Bardia Mahjour | db800c2 | 2019-09-18 17:43:45 +0000 | [diff] [blame] | 1 | //===- DependenceGraphBuilder.cpp ------------------------------------------==// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // This file implements common steps of the build algorithm for construction |
| 9 | // of dependence graphs such as DDG and PDG. |
| 10 | //===----------------------------------------------------------------------===// |
| 11 | |
| 12 | #include "llvm/Analysis/DependenceGraphBuilder.h" |
bmahjour | f0af11d8 | 2019-11-08 15:05:06 -0500 | [diff] [blame] | 13 | #include "llvm/ADT/EnumeratedArray.h" |
Bardia Mahjour | db800c2 | 2019-09-18 17:43:45 +0000 | [diff] [blame] | 14 | #include "llvm/ADT/SCCIterator.h" |
| 15 | #include "llvm/ADT/Statistic.h" |
| 16 | #include "llvm/Analysis/DDG.h" |
| 17 | |
| 18 | using namespace llvm; |
| 19 | |
| 20 | #define DEBUG_TYPE "dgb" |
| 21 | |
| 22 | STATISTIC(TotalGraphs, "Number of dependence graphs created."); |
| 23 | STATISTIC(TotalDefUseEdges, "Number of def-use edges created."); |
| 24 | STATISTIC(TotalMemoryEdges, "Number of memory dependence edges created."); |
| 25 | STATISTIC(TotalFineGrainedNodes, "Number of fine-grained nodes created."); |
bmahjour | f0af11d8 | 2019-11-08 15:05:06 -0500 | [diff] [blame] | 26 | STATISTIC(TotalPiBlockNodes, "Number of pi-block nodes created."); |
Bardia Mahjour | db800c2 | 2019-09-18 17:43:45 +0000 | [diff] [blame] | 27 | STATISTIC(TotalConfusedEdges, |
| 28 | "Number of confused memory dependencies between two nodes."); |
| 29 | STATISTIC(TotalEdgeReversals, |
| 30 | "Number of times the source and sink of dependence was reversed to " |
| 31 | "expose cycles in the graph."); |
| 32 | |
| 33 | using InstructionListType = SmallVector<Instruction *, 2>; |
| 34 | |
| 35 | //===--------------------------------------------------------------------===// |
| 36 | // AbstractDependenceGraphBuilder implementation |
| 37 | //===--------------------------------------------------------------------===// |
| 38 | |
| 39 | template <class G> |
| 40 | void AbstractDependenceGraphBuilder<G>::createFineGrainedNodes() { |
| 41 | ++TotalGraphs; |
| 42 | assert(IMap.empty() && "Expected empty instruction map at start"); |
| 43 | for (BasicBlock *BB : BBList) |
| 44 | for (Instruction &I : *BB) { |
| 45 | auto &NewNode = createFineGrainedNode(I); |
| 46 | IMap.insert(std::make_pair(&I, &NewNode)); |
| 47 | ++TotalFineGrainedNodes; |
| 48 | } |
| 49 | } |
| 50 | |
Bardia Mahjour | 91b62d5 | 2019-10-01 19:32:42 +0000 | [diff] [blame] | 51 | template <class G> |
| 52 | void AbstractDependenceGraphBuilder<G>::createAndConnectRootNode() { |
| 53 | // Create a root node that connects to every connected component of the graph. |
| 54 | // This is done to allow graph iterators to visit all the disjoint components |
| 55 | // of the graph, in a single walk. |
| 56 | // |
| 57 | // This algorithm works by going through each node of the graph and for each |
| 58 | // node N, do a DFS starting from N. A rooted edge is established between the |
