Chandler Carruth | c34f789 | 2017-11-28 11:32:31 +0000 | [diff] [blame] | 1 | //===- SpeculateAroundPHIs.cpp --------------------------------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | |
| 10 | #include "llvm/Transforms/Scalar/SpeculateAroundPHIs.h" |
| 11 | #include "llvm/ADT/PostOrderIterator.h" |
| 12 | #include "llvm/ADT/Sequence.h" |
| 13 | #include "llvm/ADT/SetVector.h" |
| 14 | #include "llvm/ADT/Statistic.h" |
| 15 | #include "llvm/Analysis/TargetTransformInfo.h" |
| 16 | #include "llvm/Analysis/ValueTracking.h" |
| 17 | #include "llvm/IR/BasicBlock.h" |
| 18 | #include "llvm/IR/IRBuilder.h" |
| 19 | #include "llvm/IR/Instructions.h" |
| 20 | #include "llvm/IR/IntrinsicInst.h" |
| 21 | #include "llvm/Support/Debug.h" |
| 22 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 23 | |
| 24 | using namespace llvm; |
| 25 | |
| 26 | #define DEBUG_TYPE "spec-phis" |
| 27 | |
| 28 | STATISTIC(NumPHIsSpeculated, "Number of PHI nodes we speculated around"); |
| 29 | STATISTIC(NumEdgesSplit, |
| 30 | "Number of critical edges which were split for speculation"); |
| 31 | STATISTIC(NumSpeculatedInstructions, |
| 32 | "Number of instructions we speculated around the PHI nodes"); |
| 33 | STATISTIC(NumNewRedundantInstructions, |
| 34 | "Number of new, redundant instructions inserted"); |
| 35 | |
Nico Weber | e75fd1b | 2018-08-27 14:25:22 +0000 | [diff] [blame] | 36 | /// Check whether speculating the users of a PHI node around the PHI |
Chandler Carruth | c34f789 | 2017-11-28 11:32:31 +0000 | [diff] [blame] | 37 | /// will be safe. |
| 38 | /// |
| 39 | /// This checks both that all of the users are safe and also that all of their |
| 40 | /// operands are either recursively safe or already available along an incoming |
| 41 | /// edge to the PHI. |
| 42 | /// |
| 43 | /// This routine caches both all the safe nodes explored in `PotentialSpecSet` |
| 44 | /// and the chain of nodes that definitively reach any unsafe node in |
| 45 | /// `UnsafeSet`. By preserving these between repeated calls to this routine for |
| 46 | /// PHIs in the same basic block, the exploration here can be reused. However, |
| 47 | /// these caches must no be reused for PHIs in a different basic block as they |
| 48 | /// reflect what is available along incoming edges. |
| 49 | static bool |
| 50 | isSafeToSpeculatePHIUsers(PHINode &PN, DominatorTree &DT, |
| 51 | SmallPtrSetImpl<Instruction *> &PotentialSpecSet, |
| 52 | SmallPtrSetImpl<Instruction *> &UnsafeSet) { |
| 53 | auto *PhiBB = PN.getParent(); |
| 54 | SmallPtrSet<Instruction *, 4> Visited; |
| 55 | SmallVector<std::pair<Instruction *, User::value_op_iterator>, 16> DFSStack; |
| 56 | |
| 57 | // Walk each user of the PHI node. |
| 58 | for (Use &U : PN.uses()) { |
| 59 | auto *UI = cast<Instruction>(U.getUser()); |
| 60 | |
| 61 | // Ensure the use post-dominates the PHI node. This ensures that, in the |
| 62 | // absence of unwinding, the use will actually be reached. |
| 63 | // FIXME: We use a blunt hammer of requiring them to be in the same basic |
| 64 | // block. We should consider using actual post-dominance here in the |
| 65 | // future. |
| 66 | if (UI->getParent() != PhiBB) { |
Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 67 | LLVM_DEBUG(dbgs() << " Unsafe: use in a different BB: " << *UI << "\n"); |
Chandler Carruth | c34f789 | 2017-11-28 11:32:31 +0000 | [diff] [blame] | 68 | return false; |
| 69 | } |
| 70 | |
| 71 | // FIXME: This check is much too conservative. We're not going to move these |
| 72 | // instructions onto new dynamic paths through the program unless there is |
| 73 | // a call instruction between the use and the PHI node. And memory isn't |
| 74 | // changing unless there is a store in that same sequence. We should |
| 75 | // probably change this to do at least a limited scan of the intervening |
| 76 | // instructions and allow handling stores in easily proven safe cases. |
| 77 | if (mayBeMemoryDependent(*UI)) { |
Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 78 | LLVM_DEBUG(dbgs() << " Unsafe: can't speculate use: " << *UI << "\n"); |
Chandler Carruth | c34f789 | 2017-11-28 11:32:31 +0000 | [diff] [blame] | 79 | return false; |
| 80 | } |
| 81 | |
| 82 | // Now do a depth-first search of everything these users depend on to make |
| 83 | // sure they are transitively safe. This is a depth-first search, but we |
| 84 | // check nodes in preorder to minimize the amount of checking. |
| 85 | Visited.insert(UI); |
| 86 | DFSStack.push_back({UI, UI->value_op_begin()}); |
| 87 | do { |
| 88 | User::value_op_iterator OpIt; |
| 89 | std::tie(UI, OpIt) = DFSStack.pop_back_val(); |
| 90 | |
| 91 | while (OpIt != UI->value_op_end()) { |
| 92 | auto *OpI = dyn_cast<Instruction>(*OpIt); |
| 93 | // Increment to the next operand for whenever we continue. |
| 94 | ++OpIt; |
| 95 | // No need to visit non-instructions, which can't form dependencies. |
| 96 | if (!OpI) |
| 97 | continue; |
| 98 | |
| 99 | // Now do the main pre-order checks that this operand is a viable |
| 100 | // dependency of something we want to speculate. |
| 101 | |
