212 | } |
| 213 | if (td) { |
| 214 | td->PointerPrefAlign = PointerPrefAlignBits / 8; |
| 215 | if (td->PointerPrefAlign == 0) |
| 216 | td->PointerPrefAlign = td->PointerABIAlign; |
| 217 | } |
| 218 | break; |
| 219 | } |
| 220 | case 'i': |
| 221 | case 'v': |
| 222 | case 'f': |
| 223 | case 'a': |
| 224 | case 's': { |
| 225 | AlignTypeEnum AlignType; |
| 226 | char field = Specifier[0]; |
| 227 | switch (field) { |
| 228 | default: |
| 229 | case 'i': AlignType = INTEGER_ALIGN; break; |
| 230 | case 'v': AlignType = VECTOR_ALIGN; break; |
| 231 | case 'f': AlignType = FLOAT_ALIGN; break; |
| 232 | case 'a': AlignType = AGGREGATE_ALIGN; break; |
| 233 | case 's': AlignType = STACK_ALIGN; break; |
| 234 | } |
| 235 | int Size = getInt(Specifier.substr(1)); |
| 236 | if (Size < 0) { |
| 237 | return std::string("invalid ") + field + "-size field, " |
| 238 | "must be positive"; |
| 239 | } |
| 240 | |
| 241 | Split = Token.split(':'); |
| 242 | int ABIAlignBits = getInt(Split.first); |
| 243 | if (ABIAlignBits < 0 || ABIAlignBits % 8 != 0) { |
| 244 | return std::string("invalid ") + field +"-abi-alignment field, " |
| 245 | "must be a positive 8-bit multiple"; |
| 246 | } |
| 247 | unsigned ABIAlign = ABIAlignBits / 8; |
| 248 | |
| 249 | Split = Split.second.split(':'); |
| 250 | |
| 251 | int PrefAlignBits = getInt(Split.first); |
| 252 | if (PrefAlignBits < 0 || PrefAlignBits % 8 != 0) { |
| 253 | return std::string("invalid ") + field +"-preferred-alignment field, " |
| 254 | "must be a positive 8-bit multiple"; |
| 255 | } |
| 256 | unsigned PrefAlign = PrefAlignBits / 8; |
| 257 | if (PrefAlign == 0) |
| 258 | PrefAlign = ABIAlign; |
| 259 | |
| 260 | if (td) |
| 261 | td->setAlignment(AlignType, ABIAlign, PrefAlign, Size); |
| 262 | break; |
| 263 | } |
| 264 | case 'n': // Native integer types. |
| 265 | Specifier = Specifier.substr(1); |
| 266 | do { |
| 267 | int Width = getInt(Specifier); |
| 268 | if (Width <= 0) { |
| 269 | return std::string("invalid native integer size \'") + Specifier.str() + |
| 270 | "\', must be a positive integer."; |
| 271 | } |
| 272 | if (td && Width != 0) |
| 273 | td->LegalIntWidths.push_back(Width); |
| 274 | Split = Token.split(':'); |
| 275 | Specifier = Split.first; |
| 276 | Token = Split.second; |
| 277 | } while (!Specifier.empty() || !Token.empty()); |
| 278 | break; |
| 279 | case 'S': { // Stack natural alignment. |
| 280 | int StackNaturalAlignBits = getInt(Specifier.substr(1)); |
| 281 | if (StackNaturalAlignBits < 0 || StackNaturalAlignBits % 8 != 0) { |
| 282 | return "invalid natural stack alignment (S-field), " |
| 283 | "must be a positive 8-bit multiple"; |
| 284 | } |
| 285 | if (td) |
| 286 | td->StackNaturalAlign = StackNaturalAlignBits / 8; |
| 287 | break; |
| 288 | } |
| 289 | default: |
| 290 | break; |
| 291 | } |
| 292 | } |
| 293 | |
| 294 | return ""; |
| 295 | } |
| 296 | |
| 297 | /// Default ctor. |
| 298 | /// |
| 299 | /// @note This has to exist, because this is a pass, but it should never be |