| 59 | // root node and N (if N is not yet visited). All the nodes reachable from N |
| 60 | // are marked as visited and are skipped in the DFS of subsequent nodes. |
| 61 | // |
| 62 | // Note: This algorithm tries to limit the number of edges out of the root |
| 63 | // node to some extent, but there may be redundant edges created depending on |
| 64 | // the iteration order. For example for a graph {A -> B}, an edge from the |
| 65 | // root node is added to both nodes if B is visited before A. While it does |
| 66 | // not result in minimal number of edges, this approach saves compile-time |
| 67 | // while keeping the number of edges in check. |
| 68 | auto &RootNode = createRootNode(); |
| 69 | df_iterator_default_set<const NodeType *, 4> Visited; |
| 70 | for (auto *N : Graph) { |
| 71 | if (*N == RootNode) |
| 72 | continue; |
| 73 | for (auto I : depth_first_ext(N, Visited)) |
| 74 | if (I == N) |
| 75 | createRootedEdge(RootNode, *N); |
| 76 | } |
| 77 | } |
| 78 | |
bmahjour | f0af11d8 | 2019-11-08 15:05:06 -0500 | [diff] [blame] | 79 | template <class G> void AbstractDependenceGraphBuilder<G>::createPiBlocks() { |
| 80 | if (!shouldCreatePiBlocks()) |
| 81 | return; |
| 82 | |
| 83 | LLVM_DEBUG(dbgs() << "==== Start of Creation of Pi-Blocks ===\n"); |
| 84 | |
| 85 | // The overall algorithm is as follows: |
| 86 | // 1. Identify SCCs and for each SCC create a pi-block node containing all |
| 87 | // the nodes in that SCC. |
| 88 | // 2. Identify incoming edges incident to the nodes inside of the SCC and |
| 89 | // reconnect them to the pi-block node. |
| 90 | // 3. Identify outgoing edges from the nodes inside of the SCC to nodes |
| 91 | // outside of it and reconnect them so that the edges are coming out of the |
| 92 | // SCC node instead. |
| 93 | |
| 94 | // Adding nodes as we iterate through the SCCs cause the SCC |
| 95 | // iterators to get invalidated. To prevent this invalidation, we first |
| 96 | // collect a list of nodes that are part of an SCC, and then iterate over |
| 97 | // those lists to create the pi-block nodes. Each element of the list is a |
| 98 | // list of nodes in an SCC. Note: trivial SCCs containing a single node are |
| 99 | // ignored. |
| 100 | SmallVector<NodeListType, 4> ListOfSCCs; |
| 101 | for (auto &SCC : make_range(scc_begin(&Graph), scc_end(&Graph))) { |
| 102 | if (SCC.size() > 1) |
| 103 | ListOfSCCs.emplace_back(SCC.begin(), SCC.end()); |
| 104 | } |
| 105 | |
| 106 | for (NodeListType &NL : ListOfSCCs) { |
| 107 | LLVM_DEBUG(dbgs() << "Creating pi-block node with " << NL.size() |
| 108 | << " nodes in it.\n"); |
| 109 | |
| 110 | NodeType &PiNode = createPiBlock(NL); |
| 111 | ++TotalPiBlockNodes; |
| 112 | |
| 113 | // Build a set to speed up the lookup for edges whose targets |
| 114 | // are inside the SCC. |
| 115 | SmallPtrSet<NodeType *, 4> NodesInSCC(NL.begin(), NL.end()); |
| 116 | |
| 117 | // We have the set of nodes in the SCC. We go through the set of nodes |
| 118 | // that are outside of the SCC and look for edges that cross the two sets. |
| 119 | for (NodeType *N : Graph) { |
| 120 | |