| 102 | // First do a few checks for instructions that won't require |
| 103 | // speculation at all because they are trivially available on the |
| 104 | // incoming edge (either through dominance or through an incoming value |
| 105 | // to a PHI). |
| 106 | // |
| 107 | // The cases in the current block will be trivially dominated by the |
| 108 | // edge. |
| 109 | auto *ParentBB = OpI->getParent(); |
| 110 | if (ParentBB == PhiBB) { |
| 111 | if (isa<PHINode>(OpI)) { |
| 112 | // We can trivially map through phi nodes in the same block. |
| 113 | continue; |
| 114 | } |
| 115 | } else if (DT.dominates(ParentBB, PhiBB)) { |
| 116 | // Instructions from dominating blocks are already available. |
| 117 | continue; |
| 118 | } |
| 119 | |
| 120 | // Once we know that we're considering speculating the operand, check |
| 121 | // if we've already explored this subgraph and found it to be safe. |
| 122 | if (PotentialSpecSet.count(OpI)) |
| 123 | continue; |
| 124 | |
| 125 | // If we've already explored this subgraph and found it unsafe, bail. |
| 126 | // If when we directly test whether this is safe it fails, bail. |
| 127 | if (UnsafeSet.count(OpI) || ParentBB != PhiBB || |
| 128 | mayBeMemoryDependent(*OpI)) { |
Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 129 | LLVM_DEBUG(dbgs() << " Unsafe: can't speculate transitive use: " |
| 130 | << *OpI << "\n"); |
Chandler Carruth | c34f789 | 2017-11-28 11:32:31 +0000 | [diff] [blame] | 131 | // Record the stack of instructions which reach this node as unsafe |
| 132 | // so we prune subsequent searches. |
| 133 | UnsafeSet.insert(OpI); |
| 134 | for (auto &StackPair : DFSStack) { |
| 135 | Instruction *I = StackPair.first; |
| 136 | UnsafeSet.insert(I); |
| 137 | } |
| 138 | return false; |
| 139 | } |
| 140 | |
| 141 | // Skip any operands we're already recursively checking. |
| 142 | if (!Visited.insert(OpI).second) |
| 143 | continue; |
| 144 | |
| 145 | // Push onto the stack and descend. We can directly continue this |
| 146 | // loop when ascending. |
| 147 | DFSStack.push_back({UI, OpIt}); |
| 148 | UI = OpI; |
| 149 | OpIt = OpI->value_op_begin(); |
| 150 | } |
| 151 | |
| 152 | // This node and all its operands are safe. Go ahead and cache that for |
| 153 | // reuse later. |
| 154 | PotentialSpecSet.insert(UI); |
| 155 | |
| 156 | // Continue with the next node on the stack. |
| 157 | } while (!DFSStack.empty()); |
| 158 | } |
| 159 | |
| 160 | #ifndef NDEBUG |
| 161 | // Every visited operand should have been marked as safe for speculation at |
| 162 | // this point. Verify this and return success. |
| 163 | for (auto *I : Visited) |
| 164 | assert(PotentialSpecSet.count(I) && |
| 165 | "Failed to mark a visited instruction as safe!"); |
| 166 | #endif |
| 167 | return true; |
| 168 | } |
| 169 | |
| 170 | /// Check whether, in isolation, a given PHI node is both safe and profitable |
| 171 | /// to speculate users around. |
| 172 | /// |
| 173 | /// This handles checking whether there are any constant operands to a PHI |
| 174 | /// which could represent a useful speculation candidate, whether the users of |
| 175 | /// the PHI are safe to speculate including all their transitive dependencies, |
| 176 | /// and whether after speculation there will be some cost savings (profit) to |
| 177 | /// folding the operands into the users of the PHI node. Returns true if both |
| 178 | /// safe and profitable with relevant cost savings updated in the map and with |
| 179 | /// an update to the `PotentialSpecSet`. Returns false if either safety or |
| 180 | /// profitability are absent. Some new entries may be made to the |
| 181 | /// `PotentialSpecSet` even when this routine returns false, but they remain |
| 182 | /// conservatively correct. |
| 183 | /// |
| 184 | /// The profitability check here is a local one, but it checks this in an |
| 185 | /// interesting way. Beyond checking that the total cost of materializing the |
| 186 | /// constants will be less than the cost of folding them into their users, it |
| 187 | /// also checks that no one incoming constant will have a higher cost when |
| 188 | /// folded into its users rather than materialized. This higher cost could |
| 189 | /// result in a dynamic *path* that is more expensive even when the total cost |
| 190 | /// is lower. Currently, all of the interesting cases where this optimization |
| 191 | /// should fire are ones where it is a no-loss operation in this sense. If we |
| 192 | /// ever want to be more aggressive here, we would need to balance the |
| 193 | /// different incoming edges' cost by looking at their respective |
| 194 | /// probabilities. |
| 195 | static bool isSafeAndProfitableToSpeculateAroundPHI( |
| 196 | PHINode &PN, SmallDenseMap<PHINode *, int, 16> &CostSavingsMap, |
| 197 | SmallPtrSetImpl<Instruction *> &PotentialSpecSet, |
| 198 | SmallPtrSetImpl<Instruction *> &UnsafeSet, DominatorTree &DT, |
| 199 | TargetTransformInfo &TTI) { |
| 200 | // First see whether there is any cost savings to speculating around this |
| 201 | // PHI, and build up a map of the constant inputs to how many times they |
| 202 | // occur. |