| 300 | /// used. |
| 301 | TargetData::TargetData() : ImmutablePass(ID) { |
| 302 | report_fatal_error("Bad TargetData ctor used. " |
| 303 | "Tool did not specify a TargetData to use?"); |
| 304 | } |
| 305 | |
| 306 | TargetData::TargetData(const Module *M) |
| 307 | : ImmutablePass(ID) { |
| 308 | std::string errMsg = parseSpecifier(M->getDataLayout(), this); |
| 309 | assert(errMsg == "" && "Module M has malformed target data layout string."); |
| 310 | (void)errMsg; |
| 311 | } |
| 312 | |
| 313 | void |
| 314 | TargetData::setAlignment(AlignTypeEnum align_type, unsigned abi_align, |
| 315 | unsigned pref_align, uint32_t bit_width) { |
| 316 | assert(abi_align <= pref_align && "Preferred alignment worse than ABI!"); |
| 317 | assert(pref_align < (1 << 16) && "Alignment doesn't fit in bitfield"); |
| 318 | assert(bit_width < (1 << 24) && "Bit width doesn't fit in bitfield"); |
| 319 | for (unsigned i = 0, e = Alignments.size(); i != e; ++i) { |
| 320 | if (Alignments[i].AlignType == align_type && |
| 321 | Alignments[i].TypeBitWidth == bit_width) { |
| 322 | // Update the abi, preferred alignments. |
| 323 | Alignments[i].ABIAlign = abi_align; |
| 324 | Alignments[i].PrefAlign = pref_align; |
| 325 | return; |
| 326 | } |
| 327 | } |
| 328 | |
| 329 | Alignments.push_back(TargetAlignElem::get(align_type, abi_align, |
| 330 | pref_align, bit_width)); |
| 331 | } |
| 332 | |
| 333 | /// getAlignmentInfo - Return the alignment (either ABI if ABIInfo = true or |
| 334 | /// preferred if ABIInfo = false) the target wants for the specified datatype. |
| 335 | unsigned TargetData::getAlignmentInfo(AlignTypeEnum AlignType, |
| 336 | uint32_t BitWidth, bool ABIInfo, |
| 337 | Type *Ty) const { |
| 338 | // Check to see if we have an exact match and remember the best match we see. |
| 339 | int BestMatchIdx = -1; |
| 340 | int LargestInt = -1; |
| 341 | for (unsigned i = 0, e = Alignments.size(); i != e; ++i) { |
| 342 | if (Alignments[i].AlignType == AlignType && |
| 343 | Alignments[i].TypeBitWidth == BitWidth) |
| 344 | return ABIInfo ? Alignments[i].ABIAlign : Alignments[i].PrefAlign; |
| 345 | |
| 346 | // The best match so far depends on what we're looking for. |
| 347 | if (AlignType == INTEGER_ALIGN && |
| 348 | Alignments[i].AlignType == INTEGER_ALIGN) { |
| 349 | // The "best match" for integers is the smallest size that is larger than |
| 350 | // the BitWidth requested. |
| 351 | if (Alignments[i].TypeBitWidth > BitWidth && (BestMatchIdx == -1 || |
| 352 | Alignments[i].TypeBitWidth < Alignments[BestMatchIdx].TypeBitWidth)) |
| 353 | BestMatchIdx = i; |
| 354 | // However, if there isn't one that's larger, then we must use the |
| 355 | // largest one we have (see below) |
| 356 | if (LargestInt == -1 || |
| 357 | Alignments[i].TypeBitWidth > Alignments[LargestInt].TypeBitWidth) |
| 358 | LargestInt = i; |
| 359 | } |
| 360 | } |
| 361 | |
| 362 | // Okay, we didn't find an exact solution. Fall back here depending on what |
