Jia Liu | b22310f | 2012-02-18 12:03:15 +0000 | [diff] [blame] | 1 | //===-- ARMAddressingModes.h - ARM Addressing Modes -------------*- C++ -*-===// |
Evan Cheng | 10043e2 | 2007-01-19 07:51:42 +0000 | [diff] [blame] | 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
Chris Lattner | f3ebc3f | 2007-12-29 20:36:04 +0000 | [diff] [blame] | 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
Evan Cheng | 10043e2 | 2007-01-19 07:51:42 +0000 | [diff] [blame] | 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file contains the ARM addressing mode implementation stuff. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #ifndef LLVM_TARGET_ARM_ARMADDRESSINGMODES_H |
| 15 | #define LLVM_TARGET_ARM_ARMADDRESSINGMODES_H |
| 16 | |
Jim Grosbach | efc761a | 2011-09-30 00:50:06 +0000 | [diff] [blame] | 17 | #include "llvm/ADT/APFloat.h" |
| 18 | #include "llvm/ADT/APInt.h" |
Craig Topper | e55c556 | 2012-02-07 02:50:20 +0000 | [diff] [blame] | 19 | #include "llvm/Support/ErrorHandling.h" |
Evan Cheng | 10043e2 | 2007-01-19 07:51:42 +0000 | [diff] [blame] | 20 | #include "llvm/Support/MathExtras.h" |
| 21 | #include <cassert> |
| 22 | |
| 23 | namespace llvm { |
Jim Grosbach | f24f9d9 | 2009-08-11 15:33:49 +0000 | [diff] [blame] | 24 | |
Evan Cheng | 10043e2 | 2007-01-19 07:51:42 +0000 | [diff] [blame] | 25 | /// ARM_AM - ARM Addressing Mode Stuff |
| 26 | namespace ARM_AM { |
| 27 | enum ShiftOpc { |
| 28 | no_shift = 0, |
| 29 | asr, |
| 30 | lsl, |
| 31 | lsr, |
| 32 | ror, |
| 33 | rrx |
| 34 | }; |
Jim Grosbach | f24f9d9 | 2009-08-11 15:33:49 +0000 | [diff] [blame] | 35 | |
Evan Cheng | 10043e2 | 2007-01-19 07:51:42 +0000 | [diff] [blame] | 36 | enum AddrOpc { |
Jim Grosbach | d359571 | 2011-08-03 23:50:40 +0000 | [diff] [blame] | 37 | sub = 0, |
| 38 | add |
Evan Cheng | 10043e2 | 2007-01-19 07:51:42 +0000 | [diff] [blame] | 39 | }; |
Jim Grosbach | f24f9d9 | 2009-08-11 15:33:49 +0000 | [diff] [blame] | 40 | |
Johnny Chen | 8f3004c | 2010-03-17 17:52:21 +0000 | [diff] [blame] | 41 | static inline const char *getAddrOpcStr(AddrOpc Op) { |
| 42 | return Op == sub ? "-" : ""; |
| 43 | } |
| 44 | |
Evan Cheng | 10043e2 | 2007-01-19 07:51:42 +0000 | [diff] [blame] | 45 | static inline const char *getShiftOpcStr(ShiftOpc Op) { |
| 46 | switch (Op) { |
Craig Topper | e55c556 | 2012-02-07 02:50:20 +0000 | [diff] [blame] | 47 | default: llvm_unreachable("Unknown shift opc!"); |
Evan Cheng | 10043e2 | 2007-01-19 07:51:42 +0000 | [diff] [blame] | 48 | case ARM_AM::asr: return "asr"; |
| 49 | case ARM_AM::lsl: return "lsl"; |
| 50 | case ARM_AM::lsr: return "lsr"; |
| 51 | case ARM_AM::ror: return "ror"; |
| 52 | case ARM_AM::rrx: return "rrx"; |
| 53 | } |
| 54 | } |
Jim Grosbach | f24f9d9 | 2009-08-11 15:33:49 +0000 | [diff] [blame] | 55 | |
Jim Grosbach | b7c2962 | 2010-10-11 23:16:21 +0000 | [diff] [blame] | 56 | static inline unsigned getShiftOpcEncoding(ShiftOpc Op) { |
| 57 | switch (Op) { |
Craig Topper | e55c556 | 2012-02-07 02:50:20 +0000 | [diff] [blame] | 58 | default: llvm_unreachable("Unknown shift opc!"); |
Jim Grosbach | b7c2962 | 2010-10-11 23:16:21 +0000 | [diff] [blame] | 59 | case ARM_AM::asr: return 2; |
| 60 | case ARM_AM::lsl: return 0; |
| 61 | case ARM_AM::lsr: return 1; |
| 62 | case ARM_AM::ror: return 3; |
| 63 | } |
| 64 | } |
| 65 | |
Evan Cheng | 10043e2 | 2007-01-19 07:51:42 +0000 | [diff] [blame] | 66 | enum AMSubMode { |
| 67 | bad_am_submode = 0, |
| 68 | ia, |
| 69 | ib, |
| 70 | da, |
| 71 | db |
| 72 | }; |
| 73 | |
| 74 | static inline const char *getAMSubModeStr(AMSubMode Mode) { |
| 75 | switch (Mode) { |
Craig Topper | e55c556 | 2012-02-07 02:50:20 +0000 | [diff] [blame] | 76 | default: llvm_unreachable("Unknown addressing sub-mode!"); |
Evan Cheng | 10043e2 | 2007-01-19 07:51:42 +0000 | [diff] [blame] | 77 | case ARM_AM::ia: return "ia"; |
| 78 | case ARM_AM::ib: return "ib"; |
| 79 | case ARM_AM::da: return "da"; |
| 80 | case ARM_AM::db: return "db"; |
| 81 | } |
| 82 | } |
| 83 | |
Evan Cheng | 10043e2 | 2007-01-19 07:51:42 +0000 | [diff] [blame] | 84 | /// rotr32 - Rotate a 32-bit unsigned value right by a specified # bits. |
| 85 | /// |
| 86 | static inline unsigned rotr32(unsigned Val, unsigned Amt) { |
| 87 | assert(Amt < 32 && "Invalid rotate amount"); |
| 88 | return (Val >> Amt) | (Val << ((32-Amt)&31)); |
| 89 | } |
Jim Grosbach | f24f9d9 | 2009-08-11 15:33:49 +0000 | [diff] [blame] | 90 | |
Evan Cheng | 10043e2 | 2007-01-19 07:51:42 +0000 | [diff] [blame] | 91 | /// rotl32 - Rotate a 32-bit unsigned value left by a specified # bits. |
| 92 | /// |
| 93 | static inline unsigned rotl32(unsigned Val, unsigned Amt) { |