| 203 | bool NonFreeMat = false; |
| 204 | struct CostsAndCount { |
| 205 | int MatCost = TargetTransformInfo::TCC_Free; |
| 206 | int FoldedCost = TargetTransformInfo::TCC_Free; |
| 207 | int Count = 0; |
| 208 | }; |
| 209 | SmallDenseMap<ConstantInt *, CostsAndCount, 16> CostsAndCounts; |
| 210 | SmallPtrSet<BasicBlock *, 16> IncomingConstantBlocks; |
| 211 | for (int i : llvm::seq<int>(0, PN.getNumIncomingValues())) { |
| 212 | auto *IncomingC = dyn_cast<ConstantInt>(PN.getIncomingValue(i)); |
| 213 | if (!IncomingC) |
| 214 | continue; |
| 215 | |
| 216 | // Only visit each incoming edge with a constant input once. |
| 217 | if (!IncomingConstantBlocks.insert(PN.getIncomingBlock(i)).second) |
| 218 | continue; |
| 219 | |
| 220 | auto InsertResult = CostsAndCounts.insert({IncomingC, {}}); |
| 221 | // Count how many edges share a given incoming costant. |
| 222 | ++InsertResult.first->second.Count; |
| 223 | // Only compute the cost the first time we see a particular constant. |
| 224 | if (!InsertResult.second) |
| 225 | continue; |
| 226 | |
| 227 | int &MatCost = InsertResult.first->second.MatCost; |
| 228 | MatCost = TTI.getIntImmCost(IncomingC->getValue(), IncomingC->getType()); |
| 229 | NonFreeMat |= MatCost != TTI.TCC_Free; |
| 230 | } |
| 231 | if (!NonFreeMat) { |
Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 232 | LLVM_DEBUG(dbgs() << " Free: " << PN << "\n"); |
Chandler Carruth | c34f789 | 2017-11-28 11:32:31 +0000 | [diff] [blame] | 233 | // No profit in free materialization. |
| 234 | return false; |
| 235 | } |
| 236 | |
| 237 | // Now check that the uses of this PHI can actually be speculated, |
| 238 | // otherwise we'll still have to materialize the PHI value. |
| 239 | if (!isSafeToSpeculatePHIUsers(PN, DT, PotentialSpecSet, UnsafeSet)) { |
Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 240 | LLVM_DEBUG(dbgs() << " Unsafe PHI: " << PN << "\n"); |
Chandler Carruth | c34f789 | 2017-11-28 11:32:31 +0000 | [diff] [blame] | 241 | return false; |
| 242 | } |
| 243 | |
| 244 | // Compute how much (if any) savings are available by speculating around this |
| 245 | // PHI. |
| 246 | for (Use &U : PN.uses()) { |
| 247 | auto *UserI = cast<Instruction>(U.getUser()); |
| 248 | // Now check whether there is any savings to folding the incoming constants |
| 249 | // into this use. |
| 250 | unsigned Idx = U.getOperandNo(); |
| 251 | |
| 252 | // If we have a binary operator that is commutative, an actual constant |
| 253 | // operand would end up on the RHS, so pretend the use of the PHI is on the |
| 254 | // RHS. |
| 255 | // |
| 256 | // Technically, this is a bit weird if *both* operands are PHIs we're |
| 257 | // speculating. But if that is the case, giving an "optimistic" cost isn't |
| 258 | // a bad thing because after speculation it will constant fold. And |
| 259 | // moreover, such cases should likely have been constant folded already by |
| 260 | // some other pass, so we shouldn't worry about "modeling" them terribly |
| 261 | // accurately here. Similarly, if the other operand is a constant, it still |
| 262 | // seems fine to be "optimistic" in our cost modeling, because when the |
| 263 | // incoming operand from the PHI node is also a constant, we will end up |
| 264 | // constant folding. |
| 265 | if (UserI->isBinaryOp() && UserI->isCommutative() && Idx != 1) |
| 266 | // Assume we will commute the constant to the RHS to be canonical. |
| 267 | Idx = 1; |
| 268 | |
Hiroshi Inoue | f209649 | 2018-06-14 05:41:49 +0000 | [diff] [blame] | 269 | // Get the intrinsic ID if this user is an intrinsic. |
Chandler Carruth | c34f789 | 2017-11-28 11:32:31 +0000 | [diff] [blame] | 270 | Intrinsic::ID IID = Intrinsic::not_intrinsic; |
| 271 | if (auto *UserII = dyn_cast<IntrinsicInst>(UserI)) |
| 272 | IID = UserII->getIntrinsicID(); |
| 273 | |
| 274 | for (auto &IncomingConstantAndCostsAndCount : CostsAndCounts) { |
| 275 | ConstantInt *IncomingC = IncomingConstantAndCostsAndCount.first; |
| 276 | int MatCost = IncomingConstantAndCostsAndCount.second.MatCost; |
| 277 | int &FoldedCost = IncomingConstantAndCostsAndCount.second.FoldedCost; |
| 278 | if (IID) |
| 279 | FoldedCost += TTI.getIntImmCost(IID, Idx, IncomingC->getValue(), |
| 280 | IncomingC->getType()); |
| 281 | else |
| 282 | FoldedCost += |
| 283 | TTI.getIntImmCost(UserI->getOpcode(), Idx, IncomingC->getValue(), |
| 284 | IncomingC->getType()); |
| 285 | |
| 286 | // If we accumulate more folded cost for this incoming constant than |
| 287 | // materialized cost, then we'll regress any edge with this constant so |
| 288 | // just bail. We're only interested in cases where folding the incoming |
| 289 | // constants is at least break-even on all paths. |
| 290 | if (FoldedCost > MatCost) { |
Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 291 | LLVM_DEBUG(dbgs() << " Not profitable to fold imm: " << *IncomingC |
| 292 | << "\n" |
| 293 | " Materializing cost: " |
| 294 | << MatCost |
| 295 | << "\n" |
| 296 | " Accumulated folded cost: " |
| 297 | << FoldedCost << "\n"); |
Chandler Carruth | c34f789 | 2017-11-28 11:32:31 +0000 | [diff] [blame] | 298 | return false; |