| 363 | // is being looked for. |
| 364 | if (BestMatchIdx == -1) { |
| 365 | // If we didn't find an integer alignment, fall back on most conservative. |
| 366 | if (AlignType == INTEGER_ALIGN) { |
| 367 | BestMatchIdx = LargestInt; |
| 368 | } else { |
| 369 | assert(AlignType == VECTOR_ALIGN && "Unknown alignment type!"); |
| 370 | |
| 371 | // By default, use natural alignment for vector types. This is consistent |
| 372 | // with what clang and llvm-gcc do. |
| 373 | unsigned Align = getTypeAllocSize(cast<VectorType>(Ty)->getElementType()); |
| 374 | Align *= cast<VectorType>(Ty)->getNumElements(); |
| 375 | // If the alignment is not a power of 2, round up to the next power of 2. |
| 376 | // This happens for non-power-of-2 length vectors. |
| 377 | if (Align & (Align-1)) |
| 378 | Align = NextPowerOf2(Align); |
| 379 | return Align; |
| 380 | } |
| 381 | } |
| 382 | |
| 383 | // Since we got a "best match" index, just return it. |
| 384 | return ABIInfo ? Alignments[BestMatchIdx].ABIAlign |
| 385 | : Alignments[BestMatchIdx].PrefAlign; |
| 386 | } |
| 387 | |
| 388 | namespace { |
| 389 | |
| 390 | class StructLayoutMap { |
| 391 | typedef DenseMap<StructType*, StructLayout*> LayoutInfoTy; |
| 392 | LayoutInfoTy LayoutInfo; |
| 393 | |
| 394 | public: |
| 395 | virtual ~StructLayoutMap() { |
| 396 | // Remove any layouts. |
| 397 | for (LayoutInfoTy::iterator I = LayoutInfo.begin(), E = LayoutInfo.end(); |
| 398 | I != E; ++I) { |
| 399 | StructLayout *Value = I->second; |
| 400 | Value->~StructLayout(); |
| 401 | free(Value); |
| 402 | } |
| 403 | } |
| 404 | |
| 405 | StructLayout *&operator[](StructType *STy) { |
| 406 | return LayoutInfo[STy]; |
| 407 | } |
| 408 | |
| 409 | // for debugging... |
| 410 | virtual void dump() const {} |
| 411 | }; |
| 412 | |
| 413 | } // end anonymous namespace |
| 414 | |
| 415 | TargetData::~TargetData() { |
| 416 | delete static_cast<StructLayoutMap*>(LayoutMap); |
| 417 | } |
| 418 | |
| 419 | const StructLayout *TargetData::getStructLayout(StructType *Ty) const { |
| 420 | if (!LayoutMap) |
| 421 | LayoutMap = new StructLayoutMap(); |
| 422 | |
| 423 | StructLayoutMap *STM = static_cast<StructLayoutMap*>(LayoutMap); |
| 424 | StructLayout *&SL = (*STM)[Ty]; |
| 425 | if (SL) return SL; |
| 426 | |
| 427 | // Otherwise, create the struct layout. Because it is variable length, we |
| 428 | // malloc it, then use placement new. |
| 429 | int NumElts = Ty->getNumElements(); |
| 430 | StructLayout *L = |
| 431 | (StructLayout *)malloc(sizeof(StructLayout)+(NumElts-1) * sizeof(uint64_t)); |
| 432 | |
| 433 | // Set SL before calling StructLayout's ctor. The ctor could cause other |
| 434 | // entries to be added to TheMap, invalidating our reference. |
| 435 | SL = L; |
| 436 | |
| 437 | new (L) StructLayout(Ty, *this); |
| 438 | |
| 439 | return L; |
| 440 | } |
| 441 | |
| 442 | std::string TargetData::getStringRepresentation() const { |
| 443 | std::string Result; |
| 444 | raw_string_ostream OS(Result); |
| 445 | |