| 121 | // Skip the SCC node and all the nodes inside of it. |
| 122 | if (*N == PiNode || NodesInSCC.count(N)) |
| 123 | continue; |
| 124 | |
| 125 | for (NodeType *SCCNode : NL) { |
| 126 | |
| 127 | enum Direction { |
| 128 | Incoming, // Incoming edges to the SCC |
| 129 | Outgoing, // Edges going ot of the SCC |
| 130 | DirectionCount // To make the enum usable as an array index. |
| 131 | }; |
| 132 | |
| 133 | // Use these flags to help us avoid creating redundant edges. If there |
| 134 | // are more than one edges from an outside node to inside nodes, we only |
| 135 | // keep one edge from that node to the pi-block node. Similarly, if |
| 136 | // there are more than one edges from inside nodes to an outside node, |
| 137 | // we only keep one edge from the pi-block node to the outside node. |
| 138 | // There is a flag defined for each direction (incoming vs outgoing) and |
| 139 | // for each type of edge supported, using a two-dimensional boolean |
| 140 | // array. |
| 141 | using EdgeKind = typename EdgeType::EdgeKind; |
| 142 | EnumeratedArray<bool, EdgeKind> EdgeAlreadyCreated[DirectionCount]{ |
| 143 | false, false}; |
| 144 | |
| 145 | auto createEdgeOfKind = [this](NodeType &Src, NodeType &Dst, |
| 146 | const EdgeKind K) { |
| 147 | switch (K) { |
| 148 | case EdgeKind::RegisterDefUse: |
| 149 | createDefUseEdge(Src, Dst); |
| 150 | break; |
| 151 | case EdgeKind::MemoryDependence: |
| 152 | createMemoryEdge(Src, Dst); |
| 153 | break; |
| 154 | case EdgeKind::Rooted: |
| 155 | createRootedEdge(Src, Dst); |
| 156 | break; |
| 157 | default: |
| 158 | llvm_unreachable("Unsupported type of edge."); |
| 159 | } |
| 160 | }; |
| 161 | |
| 162 | auto reconnectEdges = [&](NodeType *Src, NodeType *Dst, NodeType *New, |
| 163 | const Direction Dir) { |
| 164 | if (!Src->hasEdgeTo(*Dst)) |
| 165 | return; |
| 166 | LLVM_DEBUG(dbgs() |
| 167 | << "reconnecting(" |
| 168 | << (Dir == Direction::Incoming ? "incoming)" : "outgoing)") |
| 169 | << ":\nSrc:" << *Src << "\nDst:" << *Dst |
| 170 | << "\nNew:" << *New << "\n"); |
| 171 | assert((Dir == Direction::Incoming || Dir == Direction::Outgoing) && |
| 172 | "Invalid direction."); |
| 173 | |
| 174 | SmallVector<EdgeType *, 10> EL; |
| 175 | Src->findEdgesTo(*Dst, EL); |
| 176 | for (EdgeType *OldEdge : EL) { |
| 177 | EdgeKind Kind = OldEdge->getKind(); |
| 178 | if (!EdgeAlreadyCreated[Dir][Kind]) { |
| 179 | if (Dir == Direction::Incoming) { |
| 180 | createEdgeOfKind(*Src, *New, Kind); |
| 181 | LLVM_DEBUG(dbgs() << "created edge from Src to New.\n"); |
| 182 | } else if (Dir == Direction::Outgoing) { |
| 183 | createEdgeOfKind(*New, *Dst, Kind); |
| 184 | LLVM_DEBUG(dbgs() << "created edge from New to Dst.\n"); |
| 185 | } |
| 186 | EdgeAlreadyCreated[Dir][Kind] = true; |
| 187 | } |
| 188 | Src->removeEdge(*OldEdge); |
| 189 | destroyEdge(*OldEdge); |
| 190 | LLVM_DEBUG(dbgs() << "removed old edge between Src and Dst.\n\n"); |
| 191 | } |
| 192 | }; |
| 193 | |
| 194 | // Process incoming edges incident to the pi-block node. |