| 299 | } |
| 300 | } |
| 301 | } |
| 302 | |
| 303 | // Compute the total cost savings afforded by this PHI node. |
| 304 | int TotalMatCost = TTI.TCC_Free, TotalFoldedCost = TTI.TCC_Free; |
| 305 | for (auto IncomingConstantAndCostsAndCount : CostsAndCounts) { |
| 306 | int MatCost = IncomingConstantAndCostsAndCount.second.MatCost; |
| 307 | int FoldedCost = IncomingConstantAndCostsAndCount.second.FoldedCost; |
| 308 | int Count = IncomingConstantAndCostsAndCount.second.Count; |
| 309 | |
| 310 | TotalMatCost += MatCost * Count; |
| 311 | TotalFoldedCost += FoldedCost * Count; |
| 312 | } |
| 313 | assert(TotalFoldedCost <= TotalMatCost && "If each constant's folded cost is " |
| 314 | "less that its materialized cost, " |
| 315 | "the sum must be as well."); |
| 316 | |
Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 317 | LLVM_DEBUG(dbgs() << " Cost savings " << (TotalMatCost - TotalFoldedCost) |
| 318 | << ": " << PN << "\n"); |
Chandler Carruth | c34f789 | 2017-11-28 11:32:31 +0000 | [diff] [blame] | 319 | CostSavingsMap[&PN] = TotalMatCost - TotalFoldedCost; |
| 320 | return true; |
| 321 | } |
| 322 | |
| 323 | /// Simple helper to walk all the users of a list of phis depth first, and call |
| 324 | /// a visit function on each one in post-order. |
| 325 | /// |
| 326 | /// All of the PHIs should be in the same basic block, and this is primarily |
| 327 | /// used to make a single depth-first walk across their collective users |
| 328 | /// without revisiting any subgraphs. Callers should provide a fast, idempotent |
| 329 | /// callable to test whether a node has been visited and the more important |
| 330 | /// callable to actually visit a particular node. |
| 331 | /// |
| 332 | /// Depth-first and postorder here refer to the *operand* graph -- we start |
| 333 | /// from a collection of users of PHI nodes and walk "up" the operands |
| 334 | /// depth-first. |
| 335 | template <typename IsVisitedT, typename VisitT> |
| 336 | static void visitPHIUsersAndDepsInPostOrder(ArrayRef<PHINode *> PNs, |
| 337 | IsVisitedT IsVisited, |
| 338 | VisitT Visit) { |
| 339 | SmallVector<std::pair<Instruction *, User::value_op_iterator>, 16> DFSStack; |
| 340 | for (auto *PN : PNs) |
| 341 | for (Use &U : PN->uses()) { |
| 342 | auto *UI = cast<Instruction>(U.getUser()); |
| 343 | if (IsVisited(UI)) |
| 344 | // Already visited this user, continue across the roots. |
| 345 | continue; |
| 346 | |
| 347 | // Otherwise, walk the operand graph depth-first and visit each |
| 348 | // dependency in postorder. |
| 349 | DFSStack.push_back({UI, UI->value_op_begin()}); |
| 350 | do { |
| 351 | User::value_op_iterator OpIt; |
| 352 | std::tie(UI, OpIt) = DFSStack.pop_back_val(); |
| 353 | while (OpIt != UI->value_op_end()) { |
| 354 | auto *OpI = dyn_cast<Instruction>(*OpIt); |
| 355 | // Increment to the next operand for whenever we continue. |
| 356 | ++OpIt; |
| 357 | // No need to visit non-instructions, which can't form dependencies, |
| 358 | // or instructions outside of our potential dependency set that we |
| 359 | // were given. Finally, if we've already visited the node, continue |
| 360 | // to the next. |
| 361 | if (!OpI || IsVisited(OpI)) |
| 362 | continue; |
| 363 | |
| 364 | // Push onto the stack and descend. We can directly continue this |
| 365 | // loop when ascending. |
| 366 | DFSStack.push_back({UI, OpIt}); |
| 367 | UI = OpI; |
| 368 | OpIt = OpI->value_op_begin(); |
| 369 | } |
| 370 | |
| 371 | // Finished visiting children, visit this node. |
| 372 | assert(!IsVisited(UI) && "Should not have already visited a node!"); |
| 373 | Visit(UI); |
| 374 | } while (!DFSStack.empty()); |
| 375 | } |
| 376 | } |
| 377 | |
| 378 | /// Find profitable PHIs to speculate. |
| 379 | /// |
| 380 | /// For a PHI node to be profitable, we need the cost of speculating its users |
| 381 | /// (and their dependencies) to not exceed the savings of folding the PHI's |
| 382 | /// constant operands into the speculated users. |
| 383 | /// |
| 384 | /// Computing this is surprisingly challenging. Because users of two different |
| 385 | /// PHI nodes can depend on each other or on common other instructions, it may |
| 386 | /// be profitable to speculate two PHI nodes together even though neither one |
| 387 | /// in isolation is profitable. The straightforward way to find all the |
| 388 | /// profitable PHIs would be to check each combination of PHIs' cost, but this |
| 389 | /// is exponential in complexity. |
| 390 | /// |
| 391 | /// Even if we assume that we only care about cases where we can consider each |
| 392 | /// PHI node in isolation (rather than considering cases where none are |
| 393 | /// profitable in isolation but some subset are profitable as a set), we still |
| 394 | /// have a challenge. The obvious way to find all individually profitable PHIs |
| 395 | /// is to iterate until reaching a fixed point, but this will be quadratic in |
| 396 | /// complexity. =/ |
| 397 | /// |
| 398 | /// This code currently uses a linear-to-compute order for a greedy approach. |
