Daniel Berlin | ae6b8b6 | 2017-01-28 01:35:02 +0000 | [diff] [blame^] | 1 | //===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements the MemorySSAUpdater class. |
| 11 | // |
| 12 | //===----------------------------------------------------------------===// |
| 13 | #include "llvm/Transforms/Utils/MemorySSAUpdater.h" |
| 14 | #include "llvm/ADT/STLExtras.h" |
| 15 | #include "llvm/ADT/SmallPtrSet.h" |
| 16 | #include "llvm/ADT/SmallSet.h" |
| 17 | #include "llvm/IR/DataLayout.h" |
| 18 | #include "llvm/IR/Dominators.h" |
| 19 | #include "llvm/IR/GlobalVariable.h" |
| 20 | #include "llvm/IR/IRBuilder.h" |
| 21 | #include "llvm/IR/IntrinsicInst.h" |
| 22 | #include "llvm/IR/LLVMContext.h" |
| 23 | #include "llvm/IR/Metadata.h" |
| 24 | #include "llvm/IR/Module.h" |
| 25 | #include "llvm/Support/Debug.h" |
| 26 | #include "llvm/Support/FormattedStream.h" |
| 27 | #include "llvm/Transforms/Utils/MemorySSA.h" |
| 28 | #include <algorithm> |
| 29 | |
| 30 | #define DEBUG_TYPE "memoryssa" |
| 31 | using namespace llvm; |
| 32 | namespace llvm { |
| 33 | // This is the marker algorithm from "Simple and Efficient Construction of |
| 34 | // Static Single Assignment Form" |
| 35 | // The simple, non-marker algorithm places phi nodes at any join |
| 36 | // Here, we place markers, and only place phi nodes if they end up necessary. |
| 37 | // They are only necessary if they break a cycle (IE we recursively visit |
| 38 | // ourselves again), or we discover, while getting the value of the operands, |
| 39 | // that there are two or more definitions needing to be merged. |
| 40 | // This still will leave non-minimal form in the case of irreducible control |
| 41 | // flow, where phi nodes may be in cycles with themselves, but unnecessary. |
| 42 | MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive(BasicBlock *BB) { |
| 43 | // Single predecessor case, just recurse, we can only have one definition. |
| 44 | if (BasicBlock *Pred = BB->getSinglePredecessor()) { |
| 45 | return getPreviousDefFromEnd(Pred); |
| 46 | } else if (VisitedBlocks.count(BB)) { |
| 47 | // We hit our node again, meaning we had a cycle, we must insert a phi |
| 48 | // node to break it so we have an operand. The only case this will |
| 49 | // insert useless phis is if we have irreducible control flow. |
| 50 | return MSSA->createMemoryPhi(BB); |
| 51 | } else if (VisitedBlocks.insert(BB).second) { |
| 52 | // Mark us visited so we can detect a cycle |
| 53 | SmallVector<MemoryAccess *, 8> PhiOps; |
| 54 | |
| 55 | // Recurse to get the values in our predecessors for placement of a |
| 56 | // potential phi node. This will insert phi nodes if we cycle in order to |
| 57 | // break the cycle and have an operand. |
| 58 | for (auto *Pred : predecessors(BB)) |
| 59 | PhiOps.push_back(getPreviousDefFromEnd(Pred)); |
| 60 | |
| 61 | // Now try to simplify the ops to avoid placing a phi. |
| 62 | // This may return null if we never created a phi yet, that's okay |
| 63 | MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB)); |
| 64 | bool PHIExistsButNeedsUpdate = false; |
| 65 | // See if the existing phi operands match what we need. |
| 66 | // Unlike normal SSA, we only allow one phi node per block, so we can't just |
| 67 | // create a new one. |
| 68 | if (Phi && Phi->getNumOperands() != 0) |
| 69 | if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) { |
| 70 | PHIExistsButNeedsUpdate = true; |
| 71 | } |
| 72 | |
| 73 | // See if we can avoid the phi by simplifying it. |
| 74 | auto *Result = tryRemoveTrivialPhi(Phi, PhiOps); |
| 75 | // If we couldn't simplify, we may have to create a phi |
| 76 | if (Result == Phi) { |
| 77 | if (!Phi) |
| 78 | Phi = MSSA->createMemoryPhi(BB); |
| 79 | |
| 80 | // These will have been filled in by the recursive read we did above. |
| 81 | if (PHIExistsButNeedsUpdate) { |
| 82 | std::copy(PhiOps.begin(), PhiOps.end(), Phi->op_begin()); |
| 83 | std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin()); |
| 84 | } else { |
| 85 | unsigned i = 0; |
| 86 | for (auto *Pred : predecessors(BB)) |
| 87 | Phi->addIncoming(PhiOps[i++], Pred); |
| 88 | } |
