Hal Finkel | bf45efd | 2013-11-16 23:59:05 +0000 | [diff] [blame] | 1 | //===-- LoopReroll.cpp - Loop rerolling pass ------------------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This pass implements a simple loop reroller. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #define DEBUG_TYPE "loop-reroll" |
| 15 | #include "llvm/Transforms/Scalar.h" |
Chandler Carruth | 8a8cd2b | 2014-01-07 11:48:04 +0000 | [diff] [blame] | 16 | #include "llvm/ADT/STLExtras.h" |
Hal Finkel | bf45efd | 2013-11-16 23:59:05 +0000 | [diff] [blame] | 17 | #include "llvm/ADT/SmallSet.h" |
| 18 | #include "llvm/ADT/Statistic.h" |
Hal Finkel | bf45efd | 2013-11-16 23:59:05 +0000 | [diff] [blame] | 19 | #include "llvm/Analysis/AliasAnalysis.h" |
| 20 | #include "llvm/Analysis/AliasSetTracker.h" |
| 21 | #include "llvm/Analysis/LoopPass.h" |
| 22 | #include "llvm/Analysis/ScalarEvolution.h" |
| 23 | #include "llvm/Analysis/ScalarEvolutionExpander.h" |
| 24 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| 25 | #include "llvm/Analysis/ValueTracking.h" |
| 26 | #include "llvm/IR/DataLayout.h" |
Chandler Carruth | 5ad5f15 | 2014-01-13 09:26:24 +0000 | [diff] [blame] | 27 | #include "llvm/IR/Dominators.h" |
Hal Finkel | bf45efd | 2013-11-16 23:59:05 +0000 | [diff] [blame] | 28 | #include "llvm/IR/IntrinsicInst.h" |
| 29 | #include "llvm/Support/CommandLine.h" |
| 30 | #include "llvm/Support/Debug.h" |
| 31 | #include "llvm/Support/raw_ostream.h" |
| 32 | #include "llvm/Target/TargetLibraryInfo.h" |
| 33 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 34 | #include "llvm/Transforms/Utils/Local.h" |
| 35 | #include "llvm/Transforms/Utils/LoopUtils.h" |
| 36 | |
| 37 | using namespace llvm; |
| 38 | |
| 39 | STATISTIC(NumRerolledLoops, "Number of rerolled loops"); |
| 40 | |
| 41 | static cl::opt<unsigned> |
| 42 | MaxInc("max-reroll-increment", cl::init(2048), cl::Hidden, |
| 43 | cl::desc("The maximum increment for loop rerolling")); |
| 44 | |
| 45 | // This loop re-rolling transformation aims to transform loops like this: |
| 46 | // |
| 47 | // int foo(int a); |
| 48 | // void bar(int *x) { |
| 49 | // for (int i = 0; i < 500; i += 3) { |
| 50 | // foo(i); |
| 51 | // foo(i+1); |
| 52 | // foo(i+2); |
| 53 | // } |
| 54 | // } |
| 55 | // |
| 56 | // into a loop like this: |
| 57 | // |
| 58 | // void bar(int *x) { |
| 59 | // for (int i = 0; i < 500; ++i) |
| 60 | // foo(i); |
| 61 | // } |
| 62 | // |
| 63 | // It does this by looking for loops that, besides the latch code, are composed |
| 64 | // of isomorphic DAGs of instructions, with each DAG rooted at some increment |
| 65 | // to the induction variable, and where each DAG is isomorphic to the DAG |
| 66 | // rooted at the induction variable (excepting the sub-DAGs which root the |
| 67 | // other induction-variable increments). In other words, we're looking for loop |
| 68 | // bodies of the form: |
| 69 | // |
| 70 | // %iv = phi [ (preheader, ...), (body, %iv.next) ] |
| 71 | // f(%iv) |
| 72 | // %iv.1 = add %iv, 1 <-- a root increment |
| 73 | // f(%iv.1) |
| 74 | // %iv.2 = add %iv, 2 <-- a root increment |
| 75 | // f(%iv.2) |
| 76 | // %iv.scale_m_1 = add %iv, scale-1 <-- a root increment |
| 77 | // f(%iv.scale_m_1) |
| 78 | // ... |
| 79 | // %iv.next = add %iv, scale |
| 80 | // %cmp = icmp(%iv, ...) |
| 81 | // br %cmp, header, exit |
| 82 | // |
| 83 | // where each f(i) is a set of instructions that, collectively, are a function |
| 84 | // only of i (and other loop-invariant values). |
| 85 | // |
| 86 | // As a special case, we can also reroll loops like this: |
| 87 | // |
| 88 | // int foo(int); |
| 89 | // void bar(int *x) { |
| 90 | // for (int i = 0; i < 500; ++i) { |
| 91 | // x[3*i] = foo(0); |
| 92 | // x[3*i+1] = foo(0); |
| 93 | // x[3*i+2] = foo(0); |
| 94 | // } |
| 95 | // } |
| 96 | // |
| 97 | // into this: |
| 98 | // |
| 99 | // void bar(int *x) { |
| 100 | // for (int i = 0; i < 1500; ++i) |
| 101 | // x[i] = foo(0); |
| 102 | // } |
| 103 | // |
| 104 | // in which case, we're looking for inputs like this: |
| 105 | // |
| 106 | // %iv = phi [ (preheader, ...), (body, %iv.next) ] |
| 107 | // %scaled.iv = mul %iv, scale |
| 108 | // f(%scaled.iv) |
| 109 | // %scaled.iv.1 = add %scaled.iv, 1 |
| 110 | // f(%scaled.iv.1) |
| 111 | // %scaled.iv.2 = add %scaled.iv, 2 |
| 112 | // f(%scaled.iv.2) |
| 113 | // %scaled.iv.scale_m_1 = add %scaled.iv, scale-1 |
| 114 | // f(%scaled.iv.scale_m_1) |
| 115 | // ... |
| 116 | // %iv.next = add %iv, 1 |
| 117 | // %cmp = icmp(%iv, ...) |
| 118 | // br %cmp, header, exit |
| 119 | |
| 120 | namespace { |
| 121 | class LoopReroll : public LoopPass { |
| 122 | public: |
| 123 | static char ID; // Pass ID, replacement for typeid |
| 124 | LoopReroll() : LoopPass(ID) { |
| 125 | initializeLoopRerollPass(*PassRegistry::getPassRegistry()); |
| 126 | } |
| 127 | |
| 128 | bool runOnLoop(Loop *L, LPPassManager &LPM); |
| 129 | |
| 130 | virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| 131 | AU.addRequired<AliasAnalysis>(); |
| 132 | AU.addRequired<LoopInfo>(); |
| 133 | AU.addPreserved<LoopInfo>(); |
Chandler Carruth | 7352302 | 2014-01-13 13:07:17 +0000 | [diff] [blame] | 134 | AU.addRequired<DominatorTreeWrapperPass>(); |
| 135 | AU.addPreserved<DominatorTreeWrapperPass>(); |
Hal Finkel | bf45efd | 2013-11-16 23:59:05 +0000 | [diff] [blame] | 136 | AU.addRequired<ScalarEvolution>(); |
| 137 | AU.addRequired<TargetLibraryInfo>(); |
| 138 | } |
| 139 | |
| 140 | protected: |
| 141 | AliasAnalysis *AA; |
| 142 | LoopInfo *LI; |
| 143 | ScalarEvolution *SE; |
| 144 | DataLayout *DL; |
| 145 | TargetLibraryInfo *TLI; |
| 146 | DominatorTree *DT; |
| 147 | |
| 148 | typedef SmallVector<Instruction *, 16> SmallInstructionVector; |
| 149 | typedef SmallSet<Instruction *, 16> SmallInstructionSet; |
| 150 | |
| 151 | // A chain of isomorphic instructions, indentified by a single-use PHI, |
| 152 | // representing a reduction. Only the last value may be used outside the |
| 153 | // loop. |
| 154 | struct SimpleLoopReduction { |
| 155 | SimpleLoopReduction(Instruction *P, Loop *L) |
| 156 | : Valid(false), Instructions(1, P) { |
| 157 | assert(isa<PHINode>(P) && "First reduction instruction must be a PHI"); |
| 158 | add(L); |
| 159 | } |
| 160 | |
| 161 | bool valid() const { |
| 162 | return Valid; |