| 399 | /// It won't find cases where a set of PHIs must be considered together, but it |
| 400 | /// handles most cases of order dependence without quadratic iteration. The |
| 401 | /// specific order used is the post-order across the operand DAG. When the last |
| 402 | /// user of a PHI is visited in this postorder walk, we check it for |
| 403 | /// profitability. |
| 404 | /// |
| 405 | /// There is an orthogonal extra complexity to all of this: computing the cost |
| 406 | /// itself can easily become a linear computation making everything again (at |
| 407 | /// best) quadratic. Using a postorder over the operand graph makes it |
| 408 | /// particularly easy to avoid this through dynamic programming. As we do the |
| 409 | /// postorder walk, we build the transitive cost of that subgraph. It is also |
| 410 | /// straightforward to then update these costs when we mark a PHI for |
| 411 | /// speculation so that subsequent PHIs don't re-pay the cost of already |
| 412 | /// speculated instructions. |
| 413 | static SmallVector<PHINode *, 16> |
| 414 | findProfitablePHIs(ArrayRef<PHINode *> PNs, |
| 415 | const SmallDenseMap<PHINode *, int, 16> &CostSavingsMap, |
| 416 | const SmallPtrSetImpl<Instruction *> &PotentialSpecSet, |
| 417 | int NumPreds, DominatorTree &DT, TargetTransformInfo &TTI) { |
| 418 | SmallVector<PHINode *, 16> SpecPNs; |
| 419 | |
| 420 | // First, establish a reverse mapping from immediate users of the PHI nodes |
| 421 | // to the nodes themselves, and count how many users each PHI node has in |
| 422 | // a way we can update while processing them. |
| 423 | SmallDenseMap<Instruction *, TinyPtrVector<PHINode *>, 16> UserToPNMap; |
| 424 | SmallDenseMap<PHINode *, int, 16> PNUserCountMap; |
| 425 | SmallPtrSet<Instruction *, 16> UserSet; |
| 426 | for (auto *PN : PNs) { |
| 427 | assert(UserSet.empty() && "Must start with an empty user set!"); |
| 428 | for (Use &U : PN->uses()) |
| 429 | UserSet.insert(cast<Instruction>(U.getUser())); |
| 430 | PNUserCountMap[PN] = UserSet.size(); |
| 431 | for (auto *UI : UserSet) |
| 432 | UserToPNMap.insert({UI, {}}).first->second.push_back(PN); |
| 433 | UserSet.clear(); |
| 434 | } |
| 435 | |
| 436 | // Now do a DFS across the operand graph of the users, computing cost as we |
| 437 | // go and when all costs for a given PHI are known, checking that PHI for |
| 438 | // profitability. |
| 439 | SmallDenseMap<Instruction *, int, 16> SpecCostMap; |
| 440 | visitPHIUsersAndDepsInPostOrder( |
| 441 | PNs, |
| 442 | /*IsVisited*/ |
| 443 | [&](Instruction *I) { |
| 444 | // We consider anything that isn't potentially speculated to be |
| 445 | // "visited" as it is already handled. Similarly, anything that *is* |
| 446 | // potentially speculated but for which we have an entry in our cost |
| 447 | // map, we're done. |
| 448 | return !PotentialSpecSet.count(I) || SpecCostMap.count(I); |
| 449 | }, |
| 450 | /*Visit*/ |
| 451 | [&](Instruction *I) { |
| 452 | // We've fully visited the operands, so sum their cost with this node |
| 453 | // and update the cost map. |
| 454 | int Cost = TTI.TCC_Free; |
| 455 | for (Value *OpV : I->operand_values()) |
| 456 | if (auto *OpI = dyn_cast<Instruction>(OpV)) { |
| 457 | auto CostMapIt = SpecCostMap.find(OpI); |
| 458 | if (CostMapIt != SpecCostMap.end()) |
| 459 | Cost += CostMapIt->second; |
| 460 | } |
| 461 | Cost += TTI.getUserCost(I); |
| 462 | bool Inserted = SpecCostMap.insert({I, Cost}).second; |
| 463 | (void)Inserted; |
| 464 | assert(Inserted && "Must not re-insert a cost during the DFS!"); |
| 465 | |
| 466 | // Now check if this node had a corresponding PHI node using it. If so, |
| 467 | // we need to decrement the outstanding user count for it. |
| 468 | auto UserPNsIt = UserToPNMap.find(I); |
| 469 | if (UserPNsIt == UserToPNMap.end()) |
| 470 | return; |
| 471 | auto &UserPNs = UserPNsIt->second; |
| 472 | auto UserPNsSplitIt = std::stable_partition( |
| 473 | UserPNs.begin(), UserPNs.end(), [&](PHINode *UserPN) { |
| 474 | int &PNUserCount = PNUserCountMap.find(UserPN)->second; |
| 475 | assert( |
| 476 | PNUserCount > 0 && |
| 477 | "Should never re-visit a PN after its user count hits zero!"); |
| 478 | --PNUserCount; |
| 479 | return PNUserCount != 0; |
| 480 | }); |
| 481 | |
| 482 | // FIXME: Rather than one at a time, we should sum the savings as the |
| 483 | // cost will be completely shared. |
| 484 | SmallVector<Instruction *, 16> SpecWorklist; |
| 485 | for (auto *PN : llvm::make_range(UserPNsSplitIt, UserPNs.end())) { |
| 486 | int SpecCost = TTI.TCC_Free; |
| 487 | for (Use &U : PN->uses()) |
| 488 | SpecCost += |
| 489 | SpecCostMap.find(cast<Instruction>(U.getUser()))->second; |
| 490 | SpecCost *= (NumPreds - 1); |
| 491 | // When the user count of a PHI node hits zero, we should check its |
| 492 | // profitability. If profitable, we should mark it for speculation |
| 493 | // and zero out the cost of everything it depends on. |
| 494 | int CostSavings = CostSavingsMap.find(PN)->second; |
| 495 | if (SpecCost > CostSavings) { |
Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 496 | LLVM_DEBUG(dbgs() << " Not profitable, speculation cost: " << *PN |
