Whitney Tsang | dd3b649 | 2019-08-09 13:56:29 +0000 | [diff] [blame] | 1 | //===- LoopCacheAnalysis.cpp - Loop Cache Analysis -------------------------==// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 6 | // See https://llvm.org/LICENSE.txt for license information. |
| 7 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 8 | // |
| 9 | //===----------------------------------------------------------------------===// |
| 10 | /// |
| 11 | /// \file |
| 12 | /// This file defines the implementation for the loop cache analysis. |
| 13 | /// The implementation is largely based on the following paper: |
| 14 | /// |
| 15 | /// Compiler Optimizations for Improving Data Locality |
| 16 | /// By: Steve Carr, Katherine S. McKinley, Chau-Wen Tseng |
| 17 | /// http://www.cs.utexas.edu/users/mckinley/papers/asplos-1994.pdf |
| 18 | /// |
| 19 | /// The general approach taken to estimate the number of cache lines used by the |
| 20 | /// memory references in an inner loop is: |
| 21 | /// 1. Partition memory references that exhibit temporal or spacial reuse |
| 22 | /// into reference groups. |
| 23 | /// 2. For each loop L in the a loop nest LN: |
| 24 | /// a. Compute the cost of the reference group |
| 25 | /// b. Compute the loop cost by summing up the reference groups costs |
| 26 | //===----------------------------------------------------------------------===// |
| 27 | |
| 28 | #include "llvm/Analysis/LoopCacheAnalysis.h" |
| 29 | #include "llvm/ADT/BreadthFirstIterator.h" |
| 30 | #include "llvm/ADT/Sequence.h" |
| 31 | #include "llvm/ADT/SmallVector.h" |
| 32 | #include "llvm/Support/Debug.h" |
| 33 | |
| 34 | using namespace llvm; |
| 35 | |
| 36 | #define DEBUG_TYPE "loop-cache-cost" |
| 37 | |
| 38 | static cl::opt<unsigned> DefaultTripCount( |
| 39 | "default-trip-count", cl::init(100), cl::Hidden, |
| 40 | cl::desc("Use this to specify the default trip count of a loop")); |
| 41 | |
| 42 | // In this analysis two array references are considered to exhibit temporal |
| 43 | // reuse if they access either the same memory location, or a memory location |
| 44 | // with distance smaller than a configurable threshold. |
| 45 | static cl::opt<unsigned> TemporalReuseThreshold( |
| 46 | "temporal-reuse-threshold", cl::init(2), cl::Hidden, |
| 47 | cl::desc("Use this to specify the max. distance between array elements " |
| 48 | "accessed in a loop so that the elements are classified to have " |
| 49 | "temporal reuse")); |
| 50 | |
| 51 | /// Retrieve the innermost loop in the given loop nest \p Loops. It returns a |
| 52 | /// nullptr if any loops in the loop vector supplied has more than one sibling. |
| 53 | /// The loop vector is expected to contain loops collected in breadth-first |
| 54 | /// order. |
| 55 | static Loop *getInnerMostLoop(const LoopVectorTy &Loops) { |
| 56 | assert(!Loops.empty() && "Expecting a non-empy loop vector"); |
| 57 | |
| 58 | Loop *LastLoop = Loops.back(); |
| 59 | Loop *ParentLoop = LastLoop->getParentLoop(); |
| 60 | |
| 61 | if (ParentLoop == nullptr) { |
| 62 | assert(Loops.size() == 1 && "Expecting a single loop"); |
| 63 | return LastLoop; |
| 64 | } |
| 65 | |
