Stephen Canon | b1fdde1 | 2010-07-01 15:52:42 +0000 | [diff] [blame^] | 1 | /* |
| 2 | * The LLVM Compiler Infrastructure |
| 3 | * |
| 4 | * This file is distributed under the University of Illinois Open Source |
| 5 | * License. See LICENSE.TXT for details. |
| 6 | */ |
| 7 | |
| 8 | #define DOUBLE_PRECISION |
| 9 | #include "fp_lib.h" |
| 10 | |
| 11 | // This file implements the following soft-float comparison routines: |
| 12 | // |
| 13 | // __eqdf2 __gedf2 __nedf2 |
| 14 | // __ledf2 __gtdf2 |
| 15 | // __ltdf2 |
| 16 | // __nedf2 |
| 17 | // |
| 18 | // The semantics of the routines grouped in each column are identical, so there |
| 19 | // is a single implementation for each, and wrappers to provide the other names. |
| 20 | // |
| 21 | // The main routines behave as follows: |
| 22 | // |
| 23 | // __ledf2(a,b) returns -1 if a < b |
| 24 | // 0 if a == b |
| 25 | // 1 if a > b |
| 26 | // 1 if either a or b is NaN |
| 27 | // |
| 28 | // __gedf2(a,b) returns -1 if a < b |
| 29 | // 0 if a == b |
| 30 | // 1 if a > b |
| 31 | // -1 if either a or b is NaN |
| 32 | // |
| 33 | // __unorddf2(a,b) returns 0 if both a and b are numbers |
| 34 | // 1 if either a or b is NaN |
| 35 | // |
| 36 | // Note that __ledf2( ) and __gedf2( ) are identical except in their handling of |
| 37 | // NaN values. |
| 38 | |
| 39 | enum LE_RESULT { |
| 40 | LE_LESS = -1, |
| 41 | LE_EQUAL = 0, |
| 42 | LE_GREATER = 1, |
| 43 | LE_UNORDERED = 1 |
| 44 | }; |
| 45 | |
| 46 | enum LE_RESULT __ledf2(fp_t a, fp_t b) { |
| 47 | |
| 48 | const srep_t aInt = toRep(a); |
| 49 | const srep_t bInt = toRep(b); |
| 50 | const rep_t aAbs = aInt & absMask; |
| 51 | const rep_t bAbs = bInt & absMask; |
| 52 | |
| 53 | // If either a or b is NaN, they are unordered. |
| 54 | if (aAbs > infRep || bAbs > infRep) return LE_UNORDERED; |
| 55 | |
| 56 | // If a and b are both zeros, they are equal. |
| 57 | if ((aAbs | bAbs) == 0) return LE_EQUAL; |
| 58 | |
| 59 | // If at least one of a and b is positive, we get the same result comparing |
| 60 | // a and b as signed integers as we would with a floating-point compare. |
| 61 | if ((aInt & bInt) >= 0) { |
| 62 | if (aInt < bInt) return LE_LESS; |
| 63 | else if (aInt == bInt) return LE_EQUAL; |
| 64 | else return LE_GREATER; |
| 65 | } |
| 66 | |
| 67 | // Otherwise, both are negative, so we need to flip the sense of the |
| 68 | // comparison to get the correct result. (This assumes a twos- or ones- |
| 69 | // complement integer representation; if integers are represented in a |
| 70 | // sign-magnitude representation, then this flip is incorrect). |
| 71 | else { |
| 72 | if (aInt > bInt) return LE_LESS; |
| 73 | else if (aInt == bInt) return LE_EQUAL; |
| 74 | else return LE_GREATER; |
| 75 | } |
| 76 | } |
| 77 | |
| 78 | |
| 79 | enum GE_RESULT { |
| 80 | GE_LESS = -1, |
| 81 | GE_EQUAL = 0, |
| 82 | GE_GREATER = 1, |
| 83 | GE_UNORDERED = -1 // Note: different from LE_UNORDERED |
| 84 | }; |
| 85 | |
| 86 | enum GE_RESULT __gedf2(fp_t a, fp_t b) { |
| 87 | |
| 88 | const srep_t aInt = toRep(a); |
| 89 | const srep_t bInt = toRep(b); |
| 90 | const rep_t aAbs = aInt & absMask; |
| 91 | const rep_t bAbs = bInt & absMask; |
| 92 | |
| 93 | if (aAbs > infRep || bAbs > infRep) return GE_UNORDERED; |
| 94 | if ((aAbs | bAbs) == 0) return GE_EQUAL; |
| 95 | if ((aInt & bInt) >= 0) { |
| 96 | if (aInt < bInt) return GE_LESS; |
| 97 | else if (aInt == bInt) return GE_EQUAL; |
| 98 | else return GE_GREATER; |
| 99 | } else { |
| 100 | if (aInt > bInt) return GE_LESS; |
| 101 | else if (aInt == bInt) return GE_EQUAL; |
| 102 | else return GE_GREATER; |
| 103 | } |
| 104 | } |
| 105 | |
| 106 | int __unorddf2(fp_t a, fp_t b) { |
| 107 | const rep_t aAbs = toRep(a) & absMask; |
| 108 | const rep_t bAbs = toRep(b) & absMask; |
| 109 | return aAbs > infRep || bAbs > infRep; |
| 110 | } |
| 111 | |
| 112 | enum LE_RESULT __eqdf2(fp_t a, fp_t b) { |
| 113 | return __ledf2(a, b); |
| 114 | } |
| 115 | |
| 116 | enum LE_RESULT __ltdf2(fp_t a, fp_t b) { |
| 117 | return __ledf2(a, b); |
| 118 | } |
| 119 | |
| 120 | enum LE_RESULT __nedf2(fp_t a, fp_t b) { |
| 121 | return __ledf2(a, b); |
| 122 | } |
| 123 | |
| 124 | enum GE_RESULT __gtdf2(fp_t a, fp_t b) { |
| 125 | return __gedf2(a, b); |
| 126 | } |
| 127 | |