| 94 | assert(Amt < 32 && "Invalid rotate amount"); |
| 95 | return (Val << Amt) | (Val >> ((32-Amt)&31)); |
| 96 | } |
Jim Grosbach | f24f9d9 | 2009-08-11 15:33:49 +0000 | [diff] [blame] | 97 | |
Evan Cheng | 10043e2 | 2007-01-19 07:51:42 +0000 | [diff] [blame] | 98 | //===--------------------------------------------------------------------===// |
| 99 | // Addressing Mode #1: shift_operand with registers |
| 100 | //===--------------------------------------------------------------------===// |
| 101 | // |
| 102 | // This 'addressing mode' is used for arithmetic instructions. It can |
| 103 | // represent things like: |
| 104 | // reg |
| 105 | // reg [asr|lsl|lsr|ror|rrx] reg |
| 106 | // reg [asr|lsl|lsr|ror|rrx] imm |
| 107 | // |
| 108 | // This is stored three operands [rega, regb, opc]. The first is the base |
| 109 | // reg, the second is the shift amount (or reg0 if not present or imm). The |
| 110 | // third operand encodes the shift opcode and the imm if a reg isn't present. |
| 111 | // |
| 112 | static inline unsigned getSORegOpc(ShiftOpc ShOp, unsigned Imm) { |
| 113 | return ShOp | (Imm << 3); |
| 114 | } |
| 115 | static inline unsigned getSORegOffset(unsigned Op) { |
| 116 | return Op >> 3; |
| 117 | } |
| 118 | static inline ShiftOpc getSORegShOp(unsigned Op) { |
| 119 | return (ShiftOpc)(Op & 7); |
| 120 | } |
| 121 | |
| 122 | /// getSOImmValImm - Given an encoded imm field for the reg/imm form, return |
| 123 | /// the 8-bit imm value. |
| 124 | static inline unsigned getSOImmValImm(unsigned Imm) { |
| 125 | return Imm & 0xFF; |
| 126 | } |
Bob Wilson | 57178e8 | 2009-03-30 18:49:37 +0000 | [diff] [blame] | 127 | /// getSOImmValRot - Given an encoded imm field for the reg/imm form, return |
Evan Cheng | 10043e2 | 2007-01-19 07:51:42 +0000 | [diff] [blame] | 128 | /// the rotate amount. |
| 129 | static inline unsigned getSOImmValRot(unsigned Imm) { |
| 130 | return (Imm >> 8) * 2; |
| 131 | } |
Jim Grosbach | f24f9d9 | 2009-08-11 15:33:49 +0000 | [diff] [blame] | 132 | |
Evan Cheng | 10043e2 | 2007-01-19 07:51:42 +0000 | [diff] [blame] | 133 | /// getSOImmValRotate - Try to handle Imm with an immediate shifter operand, |
| 134 | /// computing the rotate amount to use. If this immediate value cannot be |
| 135 | /// handled with a single shifter-op, determine a good rotate amount that will |
| 136 | /// take a maximal chunk of bits out of the immediate. |
| 137 | static inline unsigned getSOImmValRotate(unsigned Imm) { |
| 138 | // 8-bit (or less) immediates are trivially shifter_operands with a rotate |
| 139 | // of zero. |
| 140 | if ((Imm & ~255U) == 0) return 0; |
Jim Grosbach | f24f9d9 | 2009-08-11 15:33:49 +0000 | [diff] [blame] | 141 | |
Evan Cheng | 10043e2 | 2007-01-19 07:51:42 +0000 | [diff] [blame] | 142 | // Use CTZ to compute the rotate amount. |
Michael J. Spencer | df1ecbd7 | 2013-05-24 22:23:49 +0000 | [diff] [blame] | 143 | unsigned TZ = countTrailingZeros(Imm); |
Jim Grosbach | f24f9d9 | 2009-08-11 15:33:49 +0000 | [diff] [blame] | 144 | |
Evan Cheng | 10043e2 | 2007-01-19 07:51:42 +0000 | [diff] [blame] | 145 | // Rotate amount must be even. Something like 0x200 must be rotated 8 bits, |
| 146 | // not 9. |
| 147 | unsigned RotAmt = TZ & ~1; |
Jim Grosbach | f24f9d9 | 2009-08-11 15:33:49 +0000 | [diff] [blame] | 148 | |
Evan Cheng | 10043e2 | 2007-01-19 07:51:42 +0000 | [diff] [blame] | 149 | // If we can handle this spread, return it. |
| 150 | if ((rotr32(Imm, RotAmt) & ~255U) == 0) |
| 151 | return (32-RotAmt)&31; // HW rotates right, not left. |
| 152 | |
Johnny Chen | 44d7d18 | 2010-04-13 20:35:16 +0000 | [diff] [blame] | 153 | // For values like 0xF000000F, we should ignore the low 6 bits, then |
Evan Cheng | 10043e2 | 2007-01-19 07:51:42 +0000 | [diff] [blame] | 154 | // retry the hunt. |
Johnny Chen | 44d7d18 | 2010-04-13 20:35:16 +0000 | [diff] [blame] | 155 | if (Imm & 63U) { |
Michael J. Spencer | df1ecbd7 | 2013-05-24 22:23:49 +0000 | [diff] [blame] | 156 | unsigned TZ2 = countTrailingZeros(Imm & ~63U); |
Bob Wilson | af7674c | 2010-04-13 02:11:48 +0000 | [diff] [blame] | 157 | unsigned RotAmt2 = TZ2 & ~1; |
| 158 | if ((rotr32(Imm, RotAmt2) & ~255U) == 0) |
| 159 | return (32-RotAmt2)&31; // HW rotates right, not left. |
Evan Cheng | 10043e2 | 2007-01-19 07:51:42 +0000 | [diff] [blame] | 160 | } |
Jim Grosbach | f24f9d9 | 2009-08-11 15:33:49 +0000 | [diff] [blame] | 161 | |
Evan Cheng | 10043e2 | 2007-01-19 07:51:42 +0000 | [diff] [blame] | 162 | // Otherwise, we have no way to cover this span of bits with a single |
| 163 | // shifter_op immediate. Return a chunk of bits that will be useful to |
| 164 | // handle. |
| 165 | return (32-RotAmt)&31; // HW rotates right, not left. |