| 163 | } |
| 164 | |
| 165 | Instruction *getPHI() const { |
| 166 | assert(Valid && "Using invalid reduction"); |
| 167 | return Instructions.front(); |
| 168 | } |
| 169 | |
| 170 | Instruction *getReducedValue() const { |
| 171 | assert(Valid && "Using invalid reduction"); |
| 172 | return Instructions.back(); |
| 173 | } |
| 174 | |
| 175 | Instruction *get(size_t i) const { |
| 176 | assert(Valid && "Using invalid reduction"); |
| 177 | return Instructions[i+1]; |
| 178 | } |
| 179 | |
| 180 | Instruction *operator [] (size_t i) const { return get(i); } |
| 181 | |
| 182 | // The size, ignoring the initial PHI. |
| 183 | size_t size() const { |
| 184 | assert(Valid && "Using invalid reduction"); |
| 185 | return Instructions.size()-1; |
| 186 | } |
| 187 | |
| 188 | typedef SmallInstructionVector::iterator iterator; |
| 189 | typedef SmallInstructionVector::const_iterator const_iterator; |
| 190 | |
| 191 | iterator begin() { |
| 192 | assert(Valid && "Using invalid reduction"); |
| 193 | return llvm::next(Instructions.begin()); |
| 194 | } |
| 195 | |
| 196 | const_iterator begin() const { |
| 197 | assert(Valid && "Using invalid reduction"); |
| 198 | return llvm::next(Instructions.begin()); |
| 199 | } |
| 200 | |
| 201 | iterator end() { return Instructions.end(); } |
| 202 | const_iterator end() const { return Instructions.end(); } |
| 203 | |
| 204 | protected: |
| 205 | bool Valid; |
| 206 | SmallInstructionVector Instructions; |
| 207 | |
| 208 | void add(Loop *L); |
| 209 | }; |
| 210 | |
| 211 | // The set of all reductions, and state tracking of possible reductions |
| 212 | // during loop instruction processing. |
| 213 | struct ReductionTracker { |
| 214 | typedef SmallVector<SimpleLoopReduction, 16> SmallReductionVector; |
| 215 | |
| 216 | // Add a new possible reduction. |
| 217 | void addSLR(SimpleLoopReduction &SLR) { |
| 218 | PossibleReds.push_back(SLR); |
| 219 | } |
| 220 | |
| 221 | // Setup to track possible reductions corresponding to the provided |
| 222 | // rerolling scale. Only reductions with a number of non-PHI instructions |
| 223 | // that is divisible by the scale are considered. Three instructions sets |
| 224 | // are filled in: |
| 225 | // - A set of all possible instructions in eligible reductions. |
| 226 | // - A set of all PHIs in eligible reductions |
| 227 | // - A set of all reduced values (last instructions) in eligible reductions. |
| 228 | void restrictToScale(uint64_t Scale, |
| 229 | SmallInstructionSet &PossibleRedSet, |
| 230 | SmallInstructionSet &PossibleRedPHISet, |
| 231 | SmallInstructionSet &PossibleRedLastSet) { |
| 232 | PossibleRedIdx.clear(); |
| 233 | PossibleRedIter.clear(); |
| 234 | Reds.clear(); |
| 235 | |
| 236 | for (unsigned i = 0, e = PossibleReds.size(); i != e; ++i) |
| 237 | if (PossibleReds[i].size() % Scale == 0) { |
| 238 | PossibleRedLastSet.insert(PossibleReds[i].getReducedValue()); |
| 239 | PossibleRedPHISet.insert(PossibleReds[i].getPHI()); |
| 240 | |
| 241 | PossibleRedSet.insert(PossibleReds[i].getPHI()); |
| 242 | PossibleRedIdx[PossibleReds[i].getPHI()] = i; |
| 243 | for (SimpleLoopReduction::iterator J = PossibleReds[i].begin(), |
| 244 | JE = PossibleReds[i].end(); J != JE; ++J) { |
| 245 | PossibleRedSet.insert(*J); |
| 246 | PossibleRedIdx[*J] = i; |
| 247 | } |
| 248 | } |
| 249 | } |
| 250 | |
| 251 | // The functions below are used while processing the loop instructions. |
| 252 | |
| 253 | // Are the two instructions both from reductions, and furthermore, from |
| 254 | // the same reduction? |
| 255 | bool isPairInSame(Instruction *J1, Instruction *J2) { |
| 256 | DenseMap<Instruction *, int>::iterator J1I = PossibleRedIdx.find(J1); |
| 257 | if (J1I != PossibleRedIdx.end()) { |
| 258 | DenseMap<Instruction *, int>::iterator J2I = PossibleRedIdx.find(J2); |
| 259 | if (J2I != PossibleRedIdx.end() && J1I->second == J2I->second) |
| 260 | return true; |
| 261 | } |
| 262 | |
| 263 | return false; |
| 264 | } |
| 265 | |
| 266 | // The two provided instructions, the first from the base iteration, and |
| 267 | // the second from iteration i, form a matched pair. If these are part of |
| 268 | // a reduction, record that fact. |
| 269 | void recordPair(Instruction *J1, Instruction *J2, unsigned i) { |
| 270 | if (PossibleRedIdx.count(J1)) { |
| 271 | assert(PossibleRedIdx.count(J2) && |
| 272 | "Recording reduction vs. non-reduction instruction?"); |
| 273 | |
| 274 | PossibleRedIter[J1] = 0; |
| 275 | PossibleRedIter[J2] = i; |
| 276 | |
| 277 | int Idx = PossibleRedIdx[J1]; |
| 278 | assert(Idx == PossibleRedIdx[J2] && |
| 279 | "Recording pair from different reductions?"); |
Hal Finkel | 67107ea | 2013-11-17 01:21:54 +0000 | [diff] [blame] | 280 | Reds.insert(Idx); |
Hal Finkel | bf45efd | 2013-11-16 23:59:05 +0000 | [diff] [blame] | 281 | } |
| 282 | } |
| 283 | |
| 284 | // The functions below can be called after we've finished processing all |
| 285 | // instructions in the loop, and we know which reductions were selected. |
| 286 | |
| 287 | // Is the provided instruction the PHI of a reduction selected for |
| 288 | // rerolling? |
| 289 | bool isSelectedPHI(Instruction *J) { |
| 290 | if (!isa<PHINode>(J)) |
| 291 | return false; |
| 292 | |
| 293 | for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end(); |
| 294 | RI != RIE; ++RI) { |
| 295 | int i = *RI; |
| 296 | if (cast<Instruction>(J) == PossibleReds[i].getPHI()) |
| 297 | return true; |
| 298 | } |
| 299 | |
| 300 | return false; |
| 301 | } |
| 302 | |
| 303 | bool validateSelected(); |
| 304 | void replaceSelected(); |
| 305 | |
| 306 | protected: |
| 307 | // The vector of all possible reductions (for any scale). |
| 308 | SmallReductionVector PossibleReds; |
| 309 | |
| 310 | DenseMap<Instruction *, int> PossibleRedIdx; |
| 311 | DenseMap<Instruction *, int> PossibleRedIter; |
| 312 | DenseSet<int> Reds; |
| 313 | }; |
| 314 | |
| 315 | void collectPossibleIVs(Loop *L, SmallInstructionVector &PossibleIVs); |
| 316 | void collectPossibleReductions(Loop *L, |
| 317 | ReductionTracker &Reductions); |
| 318 | void collectInLoopUserSet(Loop *L, |
| 319 | const SmallInstructionVector &Roots, |
| 320 | const SmallInstructionSet &Exclude, |
| 321 | const SmallInstructionSet &Final, |
| 322 | DenseSet<Instruction *> &Users); |
| 323 | void collectInLoopUserSet(Loop *L, |
