blob: 6ccf8aac3b893c4ba3b8ec344cf980ee7eb1bad0 [file] [log] [blame]
Chris Lattnerd934c702004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman01808ca2005-04-21 21:13:18 +00002//
Chris Lattnerd934c702004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman01808ca2005-04-21 21:13:18 +00007//
Chris Lattnerd934c702004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanef2ae2c2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattnerd934c702004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman01808ca2005-04-21 21:13:18 +000030//
Chris Lattnerd934c702004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattnerd934c702004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner57ef9422006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chandler Carruthed0881b2012-12-03 16:50:05 +000062#include "llvm/Analysis/ScalarEvolution.h"
63#include "llvm/ADT/STLExtras.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/Statistic.h"
John Criswellfe5f33b2005-10-27 15:54:34 +000066#include "llvm/Analysis/ConstantFolding.h"
Duncan Sandsd06f50e2010-11-17 04:18:45 +000067#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattnerd934c702004-04-02 20:23:17 +000068#include "llvm/Analysis/LoopInfo.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000069#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Dan Gohman1ee696d2009-06-16 19:52:01 +000070#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000071#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000072#include "llvm/IR/Constants.h"
73#include "llvm/IR/DataLayout.h"
74#include "llvm/IR/DerivedTypes.h"
Chandler Carruth5ad5f152014-01-13 09:26:24 +000075#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000076#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000077#include "llvm/IR/GlobalAlias.h"
78#include "llvm/IR/GlobalVariable.h"
Chandler Carruth83948572014-03-04 10:30:26 +000079#include "llvm/IR/InstIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000080#include "llvm/IR/Instructions.h"
81#include "llvm/IR/LLVMContext.h"
82#include "llvm/IR/Operator.h"
Chris Lattner996795b2006-06-28 23:17:24 +000083#include "llvm/Support/CommandLine.h"
David Greene2330f782009-12-23 22:58:38 +000084#include "llvm/Support/Debug.h"
Torok Edwin56d06592009-07-11 20:10:48 +000085#include "llvm/Support/ErrorHandling.h"
Chris Lattner0a1e9932006-12-19 01:16:02 +000086#include "llvm/Support/MathExtras.h"
Dan Gohmane20f8242009-04-21 00:47:46 +000087#include "llvm/Support/raw_ostream.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000088#include "llvm/Target/TargetLibraryInfo.h"
Alkis Evlogimenosa5c04ee2004-09-03 18:19:51 +000089#include <algorithm>
Chris Lattnerd934c702004-04-02 20:23:17 +000090using namespace llvm;
91
Chris Lattner57ef9422006-12-19 22:30:33 +000092STATISTIC(NumArrayLenItCounts,
93 "Number of trip counts computed with array length");
94STATISTIC(NumTripCountsComputed,
95 "Number of loops with predictable loop counts");
96STATISTIC(NumTripCountsNotComputed,
97 "Number of loops without predictable loop counts");
98STATISTIC(NumBruteForceTripCountsComputed,
99 "Number of loops with trip counts computed by force");
100
Dan Gohmand78c4002008-05-13 00:00:25 +0000101static cl::opt<unsigned>
Chris Lattner57ef9422006-12-19 22:30:33 +0000102MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
103 cl::desc("Maximum number of iterations SCEV will "
Dan Gohmance973df2009-06-24 04:48:43 +0000104 "symbolically execute a constant "
105 "derived loop"),
Chris Lattner57ef9422006-12-19 22:30:33 +0000106 cl::init(100));
107
Benjamin Kramer214935e2012-10-26 17:31:32 +0000108// FIXME: Enable this with XDEBUG when the test suite is clean.
109static cl::opt<bool>
110VerifySCEV("verify-scev",
111 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
112
Owen Anderson8ac477f2010-10-12 19:48:12 +0000113INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
114 "Scalar Evolution Analysis", false, true)
115INITIALIZE_PASS_DEPENDENCY(LoopInfo)
Chandler Carruth73523022014-01-13 13:07:17 +0000116INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
Chad Rosierc24b86f2011-12-01 03:08:23 +0000117INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
Owen Anderson8ac477f2010-10-12 19:48:12 +0000118INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersondf7a4f22010-10-07 22:25:06 +0000119 "Scalar Evolution Analysis", false, true)
Devang Patel8c78a0b2007-05-03 01:11:54 +0000120char ScalarEvolution::ID = 0;
Chris Lattnerd934c702004-04-02 20:23:17 +0000121
122//===----------------------------------------------------------------------===//
123// SCEV class definitions
124//===----------------------------------------------------------------------===//
125
126//===----------------------------------------------------------------------===//
127// Implementation of the SCEV class.
128//
Dan Gohman3423e722009-06-30 20:13:32 +0000129
Manman Ren49d684e2012-09-12 05:06:18 +0000130#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Chris Lattnerd934c702004-04-02 20:23:17 +0000131void SCEV::dump() const {
David Greenedf1c4972009-12-23 22:18:14 +0000132 print(dbgs());
133 dbgs() << '\n';
Dan Gohmane20f8242009-04-21 00:47:46 +0000134}
Manman Renc3366cc2012-09-06 19:55:56 +0000135#endif
Dan Gohmane20f8242009-04-21 00:47:46 +0000136
Dan Gohman534749b2010-11-17 22:27:42 +0000137void SCEV::print(raw_ostream &OS) const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000138 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000139 case scConstant:
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000140 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000141 return;
142 case scTruncate: {
143 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
144 const SCEV *Op = Trunc->getOperand();
145 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
146 << *Trunc->getType() << ")";
147 return;
148 }
149 case scZeroExtend: {
150 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
151 const SCEV *Op = ZExt->getOperand();
152 OS << "(zext " << *Op->getType() << " " << *Op << " to "
153 << *ZExt->getType() << ")";
154 return;
155 }
156 case scSignExtend: {
157 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
158 const SCEV *Op = SExt->getOperand();
159 OS << "(sext " << *Op->getType() << " " << *Op << " to "
160 << *SExt->getType() << ")";
161 return;
162 }
163 case scAddRecExpr: {
164 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
165 OS << "{" << *AR->getOperand(0);
166 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
167 OS << ",+," << *AR->getOperand(i);
168 OS << "}<";
Andrew Trick8b55b732011-03-14 16:50:06 +0000169 if (AR->getNoWrapFlags(FlagNUW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000170 OS << "nuw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000171 if (AR->getNoWrapFlags(FlagNSW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000172 OS << "nsw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000173 if (AR->getNoWrapFlags(FlagNW) &&
174 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
175 OS << "nw><";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000176 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohman534749b2010-11-17 22:27:42 +0000177 OS << ">";
178 return;
179 }
180 case scAddExpr:
181 case scMulExpr:
182 case scUMaxExpr:
183 case scSMaxExpr: {
184 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Benjamin Kramerc77ebcc2010-11-19 11:37:26 +0000185 const char *OpStr = 0;
Dan Gohman534749b2010-11-17 22:27:42 +0000186 switch (NAry->getSCEVType()) {
187 case scAddExpr: OpStr = " + "; break;
188 case scMulExpr: OpStr = " * "; break;
189 case scUMaxExpr: OpStr = " umax "; break;
190 case scSMaxExpr: OpStr = " smax "; break;
191 }
192 OS << "(";
193 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
194 I != E; ++I) {
195 OS << **I;
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +0000196 if (std::next(I) != E)
Dan Gohman534749b2010-11-17 22:27:42 +0000197 OS << OpStr;
198 }
199 OS << ")";
Andrew Trickd912a5b2011-11-29 02:06:35 +0000200 switch (NAry->getSCEVType()) {
201 case scAddExpr:
202 case scMulExpr:
203 if (NAry->getNoWrapFlags(FlagNUW))
204 OS << "<nuw>";
205 if (NAry->getNoWrapFlags(FlagNSW))
206 OS << "<nsw>";
207 }
Dan Gohman534749b2010-11-17 22:27:42 +0000208 return;
209 }
210 case scUDivExpr: {
211 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
212 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
213 return;
214 }
215 case scUnknown: {
216 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattner229907c2011-07-18 04:54:35 +0000217 Type *AllocTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000218 if (U->isSizeOf(AllocTy)) {
219 OS << "sizeof(" << *AllocTy << ")";
220 return;
221 }
222 if (U->isAlignOf(AllocTy)) {
223 OS << "alignof(" << *AllocTy << ")";
224 return;
225 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000226
Chris Lattner229907c2011-07-18 04:54:35 +0000227 Type *CTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000228 Constant *FieldNo;
229 if (U->isOffsetOf(CTy, FieldNo)) {
230 OS << "offsetof(" << *CTy << ", ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000231 FieldNo->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000232 OS << ")";
233 return;
234 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000235
Dan Gohman534749b2010-11-17 22:27:42 +0000236 // Otherwise just print it normally.
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000237 U->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000238 return;
239 }
240 case scCouldNotCompute:
241 OS << "***COULDNOTCOMPUTE***";
242 return;
Dan Gohman534749b2010-11-17 22:27:42 +0000243 }
244 llvm_unreachable("Unknown SCEV kind!");
245}
246
Chris Lattner229907c2011-07-18 04:54:35 +0000247Type *SCEV::getType() const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000248 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000249 case scConstant:
250 return cast<SCEVConstant>(this)->getType();
251 case scTruncate:
252 case scZeroExtend:
253 case scSignExtend:
254 return cast<SCEVCastExpr>(this)->getType();
255 case scAddRecExpr:
256 case scMulExpr:
257 case scUMaxExpr:
258 case scSMaxExpr:
259 return cast<SCEVNAryExpr>(this)->getType();
260 case scAddExpr:
261 return cast<SCEVAddExpr>(this)->getType();
262 case scUDivExpr:
263 return cast<SCEVUDivExpr>(this)->getType();
264 case scUnknown:
265 return cast<SCEVUnknown>(this)->getType();
266 case scCouldNotCompute:
267 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman534749b2010-11-17 22:27:42 +0000268 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000269 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman534749b2010-11-17 22:27:42 +0000270}
271
Dan Gohmanbe928e32008-06-18 16:23:07 +0000272bool SCEV::isZero() const {
273 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
274 return SC->getValue()->isZero();
275 return false;
276}
277
Dan Gohmanba7f6d82009-05-18 15:22:39 +0000278bool SCEV::isOne() const {
279 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
280 return SC->getValue()->isOne();
281 return false;
282}
Chris Lattnerd934c702004-04-02 20:23:17 +0000283
Dan Gohman18a96bb2009-06-24 00:30:26 +0000284bool SCEV::isAllOnesValue() const {
285 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
286 return SC->getValue()->isAllOnesValue();
287 return false;
288}
289
Andrew Trick881a7762012-01-07 00:27:31 +0000290/// isNonConstantNegative - Return true if the specified scev is negated, but
291/// not a constant.
292bool SCEV::isNonConstantNegative() const {
293 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
294 if (!Mul) return false;
295
296 // If there is a constant factor, it will be first.
297 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
298 if (!SC) return false;
299
300 // Return true if the value is negative, this matches things like (-42 * V).
301 return SC->getValue()->getValue().isNegative();
302}
303
Owen Anderson04052ec2009-06-22 21:57:23 +0000304SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman24ceda82010-06-18 19:54:20 +0000305 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000306
Chris Lattnerd934c702004-04-02 20:23:17 +0000307bool SCEVCouldNotCompute::classof(const SCEV *S) {
308 return S->getSCEVType() == scCouldNotCompute;
309}
310
Dan Gohmanaf752342009-07-07 17:06:11 +0000311const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000312 FoldingSetNodeID ID;
313 ID.AddInteger(scConstant);
314 ID.AddPointer(V);
315 void *IP = 0;
316 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman24ceda82010-06-18 19:54:20 +0000317 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000318 UniqueSCEVs.InsertNode(S, IP);
319 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000320}
Chris Lattnerd934c702004-04-02 20:23:17 +0000321
Nick Lewycky31eaca52014-01-27 10:04:03 +0000322const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
Owen Andersonedb4a702009-07-24 23:12:02 +0000323 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman0a76e7f2007-07-09 15:25:17 +0000324}
325
Dan Gohmanaf752342009-07-07 17:06:11 +0000326const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +0000327ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
328 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana029cbe2010-04-21 16:04:04 +0000329 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000330}
331
Dan Gohman24ceda82010-06-18 19:54:20 +0000332SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000333 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000334 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000335
Dan Gohman24ceda82010-06-18 19:54:20 +0000336SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000337 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000338 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000339 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
340 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000341 "Cannot truncate non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000342}
Chris Lattnerd934c702004-04-02 20:23:17 +0000343
Dan Gohman24ceda82010-06-18 19:54:20 +0000344SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000345 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000346 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000347 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
348 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000349 "Cannot zero extend non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000350}
351
Dan Gohman24ceda82010-06-18 19:54:20 +0000352SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000353 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000354 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000355 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
356 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000357 "Cannot sign extend non-integer value!");
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000358}
359
Dan Gohman7cac9572010-08-02 23:49:30 +0000360void SCEVUnknown::deleted() {
Dan Gohman761065e2010-11-17 02:44:44 +0000361 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000362 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000363
364 // Remove this SCEVUnknown from the uniquing map.
365 SE->UniqueSCEVs.RemoveNode(this);
366
367 // Release the value.
368 setValPtr(0);
369}
370
371void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman761065e2010-11-17 02:44:44 +0000372 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000373 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000374
375 // Remove this SCEVUnknown from the uniquing map.
376 SE->UniqueSCEVs.RemoveNode(this);
377
378 // Update this SCEVUnknown to point to the new value. This is needed
379 // because there may still be outstanding SCEVs which still point to
380 // this SCEVUnknown.
381 setValPtr(New);
382}
383
Chris Lattner229907c2011-07-18 04:54:35 +0000384bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000385 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000386 if (VCE->getOpcode() == Instruction::PtrToInt)
387 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000388 if (CE->getOpcode() == Instruction::GetElementPtr &&
389 CE->getOperand(0)->isNullValue() &&
390 CE->getNumOperands() == 2)
391 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
392 if (CI->isOne()) {
393 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
394 ->getElementType();
395 return true;
396 }
Dan Gohmancf913832010-01-28 02:15:55 +0000397
398 return false;
399}
400
Chris Lattner229907c2011-07-18 04:54:35 +0000401bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000402 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000403 if (VCE->getOpcode() == Instruction::PtrToInt)
404 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000405 if (CE->getOpcode() == Instruction::GetElementPtr &&
406 CE->getOperand(0)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000407 Type *Ty =
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000408 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattner229907c2011-07-18 04:54:35 +0000409 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000410 if (!STy->isPacked() &&
411 CE->getNumOperands() == 3 &&
412 CE->getOperand(1)->isNullValue()) {
413 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
414 if (CI->isOne() &&
415 STy->getNumElements() == 2 &&
Duncan Sands9dff9be2010-02-15 16:12:20 +0000416 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000417 AllocTy = STy->getElementType(1);
418 return true;
419 }
420 }
421 }
Dan Gohmancf913832010-01-28 02:15:55 +0000422
423 return false;
424}
425
Chris Lattner229907c2011-07-18 04:54:35 +0000426bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000427 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000428 if (VCE->getOpcode() == Instruction::PtrToInt)
429 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
430 if (CE->getOpcode() == Instruction::GetElementPtr &&
431 CE->getNumOperands() == 3 &&
432 CE->getOperand(0)->isNullValue() &&
433 CE->getOperand(1)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000434 Type *Ty =
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000435 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
436 // Ignore vector types here so that ScalarEvolutionExpander doesn't
437 // emit getelementptrs that index into vectors.
Duncan Sands19d0b472010-02-16 11:11:14 +0000438 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000439 CTy = Ty;
440 FieldNo = CE->getOperand(2);
441 return true;
442 }
443 }
444
445 return false;
446}
447
Chris Lattnereb3e8402004-06-20 06:23:15 +0000448//===----------------------------------------------------------------------===//
449// SCEV Utilities
450//===----------------------------------------------------------------------===//
451
452namespace {
453 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
454 /// than the complexity of the RHS. This comparator is used to canonicalize
455 /// expressions.
Nick Lewycky02d5f772009-10-25 06:33:48 +0000456 class SCEVComplexityCompare {
Dan Gohman3324b9e2010-08-13 20:17:27 +0000457 const LoopInfo *const LI;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000458 public:
Dan Gohman992db002010-07-23 21:18:55 +0000459 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman9ba542c2009-05-07 14:39:04 +0000460
Dan Gohman27065672010-08-27 15:26:01 +0000461 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohman5e6ce7b2008-04-14 18:23:56 +0000462 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman27065672010-08-27 15:26:01 +0000463 return compare(LHS, RHS) < 0;
464 }
465
466 // Return negative, zero, or positive, if LHS is less than, equal to, or
467 // greater than RHS, respectively. A three-way result allows recursive
468 // comparisons to be more efficient.
469 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000470 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
471 if (LHS == RHS)
Dan Gohman27065672010-08-27 15:26:01 +0000472 return 0;
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000473
Dan Gohman9ba542c2009-05-07 14:39:04 +0000474 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman5ae31022010-07-23 21:20:52 +0000475 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
476 if (LType != RType)
Dan Gohman27065672010-08-27 15:26:01 +0000477 return (int)LType - (int)RType;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000478
Dan Gohman24ceda82010-06-18 19:54:20 +0000479 // Aside from the getSCEVType() ordering, the particular ordering
480 // isn't very important except that it's beneficial to be consistent,
481 // so that (a + b) and (b + a) don't end up as different expressions.
Benjamin Kramer987b8502014-02-11 19:02:55 +0000482 switch (static_cast<SCEVTypes>(LType)) {
Dan Gohman27065672010-08-27 15:26:01 +0000483 case scUnknown: {
484 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000485 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000486
487 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
488 // not as complete as it could be.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000489 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman24ceda82010-06-18 19:54:20 +0000490
491 // Order pointer values after integer values. This helps SCEVExpander
492 // form GEPs.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000493 bool LIsPointer = LV->getType()->isPointerTy(),
494 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman5ae31022010-07-23 21:20:52 +0000495 if (LIsPointer != RIsPointer)
Dan Gohman27065672010-08-27 15:26:01 +0000496 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman24ceda82010-06-18 19:54:20 +0000497
498 // Compare getValueID values.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000499 unsigned LID = LV->getValueID(),
500 RID = RV->getValueID();
Dan Gohman5ae31022010-07-23 21:20:52 +0000501 if (LID != RID)
Dan Gohman27065672010-08-27 15:26:01 +0000502 return (int)LID - (int)RID;
Dan Gohman24ceda82010-06-18 19:54:20 +0000503
504 // Sort arguments by their position.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000505 if (const Argument *LA = dyn_cast<Argument>(LV)) {
506 const Argument *RA = cast<Argument>(RV);
Dan Gohman27065672010-08-27 15:26:01 +0000507 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
508 return (int)LArgNo - (int)RArgNo;
Dan Gohman24ceda82010-06-18 19:54:20 +0000509 }
510
Dan Gohman27065672010-08-27 15:26:01 +0000511 // For instructions, compare their loop depth, and their operand
512 // count. This is pretty loose.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000513 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
514 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman24ceda82010-06-18 19:54:20 +0000515
516 // Compare loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000517 const BasicBlock *LParent = LInst->getParent(),
518 *RParent = RInst->getParent();
519 if (LParent != RParent) {
520 unsigned LDepth = LI->getLoopDepth(LParent),
521 RDepth = LI->getLoopDepth(RParent);
522 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000523 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000524 }
Dan Gohman24ceda82010-06-18 19:54:20 +0000525
526 // Compare the number of operands.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000527 unsigned LNumOps = LInst->getNumOperands(),
528 RNumOps = RInst->getNumOperands();
Dan Gohman27065672010-08-27 15:26:01 +0000529 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000530 }
531
Dan Gohman27065672010-08-27 15:26:01 +0000532 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000533 }
534
Dan Gohman27065672010-08-27 15:26:01 +0000535 case scConstant: {
536 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000537 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000538
539 // Compare constant values.
Dan Gohmanf2961822010-08-16 16:25:35 +0000540 const APInt &LA = LC->getValue()->getValue();
541 const APInt &RA = RC->getValue()->getValue();
542 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman5ae31022010-07-23 21:20:52 +0000543 if (LBitWidth != RBitWidth)
Dan Gohman27065672010-08-27 15:26:01 +0000544 return (int)LBitWidth - (int)RBitWidth;
545 return LA.ult(RA) ? -1 : 1;
Dan Gohman24ceda82010-06-18 19:54:20 +0000546 }
547
Dan Gohman27065672010-08-27 15:26:01 +0000548 case scAddRecExpr: {
549 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000550 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000551
552 // Compare addrec loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000553 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
554 if (LLoop != RLoop) {
555 unsigned LDepth = LLoop->getLoopDepth(),
556 RDepth = RLoop->getLoopDepth();
557 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000558 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000559 }
Dan Gohman27065672010-08-27 15:26:01 +0000560
561 // Addrec complexity grows with operand count.
562 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
563 if (LNumOps != RNumOps)
564 return (int)LNumOps - (int)RNumOps;
565
566 // Lexicographically compare.
567 for (unsigned i = 0; i != LNumOps; ++i) {
568 long X = compare(LA->getOperand(i), RA->getOperand(i));
569 if (X != 0)
570 return X;
571 }
572
573 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000574 }
575
Dan Gohman27065672010-08-27 15:26:01 +0000576 case scAddExpr:
577 case scMulExpr:
578 case scSMaxExpr:
579 case scUMaxExpr: {
580 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000581 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000582
583 // Lexicographically compare n-ary expressions.