| 166 | } |
| 167 | |
| 168 | /// getSOImmVal - Given a 32-bit immediate, if it is something that can fit |
| 169 | /// into an shifter_operand immediate operand, return the 12-bit encoding for |
| 170 | /// it. If not, return -1. |
| 171 | static inline int getSOImmVal(unsigned Arg) { |
| 172 | // 8-bit (or less) immediates are trivially shifter_operands with a rotate |
| 173 | // of zero. |
| 174 | if ((Arg & ~255U) == 0) return Arg; |
Jim Grosbach | f24f9d9 | 2009-08-11 15:33:49 +0000 | [diff] [blame] | 175 | |
Johnny Chen | 6e81f67 | 2010-03-17 18:32:39 +0000 | [diff] [blame] | 176 | unsigned RotAmt = getSOImmValRotate(Arg); |
Evan Cheng | 10043e2 | 2007-01-19 07:51:42 +0000 | [diff] [blame] | 177 | |
| 178 | // If this cannot be handled with a single shifter_op, bail out. |
| 179 | if (rotr32(~255U, RotAmt) & Arg) |
| 180 | return -1; |
Jim Grosbach | f24f9d9 | 2009-08-11 15:33:49 +0000 | [diff] [blame] | 181 | |
Evan Cheng | 10043e2 | 2007-01-19 07:51:42 +0000 | [diff] [blame] | 182 | // Encode this correctly. |
| 183 | return rotl32(Arg, RotAmt) | ((RotAmt>>1) << 8); |
| 184 | } |
Jim Grosbach | f24f9d9 | 2009-08-11 15:33:49 +0000 | [diff] [blame] | 185 | |
Evan Cheng | 10043e2 | 2007-01-19 07:51:42 +0000 | [diff] [blame] | 186 | /// isSOImmTwoPartVal - Return true if the specified value can be obtained by |
| 187 | /// or'ing together two SOImmVal's. |
| 188 | static inline bool isSOImmTwoPartVal(unsigned V) { |
| 189 | // If this can be handled with a single shifter_op, bail out. |
| 190 | V = rotr32(~255U, getSOImmValRotate(V)) & V; |
| 191 | if (V == 0) |
| 192 | return false; |
Jim Grosbach | f24f9d9 | 2009-08-11 15:33:49 +0000 | [diff] [blame] | 193 | |
Evan Cheng | 10043e2 | 2007-01-19 07:51:42 +0000 | [diff] [blame] | 194 | // If this can be handled with two shifter_op's, accept. |
| 195 | V = rotr32(~255U, getSOImmValRotate(V)) & V; |
| 196 | return V == 0; |
| 197 | } |
Jim Grosbach | f24f9d9 | 2009-08-11 15:33:49 +0000 | [diff] [blame] | 198 | |
Evan Cheng | 10043e2 | 2007-01-19 07:51:42 +0000 | [diff] [blame] | 199 | /// getSOImmTwoPartFirst - If V is a value that satisfies isSOImmTwoPartVal, |
| 200 | /// return the first chunk of it. |
| 201 | static inline unsigned getSOImmTwoPartFirst(unsigned V) { |
| 202 | return rotr32(255U, getSOImmValRotate(V)) & V; |
| 203 | } |
| 204 | |
| 205 | /// getSOImmTwoPartSecond - If V is a value that satisfies isSOImmTwoPartVal, |
| 206 | /// return the second chunk of it. |
| 207 | static inline unsigned getSOImmTwoPartSecond(unsigned V) { |
Jim Grosbach | f24f9d9 | 2009-08-11 15:33:49 +0000 | [diff] [blame] | 208 | // Mask out the first hunk. |
Evan Cheng | 10043e2 | 2007-01-19 07:51:42 +0000 | [diff] [blame] | 209 | V = rotr32(~255U, getSOImmValRotate(V)) & V; |
Jim Grosbach | f24f9d9 | 2009-08-11 15:33:49 +0000 | [diff] [blame] | 210 | |
Evan Cheng | 10043e2 | 2007-01-19 07:51:42 +0000 | [diff] [blame] | 211 | // Take what's left. |
| 212 | assert(V == (rotr32(255U, getSOImmValRotate(V)) & V)); |
| 213 | return V; |
| 214 | } |
Jim Grosbach | f24f9d9 | 2009-08-11 15:33:49 +0000 | [diff] [blame] | 215 | |
Evan Cheng | 10043e2 | 2007-01-19 07:51:42 +0000 | [diff] [blame] | 216 | /// getThumbImmValShift - Try to handle Imm with a 8-bit immediate followed |
| 217 | /// by a left shift. Returns the shift amount to use. |
| 218 | static inline unsigned getThumbImmValShift(unsigned Imm) { |
| 219 | // 8-bit (or less) immediates are trivially immediate operand with a shift |
| 220 | // of zero. |
| 221 | if ((Imm & ~255U) == 0) return 0; |
| 222 | |
| 223 | // Use CTZ to compute the shift amount. |
Michael J. Spencer | df1ecbd7 | 2013-05-24 22:23:49 +0000 | [diff] [blame] | 224 | return countTrailingZeros(Imm); |
Evan Cheng | 10043e2 | 2007-01-19 07:51:42 +0000 | [diff] [blame] | 225 | } |
| 226 | |
| 227 | /// isThumbImmShiftedVal - Return true if the specified value can be obtained |
| 228 | /// by left shifting a 8-bit immediate. |
| 229 | static inline bool isThumbImmShiftedVal(unsigned V) { |
Jim Grosbach | f24f9d9 | 2009-08-11 15:33:49 +0000 | [diff] [blame] | 230 | // If this can be handled with |
Evan Cheng | 10043e2 | 2007-01-19 07:51:42 +0000 | [diff] [blame] | 231 | V = (~255U << getThumbImmValShift(V)) & V; |
| 232 | return V == 0; |
| 233 | } |
| 234 | |
Evan Cheng | 431cf56 | 2009-06-23 17:48:47 +0000 | [diff] [blame] | 235 | /// getThumbImm16ValShift - Try to handle Imm with a 16-bit immediate followed |
| 236 | /// by a left shift. Returns the shift amount to use. |
| 237 | static inline unsigned getThumbImm16ValShift(unsigned Imm) { |
| 238 | // 16-bit (or less) immediates are trivially immediate operand with a shift |