| 324 | Instruction * Root, |
| 325 | const SmallInstructionSet &Exclude, |
| 326 | const SmallInstructionSet &Final, |
| 327 | DenseSet<Instruction *> &Users); |
| 328 | bool findScaleFromMul(Instruction *RealIV, uint64_t &Scale, |
| 329 | Instruction *&IV, |
| 330 | SmallInstructionVector &LoopIncs); |
| 331 | bool collectAllRoots(Loop *L, uint64_t Inc, uint64_t Scale, Instruction *IV, |
| 332 | SmallVector<SmallInstructionVector, 32> &Roots, |
| 333 | SmallInstructionSet &AllRoots, |
| 334 | SmallInstructionVector &LoopIncs); |
| 335 | bool reroll(Instruction *IV, Loop *L, BasicBlock *Header, const SCEV *IterCount, |
| 336 | ReductionTracker &Reductions); |
| 337 | }; |
| 338 | } |
| 339 | |
| 340 | char LoopReroll::ID = 0; |
| 341 | INITIALIZE_PASS_BEGIN(LoopReroll, "loop-reroll", "Reroll loops", false, false) |
| 342 | INITIALIZE_AG_DEPENDENCY(AliasAnalysis) |
| 343 | INITIALIZE_PASS_DEPENDENCY(LoopInfo) |
Chandler Carruth | 7352302 | 2014-01-13 13:07:17 +0000 | [diff] [blame] | 344 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
Hal Finkel | bf45efd | 2013-11-16 23:59:05 +0000 | [diff] [blame] | 345 | INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) |
| 346 | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) |
| 347 | INITIALIZE_PASS_END(LoopReroll, "loop-reroll", "Reroll loops", false, false) |
| 348 | |
| 349 | Pass *llvm::createLoopRerollPass() { |
| 350 | return new LoopReroll; |
| 351 | } |
| 352 | |
| 353 | // Returns true if the provided instruction is used outside the given loop. |
| 354 | // This operates like Instruction::isUsedOutsideOfBlock, but considers PHIs in |
| 355 | // non-loop blocks to be outside the loop. |
| 356 | static bool hasUsesOutsideLoop(Instruction *I, Loop *L) { |
| 357 | for (Value::use_iterator UI = I->use_begin(), |
| 358 | UIE = I->use_end(); UI != UIE; ++UI) { |
| 359 | Instruction *User = cast<Instruction>(*UI); |
| 360 | if (!L->contains(User)) |
| 361 | return true; |
| 362 | } |
| 363 | |
| 364 | return false; |
| 365 | } |
| 366 | |
| 367 | // Collect the list of loop induction variables with respect to which it might |
| 368 | // be possible to reroll the loop. |
| 369 | void LoopReroll::collectPossibleIVs(Loop *L, |
| 370 | SmallInstructionVector &PossibleIVs) { |
| 371 | BasicBlock *Header = L->getHeader(); |
| 372 | for (BasicBlock::iterator I = Header->begin(), |
| 373 | IE = Header->getFirstInsertionPt(); I != IE; ++I) { |
| 374 | if (!isa<PHINode>(I)) |
| 375 | continue; |
| 376 | if (!I->getType()->isIntegerTy()) |
| 377 | continue; |
| 378 | |
| 379 | if (const SCEVAddRecExpr *PHISCEV = |
| 380 | dyn_cast<SCEVAddRecExpr>(SE->getSCEV(I))) { |
| 381 | if (PHISCEV->getLoop() != L) |
| 382 | continue; |
| 383 | if (!PHISCEV->isAffine()) |
| 384 | continue; |
| 385 | if (const SCEVConstant *IncSCEV = |
| 386 | dyn_cast<SCEVConstant>(PHISCEV->getStepRecurrence(*SE))) { |
| 387 | if (!IncSCEV->getValue()->getValue().isStrictlyPositive()) |
| 388 | continue; |
| 389 | if (IncSCEV->getValue()->uge(MaxInc)) |
| 390 | continue; |
| 391 | |
| 392 | DEBUG(dbgs() << "LRR: Possible IV: " << *I << " = " << |
| 393 | *PHISCEV << "\n"); |
| 394 | PossibleIVs.push_back(I); |
| 395 | } |
| 396 | } |
| 397 | } |
| 398 | } |
| 399 | |
| 400 | // Add the remainder of the reduction-variable chain to the instruction vector |
| 401 | // (the initial PHINode has already been added). If successful, the object is |
| 402 | // marked as valid. |
| 403 | void LoopReroll::SimpleLoopReduction::add(Loop *L) { |
| 404 | assert(!Valid && "Cannot add to an already-valid chain"); |
| 405 | |
| 406 | // The reduction variable must be a chain of single-use instructions |
| 407 | // (including the PHI), except for the last value (which is used by the PHI |
| 408 | // and also outside the loop). |
| 409 | Instruction *C = Instructions.front(); |
| 410 | |
| 411 | do { |
| 412 | C = cast<Instruction>(*C->use_begin()); |
| 413 | if (C->hasOneUse()) { |
| 414 | if (!C->isBinaryOp()) |
| 415 | return; |
| 416 | |
| 417 | if (!(isa<PHINode>(Instructions.back()) || |
| 418 | C->isSameOperationAs(Instructions.back()))) |
| 419 | return; |
| 420 | |
| 421 | Instructions.push_back(C); |
| 422 | } |
| 423 | } while (C->hasOneUse()); |
| 424 | |
| 425 | if (Instructions.size() < 2 || |
| 426 | !C->isSameOperationAs(Instructions.back()) || |
| 427 | C->use_begin() == C->use_end()) |
| 428 | return; |
| 429 | |
| 430 | // C is now the (potential) last instruction in the reduction chain. |
| 431 | for (Value::use_iterator UI = C->use_begin(), UIE = C->use_end(); |
| 432 | UI != UIE; ++UI) { |
| 433 | // The only in-loop user can be the initial PHI. |
| 434 | if (L->contains(cast<Instruction>(*UI))) |
| 435 | if (cast<Instruction>(*UI ) != Instructions.front()) |
| 436 | return; |
| 437 | } |
| 438 | |
| 439 | Instructions.push_back(C); |
| 440 | Valid = true; |
| 441 | } |
| 442 | |
| 443 | // Collect the vector of possible reduction variables. |
| 444 | void LoopReroll::collectPossibleReductions(Loop *L, |
| 445 | ReductionTracker &Reductions) { |
| 446 | BasicBlock *Header = L->getHeader(); |
| 447 | for (BasicBlock::iterator I = Header->begin(), |
| 448 | IE = Header->getFirstInsertionPt(); I != IE; ++I) { |
| 449 | if (!isa<PHINode>(I)) |
| 450 | continue; |
| 451 | if (!I->getType()->isSingleValueType()) |
| 452 | continue; |
| 453 | |
| 454 | SimpleLoopReduction SLR(I, L); |
| 455 | if (!SLR.valid()) |
| 456 | continue; |
| 457 | |
| 458 | DEBUG(dbgs() << "LRR: Possible reduction: " << *I << " (with " << |
| 459 | SLR.size() << " chained instructions)\n"); |
| 460 | Reductions.addSLR(SLR); |
| 461 | } |
| 462 | } |
| 463 | |
| 464 | // Collect the set of all users of the provided root instruction. This set of |
| 465 | // users contains not only the direct users of the root instruction, but also |
| 466 | // all users of those users, and so on. There are two exceptions: |
| 467 | // |
| 468 | // 1. Instructions in the set of excluded instructions are never added to the |
| 469 | // use set (even if they are users). This is used, for example, to exclude |
| 470 | // including root increments in the use set of the primary IV. |
| 471 | // |
| 472 | // 2. Instructions in the set of final instructions are added to the use set |
| 473 | // if they are users, but their users are not added. This is used, for |