| 66 | return (std::is_sorted(Loops.begin(), Loops.end(), |
| 67 | [](const Loop *L1, const Loop *L2) { |
| 68 | return L1->getLoopDepth() < L2->getLoopDepth(); |
| 69 | })) |
| 70 | ? LastLoop |
| 71 | : nullptr; |
| 72 | } |
| 73 | |
| 74 | static bool isOneDimensionalArray(const SCEV &AccessFn, const SCEV &ElemSize, |
| 75 | const Loop &L, ScalarEvolution &SE) { |
| 76 | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(&AccessFn); |
| 77 | if (!AR || !AR->isAffine()) |
| 78 | return false; |
| 79 | |
| 80 | assert(AR->getLoop() && "AR should have a loop"); |
| 81 | |
| 82 | // Check that start and increment are not add recurrences. |
| 83 | const SCEV *Start = AR->getStart(); |
| 84 | const SCEV *Step = AR->getStepRecurrence(SE); |
| 85 | if (isa<SCEVAddRecExpr>(Start) || isa<SCEVAddRecExpr>(Step)) |
| 86 | return false; |
| 87 | |
| 88 | // Check that start and increment are both invariant in the loop. |
| 89 | if (!SE.isLoopInvariant(Start, &L) || !SE.isLoopInvariant(Step, &L)) |
| 90 | return false; |
| 91 | |
| 92 | return AR->getStepRecurrence(SE) == &ElemSize; |
| 93 | } |
| 94 | |
| 95 | /// Compute the trip count for the given loop \p L. Return the SCEV expression |
| 96 | /// for the trip count or nullptr if it cannot be computed. |
| 97 | static const SCEV *computeTripCount(const Loop &L, ScalarEvolution &SE) { |
| 98 | const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(&L); |
| 99 | if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || |
| 100 | !isa<SCEVConstant>(BackedgeTakenCount)) |
| 101 | return nullptr; |
| 102 | |
| 103 | return SE.getAddExpr(BackedgeTakenCount, |
| 104 | SE.getOne(BackedgeTakenCount->getType())); |
| 105 | } |
| 106 | |
| 107 | //===----------------------------------------------------------------------===// |
| 108 | // IndexedReference implementation |
| 109 | // |
| 110 | raw_ostream &llvm::operator<<(raw_ostream &OS, const IndexedReference &R) { |
| 111 | if (!R.IsValid) { |
| 112 | OS << R.StoreOrLoadInst; |
| 113 | OS << ", IsValid=false."; |
| 114 | return OS; |
| 115 | } |
| 116 | |
| 117 | OS << *R.BasePointer; |
| 118 | for (const SCEV *Subscript : R.Subscripts) |
| 119 | OS << "[" << *Subscript << "]"; |
| 120 | |
| 121 | OS << ", Sizes: "; |
| 122 | for (const SCEV *Size : R.Sizes) |
| 123 | OS << "[" << *Size << "]"; |
| 124 | |
| 125 | return OS; |
| 126 | } |
| 127 | |
| 128 | IndexedReference::IndexedReference(Instruction &StoreOrLoadInst, |
| 129 | const LoopInfo &LI, ScalarEvolution &SE) |
| 130 | : StoreOrLoadInst(StoreOrLoadInst), SE(SE) { |
| 131 | assert((isa<StoreInst>(StoreOrLoadInst) || isa<LoadInst>(StoreOrLoadInst)) && |
| 132 | "Expecting a load or store instruction"); |
| 133 | |
| 134 | IsValid = delinearize(LI); |
| 135 | if (IsValid) |
| 136 | LLVM_DEBUG(dbgs().indent(2) << "Succesfully delinearized: " << *this |
| 137 | << "\n"); |
| 138 | } |
| 139 | |
| 140 | Optional<bool> IndexedReference::hasSpacialReuse(const IndexedReference &Other, |
| 141 | unsigned CLS, |
| 142 | AliasAnalysis &AA) const { |
| 143 | assert(IsValid && "Expecting a valid reference"); |
| 144 | |
| 145 | if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) { |
| 146 | LLVM_DEBUG(dbgs().indent(2) |