| 239 | // of zero. |
| 240 | if ((Imm & ~65535U) == 0) return 0; |
| 241 | |
| 242 | // Use CTZ to compute the shift amount. |
Michael J. Spencer | df1ecbd7 | 2013-05-24 22:23:49 +0000 | [diff] [blame] | 243 | return countTrailingZeros(Imm); |
Evan Cheng | 431cf56 | 2009-06-23 17:48:47 +0000 | [diff] [blame] | 244 | } |
| 245 | |
Jim Grosbach | f24f9d9 | 2009-08-11 15:33:49 +0000 | [diff] [blame] | 246 | /// isThumbImm16ShiftedVal - Return true if the specified value can be |
Evan Cheng | 431cf56 | 2009-06-23 17:48:47 +0000 | [diff] [blame] | 247 | /// obtained by left shifting a 16-bit immediate. |
| 248 | static inline bool isThumbImm16ShiftedVal(unsigned V) { |
Jim Grosbach | f24f9d9 | 2009-08-11 15:33:49 +0000 | [diff] [blame] | 249 | // If this can be handled with |
Evan Cheng | 431cf56 | 2009-06-23 17:48:47 +0000 | [diff] [blame] | 250 | V = (~65535U << getThumbImm16ValShift(V)) & V; |
| 251 | return V == 0; |
| 252 | } |
| 253 | |
Evan Cheng | 10043e2 | 2007-01-19 07:51:42 +0000 | [diff] [blame] | 254 | /// getThumbImmNonShiftedVal - If V is a value that satisfies |
| 255 | /// isThumbImmShiftedVal, return the non-shiftd value. |
| 256 | static inline unsigned getThumbImmNonShiftedVal(unsigned V) { |
| 257 | return V >> getThumbImmValShift(V); |
| 258 | } |
| 259 | |
Evan Cheng | 780748d | 2009-07-28 05:48:47 +0000 | [diff] [blame] | 260 | |
Evan Cheng | 431cf56 | 2009-06-23 17:48:47 +0000 | [diff] [blame] | 261 | /// getT2SOImmValSplat - Return the 12-bit encoded representation |
| 262 | /// if the specified value can be obtained by splatting the low 8 bits |
| 263 | /// into every other byte or every byte of a 32-bit value. i.e., |
| 264 | /// 00000000 00000000 00000000 abcdefgh control = 0 |
| 265 | /// 00000000 abcdefgh 00000000 abcdefgh control = 1 |
| 266 | /// abcdefgh 00000000 abcdefgh 00000000 control = 2 |
| 267 | /// abcdefgh abcdefgh abcdefgh abcdefgh control = 3 |
| 268 | /// Return -1 if none of the above apply. |
| 269 | /// See ARM Reference Manual A6.3.2. |
Evan Cheng | 780748d | 2009-07-28 05:48:47 +0000 | [diff] [blame] | 270 | static inline int getT2SOImmValSplatVal(unsigned V) { |
Evan Cheng | 431cf56 | 2009-06-23 17:48:47 +0000 | [diff] [blame] | 271 | unsigned u, Vs, Imm; |
| 272 | // control = 0 |
Jim Grosbach | f24f9d9 | 2009-08-11 15:33:49 +0000 | [diff] [blame] | 273 | if ((V & 0xffffff00) == 0) |
Evan Cheng | 431cf56 | 2009-06-23 17:48:47 +0000 | [diff] [blame] | 274 | return V; |
Jim Grosbach | f24f9d9 | 2009-08-11 15:33:49 +0000 | [diff] [blame] | 275 | |
Evan Cheng | 431cf56 | 2009-06-23 17:48:47 +0000 | [diff] [blame] | 276 | // If the value is zeroes in the first byte, just shift those off |
| 277 | Vs = ((V & 0xff) == 0) ? V >> 8 : V; |
| 278 | // Any passing value only has 8 bits of payload, splatted across the word |
| 279 | Imm = Vs & 0xff; |
| 280 | // Likewise, any passing values have the payload splatted into the 3rd byte |
| 281 | u = Imm | (Imm << 16); |
| 282 | |
| 283 | // control = 1 or 2 |
| 284 | if (Vs == u) |
| 285 | return (((Vs == V) ? 1 : 2) << 8) | Imm; |
| 286 | |
| 287 | // control = 3 |
| 288 | if (Vs == (u | (u << 8))) |
| 289 | return (3 << 8) | Imm; |
| 290 | |
| 291 | return -1; |
| 292 | } |
| 293 | |
Evan Cheng | 780748d | 2009-07-28 05:48:47 +0000 | [diff] [blame] | 294 | /// getT2SOImmValRotateVal - Return the 12-bit encoded representation if the |
Evan Cheng | 431cf56 | 2009-06-23 17:48:47 +0000 | [diff] [blame] | 295 | /// specified value is a rotated 8-bit value. Return -1 if no rotation |
| 296 | /// encoding is possible. |
| 297 | /// See ARM Reference Manual A6.3.2. |
Evan Cheng | 780748d | 2009-07-28 05:48:47 +0000 | [diff] [blame] | 298 | static inline int getT2SOImmValRotateVal(unsigned V) { |
Michael J. Spencer | df1ecbd7 | 2013-05-24 22:23:49 +0000 | [diff] [blame] | 299 | unsigned RotAmt = countLeadingZeros(V); |
Evan Cheng | 431cf56 | 2009-06-23 17:48:47 +0000 | [diff] [blame] | 300 | if (RotAmt >= 24) |
| 301 | return -1; |
| 302 | |
| 303 | // If 'Arg' can be handled with a single shifter_op return the value. |
| 304 | if ((rotr32(0xff000000U, RotAmt) & V) == V) |
| 305 | return (rotr32(V, 24 - RotAmt) & 0x7f) | ((RotAmt + 8) << 7); |
| 306 | |
| 307 | return -1; |
| 308 | } |
| 309 | |
| 310 | /// getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit |
Jim Grosbach | f24f9d9 | 2009-08-11 15:33:49 +0000 | [diff] [blame] | 311 | /// into a Thumb-2 shifter_operand immediate operand, return the 12-bit |
Evan Cheng | 431cf56 | 2009-06-23 17:48:47 +0000 | [diff] [blame] | 312 | /// encoding for it. If not, return -1. |
| 313 | /// See ARM Reference Manual A6.3.2. |
