blob: a52af4921c4982fb20db34f732eaac5ff2dcb70d [file] [log] [blame]
NAKAMURA Takumi84965032015-09-22 11:14:12 +00001//===---- DemandedBits.cpp - Determine demanded bits ----------------------===//
James Molloy87405c72015-08-14 11:09:09 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass implements a demanded bits analysis. A demanded bit is one that
11// contributes to a result; bits that are not demanded can be either zero or
12// one without affecting control or data flow. For example in this sequence:
13//
14// %1 = add i32 %x, %y
15// %2 = trunc i32 %1 to i16
16//
17// Only the lowest 16 bits of %1 are demanded; the rest are removed by the
18// trunc.
19//
20//===----------------------------------------------------------------------===//
21
22#include "llvm/Analysis/DemandedBits.h"
James Molloy87405c72015-08-14 11:09:09 +000023#include "llvm/ADT/DepthFirstIterator.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/ADT/SmallVector.h"
James Molloybcd7f0a2015-10-08 12:39:59 +000026#include "llvm/ADT/StringExtras.h"
James Molloy87405c72015-08-14 11:09:09 +000027#include "llvm/Analysis/ValueTracking.h"
28#include "llvm/IR/BasicBlock.h"
29#include "llvm/IR/CFG.h"
30#include "llvm/IR/DataLayout.h"
31#include "llvm/IR/Dominators.h"
32#include "llvm/IR/InstIterator.h"
33#include "llvm/IR/Instructions.h"
34#include "llvm/IR/IntrinsicInst.h"
35#include "llvm/IR/Module.h"
36#include "llvm/IR/Operator.h"
37#include "llvm/Pass.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/raw_ostream.h"
40using namespace llvm;
41
42#define DEBUG_TYPE "demanded-bits"
43
Michael Kupersteinde16b442016-04-18 23:55:01 +000044char DemandedBitsWrapperPass::ID = 0;
45INITIALIZE_PASS_BEGIN(DemandedBitsWrapperPass, "demanded-bits",
46 "Demanded bits analysis", false, false)
James Molloy87405c72015-08-14 11:09:09 +000047INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
Michael Kupersteinde16b442016-04-18 23:55:01 +000048INITIALIZE_PASS_END(DemandedBitsWrapperPass, "demanded-bits",
49 "Demanded bits analysis", false, false)
James Molloy87405c72015-08-14 11:09:09 +000050
Michael Kupersteinde16b442016-04-18 23:55:01 +000051DemandedBitsWrapperPass::DemandedBitsWrapperPass() : FunctionPass(ID) {
52 initializeDemandedBitsWrapperPassPass(*PassRegistry::getPassRegistry());
James Molloy87405c72015-08-14 11:09:09 +000053}
54
Michael Kupersteinde16b442016-04-18 23:55:01 +000055void DemandedBitsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
James Molloy87405c72015-08-14 11:09:09 +000056 AU.setPreservesCFG();
James Molloy87405c72015-08-14 11:09:09 +000057 AU.addRequired<DominatorTreeWrapperPass>();
58 AU.setPreservesAll();
59}
60
Michael Kupersteinde16b442016-04-18 23:55:01 +000061void DemandedBitsWrapperPass::print(raw_ostream &OS, const Module *M) const {
62 DB->print(OS);
63}
64
James Molloy87405c72015-08-14 11:09:09 +000065static bool isAlwaysLive(Instruction *I) {
66 return isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
67 I->isEHPad() || I->mayHaveSideEffects();
68}
69
NAKAMURA Takumi0a7d0ad2015-09-22 11:15:07 +000070void DemandedBits::determineLiveOperandBits(
71 const Instruction *UserI, const Instruction *I, unsigned OperandNo,
72 const APInt &AOut, APInt &AB, APInt &KnownZero, APInt &KnownOne,
73 APInt &KnownZero2, APInt &KnownOne2) {
James Molloy87405c72015-08-14 11:09:09 +000074 unsigned BitWidth = AB.getBitWidth();
75
76 // We're called once per operand, but for some instructions, we need to
77 // compute known bits of both operands in order to determine the live bits of
78 // either (when both operands are instructions themselves). We don't,
79 // however, want to do this twice, so we cache the result in APInts that live
80 // in the caller. For the two-relevant-operands case, both operand values are
81 // provided here.