| 446 | OS << (LittleEndian ? "e" : "E") |
| 447 | << "-p:" << PointerMemSize*8 << ':' << PointerABIAlign*8 |
| 448 | << ':' << PointerPrefAlign*8 |
| 449 | << "-S" << StackNaturalAlign*8; |
| 450 | |
| 451 | for (unsigned i = 0, e = Alignments.size(); i != e; ++i) { |
| 452 | const TargetAlignElem &AI = Alignments[i]; |
| 453 | OS << '-' << (char)AI.AlignType << AI.TypeBitWidth << ':' |
| 454 | << AI.ABIAlign*8 << ':' << AI.PrefAlign*8; |
| 455 | } |
| 456 | |
| 457 | if (!LegalIntWidths.empty()) { |
| 458 | OS << "-n" << (unsigned)LegalIntWidths[0]; |
| 459 | |
| 460 | for (unsigned i = 1, e = LegalIntWidths.size(); i != e; ++i) |
| 461 | OS << ':' << (unsigned)LegalIntWidths[i]; |
| 462 | } |
| 463 | return OS.str(); |
| 464 | } |
| 465 | |
| 466 | |
| 467 | uint64_t TargetData::getTypeSizeInBits(Type *Ty) const { |
| 468 | assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!"); |
| 469 | switch (Ty->getTypeID()) { |
| 470 | case Type::LabelTyID: |
| 471 | case Type::PointerTyID: |
| 472 | return getPointerSizeInBits(); |
| 473 | case Type::ArrayTyID: { |
| 474 | ArrayType *ATy = cast<ArrayType>(Ty); |
| 475 | return getTypeAllocSizeInBits(ATy->getElementType())*ATy->getNumElements(); |
| 476 | } |
| 477 | case Type::StructTyID: |
| 478 | // Get the layout annotation... which is lazily created on demand. |
| 479 | return getStructLayout(cast<StructType>(Ty))->getSizeInBits(); |
| 480 | case Type::IntegerTyID: |
| 481 | return cast<IntegerType>(Ty)->getBitWidth(); |
| 482 | case Type::VoidTyID: |
| 483 | return 8; |
| 484 | case Type::HalfTyID: |
| 485 | return 16; |
| 486 | case Type::FloatTyID: |
| 487 | return 32; |
| 488 | case Type::DoubleTyID: |
| 489 | case Type::X86_MMXTyID: |
| 490 | return 64; |
| 491 | case Type::PPC_FP128TyID: |
| 492 | case Type::FP128TyID: |
| 493 | return 128; |
| 494 | // In memory objects this is always aligned to a higher boundary, but |
| 495 | // only 80 bits contain information. |
| 496 | case Type::X86_FP80TyID: |
| 497 | return 80; |
| 498 | case Type::VectorTyID: |
| 499 | return cast<VectorType>(Ty)->getBitWidth(); |
| 500 | default: |
| 501 | llvm_unreachable("TargetData::getTypeSizeInBits(): Unsupported type"); |
| 502 | } |
| 503 | } |
| 504 | |
| 505 | /*! |
| 506 | \param abi_or_pref Flag that determines which alignment is returned. true |
| 507 | returns the ABI alignment, false returns the preferred alignment. |
| 508 | \param Ty The underlying type for which alignment is determined. |
| 509 | |
| 510 | Get the ABI (\a abi_or_pref == true) or preferred alignment (\a abi_or_pref |
| 511 | == false) for the requested type \a Ty. |
| 512 | */ |
| 513 | unsigned TargetData::getAlignment(Type *Ty, bool abi_or_pref) const { |
| 514 | int AlignType = -1; |
| 515 | |
| 516 | assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!"); |
| 517 | switch (Ty->getTypeID()) { |
| 518 | // Early escape for the non-numeric types. |
| 519 | case Type::LabelTyID: |
| 520 | case Type::PointerTyID: |
| 521 | return (abi_or_pref |