| 474 | // example, to prevent a reduction update from forcing all later reduction |
| 475 | // updates into the use set. |
| 476 | void LoopReroll::collectInLoopUserSet(Loop *L, |
| 477 | Instruction *Root, const SmallInstructionSet &Exclude, |
| 478 | const SmallInstructionSet &Final, |
| 479 | DenseSet<Instruction *> &Users) { |
| 480 | SmallInstructionVector Queue(1, Root); |
| 481 | while (!Queue.empty()) { |
| 482 | Instruction *I = Queue.pop_back_val(); |
| 483 | if (!Users.insert(I).second) |
| 484 | continue; |
| 485 | |
| 486 | if (!Final.count(I)) |
| 487 | for (Value::use_iterator UI = I->use_begin(), |
| 488 | UIE = I->use_end(); UI != UIE; ++UI) { |
| 489 | Instruction *User = cast<Instruction>(*UI); |
| 490 | if (PHINode *PN = dyn_cast<PHINode>(User)) { |
| 491 | // Ignore "wrap-around" uses to PHIs of this loop's header. |
| 492 | if (PN->getIncomingBlock(UI) == L->getHeader()) |
| 493 | continue; |
| 494 | } |
| 495 | |
| 496 | if (L->contains(User) && !Exclude.count(User)) { |
| 497 | Queue.push_back(User); |
| 498 | } |
| 499 | } |
| 500 | |
| 501 | // We also want to collect single-user "feeder" values. |
| 502 | for (User::op_iterator OI = I->op_begin(), |
| 503 | OIE = I->op_end(); OI != OIE; ++OI) { |
| 504 | if (Instruction *Op = dyn_cast<Instruction>(*OI)) |
| 505 | if (Op->hasOneUse() && L->contains(Op) && !Exclude.count(Op) && |
| 506 | !Final.count(Op)) |
| 507 | Queue.push_back(Op); |
| 508 | } |
| 509 | } |
| 510 | } |
| 511 | |
| 512 | // Collect all of the users of all of the provided root instructions (combined |
| 513 | // into a single set). |
| 514 | void LoopReroll::collectInLoopUserSet(Loop *L, |
| 515 | const SmallInstructionVector &Roots, |
| 516 | const SmallInstructionSet &Exclude, |
| 517 | const SmallInstructionSet &Final, |
| 518 | DenseSet<Instruction *> &Users) { |
| 519 | for (SmallInstructionVector::const_iterator I = Roots.begin(), |
| 520 | IE = Roots.end(); I != IE; ++I) |
| 521 | collectInLoopUserSet(L, *I, Exclude, Final, Users); |
| 522 | } |
| 523 | |
| 524 | static bool isSimpleLoadStore(Instruction *I) { |
| 525 | if (LoadInst *LI = dyn_cast<LoadInst>(I)) |
| 526 | return LI->isSimple(); |
| 527 | if (StoreInst *SI = dyn_cast<StoreInst>(I)) |
| 528 | return SI->isSimple(); |
| 529 | if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) |
| 530 | return !MI->isVolatile(); |
| 531 | return false; |
| 532 | } |
| 533 | |
| 534 | // Recognize loops that are setup like this: |
| 535 | // |
| 536 | // %iv = phi [ (preheader, ...), (body, %iv.next) ] |
| 537 | // %scaled.iv = mul %iv, scale |
| 538 | // f(%scaled.iv) |
| 539 | // %scaled.iv.1 = add %scaled.iv, 1 |
| 540 | // f(%scaled.iv.1) |
| 541 | // %scaled.iv.2 = add %scaled.iv, 2 |
| 542 | // f(%scaled.iv.2) |
| 543 | // %scaled.iv.scale_m_1 = add %scaled.iv, scale-1 |
| 544 | // f(%scaled.iv.scale_m_1) |
| 545 | // ... |
| 546 | // %iv.next = add %iv, 1 |
| 547 | // %cmp = icmp(%iv, ...) |
| 548 | // br %cmp, header, exit |
| 549 | // |
| 550 | // and, if found, set IV = %scaled.iv, and add %iv.next to LoopIncs. |
| 551 | bool LoopReroll::findScaleFromMul(Instruction *RealIV, uint64_t &Scale, |
| 552 | Instruction *&IV, |
| 553 | SmallInstructionVector &LoopIncs) { |
| 554 | // This is a special case: here we're looking for all uses (except for |
| 555 | // the increment) to be multiplied by a common factor. The increment must |
| 556 | // be by one. This is to capture loops like: |
| 557 | // for (int i = 0; i < 500; ++i) { |
| 558 | // foo(3*i); foo(3*i+1); foo(3*i+2); |
| 559 | // } |
| 560 | if (RealIV->getNumUses() != 2) |
| 561 | return false; |
| 562 | const SCEVAddRecExpr *RealIVSCEV = cast<SCEVAddRecExpr>(SE->getSCEV(RealIV)); |
| 563 | Instruction *User1 = cast<Instruction>(*RealIV->use_begin()), |
| 564 | *User2 = cast<Instruction>(*llvm::next(RealIV->use_begin())); |
| 565 | if (!SE->isSCEVable(User1->getType()) || !SE->isSCEVable(User2->getType())) |
| 566 | return false; |
| 567 | const SCEVAddRecExpr *User1SCEV = |
| 568 | dyn_cast<SCEVAddRecExpr>(SE->getSCEV(User1)), |
| 569 | *User2SCEV = |
| 570 | dyn_cast<SCEVAddRecExpr>(SE->getSCEV(User2)); |
| 571 | if (!User1SCEV || !User1SCEV->isAffine() || |
| 572 | !User2SCEV || !User2SCEV->isAffine()) |
| 573 | return false; |
| 574 | |
| 575 | // We assume below that User1 is the scale multiply and User2 is the |
| 576 | // increment. If this can't be true, then swap them. |
| 577 | if (User1SCEV == RealIVSCEV->getPostIncExpr(*SE)) { |
| 578 | std::swap(User1, User2); |
| 579 | std::swap(User1SCEV, User2SCEV); |
| 580 | } |
| 581 | |
| 582 | if (User2SCEV != RealIVSCEV->getPostIncExpr(*SE)) |
| 583 | return false; |
| 584 | assert(User2SCEV->getStepRecurrence(*SE)->isOne() && |
| 585 | "Invalid non-unit step for multiplicative scaling"); |
| 586 | LoopIncs.push_back(User2); |
| 587 | |
| 588 | if (const SCEVConstant *MulScale = |
| 589 | dyn_cast<SCEVConstant>(User1SCEV->getStepRecurrence(*SE))) { |
| 590 | // Make sure that both the start and step have the same multiplier. |
| 591 | if (RealIVSCEV->getStart()->getType() != MulScale->getType()) |
| 592 | return false; |
| 593 | if (SE->getMulExpr(RealIVSCEV->getStart(), MulScale) != |
| 594 | User1SCEV->getStart()) |
| 595 | return false; |
| 596 | |
| 597 | ConstantInt *MulScaleCI = MulScale->getValue(); |
| 598 | if (!MulScaleCI->uge(2) || MulScaleCI->uge(MaxInc)) |
| 599 | return false; |
| 600 | Scale = MulScaleCI->getZExtValue(); |
| 601 | IV = User1; |
| 602 | } else |
| 603 | return false; |
| 604 | |
| 605 | DEBUG(dbgs() << "LRR: Found possible scaling " << *User1 << "\n"); |
| 606 | return true; |
| 607 | } |
| 608 | |
| 609 | // Collect all root increments with respect to the provided induction variable |
| 610 | // (normally the PHI, but sometimes a multiply). A root increment is an |
| 611 | // instruction, normally an add, with a positive constant less than Scale. In a |
| 612 | // rerollable loop, each of these increments is the root of an instruction |
| 613 | // graph isomorphic to the others. Also, we collect the final induction |
| 614 | // increment (the increment equal to the Scale), and its users in LoopIncs. |
| 615 | bool LoopReroll::collectAllRoots(Loop *L, uint64_t Inc, uint64_t Scale, |
| 616 | Instruction *IV, |