Dan Gohman5ae31022010-07-23 21:20:52 +0000584 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
Andrew Trickc3bc8b82013-07-31 02:43:40 +0000585 if (LNumOps != RNumOps)
586 return (int)LNumOps - (int)RNumOps;
587
Dan Gohman5ae31022010-07-23 21:20:52 +0000588 for (unsigned i = 0; i != LNumOps; ++i) {
589 if (i >= RNumOps)
Dan Gohman27065672010-08-27 15:26:01 +0000590 return 1;
591 long X = compare(LC->getOperand(i), RC->getOperand(i));
592 if (X != 0)
593 return X;
Dan Gohman24ceda82010-06-18 19:54:20 +0000594 }
Dan Gohman27065672010-08-27 15:26:01 +0000595 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000596 }
597
Dan Gohman27065672010-08-27 15:26:01 +0000598 case scUDivExpr: {
599 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000600 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000601
602 // Lexicographically compare udiv expressions.
603 long X = compare(LC->getLHS(), RC->getLHS());
604 if (X != 0)
605 return X;
606 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman24ceda82010-06-18 19:54:20 +0000607 }
608
Dan Gohman27065672010-08-27 15:26:01 +0000609 case scTruncate:
610 case scZeroExtend:
611 case scSignExtend: {
612 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000613 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000614
615 // Compare cast expressions by operand.
616 return compare(LC->getOperand(), RC->getOperand());
617 }
618
Benjamin Kramer987b8502014-02-11 19:02:55 +0000619 case scCouldNotCompute:
620 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman24ceda82010-06-18 19:54:20 +0000621 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000622 llvm_unreachable("Unknown SCEV kind!");
Chris Lattnereb3e8402004-06-20 06:23:15 +0000623 }
624 };
625}
626
627/// GroupByComplexity - Given a list of SCEV objects, order them by their
628/// complexity, and group objects of the same complexity together by value.
629/// When this routine is finished, we know that any duplicates in the vector are
630/// consecutive and that complexity is monotonically increasing.
631///
Dan Gohman8b0a4192010-03-01 17:49:51 +0000632/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattnereb3e8402004-06-20 06:23:15 +0000633/// results from this routine. In other words, we don't want the results of
634/// this to depend on where the addresses of various SCEV objects happened to
635/// land in memory.
636///
Dan Gohmanaf752342009-07-07 17:06:11 +0000637static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman9ba542c2009-05-07 14:39:04 +0000638 LoopInfo *LI) {
Chris Lattnereb3e8402004-06-20 06:23:15 +0000639 if (Ops.size() < 2) return; // Noop
640 if (Ops.size() == 2) {
641 // This is the common case, which also happens to be trivially simple.
642 // Special case it.
Dan Gohman7712d292010-08-29 15:07:13 +0000643 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
644 if (SCEVComplexityCompare(LI)(RHS, LHS))
645 std::swap(LHS, RHS);
Chris Lattnereb3e8402004-06-20 06:23:15 +0000646 return;
647 }
648
Dan Gohman24ceda82010-06-18 19:54:20 +0000649 // Do the rough sort by complexity.
650 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
651
652 // Now that we are sorted by complexity, group elements of the same
653 // complexity. Note that this is, at worst, N^2, but the vector is likely to
654 // be extremely short in practice. Note that we take this approach because we
655 // do not want to depend on the addresses of the objects we are grouping.
656 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
657 const SCEV *S = Ops[i];
658 unsigned Complexity = S->getSCEVType();
659
660 // If there are any objects of the same complexity and same value as this
661 // one, group them.
662 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
663 if (Ops[j] == S) { // Found a duplicate.
664 // Move it to immediately after i'th element.
665 std::swap(Ops[i+1], Ops[j]);
666 ++i; // no need to rescan it.
667 if (i == e-2) return; // Done!
668 }
669 }
670 }
Chris Lattnereb3e8402004-06-20 06:23:15 +0000671}
672
Chris Lattnerd934c702004-04-02 20:23:17 +0000673
Chris Lattnerd934c702004-04-02 20:23:17 +0000674
675//===----------------------------------------------------------------------===//
676// Simple SCEV method implementations
677//===----------------------------------------------------------------------===//
678
Eli Friedman61f67622008-08-04 23:49:06 +0000679/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman4d5435d2009-05-24 23:45:28 +0000680/// Assume, K > 0.
Dan Gohmanaf752342009-07-07 17:06:11 +0000681static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohman32291b12009-07-21 00:38:55 +0000682 ScalarEvolution &SE,
Nick Lewycky702cf1e2011-09-06 06:39:54 +0000683 Type *ResultTy) {
Eli Friedman61f67622008-08-04 23:49:06 +0000684 // Handle the simplest case efficiently.
685 if (K == 1)
686 return SE.getTruncateOrZeroExtend(It, ResultTy);
687
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000688 // We are using the following formula for BC(It, K):
689 //
690 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
691 //
Eli Friedman61f67622008-08-04 23:49:06 +0000692 // Suppose, W is the bitwidth of the return value. We must be prepared for
693 // overflow. Hence, we must assure that the result of our computation is
694 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
695 // safe in modular arithmetic.
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000696 //
Eli Friedman61f67622008-08-04 23:49:06 +0000697 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohmance973df2009-06-24 04:48:43 +0000698 // is something like the following, where T is the number of factors of 2 in
Eli Friedman61f67622008-08-04 23:49:06 +0000699 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
700 // exponentiation:
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000701 //
Eli Friedman61f67622008-08-04 23:49:06 +0000702 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000703 //
Eli Friedman61f67622008-08-04 23:49:06 +0000704 // This formula is trivially equivalent to the previous formula. However,
705 // this formula can be implemented much more efficiently. The trick is that
706 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
707 // arithmetic. To do exact division in modular arithmetic, all we have
708 // to do is multiply by the inverse. Therefore, this step can be done at
709 // width W.
Dan Gohmance973df2009-06-24 04:48:43 +0000710 //
Eli Friedman61f67622008-08-04 23:49:06 +0000711 // The next issue is how to safely do the division by 2^T. The way this
712 // is done is by doing the multiplication step at a width of at least W + T
713 // bits. This way, the bottom W+T bits of the product are accurate. Then,
714 // when we perform the division by 2^T (which is equivalent to a right shift
715 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
716 // truncated out after the division by 2^T.
717 //
718 // In comparison to just directly using the first formula, this technique
719 // is much more efficient; using the first formula requires W * K bits,
720 // but this formula less than W + K bits. Also, the first formula requires
721 // a division step, whereas this formula only requires multiplies and shifts.
722 //
723 // It doesn't matter whether the subtraction step is done in the calculation
724 // width or the input iteration count's width; if the subtraction overflows,
725 // the result must be zero anyway. We prefer here to do it in the width of
726 // the induction variable because it helps a lot for certain cases; CodeGen
727 // isn't smart enough to ignore the overflow, which leads to much less
728 // efficient code if the width of the subtraction is wider than the native
729 // register width.
730 //
731 // (It's possible to not widen at all by pulling out factors of 2 before
732 // the multiplication; for example, K=2 can be calculated as
733 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
734 // extra arithmetic, so it's not an obvious win, and it gets
735 // much more complicated for K > 3.)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000736
Eli Friedman61f67622008-08-04 23:49:06 +0000737 // Protection from insane SCEVs; this bound is conservative,
738 // but it probably doesn't matter.
739 if (K > 1000)
Dan Gohman31efa302009-04-18 17:58:19 +0000740 return SE.getCouldNotCompute();
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000741
Dan Gohmanb397e1a2009-04-21 01:07:12 +0000742 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000743
Eli Friedman61f67622008-08-04 23:49:06 +0000744 // Calculate K! / 2^T and T; we divide out the factors of two before
745 // multiplying for calculating K! / 2^T to avoid overflow.
746 // Other overflow doesn't matter because we only care about the bottom
747 // W bits of the result.
748 APInt OddFactorial(W, 1);
749 unsigned T = 1;
750 for (unsigned i = 3; i <= K; ++i) {
751 APInt Mult(W, i);
752 unsigned TwoFactors = Mult.countTrailingZeros();
753 T += TwoFactors;
754 Mult = Mult.lshr(TwoFactors);
755 OddFactorial *= Mult;
Chris Lattnerd934c702004-04-02 20:23:17 +0000756 }
Nick Lewyckyed169d52008-06-13 04:38:55 +0000757
Eli Friedman61f67622008-08-04 23:49:06 +0000758 // We need at least W + T bits for the multiplication step
Nick Lewycky21add8f2009-01-25 08:16:27 +0000759 unsigned CalculationBits = W + T;
Eli Friedman61f67622008-08-04 23:49:06 +0000760
Dan Gohman8b0a4192010-03-01 17:49:51 +0000761 // Calculate 2^T, at width T+W.
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +0000762 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
Eli Friedman61f67622008-08-04 23:49:06 +0000763
764 // Calculate the multiplicative inverse of K! / 2^T;
765 // this multiplication factor will perform the exact division by
766 // K! / 2^T.
767 APInt Mod = APInt::getSignedMinValue(W+1);
768 APInt MultiplyFactor = OddFactorial.zext(W+1);
769 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
770 MultiplyFactor = MultiplyFactor.trunc(W);
771
772 // Calculate the product, at width T+W
Chris Lattner229907c2011-07-18 04:54:35 +0000773 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson55f1c092009-08-13 21:58:54 +0000774 CalculationBits);
Dan Gohmanaf752342009-07-07 17:06:11 +0000775 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedman61f67622008-08-04 23:49:06 +0000776 for (unsigned i = 1; i != K; ++i) {
Dan Gohman1d2ded72010-05-03 22:09:21 +0000777 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedman61f67622008-08-04 23:49:06 +0000778 Dividend = SE.getMulExpr(Dividend,
779 SE.getTruncateOrZeroExtend(S, CalculationTy));
780 }
781
782 // Divide by 2^T
Dan Gohmanaf752342009-07-07 17:06:11 +0000783 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedman61f67622008-08-04 23:49:06 +0000784
785 // Truncate the result, and divide by K! / 2^T.
786
787 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
788 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattnerd934c702004-04-02 20:23:17 +0000789}
790
Chris Lattnerd934c702004-04-02 20:23:17 +0000791/// evaluateAtIteration - Return the value of this chain of recurrences at
792/// the specified iteration number. We can evaluate this recurrence by
793/// multiplying each element in the chain by the binomial coefficient
794/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
795///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000796/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattnerd934c702004-04-02 20:23:17 +0000797///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000798/// where BC(It, k) stands for binomial coefficient.
Chris Lattnerd934c702004-04-02 20:23:17 +0000799///
Dan Gohmanaf752342009-07-07 17:06:11 +0000800const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohman32291b12009-07-21 00:38:55 +0000801 ScalarEvolution &SE) const {
Dan Gohmanaf752342009-07-07 17:06:11 +0000802 const SCEV *Result = getStart();
Chris Lattnerd934c702004-04-02 20:23:17 +0000803 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000804 // The computation is correct in the face of overflow provided that the
805 // multiplication is performed _after_ the evaluation of the binomial
806 // coefficient.
Dan Gohmanaf752342009-07-07 17:06:11 +0000807 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewycky707663e2008-10-13 03:58:02 +0000808 if (isa<SCEVCouldNotCompute>(Coeff))
809 return Coeff;
810
811 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattnerd934c702004-04-02 20:23:17 +0000812 }
813 return Result;
814}
815
Chris Lattnerd934c702004-04-02 20:23:17 +0000816//===----------------------------------------------------------------------===//
817// SCEV Expression folder implementations
818//===----------------------------------------------------------------------===//
819
Dan Gohmanaf752342009-07-07 17:06:11 +0000820const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +0000821 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +0000822 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +0000823 "This is not a truncating conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +0000824 assert(isSCEVable(Ty) &&
825 "This is not a conversion to a SCEVable type!");
826 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +0000827
Dan Gohman3a302cb2009-07-13 20:50:19 +0000828 FoldingSetNodeID ID;
829 ID.AddInteger(scTruncate);
830 ID.AddPointer(Op);
831 ID.AddPointer(Ty);
832 void *IP = 0;
833 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
834
Dan Gohman3423e722009-06-30 20:13:32 +0000835 // Fold if the operand is constant.
Dan Gohmana30370b2009-05-04 22:02:23 +0000836 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman8d7576e2009-06-24 00:38:39 +0000837 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +0000838 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +0000839
Dan Gohman79af8542009-04-22 16:20:48 +0000840 // trunc(trunc(x)) --> trunc(x)
Dan Gohmana30370b2009-05-04 22:02:23 +0000841 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +0000842 return getTruncateExpr(ST->getOperand(), Ty);
843
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +0000844 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +0000845 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +0000846 return getTruncateOrSignExtend(SS->getOperand(), Ty);
847
848 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +0000849 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +0000850 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
851
Nick Lewycky5143f0f2011-01-19 16:59:46 +0000852 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
853 // eliminate all the truncates.
854 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
855 SmallVector<const SCEV *, 4> Operands;
856 bool hasTrunc = false;
857 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
858 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
859 hasTrunc = isa<SCEVTruncateExpr>(S);
860 Operands.push_back(S);
861 }
862 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +0000863 return getAddExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +0000864 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5143f0f2011-01-19 16:59:46 +0000865 }
866
Nick Lewycky5c901f32011-01-19 18:56:00 +0000867 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
868 // eliminate all the truncates.
869 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
870 SmallVector<const SCEV *, 4> Operands;
871 bool hasTrunc = false;
872 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
873 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
874 hasTrunc = isa<SCEVTruncateExpr>(S);
875 Operands.push_back(S);
876 }
877 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +0000878 return getMulExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +0000879 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c901f32011-01-19 18:56:00 +0000880 }
881
Dan Gohman5a728c92009-06-18 16:24:47 +0000882 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohmana30370b2009-05-04 22:02:23 +0000883 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +0000884 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +0000885 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman2e55cc52009-05-08 21:03:19 +0000886 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
Andrew Trick8b55b732011-03-14 16:50:06 +0000887 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +0000888 }
889
Dan Gohman89dd42a2010-06-25 18:47:08 +0000890 // The cast wasn't folded; create an explicit cast node. We can reuse
891 // the existing insert position since if we get here, we won't have
892 // made any changes which would invalidate it.
Dan Gohman01c65a22010-03-18 18:49:47 +0000893 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
894 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000895 UniqueSCEVs.InsertNode(S, IP);
896 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +0000897}
898
Dan Gohmanaf752342009-07-07 17:06:11 +0000899const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +0000900 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +0000901 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanc1c2ba72009-04-16 19:25:55 +0000902 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +0000903 assert(isSCEVable(Ty) &&
904 "This is not a conversion to a SCEVable type!");
905 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanc1c2ba72009-04-16 19:25:55 +0000906
Dan Gohman3423e722009-06-30 20:13:32 +0000907 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +0000908 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
909 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +0000910 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +0000911
Dan Gohman79af8542009-04-22 16:20:48 +0000912 // zext(zext(x)) --> zext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +0000913 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +0000914 return getZeroExtendExpr(SZ->getOperand(), Ty);
915
Dan Gohman74a0ba12009-07-13 20:55:53 +0000916 // Before doing any expensive analysis, check to see if we've already
917 // computed a SCEV for this Op and Ty.
918 FoldingSetNodeID ID;
919 ID.AddInteger(scZeroExtend);
920 ID.AddPointer(Op);
921 ID.AddPointer(Ty);
922 void *IP = 0;
923 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
924
Nick Lewyckybc98f5b2011-01-23 06:20:19 +0000925 // zext(trunc(x)) --> zext(x) or x or trunc(x)
926 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
927 // It's possible the bits taken off by the truncate were all zero bits. If
928 // so, we should be able to simplify this further.
929 const SCEV *X = ST->getOperand();
930 ConstantRange CR = getUnsignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +0000931 unsigned TruncBits = getTypeSizeInBits(ST->getType());
932 unsigned NewBits = getTypeSizeInBits(Ty);
933 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +0000934 CR.zextOrTrunc(NewBits)))
935 return getTruncateOrZeroExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +0000936 }
937
Dan Gohman76466372009-04-27 20:16:15 +0000938 // If the input value is a chrec scev, and we can prove that the value
Chris Lattnerd934c702004-04-02 20:23:17 +0000939 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman76466372009-04-27 20:16:15 +0000940 // operands (often constants). This allows analysis of something like
Chris Lattnerd934c702004-04-02 20:23:17 +0000941 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +0000942 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +0000943 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +0000944 const SCEV *Start = AR->getStart();
945 const SCEV *Step = AR->getStepRecurrence(*this);
946 unsigned BitWidth = getTypeSizeInBits(AR->getType());
947 const Loop *L = AR->getLoop();
948
Dan Gohman62ef6a72009-07-25 01:22:26 +0000949 // If we have special knowledge that this addrec won't overflow,
950 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +0000951 if (AR->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohman62ef6a72009-07-25 01:22:26 +0000952 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
953 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +0000954 L, AR->getNoWrapFlags());
Dan Gohman62ef6a72009-07-25 01:22:26 +0000955
Dan Gohman76466372009-04-27 20:16:15 +0000956 // Check whether the backedge-taken count is SCEVCouldNotCompute.
957 // Note that this serves two purposes: It filters out loops that are
958 // simply not analyzable, and it covers the case where this code is
959 // being called from within backedge-taken count analysis, such that
960 // attempting to ask for the backedge-taken count would likely result
961 // in infinite recursion. In the later case, the analysis code will
962 // cope with a conservative value, and it will take care to purge
963 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +0000964 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +0000965 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +0000966 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +0000967 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +0000968
969 // Check whether the backedge-taken count can be losslessly casted to
970 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +0000971 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +0000972 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +0000973 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +0000974 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
975 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +0000976 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +0000977 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman007f5042010-02-24 19:31:06 +0000978 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +0000979 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
980 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
981 const SCEV *WideMaxBECount =
982 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +0000983 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +0000984 getAddExpr(WideStart,
985 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +0000986 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +0000987 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +0000988 // Cache knowledge of AR NUW, which is propagated to this AddRec.
989 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman494dac32009-04-29 22:28:28 +0000990 // Return the expression with the addrec on the outside.
991 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
992 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +0000993 L, AR->getNoWrapFlags());
994 }
Dan Gohman76466372009-04-27 20:16:15 +0000995 // Similar to above, only this time treat the step value as signed.
996 // This covers loops that count down.
Dan Gohman4fc36682009-05-18 15:58:39 +0000997 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +0000998 getAddExpr(WideStart,
999 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001000 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001001 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001002 // Cache knowledge of AR NW, which is propagated to this AddRec.
1003 // Negative step causes unsigned wrap, but it still can't self-wrap.
1004 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohman494dac32009-04-29 22:28:28 +00001005 // Return the expression with the addrec on the outside.
1006 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1007 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001008 L, AR->getNoWrapFlags());
1009 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001010 }
1011
1012 // If the backedge is guarded by a comparison with the pre-inc value
1013 // the addrec is safe. Also, if the entry is guarded by a comparison
1014 // with the start value and the backedge is guarded by a comparison
1015 // with the post-inc value, the addrec is safe.
1016 if (isKnownPositive(Step)) {
1017 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1018 getUnsignedRange(Step).getUnsignedMax());
1019 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohmanb50349a2010-04-11 19:27:13 +00001020 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001021 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001022 AR->getPostIncExpr(*this), N))) {
1023 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1024 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmane65c9172009-07-13 21:35:55 +00001025 // Return the expression with the addrec on the outside.
1026 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1027 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001028 L, AR->getNoWrapFlags());
1029 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001030 } else if (isKnownNegative(Step)) {
1031 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1032 getSignedRange(Step).getSignedMin());
Dan Gohman5f18c542010-05-04 01:11:15 +00001033 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1034 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001035 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001036 AR->getPostIncExpr(*this), N))) {
1037 // Cache knowledge of AR NW, which is propagated to this AddRec.
1038 // Negative step causes unsigned wrap, but it still can't self-wrap.
1039 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1040 // Return the expression with the addrec on the outside.
Dan Gohmane65c9172009-07-13 21:35:55 +00001041 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1042 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001043 L, AR->getNoWrapFlags());
1044 }
Dan Gohman76466372009-04-27 20:16:15 +00001045 }
1046 }
1047 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001048
Dan Gohman74a0ba12009-07-13 20:55:53 +00001049 // The cast wasn't folded; create an explicit cast node.
1050 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001051 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001052 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1053 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001054 UniqueSCEVs.InsertNode(S, IP);
1055 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001056}
1057
Andrew Trick812276e2011-05-31 21:17:47 +00001058// Get the limit of a recurrence such that incrementing by Step cannot cause
1059// signed overflow as long as the value of the recurrence within the loop does
1060// not exceed this limit before incrementing.