| 522 | ? getPointerABIAlignment() |
| 523 | : getPointerPrefAlignment()); |
| 524 | case Type::ArrayTyID: |
| 525 | return getAlignment(cast<ArrayType>(Ty)->getElementType(), abi_or_pref); |
| 526 | |
| 527 | case Type::StructTyID: { |
| 528 | // Packed structure types always have an ABI alignment of one. |
| 529 | if (cast<StructType>(Ty)->isPacked() && abi_or_pref) |
| 530 | return 1; |
| 531 | |
| 532 | // Get the layout annotation... which is lazily created on demand. |
| 533 | const StructLayout *Layout = getStructLayout(cast<StructType>(Ty)); |
| 534 | unsigned Align = getAlignmentInfo(AGGREGATE_ALIGN, 0, abi_or_pref, Ty); |
| 535 | return std::max(Align, Layout->getAlignment()); |
| 536 | } |
| 537 | case Type::IntegerTyID: |
| 538 | case Type::VoidTyID: |
| 539 | AlignType = INTEGER_ALIGN; |
| 540 | break; |
| 541 | case Type::HalfTyID: |
| 542 | case Type::FloatTyID: |
| 543 | case Type::DoubleTyID: |
| 544 | // PPC_FP128TyID and FP128TyID have different data contents, but the |
| 545 | // same size and alignment, so they look the same here. |
| 546 | case Type::PPC_FP128TyID: |
| 547 | case Type::FP128TyID: |
| 548 | case Type::X86_FP80TyID: |
| 549 | AlignType = FLOAT_ALIGN; |
| 550 | break; |
| 551 | case Type::X86_MMXTyID: |
| 552 | case Type::VectorTyID: |
| 553 | AlignType = VECTOR_ALIGN; |
| 554 | break; |
| 555 | default: |
| 556 | llvm_unreachable("Bad type for getAlignment!!!"); |
| 557 | } |
| 558 | |
| 559 | return getAlignmentInfo((AlignTypeEnum)AlignType, getTypeSizeInBits(Ty), |
| 560 | abi_or_pref, Ty); |
| 561 | } |
| 562 | |
| 563 | unsigned TargetData::getABITypeAlignment(Type *Ty) const { |
| 564 | return getAlignment(Ty, true); |
| 565 | } |
| 566 | |
| 567 | /// getABIIntegerTypeAlignment - Return the minimum ABI-required alignment for |
| 568 | /// an integer type of the specified bitwidth. |
| 569 | unsigned TargetData::getABIIntegerTypeAlignment(unsigned BitWidth) const { |
| 570 | return getAlignmentInfo(INTEGER_ALIGN, BitWidth, true, 0); |
| 571 | } |
| 572 | |
| 573 | |
| 574 | unsigned TargetData::getCallFrameTypeAlignment(Type *Ty) const { |
| 575 | for (unsigned i = 0, e = Alignments.size(); i != e; ++i) |
| 576 | if (Alignments[i].AlignType == STACK_ALIGN) |
| 577 | return Alignments[i].ABIAlign; |
| 578 | |
| 579 | return getABITypeAlignment(Ty); |
| 580 | } |
| 581 | |
| 582 | unsigned TargetData::getPrefTypeAlignment(Type *Ty) const { |
| 583 | return getAlignment(Ty, false); |
| 584 | } |
| 585 | |
| 586 | unsigned TargetData::getPreferredTypeAlignmentShift(Type *Ty) const { |
| 587 | unsigned Align = getPrefTypeAlignment(Ty); |
| 588 | assert(!(Align & (Align-1)) && "Alignment is not a power of two!"); |
| 589 | return Log2_32(Align); |
| 590 | } |
| 591 | |
| 592 | /// getIntPtrType - Return an unsigned integer type that is the same size or |
| 593 | /// greater to the host pointer size. |
| 594 | IntegerType *TargetData::getIntPtrType(LLVMContext &C) const { |
| 595 | return IntegerType::get(C, getPointerSizeInBits()); |