| 497 | << "\n" |
| 498 | " Cost savings: " |
| 499 | << CostSavings |
| 500 | << "\n" |
| 501 | " Speculation cost: " |
| 502 | << SpecCost << "\n"); |
Chandler Carruth | c34f789 | 2017-11-28 11:32:31 +0000 | [diff] [blame] | 503 | continue; |
| 504 | } |
| 505 | |
| 506 | // We're going to speculate this user-associated PHI. Copy it out and |
| 507 | // add its users to the worklist to update their cost. |
| 508 | SpecPNs.push_back(PN); |
| 509 | for (Use &U : PN->uses()) { |
| 510 | auto *UI = cast<Instruction>(U.getUser()); |
| 511 | auto CostMapIt = SpecCostMap.find(UI); |
| 512 | if (CostMapIt->second == 0) |
| 513 | continue; |
| 514 | // Zero out this cost entry to avoid duplicates. |
| 515 | CostMapIt->second = 0; |
| 516 | SpecWorklist.push_back(UI); |
| 517 | } |
| 518 | } |
| 519 | |
| 520 | // Now walk all the operands of the users in the worklist transitively |
| 521 | // to zero out all the memoized costs. |
| 522 | while (!SpecWorklist.empty()) { |
| 523 | Instruction *SpecI = SpecWorklist.pop_back_val(); |
| 524 | assert(SpecCostMap.find(SpecI)->second == 0 && |
| 525 | "Didn't zero out a cost!"); |
| 526 | |
| 527 | // Walk the operands recursively to zero out their cost as well. |
| 528 | for (auto *OpV : SpecI->operand_values()) { |
| 529 | auto *OpI = dyn_cast<Instruction>(OpV); |
| 530 | if (!OpI) |
| 531 | continue; |
| 532 | auto CostMapIt = SpecCostMap.find(OpI); |
| 533 | if (CostMapIt == SpecCostMap.end() || CostMapIt->second == 0) |
| 534 | continue; |
| 535 | CostMapIt->second = 0; |
| 536 | SpecWorklist.push_back(OpI); |
| 537 | } |
| 538 | } |
| 539 | }); |
| 540 | |
| 541 | return SpecPNs; |
| 542 | } |
| 543 | |
| 544 | /// Speculate users around a set of PHI nodes. |
| 545 | /// |
| 546 | /// This routine does the actual speculation around a set of PHI nodes where we |
| 547 | /// have determined this to be both safe and profitable. |
| 548 | /// |
| 549 | /// This routine handles any spliting of critical edges necessary to create |
| 550 | /// a safe block to speculate into as well as cloning the instructions and |
| 551 | /// rewriting all uses. |
| 552 | static void speculatePHIs(ArrayRef<PHINode *> SpecPNs, |
| 553 | SmallPtrSetImpl<Instruction *> &PotentialSpecSet, |
| 554 | SmallSetVector<BasicBlock *, 16> &PredSet, |
| 555 | DominatorTree &DT) { |
Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 556 | LLVM_DEBUG(dbgs() << " Speculating around " << SpecPNs.size() << " PHIs!\n"); |
Chandler Carruth | c34f789 | 2017-11-28 11:32:31 +0000 | [diff] [blame] | 557 | NumPHIsSpeculated += SpecPNs.size(); |
| 558 | |
| 559 | // Split any critical edges so that we have a block to hoist into. |
| 560 | auto *ParentBB = SpecPNs[0]->getParent(); |
| 561 | SmallVector<BasicBlock *, 16> SpecPreds; |
| 562 | SpecPreds.reserve(PredSet.size()); |
| 563 | for (auto *PredBB : PredSet) { |
| 564 | auto *NewPredBB = SplitCriticalEdge( |
| 565 | PredBB, ParentBB, |
| 566 | CriticalEdgeSplittingOptions(&DT).setMergeIdenticalEdges()); |
| 567 | if (NewPredBB) { |
| 568 | ++NumEdgesSplit; |
Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 569 | LLVM_DEBUG(dbgs() << " Split critical edge from: " << PredBB->getName() |
| 570 | << "\n"); |
Chandler Carruth | c34f789 | 2017-11-28 11:32:31 +0000 | [diff] [blame] | 571 | SpecPreds.push_back(NewPredBB); |
| 572 | } else { |
| 573 | assert(PredBB->getSingleSuccessor() == ParentBB && |
| 574 | "We need a non-critical predecessor to speculate into."); |
| 575 | assert(!isa<InvokeInst>(PredBB->getTerminator()) && |
| 576 | "Cannot have a non-critical invoke!"); |
| 577 | |
| 578 | // Already non-critical, use existing pred. |
| 579 | SpecPreds.push_back(PredBB); |
| 580 | } |
| 581 | } |
| 582 | |
| 583 | SmallPtrSet<Instruction *, 16> SpecSet; |
| 584 | SmallVector<Instruction *, 16> SpecList; |
| 585 | visitPHIUsersAndDepsInPostOrder(SpecPNs, |
| 586 | /*IsVisited*/ |
| 587 | [&](Instruction *I) { |
| 588 | // This is visited if we don't need to |
| 589 | // speculate it or we already have |
| 590 | // speculated it. |
| 591 | return !PotentialSpecSet.count(I) || |
| 592 | SpecSet.count(I); |
| 593 | }, |
| 594 | /*Visit*/ |
| 595 | [&](Instruction *I) { |
| 596 | // All operands scheduled, schedule this |
| 597 | // node. |
| 598 | SpecSet.insert(I); |
| 599 | SpecList.push_back(I); |
| 600 | }); |
| 601 | |
| 602 | int NumSpecInsts = SpecList.size() * SpecPreds.size(); |
| 603 | int NumRedundantInsts = NumSpecInsts - SpecList.size(); |
Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 604 | LLVM_DEBUG(dbgs() << " Inserting " << NumSpecInsts |
| 605 | << " speculated instructions, " << NumRedundantInsts |
| 606 | << " redundancies\n"); |
Chandler Carruth | c34f789 | 2017-11-28 11:32:31 +0000 | [diff] [blame] | 607 | NumSpeculatedInstructions += NumSpecInsts; |
| 608 | NumNewRedundantInstructions += NumRedundantInsts; |
| 609 | |
| 610 | // Each predecessor is numbered by its index in `SpecPreds`, so for each |
| 611 | // instruction we speculate, the speculated instruction is stored in that |