82 auto ComputeKnownBits =
83 [&](unsigned BitWidth, const Value *V1, const Value *V2) {
84 const DataLayout &DL = I->getModule()->getDataLayout();
85 KnownZero = APInt(BitWidth, 0);
86 KnownOne = APInt(BitWidth, 0);
87 computeKnownBits(const_cast<Value *>(V1), KnownZero, KnownOne, DL, 0,
Hal Finkel3ca4a6b2016-12-15 03:02:15 +000088 UserI, &DT);
James Molloy87405c72015-08-14 11:09:09 +000089
90 if (V2) {
91 KnownZero2 = APInt(BitWidth, 0);
92 KnownOne2 = APInt(BitWidth, 0);
93 computeKnownBits(const_cast<Value *>(V2), KnownZero2, KnownOne2, DL,
Hal Finkel3ca4a6b2016-12-15 03:02:15 +000094 0, UserI, &DT);
James Molloy87405c72015-08-14 11:09:09 +000095 }
96 };
97
98 switch (UserI->getOpcode()) {
99 default: break;
100 case Instruction::Call:
101 case Instruction::Invoke:
102 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(UserI))
103 switch (II->getIntrinsicID()) {
104 default: break;
105 case Intrinsic::bswap:
106 // The alive bits of the input are the swapped alive bits of
107 // the output.
108 AB = AOut.byteSwap();
109 break;
110 case Intrinsic::ctlz:
111 if (OperandNo == 0) {
112 // We need some output bits, so we need all bits of the
113 // input to the left of, and including, the leftmost bit
114 // known to be one.
115 ComputeKnownBits(BitWidth, I, nullptr);
116 AB = APInt::getHighBitsSet(BitWidth,
117 std::min(BitWidth, KnownOne.countLeadingZeros()+1));
118 }
119 break;
120 case Intrinsic::cttz:
121 if (OperandNo == 0) {
122 // We need some output bits, so we need all bits of the
123 // input to the right of, and including, the rightmost bit
124 // known to be one.
125 ComputeKnownBits(BitWidth, I, nullptr);
126 AB = APInt::getLowBitsSet(BitWidth,
127 std::min(BitWidth, KnownOne.countTrailingZeros()+1));
128 }
129 break;
130 }
131 break;
132 case Instruction::Add:
133 case Instruction::Sub:
James Molloybcd7f0a2015-10-08 12:39:59 +0000134 case Instruction::Mul:
James Molloy87405c72015-08-14 11:09:09 +0000135 // Find the highest live output bit. We don't need any more input
136 // bits than that (adds, and thus subtracts, ripple only to the
137 // left).
138 AB = APInt::getLowBitsSet(BitWidth, AOut.getActiveBits());
139 break;
140 case Instruction::Shl:
141 if (OperandNo == 0)
142 if (ConstantInt *CI =
143 dyn_cast<ConstantInt>(UserI->getOperand(1))) {
144 uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
145 AB = AOut.lshr(ShiftAmt);
146
147 // If the shift is nuw/nsw, then the high bits are not dead
148 // (because we've promised that they *must* be zero).
149 const ShlOperator *S = cast<ShlOperator>(UserI);
150 if (S->hasNoSignedWrap())
151 AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
152 else if (S->hasNoUnsignedWrap())
153 AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
154 }
155 break;
156 case Instruction::LShr:
157 if (OperandNo == 0)
158 if (ConstantInt *CI =
159 dyn_cast<ConstantInt>(UserI->getOperand(1))) {
160 uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
161 AB = AOut.shl(ShiftAmt);
162
163 // If the shift is exact, then the low bits are not dead
164 // (they must be zero).
165 if (cast<LShrOperator>(UserI)->isExact())
166 AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
167 }
168 break;
169 case Instruction::AShr:
170 if (OperandNo == 0)
171 if (ConstantInt *CI =
172 dyn_cast<ConstantInt>(UserI->getOperand(1))) {
173 uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
174 AB = AOut.shl(ShiftAmt);
175 // Because the high input bit is replicated into the
176 // high-order bits of the result, if we need any of those
177 // bits, then we must keep the highest input bit.
178 if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt))
179 .getBoolValue())
180 AB.setBit(BitWidth-1);
181
182 // If the shift is exact, then the low bits are not dead
183 // (they must be zero).
184 if (cast<AShrOperator>(UserI)->isExact())
185 AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
186 }
187 break;
188 case Instruction::And:
189 AB = AOut;
190
191 // For bits that are known zero, the corresponding bits in the
192 // other operand are dead (unless they're both zero, in which
193 // case they can't both be dead, so just mark the LHS bits as
194 // dead).
195 if (OperandNo == 0) {
196 ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
197 AB &= ~KnownZero2;
198 } else {
199 if (!isa<Instruction>(UserI->getOperand(0)))
200 ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
201 AB &= ~(KnownZero & ~KnownZero2);
202 }
203 break;
204 case Instruction::Or:
205 AB = AOut;
206
207 // For bits that are known one, the corresponding bits in the
208 // other operand are dead (unless they're both one, in which
209 // case they can't both be dead, so just mark the LHS bits as
210 // dead).