| 195 | reconnectEdges(N, SCCNode, &PiNode, Direction::Incoming); |
| 196 | |
| 197 | // Process edges that are coming out of the pi-block node. |
| 198 | reconnectEdges(SCCNode, N, &PiNode, Direction::Outgoing); |
| 199 | } |
| 200 | } |
| 201 | } |
| 202 | |
| 203 | LLVM_DEBUG(dbgs() << "==== End of Creation of Pi-Blocks ===\n"); |
| 204 | } |
| 205 | |
Bardia Mahjour | db800c2 | 2019-09-18 17:43:45 +0000 | [diff] [blame] | 206 | template <class G> void AbstractDependenceGraphBuilder<G>::createDefUseEdges() { |
| 207 | for (NodeType *N : Graph) { |
| 208 | InstructionListType SrcIList; |
| 209 | N->collectInstructions([](const Instruction *I) { return true; }, SrcIList); |
| 210 | |
| 211 | // Use a set to mark the targets that we link to N, so we don't add |
| 212 | // duplicate def-use edges when more than one instruction in a target node |
| 213 | // use results of instructions that are contained in N. |
| 214 | SmallPtrSet<NodeType *, 4> VisitedTargets; |
| 215 | |
| 216 | for (Instruction *II : SrcIList) { |
| 217 | for (User *U : II->users()) { |
| 218 | Instruction *UI = dyn_cast<Instruction>(U); |
| 219 | if (!UI) |
| 220 | continue; |
| 221 | NodeType *DstNode = nullptr; |
| 222 | if (IMap.find(UI) != IMap.end()) |
| 223 | DstNode = IMap.find(UI)->second; |
| 224 | |
| 225 | // In the case of loops, the scope of the subgraph is all the |
| 226 | // basic blocks (and instructions within them) belonging to the loop. We |
| 227 | // simply ignore all the edges coming from (or going into) instructions |
| 228 | // or basic blocks outside of this range. |
| 229 | if (!DstNode) { |
| 230 | LLVM_DEBUG( |
| 231 | dbgs() |
| 232 | << "skipped def-use edge since the sink" << *UI |
| 233 | << " is outside the range of instructions being considered.\n"); |
| 234 | continue; |
| 235 | } |
| 236 | |
| 237 | // Self dependencies are ignored because they are redundant and |
| 238 | // uninteresting. |
| 239 | if (DstNode == N) { |
| 240 | LLVM_DEBUG(dbgs() |
| 241 | << "skipped def-use edge since the sink and the source (" |
| 242 | << N << ") are the same.\n"); |
| 243 | continue; |
| 244 | } |
| 245 | |
| 246 | if (VisitedTargets.insert(DstNode).second) { |
| 247 | createDefUseEdge(*N, *DstNode); |
| 248 | ++TotalDefUseEdges; |
| 249 | } |
| 250 | } |
| 251 | } |
| 252 | } |
| 253 | } |
| 254 | |
| 255 | template <class G> |
| 256 | void AbstractDependenceGraphBuilder<G>::createMemoryDependencyEdges() { |
| 257 | using DGIterator = typename G::iterator; |
| 258 | auto isMemoryAccess = [](const Instruction *I) { |
| 259 | return I->mayReadOrWriteMemory(); |
| 260 | }; |
| 261 | for (DGIterator SrcIt = Graph.begin(), E = Graph.end(); SrcIt != E; ++SrcIt) { |
| 262 | InstructionListType SrcIList; |
| 263 | (*SrcIt)->collectInstructions(isMemoryAccess, SrcIList); |
| 264 | if (SrcIList.empty()) |
| 265 | continue; |
| 266 | |
| 267 | for (DGIterator DstIt = SrcIt; DstIt != E; ++DstIt) { |
| 268 | if (**SrcIt == **DstIt) |
| 269 | continue; |
| 270 | InstructionListType DstIList; |
| 271 | (*DstIt)->collectInstructions(isMemoryAccess, DstIList); |