| 617 | SmallVector<SmallInstructionVector, 32> &Roots, |
| 618 | SmallInstructionSet &AllRoots, |
| 619 | SmallInstructionVector &LoopIncs) { |
| 620 | for (Value::use_iterator UI = IV->use_begin(), |
| 621 | UIE = IV->use_end(); UI != UIE; ++UI) { |
| 622 | Instruction *User = cast<Instruction>(*UI); |
| 623 | if (!SE->isSCEVable(User->getType())) |
| 624 | continue; |
| 625 | if (User->getType() != IV->getType()) |
| 626 | continue; |
| 627 | if (!L->contains(User)) |
| 628 | continue; |
| 629 | if (hasUsesOutsideLoop(User, L)) |
| 630 | continue; |
| 631 | |
| 632 | if (const SCEVConstant *Diff = dyn_cast<SCEVConstant>(SE->getMinusSCEV( |
| 633 | SE->getSCEV(User), SE->getSCEV(IV)))) { |
| 634 | uint64_t Idx = Diff->getValue()->getValue().getZExtValue(); |
| 635 | if (Idx > 0 && Idx < Scale) { |
| 636 | Roots[Idx-1].push_back(User); |
| 637 | AllRoots.insert(User); |
| 638 | } else if (Idx == Scale && Inc > 1) { |
| 639 | LoopIncs.push_back(User); |
| 640 | } |
| 641 | } |
| 642 | } |
| 643 | |
| 644 | if (Roots[0].empty()) |
| 645 | return false; |
| 646 | bool AllSame = true; |
| 647 | for (unsigned i = 1; i < Scale-1; ++i) |
| 648 | if (Roots[i].size() != Roots[0].size()) { |
| 649 | AllSame = false; |
| 650 | break; |
| 651 | } |
| 652 | |
| 653 | if (!AllSame) |
| 654 | return false; |
| 655 | |
| 656 | return true; |
| 657 | } |
| 658 | |
| 659 | // Validate the selected reductions. All iterations must have an isomorphic |
| 660 | // part of the reduction chain and, for non-associative reductions, the chain |
| 661 | // entries must appear in order. |
| 662 | bool LoopReroll::ReductionTracker::validateSelected() { |
| 663 | // For a non-associative reduction, the chain entries must appear in order. |
| 664 | for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end(); |
| 665 | RI != RIE; ++RI) { |
| 666 | int i = *RI; |
| 667 | int PrevIter = 0, BaseCount = 0, Count = 0; |
| 668 | for (SimpleLoopReduction::iterator J = PossibleReds[i].begin(), |
| 669 | JE = PossibleReds[i].end(); J != JE; ++J) { |
| 670 | // Note that all instructions in the chain must have been found because |
| 671 | // all instructions in the function must have been assigned to some |
| 672 | // iteration. |
| 673 | int Iter = PossibleRedIter[*J]; |
| 674 | if (Iter != PrevIter && Iter != PrevIter + 1 && |
| 675 | !PossibleReds[i].getReducedValue()->isAssociative()) { |
| 676 | DEBUG(dbgs() << "LRR: Out-of-order non-associative reduction: " << |
| 677 | *J << "\n"); |
| 678 | return false; |
| 679 | } |
| 680 | |
| 681 | if (Iter != PrevIter) { |
| 682 | if (Count != BaseCount) { |
| 683 | DEBUG(dbgs() << "LRR: Iteration " << PrevIter << |
| 684 | " reduction use count " << Count << |
| 685 | " is not equal to the base use count " << |
| 686 | BaseCount << "\n"); |
| 687 | return false; |
| 688 | } |
| 689 | |
| 690 | Count = 0; |
| 691 | } |
| 692 | |
| 693 | ++Count; |
| 694 | if (Iter == 0) |
| 695 | ++BaseCount; |
| 696 | |
| 697 | PrevIter = Iter; |
| 698 | } |
| 699 | } |
| 700 | |
| 701 | return true; |
| 702 | } |
| 703 | |
| 704 | // For all selected reductions, remove all parts except those in the first |
| 705 | // iteration (and the PHI). Replace outside uses of the reduced value with uses |
| 706 | // of the first-iteration reduced value (in other words, reroll the selected |
| 707 | // reductions). |
| 708 | void LoopReroll::ReductionTracker::replaceSelected() { |
| 709 | // Fixup reductions to refer to the last instruction associated with the |
| 710 | // first iteration (not the last). |
| 711 | for (DenseSet<int>::iterator RI = Reds.begin(), RIE = Reds.end(); |
| 712 | RI != RIE; ++RI) { |
| 713 | int i = *RI; |
| 714 | int j = 0; |
| 715 | for (int e = PossibleReds[i].size(); j != e; ++j) |
| 716 | if (PossibleRedIter[PossibleReds[i][j]] != 0) { |
| 717 | --j; |
| 718 | break; |
| 719 | } |
| 720 | |
| 721 | // Replace users with the new end-of-chain value. |
| 722 | SmallInstructionVector Users; |
| 723 | for (Value::use_iterator UI = |
| 724 | PossibleReds[i].getReducedValue()->use_begin(), |
| 725 | UIE = PossibleReds[i].getReducedValue()->use_end(); UI != UIE; ++UI) |
| 726 | Users.push_back(cast<Instruction>(*UI)); |
| 727 | |
| 728 | for (SmallInstructionVector::iterator J = Users.begin(), |
| 729 | JE = Users.end(); J != JE; ++J) |
| 730 | (*J)->replaceUsesOfWith(PossibleReds[i].getReducedValue(), |
| 731 | PossibleReds[i][j]); |
| 732 | } |
| 733 | } |
| 734 | |
| 735 | // Reroll the provided loop with respect to the provided induction variable. |
| 736 | // Generally, we're looking for a loop like this: |
| 737 | // |
| 738 | // %iv = phi [ (preheader, ...), (body, %iv.next) ] |
| 739 | // f(%iv) |
| 740 | // %iv.1 = add %iv, 1 <-- a root increment |
| 741 | // f(%iv.1) |
| 742 | // %iv.2 = add %iv, 2 <-- a root increment |
| 743 | // f(%iv.2) |
| 744 | // %iv.scale_m_1 = add %iv, scale-1 <-- a root increment |
| 745 | // f(%iv.scale_m_1) |
| 746 | // ... |
| 747 | // %iv.next = add %iv, scale |
| 748 | // %cmp = icmp(%iv, ...) |
| 749 | // br %cmp, header, exit |
| 750 | // |
| 751 | // Notably, we do not require that f(%iv), f(%iv.1), etc. be isolated groups of |
| 752 | // instructions. In other words, the instructions in f(%iv), f(%iv.1), etc. can |
| 753 | // be intermixed with eachother. The restriction imposed by this algorithm is |
| 754 | // that the relative order of the isomorphic instructions in f(%iv), f(%iv.1), |
| 755 | // etc. be the same. |
| 756 | // |
| 757 | // First, we collect the use set of %iv, excluding the other increment roots. |
| 758 | // This gives us f(%iv). Then we iterate over the loop instructions (scale-1) |
| 759 | // times, having collected the use set of f(%iv.(i+1)), during which we: |
| 760 | // - Ensure that the next unmatched instruction in f(%iv) is isomorphic to |
| 761 | // the next unmatched instruction in f(%iv.(i+1)). |
| 762 | // - Ensure that both matched instructions don't have any external users |
| 763 | // (with the exception of last-in-chain reduction instructions). |
| 764 | // - Track the (aliasing) write set, and other side effects, of all |
| 765 | // instructions that belong to future iterations that come before the matched |
| 766 | // instructions. If the matched instructions read from that write set, then |
| 767 | // f(%iv) or f(%iv.(i+1)) has some dependency on instructions in |