Hiroshi Inoue | f209649 | 2018-06-14 05:41:49 +0000 | [diff] [blame] | 612 | // index of the vector associated with the original instruction. We also |
Chandler Carruth | c34f789 | 2017-11-28 11:32:31 +0000 | [diff] [blame] | 613 | // store the incoming values for each predecessor from any PHIs used. |
| 614 | SmallDenseMap<Instruction *, SmallVector<Value *, 2>, 16> SpeculatedValueMap; |
| 615 | |
| 616 | // Inject the synthetic mappings to rewrite PHIs to the appropriate incoming |
| 617 | // value. This handles both the PHIs we are speculating around and any other |
| 618 | // PHIs that happen to be used. |
| 619 | for (auto *OrigI : SpecList) |
| 620 | for (auto *OpV : OrigI->operand_values()) { |
| 621 | auto *OpPN = dyn_cast<PHINode>(OpV); |
| 622 | if (!OpPN || OpPN->getParent() != ParentBB) |
| 623 | continue; |
| 624 | |
| 625 | auto InsertResult = SpeculatedValueMap.insert({OpPN, {}}); |
| 626 | if (!InsertResult.second) |
| 627 | continue; |
| 628 | |
| 629 | auto &SpeculatedVals = InsertResult.first->second; |
| 630 | |
| 631 | // Populating our structure for mapping is particularly annoying because |
| 632 | // finding an incoming value for a particular predecessor block in a PHI |
| 633 | // node is a linear time operation! To avoid quadratic behavior, we build |
| 634 | // a map for this PHI node's incoming values and then translate it into |
| 635 | // the more compact representation used below. |
| 636 | SmallDenseMap<BasicBlock *, Value *, 16> IncomingValueMap; |
| 637 | for (int i : llvm::seq<int>(0, OpPN->getNumIncomingValues())) |
| 638 | IncomingValueMap[OpPN->getIncomingBlock(i)] = OpPN->getIncomingValue(i); |
| 639 | |
| 640 | for (auto *PredBB : SpecPreds) |
| 641 | SpeculatedVals.push_back(IncomingValueMap.find(PredBB)->second); |
| 642 | } |
| 643 | |
| 644 | // Speculate into each predecessor. |
| 645 | for (int PredIdx : llvm::seq<int>(0, SpecPreds.size())) { |
| 646 | auto *PredBB = SpecPreds[PredIdx]; |
| 647 | assert(PredBB->getSingleSuccessor() == ParentBB && |
| 648 | "We need a non-critical predecessor to speculate into."); |
| 649 | |
| 650 | for (auto *OrigI : SpecList) { |
| 651 | auto *NewI = OrigI->clone(); |
| 652 | NewI->setName(Twine(OrigI->getName()) + "." + Twine(PredIdx)); |
| 653 | NewI->insertBefore(PredBB->getTerminator()); |
| 654 | |
| 655 | // Rewrite all the operands to the previously speculated instructions. |
| 656 | // Because we're walking in-order, the defs must precede the uses and we |
| 657 | // should already have these mappings. |
| 658 | for (Use &U : NewI->operands()) { |
| 659 | auto *OpI = dyn_cast<Instruction>(U.get()); |
| 660 | if (!OpI) |
| 661 | continue; |
| 662 | auto MapIt = SpeculatedValueMap.find(OpI); |
| 663 | if (MapIt == SpeculatedValueMap.end()) |
| 664 | continue; |
| 665 | const auto &SpeculatedVals = MapIt->second; |
| 666 | assert(SpeculatedVals[PredIdx] && |
| 667 | "Must have a speculated value for this predecessor!"); |
| 668 | assert(SpeculatedVals[PredIdx]->getType() == OpI->getType() && |
| 669 | "Speculated value has the wrong type!"); |
| 670 | |
| 671 | // Rewrite the use to this predecessor's speculated instruction. |
| 672 | U.set(SpeculatedVals[PredIdx]); |
| 673 | } |
| 674 | |
| 675 | // Commute instructions which now have a constant in the LHS but not the |
| 676 | // RHS. |
| 677 | if (NewI->isBinaryOp() && NewI->isCommutative() && |
| 678 | isa<Constant>(NewI->getOperand(0)) && |
| 679 | !isa<Constant>(NewI->getOperand(1))) |
| 680 | NewI->getOperandUse(0).swap(NewI->getOperandUse(1)); |
| 681 | |
| 682 | SpeculatedValueMap[OrigI].push_back(NewI); |
| 683 | assert(SpeculatedValueMap[OrigI][PredIdx] == NewI && |
| 684 | "Mismatched speculated instruction index!"); |
| 685 | } |
| 686 | } |
| 687 | |
| 688 | // Walk the speculated instruction list and if they have uses, insert a PHI |
| 689 | // for them from the speculated versions, and replace the uses with the PHI. |
| 690 | // Then erase the instructions as they have been fully speculated. The walk |
| 691 | // needs to be in reverse so that we don't think there are users when we'll |
| 692 | // actually eventually remove them later. |
| 693 | IRBuilder<> IRB(SpecPNs[0]); |
| 694 | for (auto *OrigI : llvm::reverse(SpecList)) { |
| 695 | // Check if we need a PHI for any remaining users and if so, insert it. |
| 696 | if (!OrigI->use_empty()) { |
| 697 | auto *SpecIPN = IRB.CreatePHI(OrigI->getType(), SpecPreds.size(), |
| 698 | Twine(OrigI->getName()) + ".phi"); |
| 699 | // Add the incoming values we speculated. |
| 700 | auto &SpeculatedVals = SpeculatedValueMap.find(OrigI)->second; |
| 701 | for (int PredIdx : llvm::seq<int>(0, SpecPreds.size())) |
| 702 | SpecIPN->addIncoming(SpeculatedVals[PredIdx], SpecPreds[PredIdx]); |
| 703 | |
| 704 | // And replace the uses with the PHI node. |
| 705 | OrigI->replaceAllUsesWith(SpecIPN); |
| 706 | } |
| 707 | |
| 708 | // It is important to immediately erase this so that it stops using other |
| 709 | // instructions. This avoids inserting needless PHIs of them. |
| 710 | OrigI->eraseFromParent(); |
| 711 | } |
| 712 | |
| 713 | // All of the uses of the speculated phi nodes should be removed at this |