| 272 | if (DstIList.empty()) |
| 273 | continue; |
| 274 | bool ForwardEdgeCreated = false; |
| 275 | bool BackwardEdgeCreated = false; |
| 276 | for (Instruction *ISrc : SrcIList) { |
| 277 | for (Instruction *IDst : DstIList) { |
| 278 | auto D = DI.depends(ISrc, IDst, true); |
| 279 | if (!D) |
| 280 | continue; |
| 281 | |
| 282 | // If we have a dependence with its left-most non-'=' direction |
| 283 | // being '>' we need to reverse the direction of the edge, because |
| 284 | // the source of the dependence cannot occur after the sink. For |
| 285 | // confused dependencies, we will create edges in both directions to |
| 286 | // represent the possibility of a cycle. |
| 287 | |
| 288 | auto createConfusedEdges = [&](NodeType &Src, NodeType &Dst) { |
| 289 | if (!ForwardEdgeCreated) { |
| 290 | createMemoryEdge(Src, Dst); |
| 291 | ++TotalMemoryEdges; |
| 292 | } |
| 293 | if (!BackwardEdgeCreated) { |
| 294 | createMemoryEdge(Dst, Src); |
| 295 | ++TotalMemoryEdges; |
| 296 | } |
| 297 | ForwardEdgeCreated = BackwardEdgeCreated = true; |
| 298 | ++TotalConfusedEdges; |
| 299 | }; |
| 300 | |
| 301 | auto createForwardEdge = [&](NodeType &Src, NodeType &Dst) { |
| 302 | if (!ForwardEdgeCreated) { |
| 303 | createMemoryEdge(Src, Dst); |
| 304 | ++TotalMemoryEdges; |
| 305 | } |
| 306 | ForwardEdgeCreated = true; |
| 307 | }; |
| 308 | |
| 309 | auto createBackwardEdge = [&](NodeType &Src, NodeType &Dst) { |
| 310 | if (!BackwardEdgeCreated) { |
| 311 | createMemoryEdge(Dst, Src); |
| 312 | ++TotalMemoryEdges; |
| 313 | } |
| 314 | BackwardEdgeCreated = true; |
| 315 | }; |
| 316 | |
| 317 | if (D->isConfused()) |
| 318 | createConfusedEdges(**SrcIt, **DstIt); |
| 319 | else if (D->isOrdered() && !D->isLoopIndependent()) { |
| 320 | bool ReversedEdge = false; |
| 321 | for (unsigned Level = 1; Level <= D->getLevels(); ++Level) { |
| 322 | if (D->getDirection(Level) == Dependence::DVEntry::EQ) |
| 323 | continue; |
| 324 | else if (D->getDirection(Level) == Dependence::DVEntry::GT) { |
| 325 | createBackwardEdge(**SrcIt, **DstIt); |
| 326 | ReversedEdge = true; |
| 327 | ++TotalEdgeReversals; |
| 328 | break; |
| 329 | } else if (D->getDirection(Level) == Dependence::DVEntry::LT) |
| 330 | break; |
| 331 | else { |
| 332 | createConfusedEdges(**SrcIt, **DstIt); |
| 333 | break; |
| 334 | } |
| 335 | } |
| 336 | if (!ReversedEdge) |
| 337 | createForwardEdge(**SrcIt, **DstIt); |
| 338 | } else |
| 339 | createForwardEdge(**SrcIt, **DstIt); |
| 340 | |
| 341 | // Avoid creating duplicate edges. |
| 342 | if (ForwardEdgeCreated && BackwardEdgeCreated) |
| 343 | break; |
| 344 | } |
| 345 | |
| 346 | // If we've created edges in both directions, there is no more |
| 347 | // unique edge that we can create between these two nodes, so we |
| 348 | // can exit early. |
| 349 | if (ForwardEdgeCreated && BackwardEdgeCreated) |
| 350 | break; |
| 351 | } |
| 352 | } |
| 353 | } |
| 354 | } |
| 355 | |
| 356 | template class llvm::AbstractDependenceGraphBuilder<DataDependenceGraph>; |
| 357 | template class llvm::DependenceGraphInfo<DDGNode>; |