| 768 | // f(%iv.(j+1)) for some j > i, and we cannot reroll the loop. Similarly, |
| 769 | // if any of these future instructions had side effects (could not be |
| 770 | // speculatively executed), and so do the matched instructions, when we |
| 771 | // cannot reorder those side-effect-producing instructions, and rerolling |
| 772 | // fails. |
| 773 | // |
| 774 | // Finally, we make sure that all loop instructions are either loop increment |
| 775 | // roots, belong to simple latch code, parts of validated reductions, part of |
| 776 | // f(%iv) or part of some f(%iv.i). If all of that is true (and all reductions |
| 777 | // have been validated), then we reroll the loop. |
| 778 | bool LoopReroll::reroll(Instruction *IV, Loop *L, BasicBlock *Header, |
| 779 | const SCEV *IterCount, |
| 780 | ReductionTracker &Reductions) { |
| 781 | const SCEVAddRecExpr *RealIVSCEV = cast<SCEVAddRecExpr>(SE->getSCEV(IV)); |
| 782 | uint64_t Inc = cast<SCEVConstant>(RealIVSCEV->getOperand(1))-> |
| 783 | getValue()->getZExtValue(); |
| 784 | // The collection of loop increment instructions. |
| 785 | SmallInstructionVector LoopIncs; |
| 786 | uint64_t Scale = Inc; |
| 787 | |
| 788 | // The effective induction variable, IV, is normally also the real induction |
| 789 | // variable. When we're dealing with a loop like: |
| 790 | // for (int i = 0; i < 500; ++i) |
| 791 | // x[3*i] = ...; |
| 792 | // x[3*i+1] = ...; |
| 793 | // x[3*i+2] = ...; |
| 794 | // then the real IV is still i, but the effective IV is (3*i). |
| 795 | Instruction *RealIV = IV; |
| 796 | if (Inc == 1 && !findScaleFromMul(RealIV, Scale, IV, LoopIncs)) |
| 797 | return false; |
| 798 | |
| 799 | assert(Scale <= MaxInc && "Scale is too large"); |
| 800 | assert(Scale > 1 && "Scale must be at least 2"); |
| 801 | |
| 802 | // The set of increment instructions for each increment value. |
| 803 | SmallVector<SmallInstructionVector, 32> Roots(Scale-1); |
| 804 | SmallInstructionSet AllRoots; |
| 805 | if (!collectAllRoots(L, Inc, Scale, IV, Roots, AllRoots, LoopIncs)) |
| 806 | return false; |
| 807 | |
| 808 | DEBUG(dbgs() << "LRR: Found all root induction increments for: " << |
| 809 | *RealIV << "\n"); |
| 810 | |
| 811 | // An array of just the possible reductions for this scale factor. When we |
| 812 | // collect the set of all users of some root instructions, these reduction |
| 813 | // instructions are treated as 'final' (their uses are not considered). |
| 814 | // This is important because we don't want the root use set to search down |
| 815 | // the reduction chain. |
| 816 | SmallInstructionSet PossibleRedSet; |
| 817 | SmallInstructionSet PossibleRedLastSet, PossibleRedPHISet; |
| 818 | Reductions.restrictToScale(Scale, PossibleRedSet, PossibleRedPHISet, |
| 819 | PossibleRedLastSet); |
| 820 | |
| 821 | // We now need to check for equivalence of the use graph of each root with |
| 822 | // that of the primary induction variable (excluding the roots). Our goal |
| 823 | // here is not to solve the full graph isomorphism problem, but rather to |
| 824 | // catch common cases without a lot of work. As a result, we will assume |
| 825 | // that the relative order of the instructions in each unrolled iteration |
| 826 | // is the same (although we will not make an assumption about how the |
| 827 | // different iterations are intermixed). Note that while the order must be |
| 828 | // the same, the instructions may not be in the same basic block. |
| 829 | SmallInstructionSet Exclude(AllRoots); |
| 830 | Exclude.insert(LoopIncs.begin(), LoopIncs.end()); |
| 831 | |
| 832 | DenseSet<Instruction *> BaseUseSet; |
| 833 | collectInLoopUserSet(L, IV, Exclude, PossibleRedSet, BaseUseSet); |
| 834 | |
| 835 | DenseSet<Instruction *> AllRootUses; |
| 836 | std::vector<DenseSet<Instruction *> > RootUseSets(Scale-1); |
| 837 | |
| 838 | bool MatchFailed = false; |
| 839 | for (unsigned i = 0; i < Scale-1 && !MatchFailed; ++i) { |
| 840 | DenseSet<Instruction *> &RootUseSet = RootUseSets[i]; |
| 841 | collectInLoopUserSet(L, Roots[i], SmallInstructionSet(), |
| 842 | PossibleRedSet, RootUseSet); |
| 843 | |
| 844 | DEBUG(dbgs() << "LRR: base use set size: " << BaseUseSet.size() << |
| 845 | " vs. iteration increment " << (i+1) << |
| 846 | " use set size: " << RootUseSet.size() << "\n"); |
| 847 | |
| 848 | if (BaseUseSet.size() != RootUseSet.size()) { |
| 849 | MatchFailed = true; |
| 850 | break; |
| 851 | } |
| 852 | |
| 853 | // In addition to regular aliasing information, we need to look for |
| 854 | // instructions from later (future) iterations that have side effects |
| 855 | // preventing us from reordering them past other instructions with side |
| 856 | // effects. |
| 857 | bool FutureSideEffects = false; |
| 858 | AliasSetTracker AST(*AA); |
| 859 | |
| 860 | // The map between instructions in f(%iv.(i+1)) and f(%iv). |
| 861 | DenseMap<Value *, Value *> BaseMap; |
| 862 | |
| 863 | assert(L->getNumBlocks() == 1 && "Cannot handle multi-block loops"); |
| 864 | for (BasicBlock::iterator J1 = Header->begin(), J2 = Header->begin(), |
| 865 | JE = Header->end(); J1 != JE && !MatchFailed; ++J1) { |
| 866 | if (cast<Instruction>(J1) == RealIV) |
| 867 | continue; |
| 868 | if (cast<Instruction>(J1) == IV) |
| 869 | continue; |
| 870 | if (!BaseUseSet.count(J1)) |
| 871 | continue; |
| 872 | if (PossibleRedPHISet.count(J1)) // Skip reduction PHIs. |
| 873 | continue; |
| 874 | |
| 875 | while (J2 != JE && (!RootUseSet.count(J2) || |
| 876 | std::find(Roots[i].begin(), Roots[i].end(), J2) != |
| 877 | Roots[i].end())) { |
| 878 | // As we iterate through the instructions, instructions that don't |
| 879 | // belong to previous iterations (or the base case), must belong to |
| 880 | // future iterations. We want to track the alias set of writes from |
| 881 | // previous iterations. |
| 882 | if (!isa<PHINode>(J2) && !BaseUseSet.count(J2) && |
| 883 | !AllRootUses.count(J2)) { |
| 884 | if (J2->mayWriteToMemory()) |
| 885 | AST.add(J2); |
| 886 | |
| 887 | // Note: This is specifically guarded by a check on isa<PHINode>, |
| 888 | // which while a valid (somewhat arbitrary) micro-optimization, is |
| 889 | // needed because otherwise isSafeToSpeculativelyExecute returns |
| 890 | // false on PHI nodes. |
| 891 | if (!isSimpleLoadStore(J2) && !isSafeToSpeculativelyExecute(J2, DL)) |