| 314 | static inline int getT2SOImmVal(unsigned Arg) { |
| 315 | // If 'Arg' is an 8-bit splat, then get the encoded value. |
Evan Cheng | 780748d | 2009-07-28 05:48:47 +0000 | [diff] [blame] | 316 | int Splat = getT2SOImmValSplatVal(Arg); |
Evan Cheng | 431cf56 | 2009-06-23 17:48:47 +0000 | [diff] [blame] | 317 | if (Splat != -1) |
| 318 | return Splat; |
Jim Grosbach | f24f9d9 | 2009-08-11 15:33:49 +0000 | [diff] [blame] | 319 | |
Evan Cheng | 431cf56 | 2009-06-23 17:48:47 +0000 | [diff] [blame] | 320 | // If 'Arg' can be handled with a single shifter_op return the value. |
Evan Cheng | 780748d | 2009-07-28 05:48:47 +0000 | [diff] [blame] | 321 | int Rot = getT2SOImmValRotateVal(Arg); |
Evan Cheng | 431cf56 | 2009-06-23 17:48:47 +0000 | [diff] [blame] | 322 | if (Rot != -1) |
| 323 | return Rot; |
| 324 | |
| 325 | return -1; |
| 326 | } |
Jim Grosbach | f24f9d9 | 2009-08-11 15:33:49 +0000 | [diff] [blame] | 327 | |
Jim Grosbach | a93ca3c | 2009-10-21 20:44:34 +0000 | [diff] [blame] | 328 | static inline unsigned getT2SOImmValRotate(unsigned V) { |
| 329 | if ((V & ~255U) == 0) return 0; |
| 330 | // Use CTZ to compute the rotate amount. |
Michael J. Spencer | df1ecbd7 | 2013-05-24 22:23:49 +0000 | [diff] [blame] | 331 | unsigned RotAmt = countTrailingZeros(V); |
Jim Grosbach | a93ca3c | 2009-10-21 20:44:34 +0000 | [diff] [blame] | 332 | return (32 - RotAmt) & 31; |
| 333 | } |
| 334 | |
| 335 | static inline bool isT2SOImmTwoPartVal (unsigned Imm) { |
| 336 | unsigned V = Imm; |
| 337 | // Passing values can be any combination of splat values and shifter |
| 338 | // values. If this can be handled with a single shifter or splat, bail |
| 339 | // out. Those should be handled directly, not with a two-part val. |
| 340 | if (getT2SOImmValSplatVal(V) != -1) |
| 341 | return false; |
| 342 | V = rotr32 (~255U, getT2SOImmValRotate(V)) & V; |
| 343 | if (V == 0) |
| 344 | return false; |
| 345 | |
| 346 | // If this can be handled as an immediate, accept. |
| 347 | if (getT2SOImmVal(V) != -1) return true; |
| 348 | |
| 349 | // Likewise, try masking out a splat value first. |
| 350 | V = Imm; |
| 351 | if (getT2SOImmValSplatVal(V & 0xff00ff00U) != -1) |
| 352 | V &= ~0xff00ff00U; |
| 353 | else if (getT2SOImmValSplatVal(V & 0x00ff00ffU) != -1) |
| 354 | V &= ~0x00ff00ffU; |
| 355 | // If what's left can be handled as an immediate, accept. |
| 356 | if (getT2SOImmVal(V) != -1) return true; |
| 357 | |
| 358 | // Otherwise, do not accept. |
| 359 | return false; |
| 360 | } |
| 361 | |
| 362 | static inline unsigned getT2SOImmTwoPartFirst(unsigned Imm) { |
| 363 | assert (isT2SOImmTwoPartVal(Imm) && |
| 364 | "Immedate cannot be encoded as two part immediate!"); |
| 365 | // Try a shifter operand as one part |
| 366 | unsigned V = rotr32 (~255, getT2SOImmValRotate(Imm)) & Imm; |
| 367 | // If the rest is encodable as an immediate, then return it. |
| 368 | if (getT2SOImmVal(V) != -1) return V; |
| 369 | |
| 370 | // Try masking out a splat value first. |
| 371 | if (getT2SOImmValSplatVal(Imm & 0xff00ff00U) != -1) |
| 372 | return Imm & 0xff00ff00U; |
| 373 | |
| 374 | // The other splat is all that's left as an option. |
| 375 | assert (getT2SOImmValSplatVal(Imm & 0x00ff00ffU) != -1); |
| 376 | return Imm & 0x00ff00ffU; |
| 377 | } |
| 378 | |
| 379 | static inline unsigned getT2SOImmTwoPartSecond(unsigned Imm) { |
| 380 | // Mask out the first hunk |
| 381 | Imm ^= getT2SOImmTwoPartFirst(Imm); |
| 382 | // Return what's left |
| 383 | assert (getT2SOImmVal(Imm) != -1 && |
| 384 | "Unable to encode second part of T2 two part SO immediate"); |
| 385 | return Imm; |
| 386 | } |
| 387 | |
Evan Cheng | 431cf56 | 2009-06-23 17:48:47 +0000 | [diff] [blame] | 388 | |
Evan Cheng | 10043e2 | 2007-01-19 07:51:42 +0000 | [diff] [blame] | 389 | //===--------------------------------------------------------------------===// |
| 390 | // Addressing Mode #2 |
| 391 | //===--------------------------------------------------------------------===// |
| 392 | // |
| 393 | // This is used for most simple load/store instructions. |
| 394 | // |
| 395 | // addrmode2 := reg +/- reg shop imm |
| 396 | // addrmode2 := reg +/- imm12 |
| 397 | // |
| 398 | // The first operand is always a Reg. The second operand is a reg if in |
| 399 | // reg/reg form, otherwise it's reg#0. The third field encodes the operation |
Bruno Cardoso Lopes | ab83050 | 2011-03-31 23:26:08 +0000 | [diff] [blame] | 400 | // in bit 12, the immediate in bits 0-11, and the shift op in 13-15. The |
Bruno Cardoso Lopes | bda3632 | 2011-04-04 17:18:19 +0000 | [diff] [blame] | 401 | // fourth operand 16-17 encodes the index mode. |