| 147 | << "No spacial reuse: different base pointers\n"); |
| 148 | return false; |
| 149 | } |
| 150 | |
| 151 | unsigned NumSubscripts = getNumSubscripts(); |
| 152 | if (NumSubscripts != Other.getNumSubscripts()) { |
| 153 | LLVM_DEBUG(dbgs().indent(2) |
| 154 | << "No spacial reuse: different number of subscripts\n"); |
| 155 | return false; |
| 156 | } |
| 157 | |
| 158 | // all subscripts must be equal, except the leftmost one (the last one). |
| 159 | for (auto SubNum : seq<unsigned>(0, NumSubscripts - 1)) { |
| 160 | if (getSubscript(SubNum) != Other.getSubscript(SubNum)) { |
| 161 | LLVM_DEBUG(dbgs().indent(2) << "No spacial reuse, different subscripts: " |
| 162 | << "\n\t" << *getSubscript(SubNum) << "\n\t" |
| 163 | << *Other.getSubscript(SubNum) << "\n"); |
| 164 | return false; |
| 165 | } |
| 166 | } |
| 167 | |
| 168 | // the difference between the last subscripts must be less than the cache line |
| 169 | // size. |
| 170 | const SCEV *LastSubscript = getLastSubscript(); |
| 171 | const SCEV *OtherLastSubscript = Other.getLastSubscript(); |
| 172 | const SCEVConstant *Diff = dyn_cast<SCEVConstant>( |
| 173 | SE.getMinusSCEV(LastSubscript, OtherLastSubscript)); |
| 174 | |
| 175 | if (Diff == nullptr) { |
| 176 | LLVM_DEBUG(dbgs().indent(2) |
| 177 | << "No spacial reuse, difference between subscript:\n\t" |
| 178 | << *LastSubscript << "\n\t" << OtherLastSubscript |
| 179 | << "\nis not constant.\n"); |
| 180 | return None; |
| 181 | } |
| 182 | |
| 183 | bool InSameCacheLine = (Diff->getValue()->getSExtValue() < CLS); |
| 184 | |
| 185 | LLVM_DEBUG({ |
| 186 | if (InSameCacheLine) |
| 187 | dbgs().indent(2) << "Found spacial reuse.\n"; |
| 188 | else |
| 189 | dbgs().indent(2) << "No spacial reuse.\n"; |
| 190 | }); |
| 191 | |
| 192 | return InSameCacheLine; |
| 193 | } |
| 194 | |
| 195 | Optional<bool> IndexedReference::hasTemporalReuse(const IndexedReference &Other, |
| 196 | unsigned MaxDistance, |
| 197 | const Loop &L, |
| 198 | DependenceInfo &DI, |
| 199 | AliasAnalysis &AA) const { |
| 200 | assert(IsValid && "Expecting a valid reference"); |
| 201 | |
| 202 | if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) { |
| 203 | LLVM_DEBUG(dbgs().indent(2) |
| 204 | << "No temporal reuse: different base pointer\n"); |
| 205 | return false; |
| 206 | } |
| 207 | |
| 208 | std::unique_ptr<Dependence> D = |
| 209 | DI.depends(&StoreOrLoadInst, &Other.StoreOrLoadInst, true); |
| 210 | |
| 211 | if (D == nullptr) { |
| 212 | LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: no dependence\n"); |
| 213 | return false; |
| 214 | } |
| 215 | |
| 216 | if (D->isLoopIndependent()) { |
| 217 | LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n"); |
| 218 | return true; |
| 219 | } |
| 220 | |
| 221 | // Check the dependence distance at every loop level. There is temporal reuse |
| 222 | // if the distance at the given loop's depth is small (|d| <= MaxDistance) and |
| 223 | // it is zero at every other loop level. |
| 224 | int LoopDepth = L.getLoopDepth(); |
| 225 | int Levels = D->getLevels(); |
| 226 | for (int Level = 1; Level <= Levels; ++Level) { |
| 227 | const SCEV *Distance = D->getDistance(Level); |