| 892 | FutureSideEffects = true; |
| 893 | } |
| 894 | |
| 895 | ++J2; |
| 896 | } |
| 897 | |
| 898 | if (!J1->isSameOperationAs(J2)) { |
| 899 | DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 << |
| 900 | " vs. " << *J2 << "\n"); |
| 901 | MatchFailed = true; |
| 902 | break; |
| 903 | } |
| 904 | |
| 905 | // Make sure that this instruction, which is in the use set of this |
| 906 | // root instruction, does not also belong to the base set or the set of |
| 907 | // some previous root instruction. |
| 908 | if (BaseUseSet.count(J2) || AllRootUses.count(J2)) { |
| 909 | DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 << |
| 910 | " vs. " << *J2 << " (prev. case overlap)\n"); |
| 911 | MatchFailed = true; |
| 912 | break; |
| 913 | } |
| 914 | |
| 915 | // Make sure that we don't alias with any instruction in the alias set |
| 916 | // tracker. If we do, then we depend on a future iteration, and we |
| 917 | // can't reroll. |
| 918 | if (J2->mayReadFromMemory()) { |
| 919 | for (AliasSetTracker::iterator K = AST.begin(), KE = AST.end(); |
| 920 | K != KE && !MatchFailed; ++K) { |
| 921 | if (K->aliasesUnknownInst(J2, *AA)) { |
| 922 | DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 << |
| 923 | " vs. " << *J2 << " (depends on future store)\n"); |
| 924 | MatchFailed = true; |
| 925 | break; |
| 926 | } |
| 927 | } |
| 928 | } |
| 929 | |
| 930 | // If we've past an instruction from a future iteration that may have |
| 931 | // side effects, and this instruction might also, then we can't reorder |
| 932 | // them, and this matching fails. As an exception, we allow the alias |
| 933 | // set tracker to handle regular (simple) load/store dependencies. |
| 934 | if (FutureSideEffects && |
| 935 | ((!isSimpleLoadStore(J1) && !isSafeToSpeculativelyExecute(J1)) || |
| 936 | (!isSimpleLoadStore(J2) && !isSafeToSpeculativelyExecute(J2)))) { |
| 937 | DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 << |
| 938 | " vs. " << *J2 << |
| 939 | " (side effects prevent reordering)\n"); |
| 940 | MatchFailed = true; |
| 941 | break; |
| 942 | } |
| 943 | |
| 944 | // For instructions that are part of a reduction, if the operation is |
| 945 | // associative, then don't bother matching the operands (because we |
| 946 | // already know that the instructions are isomorphic, and the order |
| 947 | // within the iteration does not matter). For non-associative reductions, |
| 948 | // we do need to match the operands, because we need to reject |
| 949 | // out-of-order instructions within an iteration! |
| 950 | // For example (assume floating-point addition), we need to reject this: |
| 951 | // x += a[i]; x += b[i]; |
| 952 | // x += a[i+1]; x += b[i+1]; |
| 953 | // x += b[i+2]; x += a[i+2]; |
| 954 | bool InReduction = Reductions.isPairInSame(J1, J2); |
| 955 | |
| 956 | if (!(InReduction && J1->isAssociative())) { |
| 957 | bool Swapped = false, SomeOpMatched = false;; |
| 958 | for (unsigned j = 0; j < J1->getNumOperands() && !MatchFailed; ++j) { |
| 959 | Value *Op2 = J2->getOperand(j); |
| 960 | |
| 961 | // If this is part of a reduction (and the operation is not |
| 962 | // associatve), then we match all operands, but not those that are |
| 963 | // part of the reduction. |
| 964 | if (InReduction) |
| 965 | if (Instruction *Op2I = dyn_cast<Instruction>(Op2)) |
| 966 | if (Reductions.isPairInSame(J2, Op2I)) |
| 967 | continue; |
| 968 | |
| 969 | DenseMap<Value *, Value *>::iterator BMI = BaseMap.find(Op2); |
| 970 | if (BMI != BaseMap.end()) |
| 971 | Op2 = BMI->second; |
| 972 | else if (std::find(Roots[i].begin(), Roots[i].end(), |
| 973 | (Instruction*) Op2) != Roots[i].end()) |
| 974 | Op2 = IV; |
| 975 | |
| 976 | if (J1->getOperand(Swapped ? unsigned(!j) : j) != Op2) { |
| 977 | // If we've not already decided to swap the matched operands, and |
| 978 | // we've not already matched our first operand (note that we could |
| 979 | // have skipped matching the first operand because it is part of a |
| 980 | // reduction above), and the instruction is commutative, then try |
| 981 | // the swapped match. |
| 982 | if (!Swapped && J1->isCommutative() && !SomeOpMatched && |
| 983 | J1->getOperand(!j) == Op2) { |
| 984 | Swapped = true; |
| 985 | } else { |
| 986 | DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 << |
| 987 | " vs. " << *J2 << " (operand " << j << ")\n"); |
| 988 | MatchFailed = true; |
| 989 | break; |
| 990 | } |
| 991 | } |
| 992 | |
| 993 | SomeOpMatched = true; |
| 994 | } |
| 995 | } |
| 996 | |
| 997 | if ((!PossibleRedLastSet.count(J1) && hasUsesOutsideLoop(J1, L)) || |
| 998 | (!PossibleRedLastSet.count(J2) && hasUsesOutsideLoop(J2, L))) { |
| 999 | DEBUG(dbgs() << "LRR: iteration root match failed at " << *J1 << |
| 1000 | " vs. " << *J2 << " (uses outside loop)\n"); |
| 1001 | MatchFailed = true; |
| 1002 | break; |
| 1003 | } |
| 1004 | |
| 1005 | if (!MatchFailed) |
| 1006 | BaseMap.insert(std::pair<Value *, Value *>(J2, J1)); |
| 1007 | |
| 1008 | AllRootUses.insert(J2); |
| 1009 | Reductions.recordPair(J1, J2, i+1); |
| 1010 | |
| 1011 | ++J2; |
| 1012 | } |
| 1013 | } |
| 1014 | |
| 1015 | if (MatchFailed) |
| 1016 | return false; |
| 1017 | |
| 1018 | DEBUG(dbgs() << "LRR: Matched all iteration increments for " << |
| 1019 | *RealIV << "\n"); |
| 1020 | |
| 1021 | DenseSet<Instruction *> LoopIncUseSet; |
| 1022 | collectInLoopUserSet(L, LoopIncs, SmallInstructionSet(), |
| 1023 | SmallInstructionSet(), LoopIncUseSet); |
| 1024 | DEBUG(dbgs() << "LRR: Loop increment set size: " << |
| 1025 | LoopIncUseSet.size() << "\n"); |
| 1026 | |
| 1027 | // Make sure that all instructions in the loop have been included in some |
| 1028 | // use set. |
| 1029 | for (BasicBlock::iterator J = Header->begin(), JE = Header->end(); |
| 1030 | J != JE; ++J) { |
| 1031 | if (isa<DbgInfoIntrinsic>(J)) |
| 1032 | continue; |
| 1033 | if (cast<Instruction>(J) == RealIV) |
| 1034 | continue; |
| 1035 | if (cast<Instruction>(J) == IV) |
| 1036 | continue; |
| 1037 | if (BaseUseSet.count(J) || AllRootUses.count(J) || |
| 1038 | (LoopIncUseSet.count(J) && (J->isTerminator() || |
| 1039 | isSafeToSpeculativelyExecute(J, DL)))) |
| 1040 | continue; |
| 1041 | |
| 1042 | if (AllRoots.count(J)) |
| 1043 | continue; |
| 1044 | |
| 1045 | if (Reductions.isSelectedPHI(J)) |