| 714 | // point, so erase them. |
| 715 | for (auto *SpecPN : SpecPNs) { |
| 716 | assert(SpecPN->use_empty() && "All users should have been speculated!"); |
| 717 | SpecPN->eraseFromParent(); |
| 718 | } |
| 719 | } |
| 720 | |
| 721 | /// Try to speculate around a series of PHIs from a single basic block. |
| 722 | /// |
| 723 | /// This routine checks whether any of these PHIs are profitable to speculate |
| 724 | /// users around. If safe and profitable, it does the speculation. It returns |
| 725 | /// true when at least some speculation occurs. |
| 726 | static bool tryToSpeculatePHIs(SmallVectorImpl<PHINode *> &PNs, |
| 727 | DominatorTree &DT, TargetTransformInfo &TTI) { |
Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 728 | LLVM_DEBUG(dbgs() << "Evaluating phi nodes for speculation:\n"); |
Chandler Carruth | c34f789 | 2017-11-28 11:32:31 +0000 | [diff] [blame] | 729 | |
| 730 | // Savings in cost from speculating around a PHI node. |
| 731 | SmallDenseMap<PHINode *, int, 16> CostSavingsMap; |
| 732 | |
| 733 | // Remember the set of instructions that are candidates for speculation so |
| 734 | // that we can quickly walk things within that space. This prunes out |
| 735 | // instructions already available along edges, etc. |
| 736 | SmallPtrSet<Instruction *, 16> PotentialSpecSet; |
| 737 | |
| 738 | // Remember the set of instructions that are (transitively) unsafe to |
| 739 | // speculate into the incoming edges of this basic block. This avoids |
| 740 | // recomputing them for each PHI node we check. This set is specific to this |
| 741 | // block though as things are pruned out of it based on what is available |
| 742 | // along incoming edges. |
| 743 | SmallPtrSet<Instruction *, 16> UnsafeSet; |
| 744 | |
| 745 | // For each PHI node in this block, check whether there are immediate folding |
| 746 | // opportunities from speculation, and whether that speculation will be |
| 747 | // valid. This determise the set of safe PHIs to speculate. |
| 748 | PNs.erase(llvm::remove_if(PNs, |
| 749 | [&](PHINode *PN) { |
| 750 | return !isSafeAndProfitableToSpeculateAroundPHI( |
| 751 | *PN, CostSavingsMap, PotentialSpecSet, |
| 752 | UnsafeSet, DT, TTI); |
| 753 | }), |
| 754 | PNs.end()); |
| 755 | // If no PHIs were profitable, skip. |
| 756 | if (PNs.empty()) { |
Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 757 | LLVM_DEBUG(dbgs() << " No safe and profitable PHIs found!\n"); |
Chandler Carruth | c34f789 | 2017-11-28 11:32:31 +0000 | [diff] [blame] | 758 | return false; |
| 759 | } |
| 760 | |
| 761 | // We need to know how much speculation will cost which is determined by how |
| 762 | // many incoming edges will need a copy of each speculated instruction. |
| 763 | SmallSetVector<BasicBlock *, 16> PredSet; |
| 764 | for (auto *PredBB : PNs[0]->blocks()) { |
| 765 | if (!PredSet.insert(PredBB)) |
| 766 | continue; |
| 767 | |
| 768 | // We cannot speculate when a predecessor is an indirect branch. |
| 769 | // FIXME: We also can't reliably create a non-critical edge block for |
| 770 | // speculation if the predecessor is an invoke. This doesn't seem |
| 771 | // fundamental and we should probably be splitting critical edges |
| 772 | // differently. |
| 773 | if (isa<IndirectBrInst>(PredBB->getTerminator()) || |
| 774 | isa<InvokeInst>(PredBB->getTerminator())) { |
Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 775 | LLVM_DEBUG(dbgs() << " Invalid: predecessor terminator: " |
| 776 | << PredBB->getName() << "\n"); |
Chandler Carruth | c34f789 | 2017-11-28 11:32:31 +0000 | [diff] [blame] | 777 | return false; |
| 778 | } |
| 779 | } |
| 780 | if (PredSet.size() < 2) { |
Nicola Zaghen | d34e60c | 2018-05-14 12:53:11 +0000 | [diff] [blame] | 781 | LLVM_DEBUG(dbgs() << " Unimportant: phi with only one predecessor\n"); |
Chandler Carruth | c34f789 | 2017-11-28 11:32:31 +0000 | [diff] [blame] | 782 | return false; |
| 783 | } |
| 784 | |
| 785 | SmallVector<PHINode *, 16> SpecPNs = findProfitablePHIs( |
| 786 | PNs, CostSavingsMap, PotentialSpecSet, PredSet.size(), DT, TTI); |
| 787 | if (SpecPNs.empty()) |
| 788 | // Nothing to do. |
| 789 | return false; |
| 790 | |
| 791 | speculatePHIs(SpecPNs, PotentialSpecSet, PredSet, DT); |
| 792 | return true; |
| 793 | } |
| 794 | |
| 795 | PreservedAnalyses SpeculateAroundPHIsPass::run(Function &F, |
| 796 | FunctionAnalysisManager &AM) { |
| 797 | auto &DT = AM.getResult<DominatorTreeAnalysis>(F); |
| 798 | auto &TTI = AM.getResult<TargetIRAnalysis>(F); |
| 799 | |
| 800 | bool Changed = false; |
| 801 | for (auto *BB : ReversePostOrderTraversal<Function *>(&F)) { |
| 802 | SmallVector<PHINode *, 16> PNs; |
| 803 | auto BBI = BB->begin(); |
| 804 | while (auto *PN = dyn_cast<PHINode>(&*BBI)) { |
| 805 | PNs.push_back(PN); |
| 806 | ++BBI; |
| 807 | } |
| 808 | |
| 809 | if (PNs.empty()) |
| 810 | continue; |
| 811 | |
| 812 | Changed |= tryToSpeculatePHIs(PNs, DT, TTI); |
| 813 | } |
| 814 | |
| 815 | if (!Changed) |
| 816 | return PreservedAnalyses::all(); |
| 817 | |
| 818 | PreservedAnalyses PA; |
| 819 | return PA; |
| 820 | } |