1061static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1062 ICmpInst::Predicate *Pred,
1063 ScalarEvolution *SE) {
1064 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1065 if (SE->isKnownPositive(Step)) {
1066 *Pred = ICmpInst::ICMP_SLT;
1067 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1068 SE->getSignedRange(Step).getSignedMax());
1069 }
1070 if (SE->isKnownNegative(Step)) {
1071 *Pred = ICmpInst::ICMP_SGT;
1072 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1073 SE->getSignedRange(Step).getSignedMin());
1074 }
1075 return 0;
1076}
1077
1078// The recurrence AR has been shown to have no signed wrap. Typically, if we can
1079// prove NSW for AR, then we can just as easily prove NSW for its preincrement
1080// or postincrement sibling. This allows normalizing a sign extended AddRec as
1081// such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1082// result, the expression "Step + sext(PreIncAR)" is congruent with
1083// "sext(PostIncAR)"
1084static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
Chris Lattner229907c2011-07-18 04:54:35 +00001085 Type *Ty,
Andrew Trick812276e2011-05-31 21:17:47 +00001086 ScalarEvolution *SE) {
1087 const Loop *L = AR->getLoop();
1088 const SCEV *Start = AR->getStart();
1089 const SCEV *Step = AR->getStepRecurrence(*SE);
1090
1091 // Check for a simple looking step prior to loop entry.
1092 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001093 if (!SA)
1094 return 0;
1095
1096 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1097 // subtraction is expensive. For this purpose, perform a quick and dirty
1098 // difference, by checking for Step in the operand list.
1099 SmallVector<const SCEV *, 4> DiffOps;
1100 for (SCEVAddExpr::op_iterator I = SA->op_begin(), E = SA->op_end();
1101 I != E; ++I) {
1102 if (*I != Step)
1103 DiffOps.push_back(*I);
1104 }
1105 if (DiffOps.size() == SA->getNumOperands())
Andrew Trick812276e2011-05-31 21:17:47 +00001106 return 0;
1107
1108 // This is a postinc AR. Check for overflow on the preinc recurrence using the
1109 // same three conditions that getSignExtendedExpr checks.
1110
1111 // 1. NSW flags on the step increment.
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001112 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
Andrew Trick812276e2011-05-31 21:17:47 +00001113 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1114 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1115
Andrew Trick8ef3ad02011-06-01 19:14:56 +00001116 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trick812276e2011-05-31 21:17:47 +00001117 return PreStart;
Andrew Trick812276e2011-05-31 21:17:47 +00001118
1119 // 2. Direct overflow check on the step operation's expression.
1120 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
Chris Lattner229907c2011-07-18 04:54:35 +00001121 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
Andrew Trick812276e2011-05-31 21:17:47 +00001122 const SCEV *OperandExtendedStart =
1123 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1124 SE->getSignExtendExpr(Step, WideTy));
1125 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1126 // Cache knowledge of PreAR NSW.
1127 if (PreAR)
1128 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1129 // FIXME: this optimization needs a unit test
1130 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1131 return PreStart;
1132 }
1133
1134 // 3. Loop precondition.
1135 ICmpInst::Predicate Pred;
1136 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1137
Andrew Trick8ef3ad02011-06-01 19:14:56 +00001138 if (OverflowLimit &&
1139 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
Andrew Trick812276e2011-05-31 21:17:47 +00001140 return PreStart;
1141 }
1142 return 0;
1143}
1144
1145// Get the normalized sign-extended expression for this AddRec's Start.
1146static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
Chris Lattner229907c2011-07-18 04:54:35 +00001147 Type *Ty,
Andrew Trick812276e2011-05-31 21:17:47 +00001148 ScalarEvolution *SE) {
1149 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1150 if (!PreStart)
1151 return SE->getSignExtendExpr(AR->getStart(), Ty);
1152
1153 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1154 SE->getSignExtendExpr(PreStart, Ty));
1155}
1156
Dan Gohmanaf752342009-07-07 17:06:11 +00001157const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001158 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001159 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001160 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001161 assert(isSCEVable(Ty) &&
1162 "This is not a conversion to a SCEVable type!");
1163 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001164
Dan Gohman3423e722009-06-30 20:13:32 +00001165 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001166 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1167 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001168 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001169
Dan Gohman79af8542009-04-22 16:20:48 +00001170 // sext(sext(x)) --> sext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001171 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001172 return getSignExtendExpr(SS->getOperand(), Ty);
1173
Nick Lewyckye9ea75e2011-01-19 15:56:12 +00001174 // sext(zext(x)) --> zext(x)
1175 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1176 return getZeroExtendExpr(SZ->getOperand(), Ty);
1177
Dan Gohman74a0ba12009-07-13 20:55:53 +00001178 // Before doing any expensive analysis, check to see if we've already
1179 // computed a SCEV for this Op and Ty.
1180 FoldingSetNodeID ID;
1181 ID.AddInteger(scSignExtend);
1182 ID.AddPointer(Op);
1183 ID.AddPointer(Ty);
1184 void *IP = 0;
1185 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1186
Nick Lewyckyb32c8942011-01-22 22:06:21 +00001187 // If the input value is provably positive, build a zext instead.
1188 if (isKnownNonNegative(Op))
1189 return getZeroExtendExpr(Op, Ty);
1190
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001191 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1192 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1193 // It's possible the bits taken off by the truncate were all sign bits. If
1194 // so, we should be able to simplify this further.
1195 const SCEV *X = ST->getOperand();
1196 ConstantRange CR = getSignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001197 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1198 unsigned NewBits = getTypeSizeInBits(Ty);
1199 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001200 CR.sextOrTrunc(NewBits)))
1201 return getTruncateOrSignExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001202 }
1203
Dan Gohman76466372009-04-27 20:16:15 +00001204 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001205 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001206 // operands (often constants). This allows analysis of something like
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001207 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001208 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001209 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001210 const SCEV *Start = AR->getStart();
1211 const SCEV *Step = AR->getStepRecurrence(*this);
1212 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1213 const Loop *L = AR->getLoop();
1214
Dan Gohman62ef6a72009-07-25 01:22:26 +00001215 // If we have special knowledge that this addrec won't overflow,
1216 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +00001217 if (AR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trick812276e2011-05-31 21:17:47 +00001218 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman62ef6a72009-07-25 01:22:26 +00001219 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001220 L, SCEV::FlagNSW);
Dan Gohman62ef6a72009-07-25 01:22:26 +00001221
Dan Gohman76466372009-04-27 20:16:15 +00001222 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1223 // Note that this serves two purposes: It filters out loops that are
1224 // simply not analyzable, and it covers the case where this code is
1225 // being called from within backedge-taken count analysis, such that
1226 // attempting to ask for the backedge-taken count would likely result
1227 // in infinite recursion. In the later case, the analysis code will
1228 // cope with a conservative value, and it will take care to purge
1229 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001230 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001231 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001232 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001233 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001234
1235 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohman494dac32009-04-29 22:28:28 +00001236 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001237 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001238 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001239 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001240 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1241 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001242 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001243 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001244 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001245 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1246 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1247 const SCEV *WideMaxBECount =
1248 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001249 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001250 getAddExpr(WideStart,
1251 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001252 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001253 if (SAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001254 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1255 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman494dac32009-04-29 22:28:28 +00001256 // Return the expression with the addrec on the outside.
Andrew Trick812276e2011-05-31 21:17:47 +00001257 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman494dac32009-04-29 22:28:28 +00001258 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001259 L, AR->getNoWrapFlags());
1260 }
Dan Gohman8c129d72009-07-16 17:34:36 +00001261 // Similar to above, only this time treat the step value as unsigned.
1262 // This covers loops that count up with an unsigned step.
Dan Gohman8c129d72009-07-16 17:34:36 +00001263 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001264 getAddExpr(WideStart,
1265 getMulExpr(WideMaxBECount,
Dan Gohman8c129d72009-07-16 17:34:36 +00001266 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001267 if (SAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001268 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1269 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman8c129d72009-07-16 17:34:36 +00001270 // Return the expression with the addrec on the outside.
Andrew Trick812276e2011-05-31 21:17:47 +00001271 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman8c129d72009-07-16 17:34:36 +00001272 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001273 L, AR->getNoWrapFlags());
1274 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001275 }
1276
1277 // If the backedge is guarded by a comparison with the pre-inc value
1278 // the addrec is safe. Also, if the entry is guarded by a comparison
1279 // with the start value and the backedge is guarded by a comparison
1280 // with the post-inc value, the addrec is safe.
Andrew Trick812276e2011-05-31 21:17:47 +00001281 ICmpInst::Predicate Pred;
1282 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1283 if (OverflowLimit &&
1284 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1285 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1286 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1287 OverflowLimit)))) {
1288 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1289 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1290 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1291 getSignExtendExpr(Step, Ty),
1292 L, AR->getNoWrapFlags());
Dan Gohman76466372009-04-27 20:16:15 +00001293 }
1294 }
1295 }
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001296
Dan Gohman74a0ba12009-07-13 20:55:53 +00001297 // The cast wasn't folded; create an explicit cast node.
1298 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001299 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001300 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1301 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001302 UniqueSCEVs.InsertNode(S, IP);
1303 return S;
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001304}
1305
Dan Gohman8db2edc2009-06-13 15:56:47 +00001306/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1307/// unspecified bits out to the given type.
1308///
Dan Gohmanaf752342009-07-07 17:06:11 +00001309const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001310 Type *Ty) {
Dan Gohman8db2edc2009-06-13 15:56:47 +00001311 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1312 "This is not an extending conversion!");
1313 assert(isSCEVable(Ty) &&
1314 "This is not a conversion to a SCEVable type!");
1315 Ty = getEffectiveSCEVType(Ty);
1316
1317 // Sign-extend negative constants.
1318 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1319 if (SC->getValue()->getValue().isNegative())
1320 return getSignExtendExpr(Op, Ty);
1321
1322 // Peel off a truncate cast.
1323 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001324 const SCEV *NewOp = T->getOperand();
Dan Gohman8db2edc2009-06-13 15:56:47 +00001325 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1326 return getAnyExtendExpr(NewOp, Ty);
1327 return getTruncateOrNoop(NewOp, Ty);
1328 }
1329
1330 // Next try a zext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001331 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001332 if (!isa<SCEVZeroExtendExpr>(ZExt))
1333 return ZExt;
1334
1335 // Next try a sext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001336 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001337 if (!isa<SCEVSignExtendExpr>(SExt))
1338 return SExt;
1339
Dan Gohman51ad99d2010-01-21 02:09:26 +00001340 // Force the cast to be folded into the operands of an addrec.
1341 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1342 SmallVector<const SCEV *, 4> Ops;
1343 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1344 I != E; ++I)
1345 Ops.push_back(getAnyExtendExpr(*I, Ty));
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001346 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001347 }
1348
Dan Gohman8db2edc2009-06-13 15:56:47 +00001349 // If the expression is obviously signed, use the sext cast value.
1350 if (isa<SCEVSMaxExpr>(Op))
1351 return SExt;
1352
1353 // Absent any other information, use the zext cast value.
1354 return ZExt;
1355}
1356
Dan Gohman038d02e2009-06-14 22:58:51 +00001357/// CollectAddOperandsWithScales - Process the given Ops list, which is
1358/// a list of operands to be added under the given scale, update the given
1359/// map. This is a helper function for getAddRecExpr. As an example of
1360/// what it does, given a sequence of operands that would form an add
1361/// expression like this:
1362///
Tobias Grosserba49e422014-03-05 10:37:17 +00001363/// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
Dan Gohman038d02e2009-06-14 22:58:51 +00001364///
1365/// where A and B are constants, update the map with these values:
1366///
1367/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1368///
1369/// and add 13 + A*B*29 to AccumulatedConstant.
1370/// This will allow getAddRecExpr to produce this:
1371///
1372/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1373///
1374/// This form often exposes folding opportunities that are hidden in
1375/// the original operand list.
1376///
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001377/// Return true iff it appears that any interesting folding opportunities
Dan Gohman038d02e2009-06-14 22:58:51 +00001378/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1379/// the common case where no interesting opportunities are present, and
1380/// is also used as a check to avoid infinite recursion.
1381///
1382static bool
Dan Gohmanaf752342009-07-07 17:06:11 +00001383CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
Craig Topper2cd5ff82013-07-11 16:22:38 +00001384 SmallVectorImpl<const SCEV *> &NewOps,
Dan Gohman038d02e2009-06-14 22:58:51 +00001385 APInt &AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001386 const SCEV *const *Ops, size_t NumOperands,
Dan Gohman038d02e2009-06-14 22:58:51 +00001387 const APInt &Scale,
1388 ScalarEvolution &SE) {
1389 bool Interesting = false;
1390
Dan Gohman45073042010-06-18 19:12:32 +00001391 // Iterate over the add operands. They are sorted, with constants first.
1392 unsigned i = 0;
1393 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1394 ++i;
1395 // Pull a buried constant out to the outside.
1396 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1397 Interesting = true;
1398 AccumulatedConstant += Scale * C->getValue()->getValue();
1399 }
1400
1401 // Next comes everything else. We're especially interested in multiplies
1402 // here, but they're in the middle, so just visit the rest with one loop.
1403 for (; i != NumOperands; ++i) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001404 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1405 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1406 APInt NewScale =
1407 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1408 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1409 // A multiplication of a constant with another add; recurse.
Dan Gohman00524492010-03-18 01:17:13 +00001410 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohman038d02e2009-06-14 22:58:51 +00001411 Interesting |=
1412 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001413 Add->op_begin(), Add->getNumOperands(),
Dan Gohman038d02e2009-06-14 22:58:51 +00001414 NewScale, SE);
1415 } else {
1416 // A multiplication of a constant with some other value. Update
1417 // the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001418 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1419 const SCEV *Key = SE.getMulExpr(MulOps);
1420 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohmane00beaa2009-06-29 18:25:52 +00001421 M.insert(std::make_pair(Key, NewScale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001422 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001423 NewOps.push_back(Pair.first->first);
1424 } else {
1425 Pair.first->second += NewScale;
1426 // The map already had an entry for this value, which may indicate
1427 // a folding opportunity.
1428 Interesting = true;
1429 }
1430 }
Dan Gohman038d02e2009-06-14 22:58:51 +00001431 } else {
1432 // An ordinary operand. Update the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001433 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohmane00beaa2009-06-29 18:25:52 +00001434 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001435 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001436 NewOps.push_back(Pair.first->first);
1437 } else {
1438 Pair.first->second += Scale;
1439 // The map already had an entry for this value, which may indicate
1440 // a folding opportunity.
1441 Interesting = true;
1442 }
1443 }
1444 }
1445
1446 return Interesting;
1447}
1448
1449namespace {
1450 struct APIntCompare {
1451 bool operator()(const APInt &LHS, const APInt &RHS) const {
1452 return LHS.ult(RHS);
1453 }
1454 };
1455}
1456
Dan Gohman4d5435d2009-05-24 23:45:28 +00001457/// getAddExpr - Get a canonical add expression, or something simpler if
1458/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00001459const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00001460 SCEV::NoWrapFlags Flags) {
1461 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1462 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00001463 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner74498e12004-04-07 16:16:11 +00001464 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00001465#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00001466 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00001467 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohman9136d9f2010-06-18 19:09:27 +00001468 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00001469 "SCEVAddExpr operand types don't match!");
1470#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00001471
Andrew Trick8b55b732011-03-14 16:50:06 +00001472 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001473 // And vice-versa.
1474 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1475 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1476 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00001477 bool All = true;
Dan Gohman74c61502010-08-16 16:27:53 +00001478 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1479 E = Ops.end(); I != E; ++I)
1480 if (!isKnownNonNegative(*I)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00001481 All = false;
1482 break;
1483 }
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001484 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001485 }
1486
Chris Lattnerd934c702004-04-02 20:23:17 +00001487 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00001488 GroupByComplexity(Ops, LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00001489
1490 // If there are any constants, fold them together.
1491 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00001492 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001493 ++Idx;
Chris Lattner74498e12004-04-07 16:16:11 +00001494 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00001495 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001496 // We found two constants, fold them together!
Dan Gohman0652fd52009-06-14 22:47:23 +00001497 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1498 RHSC->getValue()->getValue());
Dan Gohman011cf682009-06-14 22:53:57 +00001499 if (Ops.size() == 2) return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00001500 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00001501 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00001502 }
1503
1504 // If we are left with a constant zero being added, strip it off.
Dan Gohmanebbd05f2010-04-12 23:08:18 +00001505 if (LHSC->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001506 Ops.erase(Ops.begin());
1507 --Idx;
1508 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001509
Dan Gohmanebbd05f2010-04-12 23:08:18 +00001510 if (Ops.size() == 1) return Ops[0];
1511 }
Misha Brukman01808ca2005-04-21 21:13:18 +00001512
Dan Gohman15871f22010-08-27 21:39:59 +00001513 // Okay, check to see if the same value occurs in the operand list more than
1514 // once. If so, merge them together into an multiply expression. Since we
1515 // sorted the list, these values are required to be adjacent.
Chris Lattner229907c2011-07-18 04:54:35 +00001516 Type *Ty = Ops[0]->getType();
Dan Gohmane67b2872010-08-12 14:46:54 +00001517 bool FoundMatch = false;
Dan Gohman15871f22010-08-27 21:39:59 +00001518 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattnerd934c702004-04-02 20:23:17 +00001519 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman15871f22010-08-27 21:39:59 +00001520 // Scan ahead to count how many equal operands there are.
1521 unsigned Count = 2;
1522 while (i+Count != e && Ops[i+Count] == Ops[i])
1523 ++Count;
1524 // Merge the values into a multiply.
1525 const SCEV *Scale = getConstant(Ty, Count);
1526 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1527 if (Ops.size() == Count)
Chris Lattnerd934c702004-04-02 20:23:17 +00001528 return Mul;
Dan Gohmane67b2872010-08-12 14:46:54 +00001529 Ops[i] = Mul;
Dan Gohman15871f22010-08-27 21:39:59 +00001530 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohmanfe22f1d2010-08-28 00:39:27 +00001531 --i; e -= Count - 1;
Dan Gohmane67b2872010-08-12 14:46:54 +00001532 FoundMatch = true;
Chris Lattnerd934c702004-04-02 20:23:17 +00001533 }
Dan Gohmane67b2872010-08-12 14:46:54 +00001534 if (FoundMatch)
Andrew Trick8b55b732011-03-14 16:50:06 +00001535 return getAddExpr(Ops, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00001536
Dan Gohman2e55cc52009-05-08 21:03:19 +00001537 // Check for truncates. If all the operands are truncated from the same
1538 // type, see if factoring out the truncate would permit the result to be
1539 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1540 // if the contents of the resulting outer trunc fold to something simple.
1541 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1542 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattner229907c2011-07-18 04:54:35 +00001543 Type *DstType = Trunc->getType();
1544 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00001545 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00001546 bool Ok = true;
1547 // Check all the operands to see if they can be represented in the
1548 // source type of the truncate.
1549 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1550 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1551 if (T->getOperand()->getType() != SrcType) {
1552 Ok = false;
1553 break;
1554 }
1555 LargeOps.push_back(T->getOperand());
1556 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00001557 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00001558 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001559 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00001560 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1561 if (const SCEVTruncateExpr *T =
1562 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1563 if (T->getOperand()->getType() != SrcType) {
1564 Ok = false;
1565 break;
1566 }
1567 LargeMulOps.push_back(T->getOperand());
1568 } else if (const SCEVConstant *C =
1569 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00001570 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00001571 } else {
1572 Ok = false;
1573 break;
1574 }
1575 }
1576 if (Ok)
1577 LargeOps.push_back(getMulExpr(LargeMulOps));
1578 } else {
1579 Ok = false;
1580 break;
1581 }
1582 }
1583 if (Ok) {
1584 // Evaluate the expression in the larger type.
Andrew Trick8b55b732011-03-14 16:50:06 +00001585 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman2e55cc52009-05-08 21:03:19 +00001586 // If it folds to something simple, use it. Otherwise, don't.
1587 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1588 return getTruncateExpr(Fold, DstType);
1589 }
1590 }
1591
1592 // Skip past any other cast SCEVs.
Dan Gohmaneed125f2007-06-18 19:30:09 +00001593 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1594 ++Idx;
1595
1596 // If there are add operands they would be next.
Chris Lattnerd934c702004-04-02 20:23:17 +00001597 if (Idx < Ops.size()) {
1598 bool DeletedAdd = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00001599 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001600 // If we have an add, expand the add operands onto the end of the operands
1601 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00001602 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00001603 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00001604 DeletedAdd = true;
1605 }
1606
1607 // If we deleted at least one add, we added operands to the end of the list,
1608 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00001609 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00001610 if (DeletedAdd)
Dan Gohmana37eaf22007-10-22 18:31:58 +00001611 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00001612 }
1613
1614 // Skip over the add expression until we get to a multiply.
1615 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1616 ++Idx;
1617
Dan Gohman038d02e2009-06-14 22:58:51 +00001618 // Check to see if there are any folding opportunities present with
1619 // operands multiplied by constant values.
1620 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1621 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohmanaf752342009-07-07 17:06:11 +00001622 DenseMap<const SCEV *, APInt> M;
1623 SmallVector<const SCEV *, 8> NewOps;
Dan Gohman038d02e2009-06-14 22:58:51 +00001624 APInt AccumulatedConstant(BitWidth, 0);
1625 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001626 Ops.data(), Ops.size(),
1627 APInt(BitWidth, 1), *this)) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001628 // Some interesting folding opportunity is present, so its worthwhile to
1629 // re-generate the operands list. Group the operands by constant scale,
1630 // to avoid multiplying by the same constant scale multiple times.
Dan Gohmanaf752342009-07-07 17:06:11 +00001631 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Craig Topper31ee5862013-07-03 15:07:05 +00001632 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(),
Dan Gohman038d02e2009-06-14 22:58:51 +00001633 E = NewOps.end(); I != E; ++I)
1634 MulOpLists[M.find(*I)->second].push_back(*I);
1635 // Re-generate the operands list.