| 1046 | continue; |
| 1047 | |
| 1048 | DEBUG(dbgs() << "LRR: aborting reroll based on " << *RealIV << |
| 1049 | " unprocessed instruction found: " << *J << "\n"); |
| 1050 | MatchFailed = true; |
| 1051 | break; |
| 1052 | } |
| 1053 | |
| 1054 | if (MatchFailed) |
| 1055 | return false; |
| 1056 | |
| 1057 | DEBUG(dbgs() << "LRR: all instructions processed from " << |
| 1058 | *RealIV << "\n"); |
| 1059 | |
| 1060 | if (!Reductions.validateSelected()) |
| 1061 | return false; |
| 1062 | |
| 1063 | // At this point, we've validated the rerolling, and we're committed to |
| 1064 | // making changes! |
| 1065 | |
| 1066 | Reductions.replaceSelected(); |
| 1067 | |
| 1068 | // Remove instructions associated with non-base iterations. |
| 1069 | for (BasicBlock::reverse_iterator J = Header->rbegin(); |
| 1070 | J != Header->rend();) { |
| 1071 | if (AllRootUses.count(&*J)) { |
| 1072 | Instruction *D = &*J; |
| 1073 | DEBUG(dbgs() << "LRR: removing: " << *D << "\n"); |
| 1074 | D->eraseFromParent(); |
| 1075 | continue; |
| 1076 | } |
| 1077 | |
| 1078 | ++J; |
| 1079 | } |
| 1080 | |
| 1081 | // Insert the new induction variable. |
| 1082 | const SCEV *Start = RealIVSCEV->getStart(); |
| 1083 | if (Inc == 1) |
| 1084 | Start = SE->getMulExpr(Start, |
| 1085 | SE->getConstant(Start->getType(), Scale)); |
| 1086 | const SCEVAddRecExpr *H = |
| 1087 | cast<SCEVAddRecExpr>(SE->getAddRecExpr(Start, |
| 1088 | SE->getConstant(RealIVSCEV->getType(), 1), |
| 1089 | L, SCEV::FlagAnyWrap)); |
| 1090 | { // Limit the lifetime of SCEVExpander. |
| 1091 | SCEVExpander Expander(*SE, "reroll"); |
David Peixotto | ea9ba44 | 2014-01-03 17:20:01 +0000 | [diff] [blame] | 1092 | Value *NewIV = Expander.expandCodeFor(H, IV->getType(), Header->begin()); |
| 1093 | |
Hal Finkel | bf45efd | 2013-11-16 23:59:05 +0000 | [diff] [blame] | 1094 | for (DenseSet<Instruction *>::iterator J = BaseUseSet.begin(), |
| 1095 | JE = BaseUseSet.end(); J != JE; ++J) |
| 1096 | (*J)->replaceUsesOfWith(IV, NewIV); |
| 1097 | |
| 1098 | if (BranchInst *BI = dyn_cast<BranchInst>(Header->getTerminator())) { |
| 1099 | if (LoopIncUseSet.count(BI)) { |
| 1100 | const SCEV *ICSCEV = RealIVSCEV->evaluateAtIteration(IterCount, *SE); |
| 1101 | if (Inc == 1) |
| 1102 | ICSCEV = |
| 1103 | SE->getMulExpr(ICSCEV, SE->getConstant(ICSCEV->getType(), Scale)); |
David Peixotto | ea9ba44 | 2014-01-03 17:20:01 +0000 | [diff] [blame] | 1104 | // Iteration count SCEV minus 1 |
| 1105 | const SCEV *ICMinus1SCEV = |
| 1106 | SE->getMinusSCEV(ICSCEV, SE->getConstant(ICSCEV->getType(), 1)); |
| 1107 | |
| 1108 | Value *ICMinus1; // Iteration count minus 1 |
| 1109 | if (isa<SCEVConstant>(ICMinus1SCEV)) { |
| 1110 | ICMinus1 = Expander.expandCodeFor(ICMinus1SCEV, NewIV->getType(), BI); |
Hal Finkel | bf45efd | 2013-11-16 23:59:05 +0000 | [diff] [blame] | 1111 | } else { |
| 1112 | BasicBlock *Preheader = L->getLoopPreheader(); |
| 1113 | if (!Preheader) |
| 1114 | Preheader = InsertPreheaderForLoop(L, this); |
| 1115 | |
David Peixotto | ea9ba44 | 2014-01-03 17:20:01 +0000 | [diff] [blame] | 1116 | ICMinus1 = Expander.expandCodeFor(ICMinus1SCEV, NewIV->getType(), |
| 1117 | Preheader->getTerminator()); |
Hal Finkel | bf45efd | 2013-11-16 23:59:05 +0000 | [diff] [blame] | 1118 | } |
| 1119 | |
David Peixotto | ea9ba44 | 2014-01-03 17:20:01 +0000 | [diff] [blame] | 1120 | Value *Cond = new ICmpInst(BI, CmpInst::ICMP_EQ, NewIV, ICMinus1, |
Hal Finkel | bf45efd | 2013-11-16 23:59:05 +0000 | [diff] [blame] | 1121 | "exitcond"); |
| 1122 | BI->setCondition(Cond); |
| 1123 | |
| 1124 | if (BI->getSuccessor(1) != Header) |
| 1125 | BI->swapSuccessors(); |
| 1126 | } |
| 1127 | } |
| 1128 | } |
| 1129 | |
| 1130 | SimplifyInstructionsInBlock(Header, DL, TLI); |
| 1131 | DeleteDeadPHIs(Header, TLI); |
| 1132 | ++NumRerolledLoops; |
| 1133 | return true; |
| 1134 | } |
| 1135 | |
| 1136 | bool LoopReroll::runOnLoop(Loop *L, LPPassManager &LPM) { |
Paul Robinson | af4e64d | 2014-02-06 00:07:05 +0000 | [diff] [blame^] | 1137 | if (skipOptnoneFunction(L)) |
| 1138 | return false; |
| 1139 | |
Hal Finkel | bf45efd | 2013-11-16 23:59:05 +0000 | [diff] [blame] | 1140 | AA = &getAnalysis<AliasAnalysis>(); |
| 1141 | LI = &getAnalysis<LoopInfo>(); |
| 1142 | SE = &getAnalysis<ScalarEvolution>(); |
| 1143 | TLI = &getAnalysis<TargetLibraryInfo>(); |
| 1144 | DL = getAnalysisIfAvailable<DataLayout>(); |
Chandler Carruth | 7352302 | 2014-01-13 13:07:17 +0000 | [diff] [blame] | 1145 | DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
Hal Finkel | bf45efd | 2013-11-16 23:59:05 +0000 | [diff] [blame] | 1146 | |
| 1147 | BasicBlock *Header = L->getHeader(); |
| 1148 | DEBUG(dbgs() << "LRR: F[" << Header->getParent()->getName() << |
| 1149 | "] Loop %" << Header->getName() << " (" << |
| 1150 | L->getNumBlocks() << " block(s))\n"); |
| 1151 | |
| 1152 | bool Changed = false; |
| 1153 | |
| 1154 | // For now, we'll handle only single BB loops. |
| 1155 | if (L->getNumBlocks() > 1) |
| 1156 | return Changed; |
| 1157 | |
| 1158 | if (!SE->hasLoopInvariantBackedgeTakenCount(L)) |
| 1159 | return Changed; |
| 1160 | |
| 1161 | const SCEV *LIBETC = SE->getBackedgeTakenCount(L); |
| 1162 | const SCEV *IterCount = |
| 1163 | SE->getAddExpr(LIBETC, SE->getConstant(LIBETC->getType(), 1)); |
| 1164 | DEBUG(dbgs() << "LRR: iteration count = " << *IterCount << "\n"); |
| 1165 | |
| 1166 | // First, we need to find the induction variable with respect to which we can |
| 1167 | // reroll (there may be several possible options). |
| 1168 | SmallInstructionVector PossibleIVs; |
| 1169 | collectPossibleIVs(L, PossibleIVs); |
| 1170 | |
| 1171 | if (PossibleIVs.empty()) { |
| 1172 | DEBUG(dbgs() << "LRR: No possible IVs found\n"); |
| 1173 | return Changed; |
| 1174 | } |
| 1175 | |
| 1176 | ReductionTracker Reductions; |
| 1177 | collectPossibleReductions(L, Reductions); |
| 1178 | |
| 1179 | // For each possible IV, collect the associated possible set of 'root' nodes |
| 1180 | // (i+1, i+2, etc.). |
| 1181 | for (SmallInstructionVector::iterator I = PossibleIVs.begin(), |
| 1182 | IE = PossibleIVs.end(); I != IE; ++I) |
| 1183 | if (reroll(*I, L, Header, IterCount, Reductions)) { |
| 1184 | Changed = true; |
| 1185 | break; |
| 1186 | } |
| 1187 | |
| 1188 | return Changed; |
| 1189 | } |
| 1190 | |