Evan Cheng | 10043e2 | 2007-01-19 07:51:42 +0000 | [diff] [blame] | 402 | // |
| 403 | // If this addressing mode is a frame index (before prolog/epilog insertion |
| 404 | // and code rewriting), this operand will have the form: FI#, reg0, <offs> |
| 405 | // with no shift amount for the frame offset. |
Jim Grosbach | f24f9d9 | 2009-08-11 15:33:49 +0000 | [diff] [blame] | 406 | // |
Bruno Cardoso Lopes | ab83050 | 2011-03-31 23:26:08 +0000 | [diff] [blame] | 407 | static inline unsigned getAM2Opc(AddrOpc Opc, unsigned Imm12, ShiftOpc SO, |
| 408 | unsigned IdxMode = 0) { |
Evan Cheng | 10043e2 | 2007-01-19 07:51:42 +0000 | [diff] [blame] | 409 | assert(Imm12 < (1 << 12) && "Imm too large!"); |
| 410 | bool isSub = Opc == sub; |
Bruno Cardoso Lopes | ab83050 | 2011-03-31 23:26:08 +0000 | [diff] [blame] | 411 | return Imm12 | ((int)isSub << 12) | (SO << 13) | (IdxMode << 16) ; |
Evan Cheng | 10043e2 | 2007-01-19 07:51:42 +0000 | [diff] [blame] | 412 | } |
| 413 | static inline unsigned getAM2Offset(unsigned AM2Opc) { |
| 414 | return AM2Opc & ((1 << 12)-1); |
| 415 | } |
| 416 | static inline AddrOpc getAM2Op(unsigned AM2Opc) { |
| 417 | return ((AM2Opc >> 12) & 1) ? sub : add; |
| 418 | } |
| 419 | static inline ShiftOpc getAM2ShiftOpc(unsigned AM2Opc) { |
Bruno Cardoso Lopes | ab83050 | 2011-03-31 23:26:08 +0000 | [diff] [blame] | 420 | return (ShiftOpc)((AM2Opc >> 13) & 7); |
| 421 | } |
| 422 | static inline unsigned getAM2IdxMode(unsigned AM2Opc) { |
| 423 | return (AM2Opc >> 16); |
Evan Cheng | 10043e2 | 2007-01-19 07:51:42 +0000 | [diff] [blame] | 424 | } |
Jim Grosbach | f24f9d9 | 2009-08-11 15:33:49 +0000 | [diff] [blame] | 425 | |
| 426 | |
Evan Cheng | 10043e2 | 2007-01-19 07:51:42 +0000 | [diff] [blame] | 427 | //===--------------------------------------------------------------------===// |
| 428 | // Addressing Mode #3 |
| 429 | //===--------------------------------------------------------------------===// |
| 430 | // |
| 431 | // This is used for sign-extending loads, and load/store-pair instructions. |
| 432 | // |
| 433 | // addrmode3 := reg +/- reg |
| 434 | // addrmode3 := reg +/- imm8 |
| 435 | // |
| 436 | // The first operand is always a Reg. The second operand is a reg if in |
| 437 | // reg/reg form, otherwise it's reg#0. The third field encodes the operation |
Bruno Cardoso Lopes | bda3632 | 2011-04-04 17:18:19 +0000 | [diff] [blame] | 438 | // in bit 8, the immediate in bits 0-7. The fourth operand 9-10 encodes the |
| 439 | // index mode. |
Jim Grosbach | f24f9d9 | 2009-08-11 15:33:49 +0000 | [diff] [blame] | 440 | |
Evan Cheng | 10043e2 | 2007-01-19 07:51:42 +0000 | [diff] [blame] | 441 | /// getAM3Opc - This function encodes the addrmode3 opc field. |
Bruno Cardoso Lopes | bda3632 | 2011-04-04 17:18:19 +0000 | [diff] [blame] | 442 | static inline unsigned getAM3Opc(AddrOpc Opc, unsigned char Offset, |
| 443 | unsigned IdxMode = 0) { |
Evan Cheng | 10043e2 | 2007-01-19 07:51:42 +0000 | [diff] [blame] | 444 | bool isSub = Opc == sub; |
Bruno Cardoso Lopes | bda3632 | 2011-04-04 17:18:19 +0000 | [diff] [blame] | 445 | return ((int)isSub << 8) | Offset | (IdxMode << 9); |
Evan Cheng | 10043e2 | 2007-01-19 07:51:42 +0000 | [diff] [blame] | 446 | } |
| 447 | static inline unsigned char getAM3Offset(unsigned AM3Opc) { |
| 448 | return AM3Opc & 0xFF; |
| 449 | } |
| 450 | static inline AddrOpc getAM3Op(unsigned AM3Opc) { |
| 451 | return ((AM3Opc >> 8) & 1) ? sub : add; |
| 452 | } |
Bruno Cardoso Lopes | bda3632 | 2011-04-04 17:18:19 +0000 | [diff] [blame] | 453 | static inline unsigned getAM3IdxMode(unsigned AM3Opc) { |
| 454 | return (AM3Opc >> 9); |
| 455 | } |
Jim Grosbach | f24f9d9 | 2009-08-11 15:33:49 +0000 | [diff] [blame] | 456 | |
Evan Cheng | 10043e2 | 2007-01-19 07:51:42 +0000 | [diff] [blame] | 457 | //===--------------------------------------------------------------------===// |
| 458 | // Addressing Mode #4 |
| 459 | //===--------------------------------------------------------------------===// |
| 460 | // |
| 461 | // This is used for load / store multiple instructions. |
| 462 | // |
| 463 | // addrmode4 := reg, <mode> |
| 464 | // |
| 465 | // The four modes are: |
| 466 | // IA - Increment after |
| 467 | // IB - Increment before |
| 468 | // DA - Decrement after |
| 469 | // DB - Decrement before |
Bob Wilson | 13ce07f | 2010-08-27 23:18:17 +0000 | [diff] [blame] | 470 | // For VFP instructions, only the IA and DB modes are valid. |
Evan Cheng | 10043e2 | 2007-01-19 07:51:42 +0000 | [diff] [blame] | 471 | |
| 472 | static inline AMSubMode getAM4SubMode(unsigned Mode) { |
| 473 | return (AMSubMode)(Mode & 0x7); |
| 474 | } |
| 475 | |