1636 Ops.clear();
1637 if (AccumulatedConstant != 0)
1638 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohmance973df2009-06-24 04:48:43 +00001639 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1640 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohman038d02e2009-06-14 22:58:51 +00001641 if (I->first != 0)
Dan Gohmance973df2009-06-24 04:48:43 +00001642 Ops.push_back(getMulExpr(getConstant(I->first),
1643 getAddExpr(I->second)));
Dan Gohman038d02e2009-06-14 22:58:51 +00001644 if (Ops.empty())
Dan Gohman1d2ded72010-05-03 22:09:21 +00001645 return getConstant(Ty, 0);
Dan Gohman038d02e2009-06-14 22:58:51 +00001646 if (Ops.size() == 1)
1647 return Ops[0];
1648 return getAddExpr(Ops);
1649 }
1650 }
1651
Chris Lattnerd934c702004-04-02 20:23:17 +00001652 // If we are adding something to a multiply expression, make sure the
1653 // something is not already an operand of the multiply. If so, merge it into
1654 // the multiply.
1655 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman48f82222009-05-04 22:30:44 +00001656 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00001657 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman48f82222009-05-04 22:30:44 +00001658 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman157847f2010-08-12 14:52:55 +00001659 if (isa<SCEVConstant>(MulOpSCEV))
1660 continue;
Chris Lattnerd934c702004-04-02 20:23:17 +00001661 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman157847f2010-08-12 14:52:55 +00001662 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001663 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohmanaf752342009-07-07 17:06:11 +00001664 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00001665 if (Mul->getNumOperands() != 2) {
1666 // If the multiply has more than two operands, we must get the
1667 // Y*Z term.
Dan Gohman797a1db2010-08-16 16:57:24 +00001668 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1669 Mul->op_begin()+MulOp);
1670 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00001671 InnerMul = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00001672 }
Dan Gohman1d2ded72010-05-03 22:09:21 +00001673 const SCEV *One = getConstant(Ty, 1);
Dan Gohmancf32f2b2010-08-13 20:17:14 +00001674 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman157847f2010-08-12 14:52:55 +00001675 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattnerd934c702004-04-02 20:23:17 +00001676 if (Ops.size() == 2) return OuterMul;
1677 if (AddOp < Idx) {
1678 Ops.erase(Ops.begin()+AddOp);
1679 Ops.erase(Ops.begin()+Idx-1);
1680 } else {
1681 Ops.erase(Ops.begin()+Idx);
1682 Ops.erase(Ops.begin()+AddOp-1);
1683 }
1684 Ops.push_back(OuterMul);
Dan Gohmana37eaf22007-10-22 18:31:58 +00001685 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00001686 }
Misha Brukman01808ca2005-04-21 21:13:18 +00001687
Chris Lattnerd934c702004-04-02 20:23:17 +00001688 // Check this multiply against other multiplies being added together.
1689 for (unsigned OtherMulIdx = Idx+1;
1690 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1691 ++OtherMulIdx) {
Dan Gohman48f82222009-05-04 22:30:44 +00001692 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00001693 // If MulOp occurs in OtherMul, we can fold the two multiplies
1694 // together.
1695 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1696 OMulOp != e; ++OMulOp)
1697 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1698 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohmanaf752342009-07-07 17:06:11 +00001699 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00001700 if (Mul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00001701 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00001702 Mul->op_begin()+MulOp);
1703 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00001704 InnerMul1 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00001705 }
Dan Gohmanaf752342009-07-07 17:06:11 +00001706 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00001707 if (OtherMul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00001708 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00001709 OtherMul->op_begin()+OMulOp);
1710 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00001711 InnerMul2 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00001712 }
Dan Gohmanaf752342009-07-07 17:06:11 +00001713 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1714 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattnerd934c702004-04-02 20:23:17 +00001715 if (Ops.size() == 2) return OuterMul;
Dan Gohmanaabfc522010-08-31 22:50:31 +00001716 Ops.erase(Ops.begin()+Idx);
1717 Ops.erase(Ops.begin()+OtherMulIdx-1);
1718 Ops.push_back(OuterMul);
1719 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00001720 }
1721 }
1722 }
1723 }
1724
1725 // If there are any add recurrences in the operands list, see if any other
1726 // added values are loop invariant. If so, we can fold them into the
1727 // recurrence.
1728 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1729 ++Idx;
1730
1731 // Scan over all recurrences, trying to fold loop invariants into them.
1732 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1733 // Scan all of the other operands to this add and add them to the vector if
1734 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00001735 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00001736 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanebbd05f2010-04-12 23:08:18 +00001737 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00001738 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00001739 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001740 LIOps.push_back(Ops[i]);
1741 Ops.erase(Ops.begin()+i);
1742 --i; --e;
1743 }
1744
1745 // If we found some loop invariants, fold them into the recurrence.
1746 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00001747 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattnerd934c702004-04-02 20:23:17 +00001748 LIOps.push_back(AddRec->getStart());
1749
Dan Gohmanaf752342009-07-07 17:06:11 +00001750 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman7a2dab82009-12-18 03:57:04 +00001751 AddRec->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00001752 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00001753
Dan Gohman16206132010-06-30 07:16:37 +00001754 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher23bf3ba2011-01-11 09:02:09 +00001755 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001756 // Always propagate NW.
1757 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick8b55b732011-03-14 16:50:06 +00001758 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman51f13052009-12-18 18:45:31 +00001759
Chris Lattnerd934c702004-04-02 20:23:17 +00001760 // If all of the other operands were loop invariant, we are done.
1761 if (Ops.size() == 1) return NewRec;
1762
Nick Lewyckydb66b822011-09-06 05:08:09 +00001763 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00001764 for (unsigned i = 0;; ++i)
1765 if (Ops[i] == AddRec) {
1766 Ops[i] = NewRec;
1767 break;
1768 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00001769 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00001770 }
1771
1772 // Okay, if there weren't any loop invariants to be folded, check to see if
1773 // there are multiple AddRec's with the same loop induction variable being
1774 // added together. If so, we can fold them.
1775 for (unsigned OtherIdx = Idx+1;
Dan Gohmanc866bf42010-08-27 20:45:56 +00001776 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1777 ++OtherIdx)
1778 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1779 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1780 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1781 AddRec->op_end());
1782 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1783 ++OtherIdx)
Dan Gohman028c1812010-08-29 14:53:34 +00001784 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohmanc866bf42010-08-27 20:45:56 +00001785 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman028c1812010-08-29 14:53:34 +00001786 if (OtherAddRec->getLoop() == AddRecLoop) {
1787 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1788 i != e; ++i) {
Dan Gohmanc866bf42010-08-27 20:45:56 +00001789 if (i >= AddRecOps.size()) {
Dan Gohman028c1812010-08-29 14:53:34 +00001790 AddRecOps.append(OtherAddRec->op_begin()+i,
1791 OtherAddRec->op_end());
Dan Gohmanc866bf42010-08-27 20:45:56 +00001792 break;
1793 }
Dan Gohman028c1812010-08-29 14:53:34 +00001794 AddRecOps[i] = getAddExpr(AddRecOps[i],
1795 OtherAddRec->getOperand(i));
Dan Gohmanc866bf42010-08-27 20:45:56 +00001796 }
1797 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattnerd934c702004-04-02 20:23:17 +00001798 }
Andrew Trick8b55b732011-03-14 16:50:06 +00001799 // Step size has changed, so we cannot guarantee no self-wraparound.
1800 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohmanc866bf42010-08-27 20:45:56 +00001801 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00001802 }
1803
1804 // Otherwise couldn't fold anything into this recurrence. Move onto the
1805 // next one.
1806 }
1807
1808 // Okay, it looks like we really DO need an add expr. Check to see if we
1809 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001810 FoldingSetNodeID ID;
1811 ID.AddInteger(scAddExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001812 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1813 ID.AddPointer(Ops[i]);
1814 void *IP = 0;
Dan Gohman51ad99d2010-01-21 02:09:26 +00001815 SCEVAddExpr *S =
1816 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1817 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00001818 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1819 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00001820 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1821 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00001822 UniqueSCEVs.InsertNode(S, IP);
1823 }
Andrew Trick8b55b732011-03-14 16:50:06 +00001824 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001825 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001826}
1827
Nick Lewycky287682e2011-10-04 06:51:26 +00001828static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
1829 uint64_t k = i*j;
1830 if (j > 1 && k / j != i) Overflow = true;
1831 return k;
1832}
1833
1834/// Compute the result of "n choose k", the binomial coefficient. If an
1835/// intermediate computation overflows, Overflow will be set and the return will
Benjamin Kramerbde91762012-06-02 10:20:22 +00001836/// be garbage. Overflow is not cleared on absence of overflow.
Nick Lewycky287682e2011-10-04 06:51:26 +00001837static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
1838 // We use the multiplicative formula:
1839 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
1840 // At each iteration, we take the n-th term of the numeral and divide by the
1841 // (k-n)th term of the denominator. This division will always produce an
1842 // integral result, and helps reduce the chance of overflow in the
1843 // intermediate computations. However, we can still overflow even when the
1844 // final result would fit.
1845
1846 if (n == 0 || n == k) return 1;
1847 if (k > n) return 0;
1848
1849 if (k > n/2)
1850 k = n-k;
1851
1852 uint64_t r = 1;
1853 for (uint64_t i = 1; i <= k; ++i) {
1854 r = umul_ov(r, n-(i-1), Overflow);
1855 r /= i;
1856 }
1857 return r;
1858}
1859
Dan Gohman4d5435d2009-05-24 23:45:28 +00001860/// getMulExpr - Get a canonical multiply expression, or something simpler if
1861/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00001862const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00001863 SCEV::NoWrapFlags Flags) {
1864 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
1865 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00001866 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohman51ad99d2010-01-21 02:09:26 +00001867 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00001868#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00001869 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00001870 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00001871 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00001872 "SCEVMulExpr operand types don't match!");
1873#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00001874
Andrew Trick8b55b732011-03-14 16:50:06 +00001875 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001876 // And vice-versa.
1877 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1878 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1879 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00001880 bool All = true;
Dan Gohman74c61502010-08-16 16:27:53 +00001881 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1882 E = Ops.end(); I != E; ++I)
1883 if (!isKnownNonNegative(*I)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00001884 All = false;
1885 break;
1886 }
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001887 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001888 }
1889
Chris Lattnerd934c702004-04-02 20:23:17 +00001890 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00001891 GroupByComplexity(Ops, LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00001892
1893 // If there are any constants, fold them together.
1894 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00001895 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001896
1897 // C1*(C2+V) -> C1*C2 + C1*V
1898 if (Ops.size() == 2)
Dan Gohmana30370b2009-05-04 22:02:23 +00001899 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattnerd934c702004-04-02 20:23:17 +00001900 if (Add->getNumOperands() == 2 &&
1901 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohmana37eaf22007-10-22 18:31:58 +00001902 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1903 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001904
Chris Lattnerd934c702004-04-02 20:23:17 +00001905 ++Idx;
Dan Gohmana30370b2009-05-04 22:02:23 +00001906 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001907 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00001908 ConstantInt *Fold = ConstantInt::get(getContext(),
1909 LHSC->getValue()->getValue() *
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00001910 RHSC->getValue()->getValue());
1911 Ops[0] = getConstant(Fold);
1912 Ops.erase(Ops.begin()+1); // Erase the folded element
1913 if (Ops.size() == 1) return Ops[0];
1914 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00001915 }
1916
1917 // If we are left with a constant one being multiplied, strip it off.
1918 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1919 Ops.erase(Ops.begin());
1920 --Idx;
Reid Spencer2e54a152007-03-02 00:28:52 +00001921 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001922 // If we have a multiply of zero, it will always be zero.
1923 return Ops[0];
Dan Gohman51ad99d2010-01-21 02:09:26 +00001924 } else if (Ops[0]->isAllOnesValue()) {
1925 // If we have a mul by -1 of an add, try distributing the -1 among the
1926 // add operands.
Andrew Trick8b55b732011-03-14 16:50:06 +00001927 if (Ops.size() == 2) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00001928 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1929 SmallVector<const SCEV *, 4> NewOps;
1930 bool AnyFolded = false;
Andrew Trick8b55b732011-03-14 16:50:06 +00001931 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
1932 E = Add->op_end(); I != E; ++I) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00001933 const SCEV *Mul = getMulExpr(Ops[0], *I);
1934 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1935 NewOps.push_back(Mul);
1936 }
1937 if (AnyFolded)
1938 return getAddExpr(NewOps);
1939 }
Andrew Tricke92dcce2011-03-14 17:38:54 +00001940 else if (const SCEVAddRecExpr *
1941 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
1942 // Negation preserves a recurrence's no self-wrap property.
1943 SmallVector<const SCEV *, 4> Operands;
1944 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
1945 E = AddRec->op_end(); I != E; ++I) {
1946 Operands.push_back(getMulExpr(Ops[0], *I));
1947 }
1948 return getAddRecExpr(Operands, AddRec->getLoop(),
1949 AddRec->getNoWrapFlags(SCEV::FlagNW));
1950 }
Andrew Trick8b55b732011-03-14 16:50:06 +00001951 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001952 }
Dan Gohmanfe4b2912010-04-13 16:49:23 +00001953
1954 if (Ops.size() == 1)
1955 return Ops[0];
Chris Lattnerd934c702004-04-02 20:23:17 +00001956 }
1957
1958 // Skip over the add expression until we get to a multiply.
1959 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1960 ++Idx;
1961
Chris Lattnerd934c702004-04-02 20:23:17 +00001962 // If there are mul operands inline them all into this expression.
1963 if (Idx < Ops.size()) {
1964 bool DeletedMul = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00001965 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001966 // If we have an mul, expand the mul operands onto the end of the operands
1967 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00001968 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00001969 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00001970 DeletedMul = true;
1971 }
1972
1973 // If we deleted at least one mul, we added operands to the end of the list,
1974 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00001975 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00001976 if (DeletedMul)
Dan Gohmana37eaf22007-10-22 18:31:58 +00001977 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00001978 }
1979
1980 // If there are any add recurrences in the operands list, see if any other
1981 // added values are loop invariant. If so, we can fold them into the
1982 // recurrence.
1983 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1984 ++Idx;
1985
1986 // Scan over all recurrences, trying to fold loop invariants into them.
1987 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1988 // Scan all of the other operands to this mul and add them to the vector if
1989 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00001990 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00001991 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f2de012010-08-29 14:55:19 +00001992 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00001993 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00001994 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001995 LIOps.push_back(Ops[i]);
1996 Ops.erase(Ops.begin()+i);
1997 --i; --e;
1998 }
1999
2000 // If we found some loop invariants, fold them into the recurrence.
2001 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002002 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohmanaf752342009-07-07 17:06:11 +00002003 SmallVector<const SCEV *, 4> NewOps;
Chris Lattnerd934c702004-04-02 20:23:17 +00002004 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman8f5954f2010-06-17 23:34:09 +00002005 const SCEV *Scale = getMulExpr(LIOps);
2006 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2007 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002008
Dan Gohman16206132010-06-30 07:16:37 +00002009 // Build the new addrec. Propagate the NUW and NSW flags if both the
2010 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick8b55b732011-03-14 16:50:06 +00002011 //
2012 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002013 // will be inferred if either NUW or NSW is true.
Andrew Trick8b55b732011-03-14 16:50:06 +00002014 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2015 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002016
2017 // If all of the other operands were loop invariant, we are done.
2018 if (Ops.size() == 1) return NewRec;
2019
Nick Lewyckydb66b822011-09-06 05:08:09 +00002020 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002021 for (unsigned i = 0;; ++i)
2022 if (Ops[i] == AddRec) {
2023 Ops[i] = NewRec;
2024 break;
2025 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002026 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002027 }
2028
2029 // Okay, if there weren't any loop invariants to be folded, check to see if
2030 // there are multiple AddRec's with the same loop induction variable being
2031 // multiplied together. If so, we can fold them.
2032 for (unsigned OtherIdx = Idx+1;
Dan Gohmanf01a5ee2010-08-31 22:52:12 +00002033 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002034 ++OtherIdx) {
Andrew Trick946f76b2012-05-30 03:35:17 +00002035 if (AddRecLoop != cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop())
2036 continue;
2037
2038 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2039 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2040 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2041 // ]]],+,...up to x=2n}.
2042 // Note that the arguments to choose() are always integers with values
2043 // known at compile time, never SCEV objects.
2044 //
2045 // The implementation avoids pointless extra computations when the two
2046 // addrec's are of different length (mathematically, it's equivalent to
2047 // an infinite stream of zeros on the right).
2048 bool OpsModified = false;
2049 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2050 ++OtherIdx) {
2051 const SCEVAddRecExpr *OtherAddRec =
2052 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2053 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2054 continue;
2055
2056 bool Overflow = false;
2057 Type *Ty = AddRec->getType();
2058 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2059 SmallVector<const SCEV*, 7> AddRecOps;
2060 for (int x = 0, xe = AddRec->getNumOperands() +
2061 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2062 const SCEV *Term = getConstant(Ty, 0);
2063 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2064 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2065 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2066 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2067 z < ze && !Overflow; ++z) {
2068 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2069 uint64_t Coeff;
2070 if (LargerThan64Bits)
2071 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2072 else
2073 Coeff = Coeff1*Coeff2;
2074 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2075 const SCEV *Term1 = AddRec->getOperand(y-z);
2076 const SCEV *Term2 = OtherAddRec->getOperand(z);
2077 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
Dan Gohmanf01a5ee2010-08-31 22:52:12 +00002078 }
Andrew Trick946f76b2012-05-30 03:35:17 +00002079 }
2080 AddRecOps.push_back(Term);
2081 }
2082 if (!Overflow) {
2083 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2084 SCEV::FlagAnyWrap);
2085 if (Ops.size() == 2) return NewAddRec;
Andrew Tricka3f90432012-05-30 03:35:20 +00002086 Ops[Idx] = NewAddRec;
Andrew Trick946f76b2012-05-30 03:35:17 +00002087 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2088 OpsModified = true;
Andrew Tricka3f90432012-05-30 03:35:20 +00002089 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2090 if (!AddRec)
2091 break;
Andrew Trick946f76b2012-05-30 03:35:17 +00002092 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002093 }
Andrew Trick946f76b2012-05-30 03:35:17 +00002094 if (OpsModified)
2095 return getMulExpr(Ops);
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002096 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002097
2098 // Otherwise couldn't fold anything into this recurrence. Move onto the
2099 // next one.
2100 }
2101
2102 // Okay, it looks like we really DO need an mul expr. Check to see if we
2103 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002104 FoldingSetNodeID ID;
2105 ID.AddInteger(scMulExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002106 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2107 ID.AddPointer(Ops[i]);
2108 void *IP = 0;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002109 SCEVMulExpr *S =
2110 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2111 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002112 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2113 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002114 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2115 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002116 UniqueSCEVs.InsertNode(S, IP);
2117 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002118 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002119 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002120}
2121
Andreas Bolka7a5c8db2009-08-07 22:55:26 +00002122/// getUDivExpr - Get a canonical unsigned division expression, or something
2123/// simpler if possible.
Dan Gohmanabd17092009-06-24 14:49:00 +00002124const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2125 const SCEV *RHS) {
Dan Gohmand33f36e2009-05-18 15:44:58 +00002126 assert(getEffectiveSCEVType(LHS->getType()) ==
2127 getEffectiveSCEVType(RHS->getType()) &&
2128 "SCEVUDivExpr operand types don't match!");
2129
Dan Gohmana30370b2009-05-04 22:02:23 +00002130 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002131 if (RHSC->getValue()->equalsInt(1))
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00002132 return LHS; // X udiv 1 --> x
Dan Gohmanacd700a2010-04-22 01:35:11 +00002133 // If the denominator is zero, the result of the udiv is undefined. Don't
2134 // try to analyze it, because the resolution chosen here may differ from
2135 // the resolution chosen in other parts of the compiler.
2136 if (!RHSC->getValue()->isZero()) {
2137 // Determine if the division can be folded into the operands of
2138 // its operands.
2139 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattner229907c2011-07-18 04:54:35 +00002140 Type *Ty = LHS->getType();
Dan Gohmanacd700a2010-04-22 01:35:11 +00002141 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmandb764c62010-08-04 19:52:50 +00002142 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanacd700a2010-04-22 01:35:11 +00002143 // For non-power-of-two values, effectively round the value up to the
2144 // nearest power of two.
2145 if (!RHSC->getValue()->getValue().isPowerOf2())
2146 ++MaxShiftAmt;
Chris Lattner229907c2011-07-18 04:54:35 +00002147 IntegerType *ExtTy =
Dan Gohmanacd700a2010-04-22 01:35:11 +00002148 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanacd700a2010-04-22 01:35:11 +00002149 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2150 if (const SCEVConstant *Step =
Andrew Trick6d45a012011-08-06 07:00:37 +00002151 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2152 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2153 const APInt &StepInt = Step->getValue()->getValue();
2154 const APInt &DivInt = RHSC->getValue()->getValue();
2155 if (!StepInt.urem(DivInt) &&
Dan Gohmanacd700a2010-04-22 01:35:11 +00002156 getZeroExtendExpr(AR, ExtTy) ==
2157 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2158 getZeroExtendExpr(Step, ExtTy),
Andrew Trick8b55b732011-03-14 16:50:06 +00002159 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002160 SmallVector<const SCEV *, 4> Operands;
2161 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2162 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
Andrew Trick8b55b732011-03-14 16:50:06 +00002163 return getAddRecExpr(Operands, AR->getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002164 SCEV::FlagNW);
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002165 }
Andrew Trick6d45a012011-08-06 07:00:37 +00002166 /// Get a canonical UDivExpr for a recurrence.