| 228 | const SCEVConstant *SCEVConst = dyn_cast_or_null<SCEVConstant>(Distance); |
| 229 | |
| 230 | if (SCEVConst == nullptr) { |
| 231 | LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: distance unknown\n"); |
| 232 | return None; |
| 233 | } |
| 234 | |
| 235 | const ConstantInt &CI = *SCEVConst->getValue(); |
| 236 | if (Level != LoopDepth && !CI.isZero()) { |
| 237 | LLVM_DEBUG(dbgs().indent(2) |
| 238 | << "No temporal reuse: distance is not zero at depth=" << Level |
| 239 | << "\n"); |
| 240 | return false; |
| 241 | } else if (Level == LoopDepth && CI.getSExtValue() > MaxDistance) { |
| 242 | LLVM_DEBUG( |
| 243 | dbgs().indent(2) |
| 244 | << "No temporal reuse: distance is greater than MaxDistance at depth=" |
| 245 | << Level << "\n"); |
| 246 | return false; |
| 247 | } |
| 248 | } |
| 249 | |
| 250 | LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n"); |
| 251 | return true; |
| 252 | } |
| 253 | |
| 254 | CacheCostTy IndexedReference::computeRefCost(const Loop &L, |
| 255 | unsigned CLS) const { |
| 256 | assert(IsValid && "Expecting a valid reference"); |
| 257 | LLVM_DEBUG({ |
| 258 | dbgs().indent(2) << "Computing cache cost for:\n"; |
| 259 | dbgs().indent(4) << *this << "\n"; |
| 260 | }); |
| 261 | |
| 262 | // If the indexed reference is loop invariant the cost is one. |
| 263 | if (isLoopInvariant(L)) { |
| 264 | LLVM_DEBUG(dbgs().indent(4) << "Reference is loop invariant: RefCost=1\n"); |
| 265 | return 1; |
| 266 | } |
| 267 | |
| 268 | const SCEV *TripCount = computeTripCount(L, SE); |
| 269 | if (!TripCount) { |
| 270 | LLVM_DEBUG(dbgs() << "Trip count of loop " << L.getName() |
| 271 | << " could not be computed, using DefaultTripCount\n"); |
| 272 | const SCEV *ElemSize = Sizes.back(); |
| 273 | TripCount = SE.getConstant(ElemSize->getType(), DefaultTripCount); |
| 274 | } |
| 275 | LLVM_DEBUG(dbgs() << "TripCount=" << *TripCount << "\n"); |
| 276 | |
| 277 | // If the indexed reference is 'consecutive' the cost is |
| 278 | // (TripCount*Stride)/CLS, otherwise the cost is TripCount. |
| 279 | const SCEV *RefCost = TripCount; |
| 280 | |
| 281 | if (isConsecutive(L, CLS)) { |
| 282 | const SCEV *Coeff = getLastCoefficient(); |
| 283 | const SCEV *ElemSize = Sizes.back(); |
| 284 | const SCEV *Stride = SE.getMulExpr(Coeff, ElemSize); |
| 285 | const SCEV *CacheLineSize = SE.getConstant(Stride->getType(), CLS); |
| 286 | const SCEV *Numerator = SE.getMulExpr(Stride, TripCount); |
| 287 | RefCost = SE.getUDivExpr(Numerator, CacheLineSize); |
| 288 | LLVM_DEBUG(dbgs().indent(4) |
| 289 | << "Access is consecutive: RefCost=(TripCount*Stride)/CLS=" |
| 290 | << *RefCost << "\n"); |
| 291 | } else |
| 292 | LLVM_DEBUG(dbgs().indent(4) |
| 293 | << "Access is not consecutive: RefCost=TripCount=" << *RefCost |
| 294 | << "\n"); |
| 295 | |
| 296 | // Attempt to fold RefCost into a constant. |
| 297 | if (auto ConstantCost = dyn_cast<SCEVConstant>(RefCost)) |
| 298 | return ConstantCost->getValue()->getSExtValue(); |
| 299 | |
| 300 | LLVM_DEBUG(dbgs().indent(4) |
| 301 | << "RefCost is not a constant! Setting to RefCost=InvalidCost " |
| 302 | "(invalid value).\n"); |
| 303 | |