211 if (OperandNo == 0) {
212 ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
213 AB &= ~KnownOne2;
214 } else {
215 if (!isa<Instruction>(UserI->getOperand(0)))
216 ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
217 AB &= ~(KnownOne & ~KnownOne2);
218 }
219 break;
220 case Instruction::Xor:
221 case Instruction::PHI:
222 AB = AOut;
223 break;
224 case Instruction::Trunc:
225 AB = AOut.zext(BitWidth);
226 break;
227 case Instruction::ZExt:
228 AB = AOut.trunc(BitWidth);
229 break;
230 case Instruction::SExt:
231 AB = AOut.trunc(BitWidth);
232 // Because the high input bit is replicated into the
233 // high-order bits of the result, if we need any of those
234 // bits, then we must keep the highest input bit.
235 if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(),
236 AOut.getBitWidth() - BitWidth))
237 .getBoolValue())
238 AB.setBit(BitWidth-1);
239 break;
240 case Instruction::Select:
241 if (OperandNo != 0)
242 AB = AOut;
243 break;
244 }
245}
246
Michael Kupersteinde16b442016-04-18 23:55:01 +0000247bool DemandedBitsWrapperPass::runOnFunction(Function &F) {
Michael Kupersteinde16b442016-04-18 23:55:01 +0000248 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
Hal Finkel3ca4a6b2016-12-15 03:02:15 +0000249 DB.emplace(F, DT);
James Molloyab9fdb92015-10-08 12:39:50 +0000250 return false;
251}
James Molloy87405c72015-08-14 11:09:09 +0000252
Michael Kupersteinde16b442016-04-18 23:55:01 +0000253void DemandedBitsWrapperPass::releaseMemory() {
254 DB.reset();
255}
256
James Molloyab9fdb92015-10-08 12:39:50 +0000257void DemandedBits::performAnalysis() {
258 if (Analyzed)
259 // Analysis already completed for this function.
260 return;
261 Analyzed = true;
James Molloyab9fdb92015-10-08 12:39:50 +0000262
James Molloy87405c72015-08-14 11:09:09 +0000263 Visited.clear();
264 AliveBits.clear();
265
266 SmallVector<Instruction*, 128> Worklist;
267
268 // Collect the set of "root" instructions that are known live.
Michael Kupersteinde16b442016-04-18 23:55:01 +0000269 for (Instruction &I : instructions(F)) {
James Molloy87405c72015-08-14 11:09:09 +0000270 if (!isAlwaysLive(&I))
271 continue;
272
273 DEBUG(dbgs() << "DemandedBits: Root: " << I << "\n");
274 // For integer-valued instructions, set up an initial empty set of alive
275 // bits and add the instruction to the work list. For other instructions
276 // add their operands to the work list (for integer values operands, mark
277 // all bits as live).
278 if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
Benjamin Kramera9e477b2016-07-21 13:37:55 +0000279 if (AliveBits.try_emplace(&I, IT->getBitWidth(), 0).second)
James Molloy87405c72015-08-14 11:09:09 +0000280 Worklist.push_back(&I);
James Molloy87405c72015-08-14 11:09:09 +0000281
282 continue;
283 }
284
285 // Non-integer-typed instructions...
286 for (Use &OI : I.operands()) {
287 if (Instruction *J = dyn_cast<Instruction>(OI)) {
288 if (IntegerType *IT = dyn_cast<IntegerType>(J->getType()))
289 AliveBits[J] = APInt::getAllOnesValue(IT->getBitWidth());
290 Worklist.push_back(J);
291 }
292 }
293 // To save memory, we don't add I to the Visited set here. Instead, we
294 // check isAlwaysLive on every instruction when searching for dead
295 // instructions later (we need to check isAlwaysLive for the
296 // integer-typed instructions anyway).
297 }
298
299 // Propagate liveness backwards to operands.
300 while (!Worklist.empty()) {
301 Instruction *UserI = Worklist.pop_back_val();
302
303 DEBUG(dbgs() << "DemandedBits: Visiting: " << *UserI);
304 APInt AOut;
305 if (UserI->getType()->isIntegerTy()) {
306 AOut = AliveBits[UserI];
307 DEBUG(dbgs() << " Alive Out: " << AOut);
308 }
309 DEBUG(dbgs() << "\n");
310
311 if (!UserI->getType()->isIntegerTy())
312 Visited.insert(UserI);
313
314 APInt KnownZero, KnownOne, KnownZero2, KnownOne2;
315 // Compute the set of alive bits for each operand. These are anded into the
316 // existing set, if any, and if that changes the set of alive bits, the
317 // operand is added to the work-list.