Bob Wilson | d6243b4 | 2010-03-16 17:46:45 +0000 | [diff] [blame] | 476 | static inline unsigned getAM4ModeImm(AMSubMode SubMode) { |
| 477 | return (int)SubMode; |
Evan Cheng | 10043e2 | 2007-01-19 07:51:42 +0000 | [diff] [blame] | 478 | } |
| 479 | |
| 480 | //===--------------------------------------------------------------------===// |
| 481 | // Addressing Mode #5 |
| 482 | //===--------------------------------------------------------------------===// |
| 483 | // |
| 484 | // This is used for coprocessor instructions, such as FP load/stores. |
| 485 | // |
| 486 | // addrmode5 := reg +/- imm8*4 |
| 487 | // |
Bob Wilson | bbbf805 | 2009-07-01 21:22:45 +0000 | [diff] [blame] | 488 | // The first operand is always a Reg. The second operand encodes the |
| 489 | // operation in bit 8 and the immediate in bits 0-7. |
Jim Grosbach | f24f9d9 | 2009-08-11 15:33:49 +0000 | [diff] [blame] | 490 | |
Evan Cheng | 10043e2 | 2007-01-19 07:51:42 +0000 | [diff] [blame] | 491 | /// getAM5Opc - This function encodes the addrmode5 opc field. |
| 492 | static inline unsigned getAM5Opc(AddrOpc Opc, unsigned char Offset) { |
| 493 | bool isSub = Opc == sub; |
| 494 | return ((int)isSub << 8) | Offset; |
| 495 | } |
| 496 | static inline unsigned char getAM5Offset(unsigned AM5Opc) { |
| 497 | return AM5Opc & 0xFF; |
| 498 | } |
| 499 | static inline AddrOpc getAM5Op(unsigned AM5Opc) { |
| 500 | return ((AM5Opc >> 8) & 1) ? sub : add; |
| 501 | } |
| 502 | |
Bob Wilson | deb35af | 2009-07-01 23:16:05 +0000 | [diff] [blame] | 503 | //===--------------------------------------------------------------------===// |
| 504 | // Addressing Mode #6 |
| 505 | //===--------------------------------------------------------------------===// |
| 506 | // |
| 507 | // This is used for NEON load / store instructions. |
| 508 | // |
Bob Wilson | ae08a73 | 2010-03-20 22:13:40 +0000 | [diff] [blame] | 509 | // addrmode6 := reg with optional alignment |
Bob Wilson | deb35af | 2009-07-01 23:16:05 +0000 | [diff] [blame] | 510 | // |
Bob Wilson | ae08a73 | 2010-03-20 22:13:40 +0000 | [diff] [blame] | 511 | // This is stored in two operands [regaddr, align]. The first is the |
| 512 | // address register. The second operand is the value of the alignment |
Bob Wilson | 0b9aafd | 2010-07-14 23:54:43 +0000 | [diff] [blame] | 513 | // specifier in bytes or zero if no explicit alignment. |
| 514 | // Valid alignments depend on the specific instruction. |
Bob Wilson | deb35af | 2009-07-01 23:16:05 +0000 | [diff] [blame] | 515 | |
Bob Wilson | c1c6f47 | 2010-07-13 04:44:34 +0000 | [diff] [blame] | 516 | //===--------------------------------------------------------------------===// |
| 517 | // NEON Modified Immediates |
| 518 | //===--------------------------------------------------------------------===// |
| 519 | // |
| 520 | // Several NEON instructions (e.g., VMOV) take a "modified immediate" |
| 521 | // vector operand, where a small immediate encoded in the instruction |
| 522 | // specifies a full NEON vector value. These modified immediates are |
| 523 | // represented here as encoded integers. The low 8 bits hold the immediate |
| 524 | // value; bit 12 holds the "Op" field of the instruction, and bits 11-8 hold |
| 525 | // the "Cmode" field of the instruction. The interfaces below treat the |
| 526 | // Op and Cmode values as a single 5-bit value. |
| 527 | |
| 528 | static inline unsigned createNEONModImm(unsigned OpCmode, unsigned Val) { |
| 529 | return (OpCmode << 8) | Val; |
| 530 | } |
| 531 | static inline unsigned getNEONModImmOpCmode(unsigned ModImm) { |
| 532 | return (ModImm >> 8) & 0x1f; |
| 533 | } |
| 534 | static inline unsigned getNEONModImmVal(unsigned ModImm) { |
| 535 | return ModImm & 0xff; |
| 536 | } |
| 537 | |
| 538 | /// decodeNEONModImm - Decode a NEON modified immediate value into the |
| 539 | /// element value and the element size in bits. (If the element size is |
| 540 | /// smaller than the vector, it is splatted into all the elements.) |
| 541 | static inline uint64_t decodeNEONModImm(unsigned ModImm, unsigned &EltBits) { |
| 542 | unsigned OpCmode = getNEONModImmOpCmode(ModImm); |
| 543 | unsigned Imm8 = getNEONModImmVal(ModImm); |
| 544 | uint64_t Val = 0; |
| 545 | |
| 546 | if (OpCmode == 0xe) { |
| 547 | // 8-bit vector elements |
| 548 | Val = Imm8; |
| 549 | EltBits = 8; |
| 550 | } else if ((OpCmode & 0xc) == 0x8) { |
| 551 | // 16-bit vector elements |
| 552 | unsigned ByteNum = (OpCmode & 0x6) >> 1; |
| 553 | Val = Imm8 << (8 * ByteNum); |
| 554 | EltBits = 16; |
| 555 | } else if ((OpCmode & 0x8) == 0) { |
| 556 | // 32-bit vector elements, zero with one byte set |
| 557 | unsigned ByteNum = (OpCmode & 0x6) >> 1; |