| 596 | } |
| 597 | |
| 598 | |
| 599 | uint64_t TargetData::getIndexedOffset(Type *ptrTy, |
| 600 | ArrayRef<Value *> Indices) const { |
| 601 | Type *Ty = ptrTy; |
| 602 | assert(Ty->isPointerTy() && "Illegal argument for getIndexedOffset()"); |
| 603 | uint64_t Result = 0; |
| 604 | |
| 605 | generic_gep_type_iterator<Value* const*> |
| 606 | TI = gep_type_begin(ptrTy, Indices); |
| 607 | for (unsigned CurIDX = 0, EndIDX = Indices.size(); CurIDX != EndIDX; |
| 608 | ++CurIDX, ++TI) { |
| 609 | if (StructType *STy = dyn_cast<StructType>(*TI)) { |
| 610 | assert(Indices[CurIDX]->getType() == |
| 611 | Type::getInt32Ty(ptrTy->getContext()) && |
| 612 | "Illegal struct idx"); |
| 613 | unsigned FieldNo = cast<ConstantInt>(Indices[CurIDX])->getZExtValue(); |
| 614 | |
| 615 | // Get structure layout information... |
| 616 | const StructLayout *Layout = getStructLayout(STy); |
| 617 | |
| 618 | // Add in the offset, as calculated by the structure layout info... |
| 619 | Result += Layout->getElementOffset(FieldNo); |
| 620 | |
| 621 | // Update Ty to refer to current element |
| 622 | Ty = STy->getElementType(FieldNo); |
| 623 | } else { |
| 624 | // Update Ty to refer to current element |
| 625 | Ty = cast<SequentialType>(Ty)->getElementType(); |
| 626 | |
| 627 | // Get the array index and the size of each array element. |
| 628 | if (int64_t arrayIdx = cast<ConstantInt>(Indices[CurIDX])->getSExtValue()) |
| 629 | Result += (uint64_t)arrayIdx * getTypeAllocSize(Ty); |
| 630 | } |
| 631 | } |
| 632 | |
| 633 | return Result; |
| 634 | } |
| 635 | |
| 636 | /// getPreferredAlignment - Return the preferred alignment of the specified |
| 637 | /// global. This includes an explicitly requested alignment (if the global |
| 638 | /// has one). |
| 639 | unsigned TargetData::getPreferredAlignment(const GlobalVariable *GV) const { |
| 640 | Type *ElemType = GV->getType()->getElementType(); |
| 641 | unsigned Alignment = getPrefTypeAlignment(ElemType); |
| 642 | unsigned GVAlignment = GV->getAlignment(); |
| 643 | if (GVAlignment >= Alignment) { |
| 644 | Alignment = GVAlignment; |
| 645 | } else if (GVAlignment != 0) { |
| 646 | Alignment = std::max(GVAlignment, getABITypeAlignment(ElemType)); |
| 647 | } |
| 648 | |
| 649 | if (GV->hasInitializer() && GVAlignment == 0) { |
| 650 | if (Alignment < 16) { |
| 651 | // If the global is not external, see if it is large. If so, give it a |
| 652 | // larger alignment. |
| 653 | if (getTypeSizeInBits(ElemType) > 128) |
| 654 | Alignment = 16; // 16-byte alignment. |
| 655 | } |
| 656 | } |
| 657 | return Alignment; |
| 658 | } |
| 659 | |
| 660 | /// getPreferredAlignmentLog - Return the preferred alignment of the |
| 661 | /// specified global, returned in log form. This includes an explicitly |
| 662 | /// requested alignment (if the global has one). |
| 663 | unsigned TargetData::getPreferredAlignmentLog(const GlobalVariable *GV) const { |
| 664 | return Log2_32(getPreferredAlignment(GV)); |
| 665 | } |