| 89 | |
| 90 | Result = Phi; |
| 91 | } |
| 92 | if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Result)) |
| 93 | InsertedPHIs.push_back(MP); |
| 94 | // Set ourselves up for the next variable by resetting visited state. |
| 95 | VisitedBlocks.erase(BB); |
| 96 | return Result; |
| 97 | } |
| 98 | llvm_unreachable("Should have hit one of the three cases above"); |
| 99 | } |
| 100 | |
| 101 | // This starts at the memory access, and goes backwards in the block to find the |
| 102 | // previous definition. If a definition is not found the block of the access, |
| 103 | // it continues globally, creating phi nodes to ensure we have a single |
| 104 | // definition. |
| 105 | MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) { |
| 106 | auto *LocalResult = getPreviousDefInBlock(MA); |
| 107 | |
| 108 | return LocalResult ? LocalResult : getPreviousDefRecursive(MA->getBlock()); |
| 109 | } |
| 110 | |
| 111 | // This starts at the memory access, and goes backwards in the block to the find |
| 112 | // the previous definition. If the definition is not found in the block of the |
| 113 | // access, it returns nullptr. |
| 114 | MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) { |
| 115 | auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock()); |
| 116 | |
| 117 | // It's possible there are no defs, or we got handed the first def to start. |
| 118 | if (Defs) { |
| 119 | // If this is a def, we can just use the def iterators. |
| 120 | if (!isa<MemoryUse>(MA)) { |
| 121 | auto Iter = MA->getReverseDefsIterator(); |
| 122 | ++Iter; |
| 123 | if (Iter != Defs->rend()) |
| 124 | return &*Iter; |
| 125 | } else { |
| 126 | // Otherwise, have to walk the all access iterator. |
| 127 | auto Iter = MA->getReverseIterator(); |
| 128 | ++Iter; |
| 129 | while (&*Iter != &*Defs->begin()) { |
| 130 | if (!isa<MemoryUse>(*Iter)) |
| 131 | return &*Iter; |
| 132 | --Iter; |
| 133 | } |
| 134 | // At this point it must be pointing at firstdef |
| 135 | assert(&*Iter == &*Defs->begin() && |
| 136 | "Should have hit first def walking backwards"); |
| 137 | return &*Iter; |
| 138 | } |
| 139 | } |
| 140 | return nullptr; |
| 141 | } |
| 142 | |
| 143 | // This starts at the end of block |
| 144 | MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd(BasicBlock *BB) { |
| 145 | auto *Defs = MSSA->getWritableBlockDefs(BB); |
| 146 | |
| 147 | if (Defs) |
| 148 | return &*Defs->rbegin(); |
| 149 | |
| 150 | return getPreviousDefRecursive(BB); |
| 151 | } |
| 152 | // Recurse over a set of phi uses to eliminate the trivial ones |
| 153 | MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) { |
| 154 | if (!Phi) |
| 155 | return nullptr; |
| 156 | TrackingVH<MemoryAccess> Res(Phi); |
| 157 | SmallVector<TrackingVH<Value>, 8> Uses; |
| 158 | std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses)); |
| 159 | for (auto &U : Uses) { |
| 160 | if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U)) { |
| 161 | auto OperRange = UsePhi->operands(); |
| 162 | tryRemoveTrivialPhi(UsePhi, OperRange); |
| 163 | } |
| 164 | } |
| 165 | return Res; |
| 166 | } |
| 167 | |
| 168 | // Eliminate trivial phis |
| 169 | // Phis are trivial if they are defined either by themselves, or all the same |
| 170 | // argument. |
| 171 | // IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c) |
| 172 | // We recursively try to remove them. |
| 173 | template <class RangeType> |
| 174 | MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi, |
| 175 | RangeType &Operands) { |
| 176 | // Detect equal or self arguments |
| 177 | MemoryAccess *Same = nullptr; |
| 178 | for (auto &Op : Operands) { |
| 179 | // If the same or self, good so far |
| 180 | if (Op == Phi || Op == Same) |
| 181 | continue; |
| 182 | // not the same, return the phi since it's not eliminatable by us |
| 183 | if (Same) |
| 184 | return Phi; |
| 185 | Same = cast<MemoryAccess>(Op); |
| 186 | } |
| 187 | // Never found a non-self reference, the phi is undef |
| 188 | if (Same == nullptr) |
| 189 | return MSSA->getLiveOnEntryDef(); |
| 190 | if (Phi) { |
| 191 | Phi->replaceAllUsesWith(Same); |