318 for (Use &OI : UserI->operands()) {
319 if (Instruction *I = dyn_cast<Instruction>(OI)) {
320 if (IntegerType *IT = dyn_cast<IntegerType>(I->getType())) {
321 unsigned BitWidth = IT->getBitWidth();
322 APInt AB = APInt::getAllOnesValue(BitWidth);
323 if (UserI->getType()->isIntegerTy() && !AOut &&
324 !isAlwaysLive(UserI)) {
325 AB = APInt(BitWidth, 0);
326 } else {
NAKAMURA Takumi84965032015-09-22 11:14:12 +0000327 // If all bits of the output are dead, then all bits of the input
James Molloy87405c72015-08-14 11:09:09 +0000328 // Bits of each operand that are used to compute alive bits of the
329 // output are alive, all others are dead.
330 determineLiveOperandBits(UserI, I, OI.getOperandNo(), AOut, AB,
331 KnownZero, KnownOne,
332 KnownZero2, KnownOne2);
333 }
334
335 // If we've added to the set of alive bits (or the operand has not
336 // been previously visited), then re-queue the operand to be visited
337 // again.
338 APInt ABPrev(BitWidth, 0);
339 auto ABI = AliveBits.find(I);
340 if (ABI != AliveBits.end())
341 ABPrev = ABI->second;
342
343 APInt ABNew = AB | ABPrev;
344 if (ABNew != ABPrev || ABI == AliveBits.end()) {
345 AliveBits[I] = std::move(ABNew);
346 Worklist.push_back(I);
347 }
348 } else if (!Visited.count(I)) {
349 Worklist.push_back(I);
350 }
351 }
352 }
353 }
James Molloy87405c72015-08-14 11:09:09 +0000354}
355
356APInt DemandedBits::getDemandedBits(Instruction *I) {
James Molloyab9fdb92015-10-08 12:39:50 +0000357 performAnalysis();
358
James Molloy87405c72015-08-14 11:09:09 +0000359 const DataLayout &DL = I->getParent()->getModule()->getDataLayout();
Benjamin Kramera9e477b2016-07-21 13:37:55 +0000360 auto Found = AliveBits.find(I);
361 if (Found != AliveBits.end())
362 return Found->second;
James Molloy87405c72015-08-14 11:09:09 +0000363 return APInt::getAllOnesValue(DL.getTypeSizeInBits(I->getType()));
364}
365
366bool DemandedBits::isInstructionDead(Instruction *I) {
James Molloyab9fdb92015-10-08 12:39:50 +0000367 performAnalysis();
368
James Molloy87405c72015-08-14 11:09:09 +0000369 return !Visited.count(I) && AliveBits.find(I) == AliveBits.end() &&
370 !isAlwaysLive(I);
371}
372
Michael Kupersteinde16b442016-04-18 23:55:01 +0000373void DemandedBits::print(raw_ostream &OS) {
374 performAnalysis();
James Molloybcd7f0a2015-10-08 12:39:59 +0000375 for (auto &KV : AliveBits) {
376 OS << "DemandedBits: 0x" << utohexstr(KV.second.getLimitedValue()) << " for "
377 << *KV.first << "\n";
378 }
379}
380
Michael Kupersteinde16b442016-04-18 23:55:01 +0000381FunctionPass *llvm::createDemandedBitsWrapperPass() {
382 return new DemandedBitsWrapperPass();
383}
384
Chandler Carruthdab4eae2016-11-23 17:53:26 +0000385AnalysisKey DemandedBitsAnalysis::Key;
Michael Kupersteinde16b442016-04-18 23:55:01 +0000386
387DemandedBits DemandedBitsAnalysis::run(Function &F,
Sean Silva36e0d012016-08-09 00:28:15 +0000388 FunctionAnalysisManager &AM) {
Michael Kupersteinde16b442016-04-18 23:55:01 +0000389 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
Hal Finkel3ca4a6b2016-12-15 03:02:15 +0000390 return DemandedBits(F, DT);
Michael Kupersteinde16b442016-04-18 23:55:01 +0000391}
392
393PreservedAnalyses DemandedBitsPrinterPass::run(Function &F,
394 FunctionAnalysisManager &AM) {
395 AM.getResult<DemandedBitsAnalysis>(F).print(OS);
396 return PreservedAnalyses::all();
James Molloy87405c72015-08-14 11:09:09 +0000397}