2167 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2168 // We can currently only fold X%N if X is constant.
2169 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2170 if (StartC && !DivInt.urem(StepInt) &&
2171 getZeroExtendExpr(AR, ExtTy) ==
2172 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2173 getZeroExtendExpr(Step, ExtTy),
2174 AR->getLoop(), SCEV::FlagAnyWrap)) {
2175 const APInt &StartInt = StartC->getValue()->getValue();
2176 const APInt &StartRem = StartInt.urem(StepInt);
2177 if (StartRem != 0)
2178 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2179 AR->getLoop(), SCEV::FlagNW);
2180 }
2181 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002182 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2183 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2184 SmallVector<const SCEV *, 4> Operands;
2185 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2186 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2187 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2188 // Find an operand that's safely divisible.
2189 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2190 const SCEV *Op = M->getOperand(i);
2191 const SCEV *Div = getUDivExpr(Op, RHSC);
2192 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2193 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2194 M->op_end());
2195 Operands[i] = Div;
2196 return getMulExpr(Operands);
2197 }
2198 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002199 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002200 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Trick7d1eea82011-04-27 18:17:36 +00002201 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002202 SmallVector<const SCEV *, 4> Operands;
2203 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2204 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2205 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2206 Operands.clear();
2207 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2208 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2209 if (isa<SCEVUDivExpr>(Op) ||
2210 getMulExpr(Op, RHS) != A->getOperand(i))
2211 break;
2212 Operands.push_back(Op);
2213 }
2214 if (Operands.size() == A->getNumOperands())
2215 return getAddExpr(Operands);
2216 }
2217 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002218
Dan Gohmanacd700a2010-04-22 01:35:11 +00002219 // Fold if both operands are constant.
2220 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2221 Constant *LHSCV = LHSC->getValue();
2222 Constant *RHSCV = RHSC->getValue();
2223 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2224 RHSCV)));
2225 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002226 }
2227 }
2228
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002229 FoldingSetNodeID ID;
2230 ID.AddInteger(scUDivExpr);
2231 ID.AddPointer(LHS);
2232 ID.AddPointer(RHS);
2233 void *IP = 0;
2234 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00002235 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2236 LHS, RHS);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002237 UniqueSCEVs.InsertNode(S, IP);
2238 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002239}
2240
Nick Lewycky31eaca52014-01-27 10:04:03 +00002241static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2242 APInt A = C1->getValue()->getValue().abs();
2243 APInt B = C2->getValue()->getValue().abs();
2244 uint32_t ABW = A.getBitWidth();
2245 uint32_t BBW = B.getBitWidth();
2246
2247 if (ABW > BBW)
2248 B = B.zext(ABW);
2249 else if (ABW < BBW)
2250 A = A.zext(BBW);
2251
2252 return APIntOps::GreatestCommonDivisor(A, B);
2253}
2254
2255/// getUDivExactExpr - Get a canonical unsigned division expression, or
2256/// something simpler if possible. There is no representation for an exact udiv
2257/// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
2258/// We can't do this when it's not exact because the udiv may be clearing bits.
2259const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2260 const SCEV *RHS) {
2261 // TODO: we could try to find factors in all sorts of things, but for now we
2262 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2263 // end of this file for inspiration.
2264
2265 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2266 if (!Mul)
2267 return getUDivExpr(LHS, RHS);
2268
2269 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2270 // If the mulexpr multiplies by a constant, then that constant must be the
2271 // first element of the mulexpr.
2272 if (const SCEVConstant *LHSCst =
2273 dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2274 if (LHSCst == RHSCst) {
2275 SmallVector<const SCEV *, 2> Operands;
2276 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2277 return getMulExpr(Operands);
2278 }
2279
2280 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2281 // that there's a factor provided by one of the other terms. We need to
2282 // check.
2283 APInt Factor = gcd(LHSCst, RHSCst);
2284 if (!Factor.isIntN(1)) {
2285 LHSCst = cast<SCEVConstant>(
2286 getConstant(LHSCst->getValue()->getValue().udiv(Factor)));
2287 RHSCst = cast<SCEVConstant>(
2288 getConstant(RHSCst->getValue()->getValue().udiv(Factor)));
2289 SmallVector<const SCEV *, 2> Operands;
2290 Operands.push_back(LHSCst);
2291 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2292 LHS = getMulExpr(Operands);
2293 RHS = RHSCst;
Nick Lewycky629199c2014-01-27 10:47:44 +00002294 Mul = dyn_cast<SCEVMulExpr>(LHS);
2295 if (!Mul)
2296 return getUDivExactExpr(LHS, RHS);
Nick Lewycky31eaca52014-01-27 10:04:03 +00002297 }
2298 }
2299 }
2300
2301 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2302 if (Mul->getOperand(i) == RHS) {
2303 SmallVector<const SCEV *, 2> Operands;
2304 Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2305 Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2306 return getMulExpr(Operands);
2307 }
2308 }
2309
2310 return getUDivExpr(LHS, RHS);
2311}
Chris Lattnerd934c702004-04-02 20:23:17 +00002312
Dan Gohman4d5435d2009-05-24 23:45:28 +00002313/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2314/// Simplify the expression as much as possible.
Andrew Trick8b55b732011-03-14 16:50:06 +00002315const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2316 const Loop *L,
2317 SCEV::NoWrapFlags Flags) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002318 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +00002319 Operands.push_back(Start);
Dan Gohmana30370b2009-05-04 22:02:23 +00002320 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattnerd934c702004-04-02 20:23:17 +00002321 if (StepChrec->getLoop() == L) {
Dan Gohmandd41bba2010-06-21 19:47:52 +00002322 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002323 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattnerd934c702004-04-02 20:23:17 +00002324 }
2325
2326 Operands.push_back(Step);
Andrew Trick8b55b732011-03-14 16:50:06 +00002327 return getAddRecExpr(Operands, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002328}
2329
Dan Gohman4d5435d2009-05-24 23:45:28 +00002330/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2331/// Simplify the expression as much as possible.
Dan Gohmance973df2009-06-24 04:48:43 +00002332const SCEV *
Dan Gohmanaf752342009-07-07 17:06:11 +00002333ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick8b55b732011-03-14 16:50:06 +00002334 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002335 if (Operands.size() == 1) return Operands[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002336#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002337 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002338 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002339 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002340 "SCEVAddRecExpr operand types don't match!");
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002341 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002342 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002343 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmand33f36e2009-05-18 15:44:58 +00002344#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002345
Dan Gohmanbe928e32008-06-18 16:23:07 +00002346 if (Operands.back()->isZero()) {
2347 Operands.pop_back();
Andrew Trick8b55b732011-03-14 16:50:06 +00002348 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmanbe928e32008-06-18 16:23:07 +00002349 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002350
Dan Gohmancf9c64e2010-02-19 18:49:22 +00002351 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2352 // use that information to infer NUW and NSW flags. However, computing a
2353 // BE count requires calling getAddRecExpr, so we may not yet have a
2354 // meaningful BE count at this point (and if we don't, we'd be stuck
2355 // with a SCEVCouldNotCompute as the cached BE count).
2356
Andrew Trick8b55b732011-03-14 16:50:06 +00002357 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002358 // And vice-versa.
2359 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2360 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2361 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002362 bool All = true;
Dan Gohman74c61502010-08-16 16:27:53 +00002363 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2364 E = Operands.end(); I != E; ++I)
2365 if (!isKnownNonNegative(*I)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002366 All = false;
2367 break;
2368 }
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002369 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002370 }
2371
Dan Gohman223a5d22008-08-08 18:33:12 +00002372 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohmana30370b2009-05-04 22:02:23 +00002373 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00002374 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman63c020a2010-08-13 20:23:25 +00002375 if (L->contains(NestedLoop) ?
Dan Gohman51ad99d2010-01-21 02:09:26 +00002376 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman63c020a2010-08-13 20:23:25 +00002377 (!NestedLoop->contains(L) &&
Dan Gohman51ad99d2010-01-21 02:09:26 +00002378 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002379 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohmancb0efec2009-12-18 01:14:11 +00002380 NestedAR->op_end());
Dan Gohman223a5d22008-08-08 18:33:12 +00002381 Operands[0] = NestedAR->getStart();
Dan Gohmancc030b72009-06-26 22:36:20 +00002382 // AddRecs require their operands be loop-invariant with respect to their
2383 // loops. Don't perform this transformation if it would break this
2384 // requirement.
2385 bool AllInvariant = true;
2386 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002387 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002388 AllInvariant = false;
2389 break;
2390 }
2391 if (AllInvariant) {
Andrew Trick8b55b732011-03-14 16:50:06 +00002392 // Create a recurrence for the outer loop with the same step size.
2393 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002394 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2395 // inner recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002396 SCEV::NoWrapFlags OuterFlags =
2397 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick8b55b732011-03-14 16:50:06 +00002398
2399 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Dan Gohmancc030b72009-06-26 22:36:20 +00002400 AllInvariant = true;
2401 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002402 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002403 AllInvariant = false;
2404 break;
2405 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002406 if (AllInvariant) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002407 // Ok, both add recurrences are valid after the transformation.
Andrew Trick8b55b732011-03-14 16:50:06 +00002408 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002409 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2410 // the outer recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002411 SCEV::NoWrapFlags InnerFlags =
2412 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick8b55b732011-03-14 16:50:06 +00002413 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2414 }
Dan Gohmancc030b72009-06-26 22:36:20 +00002415 }
2416 // Reset Operands to its original state.
2417 Operands[0] = NestedAR;
Dan Gohman223a5d22008-08-08 18:33:12 +00002418 }
2419 }
2420
Dan Gohman8d67d2f2010-01-19 22:27:22 +00002421 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2422 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002423 FoldingSetNodeID ID;
2424 ID.AddInteger(scAddRecExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002425 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2426 ID.AddPointer(Operands[i]);
2427 ID.AddPointer(L);
2428 void *IP = 0;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002429 SCEVAddRecExpr *S =
2430 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2431 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002432 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2433 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002434 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2435 O, Operands.size(), L);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002436 UniqueSCEVs.InsertNode(S, IP);
2437 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002438 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002439 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002440}
2441
Dan Gohmanabd17092009-06-24 14:49:00 +00002442const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2443 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002444 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002445 Ops.push_back(LHS);
2446 Ops.push_back(RHS);
2447 return getSMaxExpr(Ops);
2448}
2449
Dan Gohmanaf752342009-07-07 17:06:11 +00002450const SCEV *
2451ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002452 assert(!Ops.empty() && "Cannot get empty smax!");
2453 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002454#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002455 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002456 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002457 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002458 "SCEVSMaxExpr operand types don't match!");
2459#endif
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002460
2461 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00002462 GroupByComplexity(Ops, LI);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002463
2464 // If there are any constants, fold them together.
2465 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002466 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002467 ++Idx;
2468 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00002469 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002470 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002471 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002472 APIntOps::smax(LHSC->getValue()->getValue(),
2473 RHSC->getValue()->getValue()));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002474 Ops[0] = getConstant(Fold);
2475 Ops.erase(Ops.begin()+1); // Erase the folded element
2476 if (Ops.size() == 1) return Ops[0];
2477 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002478 }
2479
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002480 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002481 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2482 Ops.erase(Ops.begin());
2483 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002484 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2485 // If we have an smax with a constant maximum-int, it will always be
2486 // maximum-int.
2487 return Ops[0];
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002488 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002489
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002490 if (Ops.size() == 1) return Ops[0];
2491 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002492
2493 // Find the first SMax
2494 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2495 ++Idx;
2496
2497 // Check to see if one of the operands is an SMax. If so, expand its operands
2498 // onto our operand list, and recurse to simplify.
2499 if (Idx < Ops.size()) {
2500 bool DeletedSMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002501 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002502 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002503 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002504 DeletedSMax = true;
2505 }
2506
2507 if (DeletedSMax)
2508 return getSMaxExpr(Ops);
2509 }
2510
2511 // Okay, check to see if the same value occurs in the operand list twice. If
2512 // so, delete one. Since we sorted the list, these values are required to
2513 // be adjacent.
2514 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00002515 // X smax Y smax Y --> X smax Y
2516 // X smax Y --> X, if X is always greater than Y
2517 if (Ops[i] == Ops[i+1] ||
2518 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2519 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2520 --i; --e;
2521 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002522 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2523 --i; --e;
2524 }
2525
2526 if (Ops.size() == 1) return Ops[0];
2527
2528 assert(!Ops.empty() && "Reduced smax down to nothing!");
2529
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002530 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002531 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002532 FoldingSetNodeID ID;
2533 ID.AddInteger(scSMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002534 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2535 ID.AddPointer(Ops[i]);
2536 void *IP = 0;
2537 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00002538 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2539 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002540 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2541 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002542 UniqueSCEVs.InsertNode(S, IP);
2543 return S;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002544}
2545
Dan Gohmanabd17092009-06-24 14:49:00 +00002546const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2547 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002548 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002549 Ops.push_back(LHS);
2550 Ops.push_back(RHS);
2551 return getUMaxExpr(Ops);
2552}
2553
Dan Gohmanaf752342009-07-07 17:06:11 +00002554const SCEV *
2555ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002556 assert(!Ops.empty() && "Cannot get empty umax!");
2557 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002558#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002559 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002560 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002561 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002562 "SCEVUMaxExpr operand types don't match!");
2563#endif
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002564
2565 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00002566 GroupByComplexity(Ops, LI);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002567
2568 // If there are any constants, fold them together.
2569 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002570 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002571 ++Idx;
2572 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00002573 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002574 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002575 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002576 APIntOps::umax(LHSC->getValue()->getValue(),
2577 RHSC->getValue()->getValue()));
2578 Ops[0] = getConstant(Fold);
2579 Ops.erase(Ops.begin()+1); // Erase the folded element
2580 if (Ops.size() == 1) return Ops[0];
2581 LHSC = cast<SCEVConstant>(Ops[0]);
2582 }
2583
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002584 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002585 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2586 Ops.erase(Ops.begin());
2587 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002588 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2589 // If we have an umax with a constant maximum-int, it will always be
2590 // maximum-int.
2591 return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002592 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002593
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002594 if (Ops.size() == 1) return Ops[0];
2595 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002596
2597 // Find the first UMax
2598 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2599 ++Idx;
2600
2601 // Check to see if one of the operands is a UMax. If so, expand its operands
2602 // onto our operand list, and recurse to simplify.
2603 if (Idx < Ops.size()) {
2604 bool DeletedUMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002605 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002606 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002607 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002608 DeletedUMax = true;
2609 }
2610
2611 if (DeletedUMax)
2612 return getUMaxExpr(Ops);
2613 }
2614
2615 // Okay, check to see if the same value occurs in the operand list twice. If
2616 // so, delete one. Since we sorted the list, these values are required to
2617 // be adjacent.
2618 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00002619 // X umax Y umax Y --> X umax Y
2620 // X umax Y --> X, if X is always greater than Y
2621 if (Ops[i] == Ops[i+1] ||
2622 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2623 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2624 --i; --e;
2625 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002626 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2627 --i; --e;
2628 }
2629
2630 if (Ops.size() == 1) return Ops[0];
2631
2632 assert(!Ops.empty() && "Reduced umax down to nothing!");
2633
2634 // Okay, it looks like we really DO need a umax expr. Check to see if we
2635 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002636 FoldingSetNodeID ID;
2637 ID.AddInteger(scUMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002638 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2639 ID.AddPointer(Ops[i]);
2640 void *IP = 0;
2641 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00002642 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2643 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002644 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2645 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002646 UniqueSCEVs.InsertNode(S, IP);
2647 return S;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002648}
2649
Dan Gohmanabd17092009-06-24 14:49:00 +00002650const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2651 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00002652 // ~smax(~x, ~y) == smin(x, y).
2653 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2654}
2655
Dan Gohmanabd17092009-06-24 14:49:00 +00002656const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2657 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00002658 // ~umax(~x, ~y) == umin(x, y)
2659 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2660}
2661
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002662const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002663 // If we have DataLayout, we can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00002664 // constant expression and then folding it back into a ConstantInt.
2665 // This is just a compile-time optimization.
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002666 if (DL)
2667 return getConstant(IntTy, DL->getTypeAllocSize(AllocTy));
Dan Gohman11862a62010-04-12 23:03:26 +00002668
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00002669 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2670 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002671 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
Dan Gohmana3b6c4b2010-05-28 16:12:08 +00002672 C = Folded;
Chris Lattner229907c2011-07-18 04:54:35 +00002673 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002674 assert(Ty == IntTy && "Effective SCEV type doesn't match");
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00002675 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2676}
2677
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002678const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
2679 StructType *STy,
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00002680 unsigned FieldNo) {
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002681 // If we have DataLayout, we can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00002682 // constant expression and then folding it back into a ConstantInt.
2683 // This is just a compile-time optimization.
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002684 if (DL) {
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002685 return getConstant(IntTy,
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002686 DL->getStructLayout(STy)->getElementOffset(FieldNo));
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002687 }
Dan Gohman11862a62010-04-12 23:03:26 +00002688
Dan Gohmancf913832010-01-28 02:15:55 +00002689 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2690 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002691 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
Dan Gohmana3b6c4b2010-05-28 16:12:08 +00002692 C = Folded;
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002693
Matt Arsenault4ed49b52013-10-21 18:08:09 +00002694 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohmancf913832010-01-28 02:15:55 +00002695 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002696}
2697
Dan Gohmanaf752342009-07-07 17:06:11 +00002698const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohmanf436bac2009-06-24 00:54:57 +00002699 // Don't attempt to do anything other than create a SCEVUnknown object
2700 // here. createSCEV only calls getUnknown after checking for all other
2701 // interesting possibilities, and any other code that calls getUnknown
2702 // is doing so in order to hide a value from SCEV canonicalization.
2703
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002704 FoldingSetNodeID ID;
2705 ID.AddInteger(scUnknown);
2706 ID.AddPointer(V);
2707 void *IP = 0;
Dan Gohman7cac9572010-08-02 23:49:30 +00002708 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2709 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2710 "Stale SCEVUnknown in uniquing map!");
2711 return S;
2712 }
2713 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2714 FirstUnknown);
2715 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002716 UniqueSCEVs.InsertNode(S, IP);
2717 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +00002718}
2719
Chris Lattnerd934c702004-04-02 20:23:17 +00002720//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00002721// Basic SCEV Analysis and PHI Idiom Recognition Code
2722//
2723
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002724/// isSCEVable - Test if values of the given type are analyzable within
2725/// the SCEV framework. This primarily includes integer types, and it
2726/// can optionally include pointer types if the ScalarEvolution class
2727/// has access to target-specific information.
Chris Lattner229907c2011-07-18 04:54:35 +00002728bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002729 // Integers and pointers are always SCEVable.
Duncan Sands19d0b472010-02-16 11:11:14 +00002730 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002731}
2732
2733/// getTypeSizeInBits - Return the size in bits of the specified type,
2734/// for which isSCEVable must return true.
Chris Lattner229907c2011-07-18 04:54:35 +00002735uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002736 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2737
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002738 // If we have a DataLayout, use it!
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002739 if (DL)
2740 return DL->getTypeSizeInBits(Ty);
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002741
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002742 // Integer types have fixed sizes.
Duncan Sands9dff9be2010-02-15 16:12:20 +00002743 if (Ty->isIntegerTy())
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002744 return Ty->getPrimitiveSizeInBits();
2745
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002746 // The only other support type is pointer. Without DataLayout, conservatively
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002747 // assume pointers are 64-bit.
Duncan Sands19d0b472010-02-16 11:11:14 +00002748 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002749 return 64;
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002750}
2751
2752/// getEffectiveSCEVType - Return a type with the same bitwidth as
2753/// the given type and which represents how SCEV will treat the given
2754/// type, for which isSCEVable must return true. For pointer types,
2755/// this is the pointer-sized integer type.
Chris Lattner229907c2011-07-18 04:54:35 +00002756Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002757 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2758
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002759 if (Ty->isIntegerTy()) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002760 return Ty;
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002761 }
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002762
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002763 // The only other support type is pointer.
Duncan Sands19d0b472010-02-16 11:11:14 +00002764 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002765
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002766 if (DL)
2767 return DL->getIntPtrType(Ty);
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002768
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002769 // Without DataLayout, conservatively assume pointers are 64-bit.
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002770 return Type::getInt64Ty(getContext());
Dan Gohman0a40ad92009-04-16 03:18:22 +00002771}
Chris Lattnerd934c702004-04-02 20:23:17 +00002772
Dan Gohmanaf752342009-07-07 17:06:11 +00002773const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002774 return &CouldNotCompute;
Dan Gohman31efa302009-04-18 17:58:19 +00002775}
2776
Shuxin Yangefc4c012013-07-08 17:33:13 +00002777namespace {
2778 // Helper class working with SCEVTraversal to figure out if a SCEV contains
2779 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
2780 // is set iff if find such SCEVUnknown.