| 192 | MSSA->removeMemoryAccess(Phi); |
| 193 | } |
| 194 | |
| 195 | // We should only end up recursing in case we replaced something, in which |
| 196 | // case, we may have made other Phis trivial. |
| 197 | return recursePhi(Same); |
| 198 | } |
| 199 | |
| 200 | void MemorySSAUpdater::insertUse(MemoryUse *MU) { |
| 201 | InsertedPHIs.clear(); |
| 202 | MU->setDefiningAccess(getPreviousDef(MU)); |
| 203 | // Unlike for defs, there is no extra work to do. Because uses do not create |
| 204 | // new may-defs, there are only two cases: |
| 205 | // |
| 206 | // 1. There was a def already below us, and therefore, we should not have |
| 207 | // created a phi node because it was already needed for the def. |
| 208 | // |
| 209 | // 2. There is no def below us, and therefore, there is no extra renaming work |
| 210 | // to do. |
| 211 | } |
| 212 | |
| 213 | void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB, |
| 214 | MemoryAccess *NewDef) { |
| 215 | // Replace any operand with us an incoming block with the new defining |
| 216 | // access. |
| 217 | int i = MP->getBasicBlockIndex(BB); |
| 218 | assert(i != -1 && "Should have found the basic block in the phi"); |
| 219 | while (MP->getIncomingBlock(i) == BB) { |
| 220 | // Unlike above, there is already a phi node here, so we only need |
| 221 | // to set the right value. |
| 222 | MP->setIncomingValue(i, NewDef); |
| 223 | ++i; |
| 224 | } |
| 225 | } |
| 226 | |
| 227 | // A brief description of the algorithm: |
| 228 | // First, we compute what should define the new def, using the SSA |
| 229 | // construction algorithm. |
| 230 | // Then, we update the defs below us (and any new phi nodes) in the graph to |
| 231 | // point to the correct new defs, to ensure we only have one variable, and no |
| 232 | // disconnected stores. |
| 233 | void MemorySSAUpdater::insertDef(MemoryDef *MD) { |
| 234 | InsertedPHIs.clear(); |
| 235 | |
| 236 | // See if we had a local def, and if not, go hunting. |
| 237 | MemoryAccess *DefBefore = getPreviousDefInBlock(MD); |
| 238 | bool DefBeforeSameBlock = DefBefore != nullptr; |
| 239 | if (!DefBefore) |
| 240 | DefBefore = getPreviousDefRecursive(MD->getBlock()); |
| 241 | |
| 242 | // There is a def before us, which means we can replace any store/phi uses |
| 243 | // of that thing with us, since we are in the way of whatever was there |
| 244 | // before. |
| 245 | // We now define that def's memorydefs and memoryphis |
| 246 | for (auto UI = DefBefore->use_begin(), UE = DefBefore->use_end(); UI != UE;) { |
| 247 | Use &U = *UI++; |
| 248 | // Leave the uses alone |
| 249 | if (isa<MemoryUse>(U.getUser())) |
| 250 | continue; |
| 251 | U.set(MD); |
| 252 | } |
| 253 | // and that def is now our defining access. |
| 254 | // We change them in this order otherwise we will appear in the use list |
| 255 | // above and reset ourselves. |
| 256 | MD->setDefiningAccess(DefBefore); |
| 257 | |
| 258 | SmallVector<MemoryAccess *, 8> FixupList(InsertedPHIs.begin(), |
| 259 | InsertedPHIs.end()); |
| 260 | if (!DefBeforeSameBlock) { |
| 261 | // If there was a local def before us, we must have the same effect it |
| 262 | // did. Because every may-def is the same, any phis/etc we would create, it |
| 263 | // would also have created. If there was no local def before us, we |
| 264 | // performed a global update, and have to search all successors and make |
| 265 | // sure we update the first def in each of them (following all paths until |
| 266 | // we hit the first def along each path). This may also insert phi nodes. |
| 267 | // TODO: There are other cases we can skip this work, such as when we have a |
| 268 | // single successor, and only used a straight line of single pred blocks |
| 269 | // backwards to find the def. To make that work, we'd have to track whether |
| 270 | // getDefRecursive only ever used the single predecessor case. These types |
| 271 | // of paths also only exist in between CFG simplifications. |
| 272 | FixupList.push_back(MD); |
| 273 | } |
| 274 | |
| 275 | while (!FixupList.empty()) { |
| 276 | unsigned StartingPHISize = InsertedPHIs.size(); |