| 304 | return CacheCost::InvalidCost; |
| 305 | } |
| 306 | |
| 307 | bool IndexedReference::delinearize(const LoopInfo &LI) { |
| 308 | assert(Subscripts.empty() && "Subscripts should be empty"); |
| 309 | assert(Sizes.empty() && "Sizes should be empty"); |
| 310 | assert(!IsValid && "Should be called once from the constructor"); |
| 311 | LLVM_DEBUG(dbgs() << "Delinearizing: " << StoreOrLoadInst << "\n"); |
| 312 | |
| 313 | const SCEV *ElemSize = SE.getElementSize(&StoreOrLoadInst); |
| 314 | const BasicBlock *BB = StoreOrLoadInst.getParent(); |
| 315 | |
| 316 | for (Loop *L = LI.getLoopFor(BB); L != nullptr; L = L->getParentLoop()) { |
| 317 | const SCEV *AccessFn = |
| 318 | SE.getSCEVAtScope(getPointerOperand(&StoreOrLoadInst), L); |
| 319 | |
| 320 | BasePointer = dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFn)); |
| 321 | if (BasePointer == nullptr) { |
| 322 | LLVM_DEBUG( |
| 323 | dbgs().indent(2) |
| 324 | << "ERROR: failed to delinearize, can't identify base pointer\n"); |
| 325 | return false; |
| 326 | } |
| 327 | |
| 328 | AccessFn = SE.getMinusSCEV(AccessFn, BasePointer); |
| 329 | |
| 330 | LLVM_DEBUG(dbgs().indent(2) << "In Loop '" << L->getName() |
| 331 | << "', AccessFn: " << *AccessFn << "\n"); |
| 332 | |
| 333 | SE.delinearize(AccessFn, Subscripts, Sizes, |
| 334 | SE.getElementSize(&StoreOrLoadInst)); |
| 335 | |
| 336 | if (Subscripts.empty() || Sizes.empty() || |
| 337 | Subscripts.size() != Sizes.size()) { |
| 338 | // Attempt to determine whether we have a single dimensional array access. |
| 339 | // before giving up. |
| 340 | if (!isOneDimensionalArray(*AccessFn, *ElemSize, *L, SE)) { |
| 341 | LLVM_DEBUG(dbgs().indent(2) |
| 342 | << "ERROR: failed to delinearize reference\n"); |
| 343 | Subscripts.clear(); |
| 344 | Sizes.clear(); |
| 345 | break; |
| 346 | } |
| 347 | |
| 348 | const SCEV *Div = SE.getUDivExactExpr(AccessFn, ElemSize); |
| 349 | Subscripts.push_back(Div); |
| 350 | Sizes.push_back(ElemSize); |
| 351 | } |
| 352 | |
| 353 | return all_of(Subscripts, [&](const SCEV *Subscript) { |
| 354 | return isSimpleAddRecurrence(*Subscript, *L); |
| 355 | }); |
| 356 | } |
| 357 | |
| 358 | return false; |
| 359 | } |
| 360 | |
| 361 | bool IndexedReference::isLoopInvariant(const Loop &L) const { |
| 362 | Value *Addr = getPointerOperand(&StoreOrLoadInst); |
| 363 | assert(Addr != nullptr && "Expecting either a load or a store instruction"); |
| 364 | assert(SE.isSCEVable(Addr->getType()) && "Addr should be SCEVable"); |
| 365 | |
| 366 | if (SE.isLoopInvariant(SE.getSCEV(Addr), &L)) |
| 367 | return true; |
| 368 | |
| 369 | // The indexed reference is loop invariant if none of the coefficients use |
| 370 | // the loop induction variable. |
| 371 | bool allCoeffForLoopAreZero = all_of(Subscripts, [&](const SCEV *Subscript) { |
| 372 | return isCoeffForLoopZeroOrInvariant(*Subscript, L); |
| 373 | }); |
| 374 | |
| 375 | return allCoeffForLoopAreZero; |
| 376 | } |
| 377 | |
| 378 | bool IndexedReference::isConsecutive(const Loop &L, unsigned CLS) const { |
| 379 | // The indexed reference is 'consecutive' if the only coefficient that uses |
| 380 | // the loop induction variable is the last one... |