2781 //
2782 struct FindInvalidSCEVUnknown {
2783 bool FindOne;
2784 FindInvalidSCEVUnknown() { FindOne = false; }
2785 bool follow(const SCEV *S) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00002786 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Shuxin Yangefc4c012013-07-08 17:33:13 +00002787 case scConstant:
2788 return false;
2789 case scUnknown:
Shuxin Yang23773b32013-07-12 07:25:38 +00002790 if (!cast<SCEVUnknown>(S)->getValue())
Shuxin Yangefc4c012013-07-08 17:33:13 +00002791 FindOne = true;
2792 return false;
2793 default:
2794 return true;
2795 }
2796 }
2797 bool isDone() const { return FindOne; }
2798 };
2799}
2800
2801bool ScalarEvolution::checkValidity(const SCEV *S) const {
2802 FindInvalidSCEVUnknown F;
2803 SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
2804 ST.visitAll(S);
2805
2806 return !F.FindOne;
2807}
2808
Chris Lattnerd934c702004-04-02 20:23:17 +00002809/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2810/// expression and create a new one.
Dan Gohmanaf752342009-07-07 17:06:11 +00002811const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002812 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattnerd934c702004-04-02 20:23:17 +00002813
Shuxin Yangefc4c012013-07-08 17:33:13 +00002814 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
2815 if (I != ValueExprMap.end()) {
2816 const SCEV *S = I->second;
Shuxin Yang23773b32013-07-12 07:25:38 +00002817 if (checkValidity(S))
Shuxin Yangefc4c012013-07-08 17:33:13 +00002818 return S;
2819 else
2820 ValueExprMap.erase(I);
2821 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002822 const SCEV *S = createSCEV(V);
Dan Gohmanc29eeae2010-08-16 16:31:39 +00002823
2824 // The process of creating a SCEV for V may have caused other SCEVs
2825 // to have been created, so it's necessary to insert the new entry
2826 // from scratch, rather than trying to remember the insert position
2827 // above.
Dan Gohman9bad2fb2010-08-27 18:55:03 +00002828 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattnerd934c702004-04-02 20:23:17 +00002829 return S;
2830}
2831
Dan Gohman0a40ad92009-04-16 03:18:22 +00002832/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2833///
Dan Gohmanaf752342009-07-07 17:06:11 +00002834const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00002835 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson53a52212009-07-13 04:09:18 +00002836 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00002837 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00002838
Chris Lattner229907c2011-07-18 04:54:35 +00002839 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00002840 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00002841 return getMulExpr(V,
Owen Anderson5a1acd92009-07-31 20:28:14 +00002842 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman0a40ad92009-04-16 03:18:22 +00002843}
2844
2845/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohmanaf752342009-07-07 17:06:11 +00002846const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00002847 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson542619e2009-07-13 20:58:05 +00002848 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00002849 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00002850
Chris Lattner229907c2011-07-18 04:54:35 +00002851 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00002852 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00002853 const SCEV *AllOnes =
Owen Anderson5a1acd92009-07-31 20:28:14 +00002854 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman0a40ad92009-04-16 03:18:22 +00002855 return getMinusSCEV(AllOnes, V);
2856}
2857
Andrew Trick8b55b732011-03-14 16:50:06 +00002858/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattnerfc877522011-01-09 22:26:35 +00002859const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00002860 SCEV::NoWrapFlags Flags) {
Andrew Tricka34f1b12011-03-15 01:16:14 +00002861 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
2862
Dan Gohman46f00a22010-07-20 16:53:00 +00002863 // Fast path: X - X --> 0.
2864 if (LHS == RHS)
2865 return getConstant(LHS->getType(), 0);
2866
Dan Gohman0a40ad92009-04-16 03:18:22 +00002867 // X - Y --> X + -Y
Andrew Trick8b55b732011-03-14 16:50:06 +00002868 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
Dan Gohman0a40ad92009-04-16 03:18:22 +00002869}
2870
2871/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2872/// input value to the specified type. If the type must be extended, it is zero
2873/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00002874const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00002875ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
2876 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00002877 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2878 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00002879 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002880 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00002881 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002882 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00002883 return getTruncateExpr(V, Ty);
2884 return getZeroExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00002885}
2886
2887/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2888/// input value to the specified type. If the type must be extended, it is sign
2889/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00002890const SCEV *
2891ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattner229907c2011-07-18 04:54:35 +00002892 Type *Ty) {
2893 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00002894 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2895 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00002896 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002897 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00002898 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002899 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00002900 return getTruncateExpr(V, Ty);
2901 return getSignExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00002902}
2903
Dan Gohmane712a2f2009-05-13 03:46:30 +00002904/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2905/// input value to the specified type. If the type must be extended, it is zero
2906/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00002907const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00002908ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
2909 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00002910 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2911 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00002912 "Cannot noop or zero extend with non-integer arguments!");
2913 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2914 "getNoopOrZeroExtend cannot truncate!");
2915 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2916 return V; // No conversion
2917 return getZeroExtendExpr(V, Ty);
2918}
2919
2920/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2921/// input value to the specified type. If the type must be extended, it is sign
2922/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00002923const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00002924ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
2925 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00002926 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2927 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00002928 "Cannot noop or sign extend with non-integer arguments!");
2929 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2930 "getNoopOrSignExtend cannot truncate!");
2931 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2932 return V; // No conversion
2933 return getSignExtendExpr(V, Ty);
2934}
2935
Dan Gohman8db2edc2009-06-13 15:56:47 +00002936/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2937/// the input value to the specified type. If the type must be extended,
2938/// it is extended with unspecified bits. The conversion must not be
2939/// narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00002940const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00002941ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
2942 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00002943 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2944 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman8db2edc2009-06-13 15:56:47 +00002945 "Cannot noop or any extend with non-integer arguments!");
2946 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2947 "getNoopOrAnyExtend cannot truncate!");
2948 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2949 return V; // No conversion
2950 return getAnyExtendExpr(V, Ty);
2951}
2952
Dan Gohmane712a2f2009-05-13 03:46:30 +00002953/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2954/// input value to the specified type. The conversion must not be widening.
Dan Gohmanaf752342009-07-07 17:06:11 +00002955const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00002956ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
2957 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00002958 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2959 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00002960 "Cannot truncate or noop with non-integer arguments!");
2961 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2962 "getTruncateOrNoop cannot extend!");
2963 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2964 return V; // No conversion
2965 return getTruncateExpr(V, Ty);
2966}
2967
Dan Gohman96212b62009-06-22 00:31:57 +00002968/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2969/// the types using zero-extension, and then perform a umax operation
2970/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00002971const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2972 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002973 const SCEV *PromotedLHS = LHS;
2974 const SCEV *PromotedRHS = RHS;
Dan Gohman96212b62009-06-22 00:31:57 +00002975
2976 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2977 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2978 else
2979 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2980
2981 return getUMaxExpr(PromotedLHS, PromotedRHS);
2982}
2983
Dan Gohman2bc22302009-06-22 15:03:27 +00002984/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2985/// the types using zero-extension, and then perform a umin operation
2986/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00002987const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2988 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002989 const SCEV *PromotedLHS = LHS;
2990 const SCEV *PromotedRHS = RHS;
Dan Gohman2bc22302009-06-22 15:03:27 +00002991
2992 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2993 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2994 else
2995 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2996
2997 return getUMinExpr(PromotedLHS, PromotedRHS);
2998}
2999
Andrew Trick87716c92011-03-17 23:51:11 +00003000/// getPointerBase - Transitively follow the chain of pointer-type operands
3001/// until reaching a SCEV that does not have a single pointer operand. This
3002/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
3003/// but corner cases do exist.
3004const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3005 // A pointer operand may evaluate to a nonpointer expression, such as null.
3006 if (!V->getType()->isPointerTy())
3007 return V;
3008
3009 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3010 return getPointerBase(Cast->getOperand());
3011 }
3012 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
3013 const SCEV *PtrOp = 0;
3014 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
3015 I != E; ++I) {
3016 if ((*I)->getType()->isPointerTy()) {
3017 // Cannot find the base of an expression with multiple pointer operands.
3018 if (PtrOp)
3019 return V;
3020 PtrOp = *I;
3021 }
3022 }
3023 if (!PtrOp)
3024 return V;
3025 return getPointerBase(PtrOp);
3026 }
3027 return V;
3028}
3029
Dan Gohman0b89dff2009-07-25 01:13:03 +00003030/// PushDefUseChildren - Push users of the given Instruction
3031/// onto the given Worklist.
3032static void
3033PushDefUseChildren(Instruction *I,
3034 SmallVectorImpl<Instruction *> &Worklist) {
3035 // Push the def-use children onto the Worklist stack.
Chandler Carruthcdf47882014-03-09 03:16:01 +00003036 for (User *U : I->users())
3037 Worklist.push_back(cast<Instruction>(U));
Dan Gohman0b89dff2009-07-25 01:13:03 +00003038}
3039
3040/// ForgetSymbolicValue - This looks up computed SCEV values for all
3041/// instructions that depend on the given instruction and removes them from
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003042/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003043/// resolution.
Dan Gohmance973df2009-06-24 04:48:43 +00003044void
Dan Gohmana9c205c2010-02-25 06:57:05 +00003045ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohman0b89dff2009-07-25 01:13:03 +00003046 SmallVector<Instruction *, 16> Worklist;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003047 PushDefUseChildren(PN, Worklist);
Chris Lattnerd934c702004-04-02 20:23:17 +00003048
Dan Gohman0b89dff2009-07-25 01:13:03 +00003049 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003050 Visited.insert(PN);
Dan Gohman0b89dff2009-07-25 01:13:03 +00003051 while (!Worklist.empty()) {
Dan Gohmana9c205c2010-02-25 06:57:05 +00003052 Instruction *I = Worklist.pop_back_val();
Dan Gohman0b89dff2009-07-25 01:13:03 +00003053 if (!Visited.insert(I)) continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003054
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003055 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00003056 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003057 if (It != ValueExprMap.end()) {
Dan Gohman761065e2010-11-17 02:44:44 +00003058 const SCEV *Old = It->second;
3059
Dan Gohman0b89dff2009-07-25 01:13:03 +00003060 // Short-circuit the def-use traversal if the symbolic name
3061 // ceases to appear in expressions.
Dan Gohman534749b2010-11-17 22:27:42 +00003062 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohman0b89dff2009-07-25 01:13:03 +00003063 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003064
Dan Gohman0b89dff2009-07-25 01:13:03 +00003065 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohmana9c205c2010-02-25 06:57:05 +00003066 // structure, it's a PHI that's in the progress of being computed
3067 // by createNodeForPHI, or it's a single-value PHI. In the first case,
3068 // additional loop trip count information isn't going to change anything.
3069 // In the second case, createNodeForPHI will perform the necessary
3070 // updates on its own when it gets to that point. In the third, we do
3071 // want to forget the SCEVUnknown.
3072 if (!isa<PHINode>(I) ||
Dan Gohman761065e2010-11-17 02:44:44 +00003073 !isa<SCEVUnknown>(Old) ||
3074 (I != PN && Old == SymName)) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00003075 forgetMemoizedResults(Old);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003076 ValueExprMap.erase(It);
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00003077 }
Dan Gohman0b89dff2009-07-25 01:13:03 +00003078 }
3079
3080 PushDefUseChildren(I, Worklist);
3081 }
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003082}
Chris Lattnerd934c702004-04-02 20:23:17 +00003083
3084/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
3085/// a loop header, making it a potential recurrence, or it doesn't.
3086///
Dan Gohmanaf752342009-07-07 17:06:11 +00003087const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman6635bb22010-04-12 07:49:36 +00003088 if (const Loop *L = LI->getLoopFor(PN->getParent()))
3089 if (L->getHeader() == PN->getParent()) {
3090 // The loop may have multiple entrances or multiple exits; we can analyze
3091 // this phi as an addrec if it has a unique entry value and a unique
3092 // backedge value.
3093 Value *BEValueV = 0, *StartValueV = 0;
3094 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3095 Value *V = PN->getIncomingValue(i);
3096 if (L->contains(PN->getIncomingBlock(i))) {
3097 if (!BEValueV) {
3098 BEValueV = V;
3099 } else if (BEValueV != V) {
3100 BEValueV = 0;
3101 break;
3102 }
3103 } else if (!StartValueV) {
3104 StartValueV = V;
3105 } else if (StartValueV != V) {
3106 StartValueV = 0;
3107 break;
3108 }
3109 }
3110 if (BEValueV && StartValueV) {
Chris Lattnerd934c702004-04-02 20:23:17 +00003111 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohmanaf752342009-07-07 17:06:11 +00003112 const SCEV *SymbolicName = getUnknown(PN);
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00003113 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
Chris Lattnerd934c702004-04-02 20:23:17 +00003114 "PHI node already processed?");
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003115 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattnerd934c702004-04-02 20:23:17 +00003116
3117 // Using this symbolic name for the PHI, analyze the value coming around
3118 // the back-edge.
Dan Gohman0b89dff2009-07-25 01:13:03 +00003119 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattnerd934c702004-04-02 20:23:17 +00003120
3121 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3122 // has a special value for the first iteration of the loop.
3123
3124 // If the value coming around the backedge is an add with the symbolic
3125 // value we just inserted, then we found a simple induction variable!
Dan Gohmana30370b2009-05-04 22:02:23 +00003126 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00003127 // If there is a single occurrence of the symbolic value, replace it
3128 // with a recurrence.
3129 unsigned FoundIndex = Add->getNumOperands();
3130 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3131 if (Add->getOperand(i) == SymbolicName)
3132 if (FoundIndex == e) {
3133 FoundIndex = i;
3134 break;
3135 }
3136
3137 if (FoundIndex != Add->getNumOperands()) {
3138 // Create an add with everything but the specified operand.
Dan Gohmanaf752342009-07-07 17:06:11 +00003139 SmallVector<const SCEV *, 8> Ops;
Chris Lattnerd934c702004-04-02 20:23:17 +00003140 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3141 if (i != FoundIndex)
3142 Ops.push_back(Add->getOperand(i));
Dan Gohmanaf752342009-07-07 17:06:11 +00003143 const SCEV *Accum = getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00003144
3145 // This is not a valid addrec if the step amount is varying each
3146 // loop iteration, but is not itself an addrec in this loop.
Dan Gohmanafd6db92010-11-17 21:23:15 +00003147 if (isLoopInvariant(Accum, L) ||
Chris Lattnerd934c702004-04-02 20:23:17 +00003148 (isa<SCEVAddRecExpr>(Accum) &&
3149 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003150 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
Dan Gohman51ad99d2010-01-21 02:09:26 +00003151
3152 // If the increment doesn't overflow, then neither the addrec nor
3153 // the post-increment will overflow.
3154 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3155 if (OBO->hasNoUnsignedWrap())
Andrew Trick8b55b732011-03-14 16:50:06 +00003156 Flags = setFlags(Flags, SCEV::FlagNUW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00003157 if (OBO->hasNoSignedWrap())
Andrew Trick8b55b732011-03-14 16:50:06 +00003158 Flags = setFlags(Flags, SCEV::FlagNSW);
Benjamin Kramer6094f302013-10-28 07:30:06 +00003159 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003160 // If the increment is an inbounds GEP, then we know the address
3161 // space cannot be wrapped around. We cannot make any guarantee
3162 // about signed or unsigned overflow because pointers are
3163 // unsigned but we may have a negative index from the base
Benjamin Kramer6094f302013-10-28 07:30:06 +00003164 // pointer. We can guarantee that no unsigned wrap occurs if the
3165 // indices form a positive value.
3166 if (GEP->isInBounds()) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00003167 Flags = setFlags(Flags, SCEV::FlagNW);
Benjamin Kramer6094f302013-10-28 07:30:06 +00003168
3169 const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
3170 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
3171 Flags = setFlags(Flags, SCEV::FlagNUW);
3172 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00003173 } else if (const SubOperator *OBO =
3174 dyn_cast<SubOperator>(BEValueV)) {
3175 if (OBO->hasNoUnsignedWrap())
3176 Flags = setFlags(Flags, SCEV::FlagNUW);
3177 if (OBO->hasNoSignedWrap())
3178 Flags = setFlags(Flags, SCEV::FlagNSW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00003179 }
3180
Dan Gohman6635bb22010-04-12 07:49:36 +00003181 const SCEV *StartVal = getSCEV(StartValueV);
Andrew Trick8b55b732011-03-14 16:50:06 +00003182 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
Dan Gohman62ef6a72009-07-25 01:22:26 +00003183
Dan Gohman51ad99d2010-01-21 02:09:26 +00003184 // Since the no-wrap flags are on the increment, they apply to the
3185 // post-incremented value as well.
Dan Gohmanafd6db92010-11-17 21:23:15 +00003186 if (isLoopInvariant(Accum, L))
Dan Gohman51ad99d2010-01-21 02:09:26 +00003187 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
Andrew Trick8b55b732011-03-14 16:50:06 +00003188 Accum, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00003189
3190 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003191 // to be symbolic. We now need to go back and purge all of the
3192 // entries for the scalars that use the symbolic expression.
3193 ForgetSymbolicName(PN, SymbolicName);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003194 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattnerd934c702004-04-02 20:23:17 +00003195 return PHISCEV;
3196 }
3197 }
Dan Gohmana30370b2009-05-04 22:02:23 +00003198 } else if (const SCEVAddRecExpr *AddRec =
3199 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003200 // Otherwise, this could be a loop like this:
3201 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3202 // In this case, j = {1,+,1} and BEValue is j.
3203 // Because the other in-value of i (0) fits the evolution of BEValue
3204 // i really is an addrec evolution.
3205 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman6635bb22010-04-12 07:49:36 +00003206 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003207
3208 // If StartVal = j.start - j.stride, we can use StartVal as the
3209 // initial step of the addrec evolution.
Dan Gohmanc8e23622009-04-21 23:15:49 +00003210 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman068b7932010-04-11 23:44:58 +00003211 AddRec->getOperand(1))) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003212 // FIXME: For constant StartVal, we should be able to infer
3213 // no-wrap flags.
Dan Gohmanaf752342009-07-07 17:06:11 +00003214 const SCEV *PHISCEV =
Andrew Trick8b55b732011-03-14 16:50:06 +00003215 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3216 SCEV::FlagAnyWrap);
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003217
3218 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003219 // to be symbolic. We now need to go back and purge all of the
3220 // entries for the scalars that use the symbolic expression.
3221 ForgetSymbolicName(PN, SymbolicName);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003222 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003223 return PHISCEV;
3224 }
3225 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003226 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003227 }
Dan Gohman6635bb22010-04-12 07:49:36 +00003228 }
Misha Brukman01808ca2005-04-21 21:13:18 +00003229
Dan Gohmana9c205c2010-02-25 06:57:05 +00003230 // If the PHI has a single incoming value, follow that value, unless the
3231 // PHI's incoming blocks are in a different loop, in which case doing so
3232 // risks breaking LCSSA form. Instcombine would normally zap these, but
3233 // it doesn't have DominatorTree information, so it may miss cases.
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003234 if (Value *V = SimplifyInstruction(PN, DL, TLI, DT))
Duncan Sandsaef146b2010-11-18 19:59:41 +00003235 if (LI->replacementPreservesLCSSAForm(PN, V))
Dan Gohmana9c205c2010-02-25 06:57:05 +00003236 return getSCEV(V);
Duncan Sands39d771312010-11-17 20:49:12 +00003237
Chris Lattnerd934c702004-04-02 20:23:17 +00003238 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanc8e23622009-04-21 23:15:49 +00003239 return getUnknown(PN);
Chris Lattnerd934c702004-04-02 20:23:17 +00003240}
3241
Dan Gohmanee750d12009-05-08 20:26:55 +00003242/// createNodeForGEP - Expand GEP instructions into add and multiply
3243/// operations. This allows them to be analyzed by regular SCEV code.
3244///
Dan Gohmanb256ccf2009-12-18 02:09:29 +00003245const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Chris Lattner229907c2011-07-18 04:54:35 +00003246 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohman2173bd32009-05-08 20:36:47 +00003247 Value *Base = GEP->getOperand(0);
Dan Gohman30f24fe2009-05-09 00:14:52 +00003248 // Don't attempt to analyze GEPs over unsized objects.
Matt Arsenault404c60a2013-10-21 19:43:56 +00003249 if (!Base->getType()->getPointerElementType()->isSized())
Dan Gohman30f24fe2009-05-09 00:14:52 +00003250 return getUnknown(GEP);
Matt Arsenault4c265902013-09-27 22:38:23 +00003251
3252 // Don't blindly transfer the inbounds flag from the GEP instruction to the
3253 // Add expression, because the Instruction may be guarded by control flow
3254 // and the no-overflow bits may not be valid for the expression in any
3255 // context.
3256 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3257
Dan Gohman1d2ded72010-05-03 22:09:21 +00003258 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohman2173bd32009-05-08 20:36:47 +00003259 gep_type_iterator GTI = gep_type_begin(GEP);
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +00003260 for (GetElementPtrInst::op_iterator I = std::next(GEP->op_begin()),
Dan Gohman2173bd32009-05-08 20:36:47 +00003261 E = GEP->op_end();
Dan Gohmanee750d12009-05-08 20:26:55 +00003262 I != E; ++I) {
3263 Value *Index = *I;
3264 // Compute the (potentially symbolic) offset in bytes for this index.
Chris Lattner229907c2011-07-18 04:54:35 +00003265 if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
Dan Gohmanee750d12009-05-08 20:26:55 +00003266 // For a struct, add the member offset.
Dan Gohmanee750d12009-05-08 20:26:55 +00003267 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003268 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
Dan Gohman16206132010-06-30 07:16:37 +00003269
Dan Gohman16206132010-06-30 07:16:37 +00003270 // Add the field offset to the running total offset.