| 277 | fixupDefs(FixupList); |
| 278 | FixupList.clear(); |
| 279 | // Put any new phis on the fixup list, and process them |
| 280 | FixupList.append(InsertedPHIs.end() - StartingPHISize, InsertedPHIs.end()); |
| 281 | } |
| 282 | } |
| 283 | |
| 284 | void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<MemoryAccess *> &Vars) { |
| 285 | SmallPtrSet<const BasicBlock *, 8> Seen; |
| 286 | SmallVector<const BasicBlock *, 16> Worklist; |
| 287 | for (auto *NewDef : Vars) { |
| 288 | // First, see if there is a local def after the operand. |
| 289 | auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock()); |
| 290 | auto DefIter = NewDef->getDefsIterator(); |
| 291 | |
| 292 | // If there is a local def after us, we only have to rename that. |
| 293 | if (++DefIter != Defs->end()) { |
| 294 | cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef); |
| 295 | continue; |
| 296 | } |
| 297 | |
| 298 | // Otherwise, we need to search down through the CFG. |
| 299 | // For each of our successors, handle it directly if their is a phi, or |
| 300 | // place on the fixup worklist. |
| 301 | for (const auto *S : successors(NewDef->getBlock())) { |
| 302 | if (auto *MP = MSSA->getMemoryAccess(S)) |
| 303 | setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef); |
| 304 | else |
| 305 | Worklist.push_back(S); |
| 306 | } |
| 307 | |
| 308 | while (!Worklist.empty()) { |
| 309 | const BasicBlock *FixupBlock = Worklist.back(); |
| 310 | Worklist.pop_back(); |
| 311 | |
| 312 | // Get the first def in the block that isn't a phi node. |
| 313 | if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) { |
| 314 | auto *FirstDef = &*Defs->begin(); |
| 315 | // The loop above and below should have taken care of phi nodes |
| 316 | assert(!isa<MemoryPhi>(FirstDef) && |
| 317 | "Should have already handled phi nodes!"); |
| 318 | // We are now this def's defining access, make sure we actually dominate |
| 319 | // it |
| 320 | assert(MSSA->dominates(NewDef, FirstDef) && |
| 321 | "Should have dominated the new access"); |
| 322 | |
| 323 | // This may insert new phi nodes, because we are not guaranteed the |
| 324 | // block we are processing has a single pred, and depending where the |
| 325 | // store was inserted, it may require phi nodes below it. |
| 326 | cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef)); |
| 327 | return; |
| 328 | } |
| 329 | // We didn't find a def, so we must continue. |
| 330 | for (const auto *S : successors(FixupBlock)) { |
| 331 | // If there is a phi node, handle it. |
| 332 | // Otherwise, put the block on the worklist |
| 333 | if (auto *MP = MSSA->getMemoryAccess(S)) |
| 334 | setMemoryPhiValueForBlock(MP, FixupBlock, NewDef); |
| 335 | else { |
| 336 | // If we cycle, we should have ended up at a phi node that we already |
| 337 | // processed. FIXME: Double check this |
| 338 | if (!Seen.insert(S).second) |
| 339 | continue; |
| 340 | Worklist.push_back(S); |
| 341 | } |
| 342 | } |
| 343 | } |
| 344 | } |
| 345 | } |
| 346 | |
| 347 | // Move What before Where in the MemorySSA IR. |
| 348 | void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB, |
| 349 | MemorySSA::AccessList::iterator Where) { |
| 350 | // Replace all our users with our defining access. |
| 351 | What->replaceAllUsesWith(What->getDefiningAccess()); |
| 352 | |
| 353 | // Let MemorySSA take care of moving it around in the lists. |
| 354 | MSSA->moveTo(What, BB, Where); |
| 355 | |
| 356 | // Now reinsert it into the IR and do whatever fixups needed. |
| 357 | if (auto *MD = dyn_cast<MemoryDef>(What)) |
| 358 | insertDef(MD); |
| 359 | else |
| 360 | insertUse(cast<MemoryUse>(What)); |
| 361 | } |
| 362 | // Move What before Where in the MemorySSA IR. |
| 363 | void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) { |
| 364 | moveTo(What, Where->getBlock(), Where->getIterator()); |
| 365 | } |
| 366 | |
| 367 | // Move What after Where in the MemorySSA IR. |
| 368 | void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) { |
| 369 | moveTo(What, Where->getBlock(), ++Where->getIterator()); |
| 370 | } |
| 371 | |
| 372 | } // namespace llvm |