| 381 | const SCEV *LastSubscript = Subscripts.back(); |
| 382 | for (const SCEV *Subscript : Subscripts) { |
| 383 | if (Subscript == LastSubscript) |
| 384 | continue; |
| 385 | if (!isCoeffForLoopZeroOrInvariant(*Subscript, L)) |
| 386 | return false; |
| 387 | } |
| 388 | |
| 389 | // ...and the access stride is less than the cache line size. |
| 390 | const SCEV *Coeff = getLastCoefficient(); |
| 391 | const SCEV *ElemSize = Sizes.back(); |
| 392 | const SCEV *Stride = SE.getMulExpr(Coeff, ElemSize); |
| 393 | const SCEV *CacheLineSize = SE.getConstant(Stride->getType(), CLS); |
| 394 | |
| 395 | return SE.isKnownPredicate(ICmpInst::ICMP_ULT, Stride, CacheLineSize); |
| 396 | } |
| 397 | |
| 398 | const SCEV *IndexedReference::getLastCoefficient() const { |
| 399 | const SCEV *LastSubscript = getLastSubscript(); |
| 400 | assert(isa<SCEVAddRecExpr>(LastSubscript) && |
| 401 | "Expecting a SCEV add recurrence expression"); |
| 402 | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LastSubscript); |
| 403 | return AR->getStepRecurrence(SE); |
| 404 | } |
| 405 | |
| 406 | bool IndexedReference::isCoeffForLoopZeroOrInvariant(const SCEV &Subscript, |
| 407 | const Loop &L) const { |
| 408 | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(&Subscript); |
| 409 | return (AR != nullptr) ? AR->getLoop() != &L |
| 410 | : SE.isLoopInvariant(&Subscript, &L); |
| 411 | } |
| 412 | |
| 413 | bool IndexedReference::isSimpleAddRecurrence(const SCEV &Subscript, |
| 414 | const Loop &L) const { |
| 415 | if (!isa<SCEVAddRecExpr>(Subscript)) |
| 416 | return false; |
| 417 | |
| 418 | const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(&Subscript); |
| 419 | assert(AR->getLoop() && "AR should have a loop"); |
| 420 | |
| 421 | if (!AR->isAffine()) |
| 422 | return false; |
| 423 | |
| 424 | const SCEV *Start = AR->getStart(); |
| 425 | const SCEV *Step = AR->getStepRecurrence(SE); |
| 426 | |
| 427 | if (!SE.isLoopInvariant(Start, &L) || !SE.isLoopInvariant(Step, &L)) |
| 428 | return false; |
| 429 | |
| 430 | return true; |
| 431 | } |
| 432 | |
| 433 | bool IndexedReference::isAliased(const IndexedReference &Other, |
| 434 | AliasAnalysis &AA) const { |
| 435 | const auto &Loc1 = MemoryLocation::get(&StoreOrLoadInst); |
| 436 | const auto &Loc2 = MemoryLocation::get(&Other.StoreOrLoadInst); |
| 437 | return AA.isMustAlias(Loc1, Loc2); |
| 438 | } |
| 439 | |
| 440 | //===----------------------------------------------------------------------===// |
| 441 | // CacheCost implementation |
| 442 | // |
| 443 | raw_ostream &llvm::operator<<(raw_ostream &OS, const CacheCost &CC) { |
| 444 | for (const auto &LC : CC.LoopCosts) { |
| 445 | const Loop *L = LC.first; |
| 446 | OS << "Loop '" << L->getName() << "' has cost = " << LC.second << "\n"; |
| 447 | } |
| 448 | return OS; |
| 449 | } |
| 450 | |
| 451 | CacheCost::CacheCost(const LoopVectorTy &Loops, const LoopInfo &LI, |
| 452 | ScalarEvolution &SE, TargetTransformInfo &TTI, |
| 453 | AliasAnalysis &AA, DependenceInfo &DI, |
| 454 | Optional<unsigned> TRT) |
| 455 | : Loops(Loops), TripCounts(), LoopCosts(), |
| 456 | TRT(TRT == None ? Optional<unsigned>(TemporalReuseThreshold) : TRT), |