Dan Gohmanc0cca7f2010-06-30 17:27:11 +00003271 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohmanee750d12009-05-08 20:26:55 +00003272 } else {
3273 // For an array, add the element offset, explicitly scaled.
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003274 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, *GTI);
Dan Gohman16206132010-06-30 07:16:37 +00003275 const SCEV *IndexS = getSCEV(Index);
Dan Gohman8b0a4192010-03-01 17:49:51 +00003276 // Getelementptr indices are signed.
Dan Gohman16206132010-06-30 07:16:37 +00003277 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3278
Dan Gohman16206132010-06-30 07:16:37 +00003279 // Multiply the index by the element size to compute the element offset.
Matt Arsenault4c265902013-09-27 22:38:23 +00003280 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, Wrap);
Dan Gohman16206132010-06-30 07:16:37 +00003281
3282 // Add the element offset to the running total offset.
Dan Gohmanc0cca7f2010-06-30 17:27:11 +00003283 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohmanee750d12009-05-08 20:26:55 +00003284 }
3285 }
Dan Gohman16206132010-06-30 07:16:37 +00003286
3287 // Get the SCEV for the GEP base.
3288 const SCEV *BaseS = getSCEV(Base);
3289
Dan Gohman16206132010-06-30 07:16:37 +00003290 // Add the total offset from all the GEP indices to the base.
Matt Arsenault4c265902013-09-27 22:38:23 +00003291 return getAddExpr(BaseS, TotalOffset, Wrap);
Dan Gohmanee750d12009-05-08 20:26:55 +00003292}
3293
Nick Lewycky3783b462007-11-22 07:59:40 +00003294/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3295/// guaranteed to end in (at every loop iteration). It is, at the same time,
3296/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
3297/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003298uint32_t
Dan Gohmanaf752342009-07-07 17:06:11 +00003299ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003300 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner69ec1ec2007-11-23 22:36:49 +00003301 return C->getValue()->getValue().countTrailingZeros();
Chris Lattner49b090e2006-12-12 02:26:09 +00003302
Dan Gohmana30370b2009-05-04 22:02:23 +00003303 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohmanc702fc02009-06-19 23:29:04 +00003304 return std::min(GetMinTrailingZeros(T->getOperand()),
3305 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky3783b462007-11-22 07:59:40 +00003306
Dan Gohmana30370b2009-05-04 22:02:23 +00003307 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00003308 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3309 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3310 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00003311 }
3312
Dan Gohmana30370b2009-05-04 22:02:23 +00003313 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00003314 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3315 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3316 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00003317 }
3318
Dan Gohmana30370b2009-05-04 22:02:23 +00003319 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003320 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003321 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00003322 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003323 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00003324 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003325 }
3326
Dan Gohmana30370b2009-05-04 22:02:23 +00003327 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003328 // The result is the sum of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003329 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3330 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky3783b462007-11-22 07:59:40 +00003331 for (unsigned i = 1, e = M->getNumOperands();
3332 SumOpRes != BitWidth && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003333 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky3783b462007-11-22 07:59:40 +00003334 BitWidth);
3335 return SumOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003336 }
Nick Lewycky3783b462007-11-22 07:59:40 +00003337
Dan Gohmana30370b2009-05-04 22:02:23 +00003338 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003339 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003340 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00003341 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003342 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00003343 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003344 }
Nick Lewycky3783b462007-11-22 07:59:40 +00003345
Dan Gohmana30370b2009-05-04 22:02:23 +00003346 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003347 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003348 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003349 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003350 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003351 return MinOpRes;
3352 }
3353
Dan Gohmana30370b2009-05-04 22:02:23 +00003354 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003355 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003356 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003357 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003358 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003359 return MinOpRes;
3360 }
3361
Dan Gohmanc702fc02009-06-19 23:29:04 +00003362 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3363 // For a SCEVUnknown, ask ValueTracking.
3364 unsigned BitWidth = getTypeSizeInBits(U->getType());
Dan Gohmanc702fc02009-06-19 23:29:04 +00003365 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00003366 ComputeMaskedBits(U->getValue(), Zeros, Ones);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003367 return Zeros.countTrailingOnes();
3368 }
3369
3370 // SCEVUDivExpr
Nick Lewycky3783b462007-11-22 07:59:40 +00003371 return 0;
Chris Lattner49b090e2006-12-12 02:26:09 +00003372}
Chris Lattnerd934c702004-04-02 20:23:17 +00003373
Dan Gohmane65c9172009-07-13 21:35:55 +00003374/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3375///
3376ConstantRange
3377ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman761065e2010-11-17 02:44:44 +00003378 // See if we've computed this range already.
3379 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3380 if (I != UnsignedRanges.end())
3381 return I->second;
Dan Gohmanc702fc02009-06-19 23:29:04 +00003382
3383 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohmaned756312010-11-17 20:23:08 +00003384 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003385
Dan Gohman85be4332010-01-26 19:19:05 +00003386 unsigned BitWidth = getTypeSizeInBits(S->getType());
3387 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3388
3389 // If the value has known zeros, the maximum unsigned value will have those
3390 // known zeros as well.
3391 uint32_t TZ = GetMinTrailingZeros(S);
3392 if (TZ != 0)
3393 ConservativeResult =
3394 ConstantRange(APInt::getMinValue(BitWidth),
3395 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3396
Dan Gohmane65c9172009-07-13 21:35:55 +00003397 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3398 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3399 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3400 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003401 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003402 }
3403
3404 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3405 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3406 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3407 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003408 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003409 }
3410
3411 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3412 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3413 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3414 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003415 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003416 }
3417
3418 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3419 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3420 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3421 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003422 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003423 }
3424
3425 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3426 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3427 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohmaned756312010-11-17 20:23:08 +00003428 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003429 }
3430
3431 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3432 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003433 return setUnsignedRange(ZExt,
3434 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003435 }
3436
3437 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3438 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003439 return setUnsignedRange(SExt,
3440 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003441 }
3442
3443 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3444 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003445 return setUnsignedRange(Trunc,
3446 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003447 }
3448
Dan Gohmane65c9172009-07-13 21:35:55 +00003449 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003450 // If there's no unsigned wrap, the value will never be less than its
3451 // initial value.
Andrew Trick8b55b732011-03-14 16:50:06 +00003452 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohman51ad99d2010-01-21 02:09:26 +00003453 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanebbd05f2010-04-12 23:08:18 +00003454 if (!C->getValue()->isZero())
Dan Gohmanae4a4142010-04-11 22:12:18 +00003455 ConservativeResult =
Dan Gohman9396b422010-06-30 06:58:35 +00003456 ConservativeResult.intersectWith(
3457 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003458
3459 // TODO: non-affine addrec
Dan Gohman85be4332010-01-26 19:19:05 +00003460 if (AddRec->isAffine()) {
Chris Lattner229907c2011-07-18 04:54:35 +00003461 Type *Ty = AddRec->getType();
Dan Gohmane65c9172009-07-13 21:35:55 +00003462 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohman85be4332010-01-26 19:19:05 +00003463 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3464 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohmane65c9172009-07-13 21:35:55 +00003465 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3466
3467 const SCEV *Start = AddRec->getStart();
Dan Gohmanf76210e2010-04-12 07:39:33 +00003468 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmane65c9172009-07-13 21:35:55 +00003469
3470 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003471 ConstantRange StepRange = getSignedRange(Step);
3472 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3473 ConstantRange EndRange =
3474 StartRange.add(MaxBECountRange.multiply(StepRange));
3475
3476 // Check for overflow. This must be done with ConstantRange arithmetic
3477 // because we could be called from within the ScalarEvolution overflow
3478 // checking code.
3479 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3480 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3481 ConstantRange ExtMaxBECountRange =
3482 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3483 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3484 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3485 ExtEndRange)
Dan Gohmaned756312010-11-17 20:23:08 +00003486 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003487
Dan Gohmane65c9172009-07-13 21:35:55 +00003488 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3489 EndRange.getUnsignedMin());
3490 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3491 EndRange.getUnsignedMax());
3492 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohmaned756312010-11-17 20:23:08 +00003493 return setUnsignedRange(AddRec, ConservativeResult);
3494 return setUnsignedRange(AddRec,
3495 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003496 }
3497 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00003498
Dan Gohmaned756312010-11-17 20:23:08 +00003499 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003500 }
3501
3502 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3503 // For a SCEVUnknown, ask ValueTracking.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003504 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003505 ComputeMaskedBits(U->getValue(), Zeros, Ones, DL);
Dan Gohman1a7ab942009-07-20 22:34:18 +00003506 if (Ones == ~Zeros + 1)
Dan Gohmaned756312010-11-17 20:23:08 +00003507 return setUnsignedRange(U, ConservativeResult);
3508 return setUnsignedRange(U,
3509 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003510 }
3511
Dan Gohmaned756312010-11-17 20:23:08 +00003512 return setUnsignedRange(S, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003513}
3514
Dan Gohmane65c9172009-07-13 21:35:55 +00003515/// getSignedRange - Determine the signed range for a particular SCEV.
3516///
3517ConstantRange
3518ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman3ac8cd62011-01-24 17:54:18 +00003519 // See if we've computed this range already.
Dan Gohman761065e2010-11-17 02:44:44 +00003520 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3521 if (I != SignedRanges.end())
3522 return I->second;
Dan Gohmanc702fc02009-06-19 23:29:04 +00003523
Dan Gohmane65c9172009-07-13 21:35:55 +00003524 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohmaned756312010-11-17 20:23:08 +00003525 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohmane65c9172009-07-13 21:35:55 +00003526
Dan Gohman51aaf022010-01-26 04:40:18 +00003527 unsigned BitWidth = getTypeSizeInBits(S->getType());
3528 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3529
3530 // If the value has known zeros, the maximum signed value will have those
3531 // known zeros as well.
3532 uint32_t TZ = GetMinTrailingZeros(S);
3533 if (TZ != 0)
3534 ConservativeResult =
3535 ConstantRange(APInt::getSignedMinValue(BitWidth),
3536 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3537
Dan Gohmane65c9172009-07-13 21:35:55 +00003538 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3539 ConstantRange X = getSignedRange(Add->getOperand(0));
3540 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3541 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003542 return setSignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003543 }
3544
Dan Gohmane65c9172009-07-13 21:35:55 +00003545 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3546 ConstantRange X = getSignedRange(Mul->getOperand(0));
3547 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3548 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003549 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003550 }
3551
Dan Gohmane65c9172009-07-13 21:35:55 +00003552 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3553 ConstantRange X = getSignedRange(SMax->getOperand(0));
3554 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3555 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003556 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003557 }
Dan Gohmand261d272009-06-24 01:05:09 +00003558
Dan Gohmane65c9172009-07-13 21:35:55 +00003559 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3560 ConstantRange X = getSignedRange(UMax->getOperand(0));
3561 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3562 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003563 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003564 }
Dan Gohmand261d272009-06-24 01:05:09 +00003565
Dan Gohmane65c9172009-07-13 21:35:55 +00003566 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3567 ConstantRange X = getSignedRange(UDiv->getLHS());
3568 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohmaned756312010-11-17 20:23:08 +00003569 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003570 }
Dan Gohmand261d272009-06-24 01:05:09 +00003571
Dan Gohmane65c9172009-07-13 21:35:55 +00003572 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3573 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003574 return setSignedRange(ZExt,
3575 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003576 }
3577
3578 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3579 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003580 return setSignedRange(SExt,
3581 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003582 }
3583
3584 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3585 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003586 return setSignedRange(Trunc,
3587 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003588 }
3589
Dan Gohmane65c9172009-07-13 21:35:55 +00003590 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003591 // If there's no signed wrap, and all the operands have the same sign or
3592 // zero, the value won't ever change sign.
Andrew Trick8b55b732011-03-14 16:50:06 +00003593 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003594 bool AllNonNeg = true;
3595 bool AllNonPos = true;
3596 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3597 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3598 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3599 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00003600 if (AllNonNeg)
Dan Gohman51aaf022010-01-26 04:40:18 +00003601 ConservativeResult = ConservativeResult.intersectWith(
3602 ConstantRange(APInt(BitWidth, 0),
3603 APInt::getSignedMinValue(BitWidth)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00003604 else if (AllNonPos)
Dan Gohman51aaf022010-01-26 04:40:18 +00003605 ConservativeResult = ConservativeResult.intersectWith(
3606 ConstantRange(APInt::getSignedMinValue(BitWidth),
3607 APInt(BitWidth, 1)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00003608 }
Dan Gohmane65c9172009-07-13 21:35:55 +00003609
3610 // TODO: non-affine addrec
Dan Gohman85be4332010-01-26 19:19:05 +00003611 if (AddRec->isAffine()) {
Chris Lattner229907c2011-07-18 04:54:35 +00003612 Type *Ty = AddRec->getType();
Dan Gohmane65c9172009-07-13 21:35:55 +00003613 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohman85be4332010-01-26 19:19:05 +00003614 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3615 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohmane65c9172009-07-13 21:35:55 +00003616 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3617
3618 const SCEV *Start = AddRec->getStart();
Dan Gohmanf76210e2010-04-12 07:39:33 +00003619 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmane65c9172009-07-13 21:35:55 +00003620
3621 ConstantRange StartRange = getSignedRange(Start);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003622 ConstantRange StepRange = getSignedRange(Step);
3623 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3624 ConstantRange EndRange =
3625 StartRange.add(MaxBECountRange.multiply(StepRange));
3626
3627 // Check for overflow. This must be done with ConstantRange arithmetic
3628 // because we could be called from within the ScalarEvolution overflow
3629 // checking code.
3630 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3631 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3632 ConstantRange ExtMaxBECountRange =
3633 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3634 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3635 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3636 ExtEndRange)
Dan Gohmaned756312010-11-17 20:23:08 +00003637 return setSignedRange(AddRec, ConservativeResult);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003638
Dan Gohmane65c9172009-07-13 21:35:55 +00003639 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3640 EndRange.getSignedMin());
3641 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3642 EndRange.getSignedMax());
3643 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohmaned756312010-11-17 20:23:08 +00003644 return setSignedRange(AddRec, ConservativeResult);
3645 return setSignedRange(AddRec,
3646 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohmand261d272009-06-24 01:05:09 +00003647 }
Dan Gohmand261d272009-06-24 01:05:09 +00003648 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00003649
Dan Gohmaned756312010-11-17 20:23:08 +00003650 return setSignedRange(AddRec, ConservativeResult);
Dan Gohmand261d272009-06-24 01:05:09 +00003651 }
3652
Dan Gohmanc702fc02009-06-19 23:29:04 +00003653 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3654 // For a SCEVUnknown, ask ValueTracking.
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003655 if (!U->getValue()->getType()->isIntegerTy() && !DL)
Dan Gohmaned756312010-11-17 20:23:08 +00003656 return setSignedRange(U, ConservativeResult);
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003657 unsigned NS = ComputeNumSignBits(U->getValue(), DL);
Hal Finkelff666bd2013-07-09 18:16:16 +00003658 if (NS <= 1)
Dan Gohmaned756312010-11-17 20:23:08 +00003659 return setSignedRange(U, ConservativeResult);
3660 return setSignedRange(U, ConservativeResult.intersectWith(
Dan Gohmane65c9172009-07-13 21:35:55 +00003661 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohmaned756312010-11-17 20:23:08 +00003662 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003663 }
3664
Dan Gohmaned756312010-11-17 20:23:08 +00003665 return setSignedRange(S, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003666}
3667
Chris Lattnerd934c702004-04-02 20:23:17 +00003668/// createSCEV - We know that there is no SCEV for the specified value.
3669/// Analyze the expression.
3670///
Dan Gohmanaf752342009-07-07 17:06:11 +00003671const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003672 if (!isSCEVable(V->getType()))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003673 return getUnknown(V);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003674
Dan Gohman05e89732008-06-22 19:56:46 +00003675 unsigned Opcode = Instruction::UserOp1;
Dan Gohman69451a02010-03-09 23:46:50 +00003676 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman05e89732008-06-22 19:56:46 +00003677 Opcode = I->getOpcode();
Dan Gohman69451a02010-03-09 23:46:50 +00003678
3679 // Don't attempt to analyze instructions in blocks that aren't
3680 // reachable. Such instructions don't matter, and they aren't required
3681 // to obey basic rules for definitions dominating uses which this
3682 // analysis depends on.
3683 if (!DT->isReachableFromEntry(I->getParent()))
3684 return getUnknown(V);
3685 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman05e89732008-06-22 19:56:46 +00003686 Opcode = CE->getOpcode();
Dan Gohmanf436bac2009-06-24 00:54:57 +00003687 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3688 return getConstant(CI);
3689 else if (isa<ConstantPointerNull>(V))
Dan Gohman1d2ded72010-05-03 22:09:21 +00003690 return getConstant(V->getType(), 0);
Dan Gohmanf161e06e2009-08-25 17:49:57 +00003691 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3692 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman05e89732008-06-22 19:56:46 +00003693 else
Dan Gohmanc8e23622009-04-21 23:15:49 +00003694 return getUnknown(V);
Chris Lattnera3e0bb42007-04-02 05:41:38 +00003695
Dan Gohman80ca01c2009-07-17 20:47:02 +00003696 Operator *U = cast<Operator>(V);
Dan Gohman05e89732008-06-22 19:56:46 +00003697 switch (Opcode) {
Dan Gohmane5fb1032010-08-16 16:03:49 +00003698 case Instruction::Add: {
3699 // The simple thing to do would be to just call getSCEV on both operands
3700 // and call getAddExpr with the result. However if we're looking at a
3701 // bunch of things all added together, this can be quite inefficient,
3702 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3703 // Instead, gather up all the operands and make a single getAddExpr call.
3704 // LLVM IR canonical form means we need only traverse the left operands.
Andrew Trickd25089f2011-11-29 02:16:38 +00003705 //
3706 // Don't apply this instruction's NSW or NUW flags to the new
3707 // expression. The instruction may be guarded by control flow that the
3708 // no-wrap behavior depends on. Non-control-equivalent instructions can be
3709 // mapped to the same SCEV expression, and it would be incorrect to transfer
3710 // NSW/NUW semantics to those operations.
Dan Gohmane5fb1032010-08-16 16:03:49 +00003711 SmallVector<const SCEV *, 4> AddOps;
3712 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman47308d52010-08-31 22:53:17 +00003713 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3714 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3715 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3716 break;
Dan Gohmane5fb1032010-08-16 16:03:49 +00003717 U = cast<Operator>(Op);
Dan Gohman47308d52010-08-31 22:53:17 +00003718 const SCEV *Op1 = getSCEV(U->getOperand(1));
3719 if (Opcode == Instruction::Sub)
3720 AddOps.push_back(getNegativeSCEV(Op1));
3721 else
3722 AddOps.push_back(Op1);
Dan Gohmane5fb1032010-08-16 16:03:49 +00003723 }
3724 AddOps.push_back(getSCEV(U->getOperand(0)));
Andrew Trickd25089f2011-11-29 02:16:38 +00003725 return getAddExpr(AddOps);
Dan Gohmane5fb1032010-08-16 16:03:49 +00003726 }
3727 case Instruction::Mul: {
Andrew Trickd25089f2011-11-29 02:16:38 +00003728 // Don't transfer NSW/NUW for the same reason as AddExpr.
Dan Gohmane5fb1032010-08-16 16:03:49 +00003729 SmallVector<const SCEV *, 4> MulOps;
3730 MulOps.push_back(getSCEV(U->getOperand(1)));
3731 for (Value *Op = U->getOperand(0);
Andrew Trick2a3b7162011-03-09 17:23:39 +00003732 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
Dan Gohmane5fb1032010-08-16 16:03:49 +00003733 Op = U->getOperand(0)) {
3734 U = cast<Operator>(Op);
3735 MulOps.push_back(getSCEV(U->getOperand(1)));
3736 }
3737 MulOps.push_back(getSCEV(U->getOperand(0)));
3738 return getMulExpr(MulOps);
3739 }
Dan Gohman05e89732008-06-22 19:56:46 +00003740 case Instruction::UDiv:
Dan Gohmanc8e23622009-04-21 23:15:49 +00003741 return getUDivExpr(getSCEV(U->getOperand(0)),
3742 getSCEV(U->getOperand(1)));
Dan Gohman05e89732008-06-22 19:56:46 +00003743 case Instruction::Sub:
Dan Gohmanc8e23622009-04-21 23:15:49 +00003744 return getMinusSCEV(getSCEV(U->getOperand(0)),
3745 getSCEV(U->getOperand(1)));
Dan Gohman0ec05372009-04-21 02:26:00 +00003746 case Instruction::And:
3747 // For an expression like x&255 that merely masks off the high bits,
3748 // use zext(trunc(x)) as the SCEV expression.
3749 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmandf199482009-04-25 17:05:40 +00003750 if (CI->isNullValue())
3751 return getSCEV(U->getOperand(1));
Dan Gohman05c1d372009-04-27 01:41:10 +00003752 if (CI->isAllOnesValue())
3753 return getSCEV(U->getOperand(0));
Dan Gohman0ec05372009-04-21 02:26:00 +00003754 const APInt &A = CI->getValue();
Dan Gohman1ee696d2009-06-16 19:52:01 +00003755
3756 // Instcombine's ShrinkDemandedConstant may strip bits out of
3757 // constants, obscuring what would otherwise be a low-bits mask.
3758 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3759 // knew about to reconstruct a low-bits mask value.