| 558 | Val = Imm8 << (8 * ByteNum); |
| 559 | EltBits = 32; |
| 560 | } else if ((OpCmode & 0xe) == 0xc) { |
| 561 | // 32-bit vector elements, one byte with low bits set |
| 562 | unsigned ByteNum = 1 + (OpCmode & 0x1); |
| 563 | Val = (Imm8 << (8 * ByteNum)) | (0xffff >> (8 * (2 - ByteNum))); |
| 564 | EltBits = 32; |
| 565 | } else if (OpCmode == 0x1e) { |
| 566 | // 64-bit vector elements |
| 567 | for (unsigned ByteNum = 0; ByteNum < 8; ++ByteNum) { |
| 568 | if ((ModImm >> ByteNum) & 1) |
| 569 | Val |= (uint64_t)0xff << (8 * ByteNum); |
| 570 | } |
| 571 | EltBits = 64; |
| 572 | } else { |
Craig Topper | e55c556 | 2012-02-07 02:50:20 +0000 | [diff] [blame] | 573 | llvm_unreachable("Unsupported NEON immediate"); |
Bob Wilson | c1c6f47 | 2010-07-13 04:44:34 +0000 | [diff] [blame] | 574 | } |
| 575 | return Val; |
| 576 | } |
| 577 | |
Bill Wendling | b100f91 | 2010-11-17 05:31:09 +0000 | [diff] [blame] | 578 | AMSubMode getLoadStoreMultipleSubMode(int Opcode); |
| 579 | |
Jim Grosbach | efc761a | 2011-09-30 00:50:06 +0000 | [diff] [blame] | 580 | //===--------------------------------------------------------------------===// |
| 581 | // Floating-point Immediates |
| 582 | // |
| 583 | static inline float getFPImmFloat(unsigned Imm) { |
| 584 | // We expect an 8-bit binary encoding of a floating-point number here. |
| 585 | union { |
| 586 | uint32_t I; |
| 587 | float F; |
| 588 | } FPUnion; |
| 589 | |
| 590 | uint8_t Sign = (Imm >> 7) & 0x1; |
| 591 | uint8_t Exp = (Imm >> 4) & 0x7; |
| 592 | uint8_t Mantissa = Imm & 0xf; |
| 593 | |
| 594 | // 8-bit FP iEEEE Float Encoding |
| 595 | // abcd efgh aBbbbbbc defgh000 00000000 00000000 |
| 596 | // |
| 597 | // where B = NOT(b); |
| 598 | |
| 599 | FPUnion.I = 0; |
| 600 | FPUnion.I |= Sign << 31; |
| 601 | FPUnion.I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30; |
| 602 | FPUnion.I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25; |
| 603 | FPUnion.I |= (Exp & 0x3) << 23; |
| 604 | FPUnion.I |= Mantissa << 19; |
| 605 | return FPUnion.F; |
| 606 | } |
| 607 | |
| 608 | /// getFP32Imm - Return an 8-bit floating-point version of the 32-bit |
| 609 | /// floating-point value. If the value cannot be represented as an 8-bit |
| 610 | /// floating-point value, then return -1. |
| 611 | static inline int getFP32Imm(const APInt &Imm) { |
| 612 | uint32_t Sign = Imm.lshr(31).getZExtValue() & 1; |
| 613 | int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127; // -126 to 127 |
| 614 | int64_t Mantissa = Imm.getZExtValue() & 0x7fffff; // 23 bits |
| 615 | |
| 616 | // We can handle 4 bits of mantissa. |
| 617 | // mantissa = (16+UInt(e:f:g:h))/16. |
| 618 | if (Mantissa & 0x7ffff) |
| 619 | return -1; |
| 620 | Mantissa >>= 19; |
| 621 | if ((Mantissa & 0xf) != Mantissa) |
| 622 | return -1; |
| 623 | |
| 624 | // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3 |
| 625 | if (Exp < -3 || Exp > 4) |
| 626 | return -1; |
| 627 | Exp = ((Exp+3) & 0x7) ^ 4; |
| 628 | |
| 629 | return ((int)Sign << 7) | (Exp << 4) | Mantissa; |
| 630 | } |
| 631 | |
| 632 | static inline int getFP32Imm(const APFloat &FPImm) { |
| 633 | return getFP32Imm(FPImm.bitcastToAPInt()); |
| 634 | } |
| 635 | |
| 636 | /// getFP64Imm - Return an 8-bit floating-point version of the 64-bit |
| 637 | /// floating-point value. If the value cannot be represented as an 8-bit |
| 638 | /// floating-point value, then return -1. |
| 639 | static inline int getFP64Imm(const APInt &Imm) { |
| 640 | uint64_t Sign = Imm.lshr(63).getZExtValue() & 1; |
Jim Grosbach | 69e6f90 | 2011-10-03 23:03:26 +0000 | [diff] [blame] | 641 | int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023; // -1022 to 1023 |
Jim Grosbach | efc761a | 2011-09-30 00:50:06 +0000 | [diff] [blame] | 642 | uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL; |
| 643 | |
| 644 | // We can handle 4 bits of mantissa. |
| 645 | // mantissa = (16+UInt(e:f:g:h))/16. |
| 646 | if (Mantissa & 0xffffffffffffULL) |
| 647 | return -1; |
| 648 | Mantissa >>= 48; |
| 649 | if ((Mantissa & 0xf) != Mantissa) |
| 650 | return -1; |
| 651 | |
| 652 | // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3 |
| 653 | if (Exp < -3 || Exp > 4) |
| 654 | return -1; |
| 655 | Exp = ((Exp+3) & 0x7) ^ 4; |
| 656 | |
| 657 | return ((int)Sign << 7) | (Exp << 4) | Mantissa; |
| 658 | } |
| 659 | |
| 660 | static inline int getFP64Imm(const APFloat &FPImm) { |
| 661 | return getFP64Imm(FPImm.bitcastToAPInt()); |
| 662 | } |
| 663 | |
Evan Cheng | 10043e2 | 2007-01-19 07:51:42 +0000 | [diff] [blame] | 664 | } // end namespace ARM_AM |
| 665 | } // end namespace llvm |
| 666 | |
| 667 | #endif |
| 668 | |