| 457 | LI(LI), SE(SE), TTI(TTI), AA(AA), DI(DI) { |
| 458 | assert(!Loops.empty() && "Expecting a non-empty loop vector."); |
| 459 | |
| 460 | for (const Loop *L : Loops) { |
| 461 | unsigned TripCount = SE.getSmallConstantTripCount(L); |
| 462 | TripCount = (TripCount == 0) ? DefaultTripCount : TripCount; |
| 463 | TripCounts.push_back({L, TripCount}); |
| 464 | } |
| 465 | |
| 466 | calculateCacheFootprint(); |
| 467 | } |
| 468 | |
| 469 | std::unique_ptr<CacheCost> |
| 470 | CacheCost::getCacheCost(Loop &Root, LoopStandardAnalysisResults &AR, |
| 471 | DependenceInfo &DI, Optional<unsigned> TRT) { |
| 472 | if (Root.getParentLoop()) { |
| 473 | LLVM_DEBUG(dbgs() << "Expecting the outermost loop in a loop nest\n"); |
| 474 | return nullptr; |
| 475 | } |
| 476 | |
| 477 | LoopVectorTy Loops; |
| 478 | for (Loop *L : breadth_first(&Root)) |
| 479 | Loops.push_back(L); |
| 480 | |
| 481 | if (!getInnerMostLoop(Loops)) { |
| 482 | LLVM_DEBUG(dbgs() << "Cannot compute cache cost of loop nest with more " |
| 483 | "than one innermost loop\n"); |
| 484 | return nullptr; |
| 485 | } |
| 486 | |
Jonas Devlieghere | 0eaee54 | 2019-08-15 15:54:37 +0000 | [diff] [blame] | 487 | return std::make_unique<CacheCost>(Loops, AR.LI, AR.SE, AR.TTI, AR.AA, DI, TRT); |
Whitney Tsang | dd3b649 | 2019-08-09 13:56:29 +0000 | [diff] [blame] | 488 | } |
| 489 | |
| 490 | void CacheCost::calculateCacheFootprint() { |
| 491 | LLVM_DEBUG(dbgs() << "POPULATING REFERENCE GROUPS\n"); |
| 492 | ReferenceGroupsTy RefGroups; |
| 493 | if (!populateReferenceGroups(RefGroups)) |
| 494 | return; |
| 495 | |
| 496 | LLVM_DEBUG(dbgs() << "COMPUTING LOOP CACHE COSTS\n"); |
| 497 | for (const Loop *L : Loops) { |
| 498 | assert((std::find_if(LoopCosts.begin(), LoopCosts.end(), |
| 499 | [L](const LoopCacheCostTy &LCC) { |
| 500 | return LCC.first == L; |
| 501 | }) == LoopCosts.end()) && |
| 502 | "Should not add duplicate element"); |
| 503 | CacheCostTy LoopCost = computeLoopCacheCost(*L, RefGroups); |
| 504 | LoopCosts.push_back(std::make_pair(L, LoopCost)); |
| 505 | } |
| 506 | |
| 507 | sortLoopCosts(); |
| 508 | RefGroups.clear(); |
| 509 | } |
| 510 | |
| 511 | bool CacheCost::populateReferenceGroups(ReferenceGroupsTy &RefGroups) const { |
| 512 | assert(RefGroups.empty() && "Reference groups should be empty"); |
| 513 | |
| 514 | unsigned CLS = TTI.getCacheLineSize(); |
| 515 | Loop *InnerMostLoop = getInnerMostLoop(Loops); |
| 516 | assert(InnerMostLoop != nullptr && "Expecting a valid innermost loop"); |
| 517 | |
| 518 | for (BasicBlock *BB : InnerMostLoop->getBlocks()) { |
| 519 | for (Instruction &I : *BB) { |
| 520 | if (!isa<StoreInst>(I) && !isa<LoadInst>(I)) |
| 521 | continue; |
| 522 | |
| 523 | std::unique_ptr<IndexedReference> R(new IndexedReference(I, LI, SE)); |
| 524 | if (!R->isValid()) |
| 525 | continue; |
| 526 | |
| 527 | bool Added = false; |
| 528 | for (ReferenceGroupTy &RefGroup : RefGroups) { |
| 529 | const IndexedReference &Representative = *RefGroup.front().get(); |
| 530 | LLVM_DEBUG({ |
| 531 | dbgs() << "References:\n"; |
| 532 | dbgs().indent(2) << *R << "\n"; |
| 533 | dbgs().indent(2) << Representative << "\n"; |
| 534 | }); |
| 535 | |
| 536 | Optional<bool> HasTemporalReuse = |
| 537 | R->hasTemporalReuse(Representative, *TRT, *InnerMostLoop, DI, AA); |
| 538 | Optional<bool> HasSpacialReuse = |
| 539 | R->hasSpacialReuse(Representative, CLS, AA); |
| 540 | |
| 541 | if ((HasTemporalReuse.hasValue() && *HasTemporalReuse) || |
| 542 | (HasSpacialReuse.hasValue() && *HasSpacialReuse)) { |
| 543 | RefGroup.push_back(std::move(R)); |
| 544 | Added = true; |
| 545 | break; |
| 546 | } |
| 547 | } |
| 548 | |
| 549 | if (!Added) { |
| 550 | ReferenceGroupTy RG; |
| 551 | RG.push_back(std::move(R)); |
| 552 | RefGroups.push_back(std::move(RG)); |
| 553 | } |
| 554 | } |
| 555 | } |
| 556 | |
| 557 | if (RefGroups.empty()) |
| 558 | return false; |
| 559 | |
| 560 | LLVM_DEBUG({ |
| 561 | dbgs() << "\nIDENTIFIED REFERENCE GROUPS:\n"; |
| 562 | int n = 1; |
| 563 | for (const ReferenceGroupTy &RG : RefGroups) { |
| 564 | dbgs().indent(2) << "RefGroup " << n << ":\n"; |
| 565 | for (const auto &IR : RG) |
| 566 | dbgs().indent(4) << *IR << "\n"; |
| 567 | n++; |
| 568 | } |
| 569 | dbgs() << "\n"; |
| 570 | }); |
| 571 | |
| 572 | return true; |
| 573 | } |
| 574 | |
| 575 | CacheCostTy |
| 576 | CacheCost::computeLoopCacheCost(const Loop &L, |
| 577 | const ReferenceGroupsTy &RefGroups) const { |
| 578 | if (!L.isLoopSimplifyForm()) |
| 579 | return InvalidCost; |
| 580 | |
| 581 | LLVM_DEBUG(dbgs() << "Considering loop '" << L.getName() |
| 582 | << "' as innermost loop.\n"); |
| 583 | |
| 584 | // Compute the product of the trip counts of each other loop in the nest. |
| 585 | CacheCostTy TripCountsProduct = 1; |
| 586 | for (const auto &TC : TripCounts) { |
| 587 | if (TC.first == &L) |
| 588 | continue; |
| 589 | TripCountsProduct *= TC.second; |
| 590 | } |
| 591 | |
| 592 | CacheCostTy LoopCost = 0; |
| 593 | for (const ReferenceGroupTy &RG : RefGroups) { |
| 594 | CacheCostTy RefGroupCost = computeRefGroupCacheCost(RG, L); |
| 595 | LoopCost += RefGroupCost * TripCountsProduct; |
| 596 | } |
| 597 | |
| 598 | LLVM_DEBUG(dbgs().indent(2) << "Loop '" << L.getName() |
| 599 | << "' has cost=" << LoopCost << "\n"); |
| 600 | |
| 601 | return LoopCost; |
| 602 | } |
| 603 | |
| 604 | CacheCostTy CacheCost::computeRefGroupCacheCost(const ReferenceGroupTy &RG, |
| 605 | const Loop &L) const { |
| 606 | assert(!RG.empty() && "Reference group should have at least one member."); |
| 607 | |
| 608 | const IndexedReference *Representative = RG.front().get(); |
| 609 | return Representative->computeRefCost(L, TTI.getCacheLineSize()); |
| 610 | } |
| 611 | |
| 612 | //===----------------------------------------------------------------------===// |
| 613 | // LoopCachePrinterPass implementation |
| 614 | // |
| 615 | PreservedAnalyses LoopCachePrinterPass::run(Loop &L, LoopAnalysisManager &AM, |
| 616 | LoopStandardAnalysisResults &AR, |
| 617 | LPMUpdater &U) { |
| 618 | Function *F = L.getHeader()->getParent(); |
| 619 | DependenceInfo DI(F, &AR.AA, &AR.SE, &AR.LI); |
| 620 | |
| 621 | if (auto CC = CacheCost::getCacheCost(L, AR, DI)) |
| 622 | OS << *CC; |
| 623 | |
| 624 | return PreservedAnalyses::all(); |
| 625 | } |