3760 unsigned LZ = A.countLeadingZeros();
Nick Lewycky31eaca52014-01-27 10:04:03 +00003761 unsigned TZ = A.countTrailingZeros();
Dan Gohman1ee696d2009-06-16 19:52:01 +00003762 unsigned BitWidth = A.getBitWidth();
Dan Gohman1ee696d2009-06-16 19:52:01 +00003763 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003764 ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, DL);
Dan Gohman1ee696d2009-06-16 19:52:01 +00003765
Nick Lewycky31eaca52014-01-27 10:04:03 +00003766 APInt EffectiveMask =
3767 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
3768 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
3769 const SCEV *MulCount = getConstant(
3770 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ)));
3771 return getMulExpr(
3772 getZeroExtendExpr(
3773 getTruncateExpr(
3774 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount),
3775 IntegerType::get(getContext(), BitWidth - LZ - TZ)),
3776 U->getType()),
3777 MulCount);
3778 }
Dan Gohman0ec05372009-04-21 02:26:00 +00003779 }
3780 break;
Dan Gohman1ee696d2009-06-16 19:52:01 +00003781
Dan Gohman05e89732008-06-22 19:56:46 +00003782 case Instruction::Or:
3783 // If the RHS of the Or is a constant, we may have something like:
3784 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3785 // optimizations will transparently handle this case.
3786 //
3787 // In order for this transformation to be safe, the LHS must be of the
3788 // form X*(2^n) and the Or constant must be less than 2^n.
3789 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003790 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman05e89732008-06-22 19:56:46 +00003791 const APInt &CIVal = CI->getValue();
Dan Gohmanc702fc02009-06-19 23:29:04 +00003792 if (GetMinTrailingZeros(LHS) >=
Dan Gohman36bad002009-09-17 18:05:20 +00003793 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3794 // Build a plain add SCEV.
3795 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3796 // If the LHS of the add was an addrec and it has no-wrap flags,
3797 // transfer the no-wrap flags, since an or won't introduce a wrap.
3798 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3799 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
Andrew Trick8b55b732011-03-14 16:50:06 +00003800 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
3801 OldAR->getNoWrapFlags());
Dan Gohman36bad002009-09-17 18:05:20 +00003802 }
3803 return S;
3804 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003805 }
Dan Gohman05e89732008-06-22 19:56:46 +00003806 break;
3807 case Instruction::Xor:
Dan Gohman05e89732008-06-22 19:56:46 +00003808 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00003809 // If the RHS of the xor is a signbit, then this is just an add.
3810 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman05e89732008-06-22 19:56:46 +00003811 if (CI->getValue().isSignBit())
Dan Gohmanc8e23622009-04-21 23:15:49 +00003812 return getAddExpr(getSCEV(U->getOperand(0)),
3813 getSCEV(U->getOperand(1)));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00003814
3815 // If the RHS of xor is -1, then this is a not operation.
Dan Gohmand277a1e2009-05-18 16:17:44 +00003816 if (CI->isAllOnesValue())
Dan Gohmanc8e23622009-04-21 23:15:49 +00003817 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman6350296e2009-05-18 16:29:04 +00003818
3819 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3820 // This is a variant of the check for xor with -1, and it handles
3821 // the case where instcombine has trimmed non-demanded bits out
3822 // of an xor with -1.
3823 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3824 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3825 if (BO->getOpcode() == Instruction::And &&
3826 LCI->getValue() == CI->getValue())
3827 if (const SCEVZeroExtendExpr *Z =
Dan Gohmanb50f5a42009-06-17 01:22:39 +00003828 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Chris Lattner229907c2011-07-18 04:54:35 +00003829 Type *UTy = U->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00003830 const SCEV *Z0 = Z->getOperand();
Chris Lattner229907c2011-07-18 04:54:35 +00003831 Type *Z0Ty = Z0->getType();
Dan Gohmaneddf7712009-06-18 00:00:20 +00003832 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3833
Dan Gohman8b0a4192010-03-01 17:49:51 +00003834 // If C is a low-bits mask, the zero extend is serving to
Dan Gohmaneddf7712009-06-18 00:00:20 +00003835 // mask off the high bits. Complement the operand and
3836 // re-apply the zext.
3837 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3838 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3839
3840 // If C is a single bit, it may be in the sign-bit position
3841 // before the zero-extend. In this case, represent the xor
3842 // using an add, which is equivalent, and re-apply the zext.
Jay Foad583abbc2010-12-07 08:25:19 +00003843 APInt Trunc = CI->getValue().trunc(Z0TySize);
3844 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohmaneddf7712009-06-18 00:00:20 +00003845 Trunc.isSignBit())
3846 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3847 UTy);
Dan Gohmanb50f5a42009-06-17 01:22:39 +00003848 }
Dan Gohman05e89732008-06-22 19:56:46 +00003849 }
3850 break;
3851
3852 case Instruction::Shl:
3853 // Turn shift left of a constant amount into a multiply.
3854 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003855 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00003856
3857 // If the shift count is not less than the bitwidth, the result of
3858 // the shift is undefined. Don't try to analyze it, because the
3859 // resolution chosen here may differ from the resolution chosen in
3860 // other parts of the compiler.
3861 if (SA->getValue().uge(BitWidth))
3862 break;
3863
Owen Andersonedb4a702009-07-24 23:12:02 +00003864 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00003865 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanc8e23622009-04-21 23:15:49 +00003866 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman05e89732008-06-22 19:56:46 +00003867 }
3868 break;
3869
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00003870 case Instruction::LShr:
Nick Lewycky52348302009-01-13 09:18:58 +00003871 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00003872 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003873 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00003874
3875 // If the shift count is not less than the bitwidth, the result of
3876 // the shift is undefined. Don't try to analyze it, because the
3877 // resolution chosen here may differ from the resolution chosen in
3878 // other parts of the compiler.
3879 if (SA->getValue().uge(BitWidth))
3880 break;
3881
Owen Andersonedb4a702009-07-24 23:12:02 +00003882 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00003883 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanc8e23622009-04-21 23:15:49 +00003884 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00003885 }
3886 break;
3887
Dan Gohman0ec05372009-04-21 02:26:00 +00003888 case Instruction::AShr:
3889 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3890 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanacd700a2010-04-22 01:35:11 +00003891 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman0ec05372009-04-21 02:26:00 +00003892 if (L->getOpcode() == Instruction::Shl &&
3893 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00003894 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3895
3896 // If the shift count is not less than the bitwidth, the result of
3897 // the shift is undefined. Don't try to analyze it, because the
3898 // resolution chosen here may differ from the resolution chosen in
3899 // other parts of the compiler.
3900 if (CI->getValue().uge(BitWidth))
3901 break;
3902
Dan Gohmandf199482009-04-25 17:05:40 +00003903 uint64_t Amt = BitWidth - CI->getZExtValue();
3904 if (Amt == BitWidth)
3905 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman0ec05372009-04-21 02:26:00 +00003906 return
Dan Gohmanc8e23622009-04-21 23:15:49 +00003907 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanacd700a2010-04-22 01:35:11 +00003908 IntegerType::get(getContext(),
3909 Amt)),
3910 U->getType());
Dan Gohman0ec05372009-04-21 02:26:00 +00003911 }
3912 break;
3913
Dan Gohman05e89732008-06-22 19:56:46 +00003914 case Instruction::Trunc:
Dan Gohmanc8e23622009-04-21 23:15:49 +00003915 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00003916
3917 case Instruction::ZExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00003918 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00003919
3920 case Instruction::SExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00003921 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00003922
3923 case Instruction::BitCast:
3924 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003925 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman05e89732008-06-22 19:56:46 +00003926 return getSCEV(U->getOperand(0));
3927 break;
3928
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003929 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3930 // lead to pointer expressions which cannot safely be expanded to GEPs,
3931 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3932 // simplifying integer expressions.
Dan Gohman0a40ad92009-04-16 03:18:22 +00003933
Dan Gohmanee750d12009-05-08 20:26:55 +00003934 case Instruction::GetElementPtr:
Dan Gohmanb256ccf2009-12-18 02:09:29 +00003935 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003936
Dan Gohman05e89732008-06-22 19:56:46 +00003937 case Instruction::PHI:
3938 return createNodeForPHI(cast<PHINode>(U));
3939
3940 case Instruction::Select:
3941 // This could be a smax or umax that was lowered earlier.
3942 // Try to recover it.
3943 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3944 Value *LHS = ICI->getOperand(0);
3945 Value *RHS = ICI->getOperand(1);
3946 switch (ICI->getPredicate()) {
3947 case ICmpInst::ICMP_SLT:
3948 case ICmpInst::ICMP_SLE:
3949 std::swap(LHS, RHS);
3950 // fall through
3951 case ICmpInst::ICMP_SGT:
3952 case ICmpInst::ICMP_SGE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00003953 // a >s b ? a+x : b+x -> smax(a, b)+x
3954 // a >s b ? b+x : a+x -> smin(a, b)+x
3955 if (LHS->getType() == U->getType()) {
3956 const SCEV *LS = getSCEV(LHS);
3957 const SCEV *RS = getSCEV(RHS);
3958 const SCEV *LA = getSCEV(U->getOperand(1));
3959 const SCEV *RA = getSCEV(U->getOperand(2));
3960 const SCEV *LDiff = getMinusSCEV(LA, LS);
3961 const SCEV *RDiff = getMinusSCEV(RA, RS);
3962 if (LDiff == RDiff)
3963 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3964 LDiff = getMinusSCEV(LA, RS);
3965 RDiff = getMinusSCEV(RA, LS);
3966 if (LDiff == RDiff)
3967 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3968 }
Dan Gohman05e89732008-06-22 19:56:46 +00003969 break;
3970 case ICmpInst::ICMP_ULT:
3971 case ICmpInst::ICMP_ULE:
3972 std::swap(LHS, RHS);
3973 // fall through
3974 case ICmpInst::ICMP_UGT:
3975 case ICmpInst::ICMP_UGE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00003976 // a >u b ? a+x : b+x -> umax(a, b)+x
3977 // a >u b ? b+x : a+x -> umin(a, b)+x
3978 if (LHS->getType() == U->getType()) {
3979 const SCEV *LS = getSCEV(LHS);
3980 const SCEV *RS = getSCEV(RHS);
3981 const SCEV *LA = getSCEV(U->getOperand(1));
3982 const SCEV *RA = getSCEV(U->getOperand(2));
3983 const SCEV *LDiff = getMinusSCEV(LA, LS);
3984 const SCEV *RDiff = getMinusSCEV(RA, RS);
3985 if (LDiff == RDiff)
3986 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3987 LDiff = getMinusSCEV(LA, RS);
3988 RDiff = getMinusSCEV(RA, LS);
3989 if (LDiff == RDiff)
3990 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3991 }
Dan Gohman05e89732008-06-22 19:56:46 +00003992 break;
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00003993 case ICmpInst::ICMP_NE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00003994 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3995 if (LHS->getType() == U->getType() &&
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00003996 isa<ConstantInt>(RHS) &&
Dan Gohmanf33bac32010-04-24 03:09:42 +00003997 cast<ConstantInt>(RHS)->isZero()) {
3998 const SCEV *One = getConstant(LHS->getType(), 1);
3999 const SCEV *LS = getSCEV(LHS);
4000 const SCEV *LA = getSCEV(U->getOperand(1));
4001 const SCEV *RA = getSCEV(U->getOperand(2));
4002 const SCEV *LDiff = getMinusSCEV(LA, LS);
4003 const SCEV *RDiff = getMinusSCEV(RA, One);
4004 if (LDiff == RDiff)
Dan Gohmancf32f2b2010-08-13 20:17:14 +00004005 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohmanf33bac32010-04-24 03:09:42 +00004006 }
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004007 break;
4008 case ICmpInst::ICMP_EQ:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004009 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
4010 if (LHS->getType() == U->getType() &&
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004011 isa<ConstantInt>(RHS) &&
Dan Gohmanf33bac32010-04-24 03:09:42 +00004012 cast<ConstantInt>(RHS)->isZero()) {
4013 const SCEV *One = getConstant(LHS->getType(), 1);
4014 const SCEV *LS = getSCEV(LHS);
4015 const SCEV *LA = getSCEV(U->getOperand(1));
4016 const SCEV *RA = getSCEV(U->getOperand(2));
4017 const SCEV *LDiff = getMinusSCEV(LA, One);
4018 const SCEV *RDiff = getMinusSCEV(RA, LS);
4019 if (LDiff == RDiff)
Dan Gohmancf32f2b2010-08-13 20:17:14 +00004020 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohmanf33bac32010-04-24 03:09:42 +00004021 }
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004022 break;
Dan Gohman05e89732008-06-22 19:56:46 +00004023 default:
4024 break;
4025 }
4026 }
4027
4028 default: // We cannot analyze this expression.
4029 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00004030 }
4031
Dan Gohmanc8e23622009-04-21 23:15:49 +00004032 return getUnknown(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00004033}
4034
4035
4036
4037//===----------------------------------------------------------------------===//
4038// Iteration Count Computation Code
4039//
4040
Andrew Trick2b6860f2011-08-11 23:36:16 +00004041/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
Andrew Tricke81211f2012-01-11 06:52:55 +00004042/// normal unsigned value. Returns 0 if the trip count is unknown or not
4043/// constant. Will also return 0 if the maximum trip count is very large (>=
4044/// 2^32).
4045///
4046/// This "trip count" assumes that control exits via ExitingBlock. More
4047/// precisely, it is the number of times that control may reach ExitingBlock
4048/// before taking the branch. For loops with multiple exits, it may not be the
4049/// number times that the loop header executes because the loop may exit
4050/// prematurely via another branch.
Andrew Trickee9143a2013-05-31 23:34:46 +00004051///
4052/// FIXME: We conservatively call getBackedgeTakenCount(L) instead of
4053/// getExitCount(L, ExitingBlock) to compute a safe trip count considering all
4054/// loop exits. getExitCount() may return an exact count for this branch
4055/// assuming no-signed-wrap. The number of well-defined iterations may actually
4056/// be higher than this trip count if this exit test is skipped and the loop
4057/// exits via a different branch. Ideally, getExitCount() would know whether it
4058/// depends on a NSW assumption, and we would only fall back to a conservative
4059/// trip count in that case.
Andrew Tricke81211f2012-01-11 06:52:55 +00004060unsigned ScalarEvolution::
Aaron Ballmand07f5512013-06-04 01:01:56 +00004061getSmallConstantTripCount(Loop *L, BasicBlock * /*ExitingBlock*/) {
Andrew Trick2b6860f2011-08-11 23:36:16 +00004062 const SCEVConstant *ExitCount =
Andrew Trickee9143a2013-05-31 23:34:46 +00004063 dyn_cast<SCEVConstant>(getBackedgeTakenCount(L));
Andrew Trick2b6860f2011-08-11 23:36:16 +00004064 if (!ExitCount)
4065 return 0;
4066
4067 ConstantInt *ExitConst = ExitCount->getValue();
4068
4069 // Guard against huge trip counts.
4070 if (ExitConst->getValue().getActiveBits() > 32)
4071 return 0;
4072
4073 // In case of integer overflow, this returns 0, which is correct.
4074 return ((unsigned)ExitConst->getZExtValue()) + 1;
4075}
4076
4077/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
4078/// trip count of this loop as a normal unsigned value, if possible. This
4079/// means that the actual trip count is always a multiple of the returned
4080/// value (don't forget the trip count could very well be zero as well!).
4081///
4082/// Returns 1 if the trip count is unknown or not guaranteed to be the
4083/// multiple of a constant (which is also the case if the trip count is simply
4084/// constant, use getSmallConstantTripCount for that case), Will also return 1
4085/// if the trip count is very large (>= 2^32).
Andrew Tricke81211f2012-01-11 06:52:55 +00004086///
4087/// As explained in the comments for getSmallConstantTripCount, this assumes
4088/// that control exits the loop via ExitingBlock.
4089unsigned ScalarEvolution::
Aaron Ballmand07f5512013-06-04 01:01:56 +00004090getSmallConstantTripMultiple(Loop *L, BasicBlock * /*ExitingBlock*/) {
Andrew Trickee9143a2013-05-31 23:34:46 +00004091 const SCEV *ExitCount = getBackedgeTakenCount(L);
Andrew Trick2b6860f2011-08-11 23:36:16 +00004092 if (ExitCount == getCouldNotCompute())
4093 return 1;
4094
4095 // Get the trip count from the BE count by adding 1.
4096 const SCEV *TCMul = getAddExpr(ExitCount,
4097 getConstant(ExitCount->getType(), 1));
4098 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
4099 // to factor simple cases.
4100 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
4101 TCMul = Mul->getOperand(0);
4102
4103 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
4104 if (!MulC)
4105 return 1;
4106
4107 ConstantInt *Result = MulC->getValue();
4108
Hal Finkel30bd9342012-10-24 19:46:44 +00004109 // Guard against huge trip counts (this requires checking
4110 // for zero to handle the case where the trip count == -1 and the
4111 // addition wraps).
4112 if (!Result || Result->getValue().getActiveBits() > 32 ||
4113 Result->getValue().getActiveBits() == 0)
Andrew Trick2b6860f2011-08-11 23:36:16 +00004114 return 1;
4115
4116 return (unsigned)Result->getZExtValue();
4117}
4118
Andrew Trick3ca3f982011-07-26 17:19:55 +00004119// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickee9143a2013-05-31 23:34:46 +00004120// this loop is guaranteed not to exit via ExitingBlock. Otherwise return
Andrew Trick3ca3f982011-07-26 17:19:55 +00004121// SCEVCouldNotCompute.
Andrew Trick77c55422011-08-02 04:23:35 +00004122const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4123 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004124}
4125
Dan Gohman0bddac12009-02-24 18:55:53 +00004126/// getBackedgeTakenCount - If the specified loop has a predictable
4127/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4128/// object. The backedge-taken count is the number of times the loop header
4129/// will be branched to from within the loop. This is one less than the
4130/// trip count of the loop, since it doesn't count the first iteration,
4131/// when the header is branched to from outside the loop.
4132///
4133/// Note that it is not valid to call this method on a loop without a
4134/// loop-invariant backedge-taken count (see
4135/// hasLoopInvariantBackedgeTakenCount).
4136///
Dan Gohmanaf752342009-07-07 17:06:11 +00004137const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004138 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004139}
4140
4141/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4142/// return the least SCEV value that is known never to be less than the
4143/// actual backedge taken count.
Dan Gohmanaf752342009-07-07 17:06:11 +00004144const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004145 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004146}
4147
Dan Gohmandc191042009-07-08 19:23:34 +00004148/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4149/// onto the given Worklist.
4150static void
4151PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4152 BasicBlock *Header = L->getHeader();
4153
4154 // Push all Loop-header PHIs onto the Worklist stack.
4155 for (BasicBlock::iterator I = Header->begin();
4156 PHINode *PN = dyn_cast<PHINode>(I); ++I)
4157 Worklist.push_back(PN);
4158}
4159
Dan Gohman2b8da352009-04-30 20:47:05 +00004160const ScalarEvolution::BackedgeTakenInfo &
4161ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004162 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman8b0a4192010-03-01 17:49:51 +00004163 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman76466372009-04-27 20:16:15 +00004164 // update the value. The temporary CouldNotCompute value tells SCEV
4165 // code elsewhere that it shouldn't attempt to request a new
4166 // backedge-taken count, which could result in infinite recursion.
Dan Gohman0daf6872011-05-09 18:44:09 +00004167 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Andrew Trick3ca3f982011-07-26 17:19:55 +00004168 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004169 if (!Pair.second)
4170 return Pair.first->second;
Dan Gohman76466372009-04-27 20:16:15 +00004171
Andrew Trick3ca3f982011-07-26 17:19:55 +00004172 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4173 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4174 // must be cleared in this scope.
4175 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4176
4177 if (Result.getExact(this) != getCouldNotCompute()) {
4178 assert(isLoopInvariant(Result.getExact(this), L) &&
4179 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnera337f5e2011-01-09 02:16:18 +00004180 "Computed backedge-taken count isn't loop invariant for loop!");
4181 ++NumTripCountsComputed;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004182 }
4183 else if (Result.getMax(this) == getCouldNotCompute() &&
4184 isa<PHINode>(L->getHeader()->begin())) {
4185 // Only count loops that have phi nodes as not being computable.
4186 ++NumTripCountsNotComputed;
Chris Lattnera337f5e2011-01-09 02:16:18 +00004187 }
Dan Gohman2b8da352009-04-30 20:47:05 +00004188
Chris Lattnera337f5e2011-01-09 02:16:18 +00004189 // Now that we know more about the trip count for this loop, forget any
4190 // existing SCEV values for PHI nodes in this loop since they are only
4191 // conservative estimates made without the benefit of trip count
4192 // information. This is similar to the code in forgetLoop, except that
4193 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004194 if (Result.hasAnyInfo()) {
Chris Lattnera337f5e2011-01-09 02:16:18 +00004195 SmallVector<Instruction *, 16> Worklist;
4196 PushLoopPHIs(L, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004197
Chris Lattnera337f5e2011-01-09 02:16:18 +00004198 SmallPtrSet<Instruction *, 8> Visited;
4199 while (!Worklist.empty()) {
4200 Instruction *I = Worklist.pop_back_val();
4201 if (!Visited.insert(I)) continue;
Dan Gohmandc191042009-07-08 19:23:34 +00004202
Chris Lattnera337f5e2011-01-09 02:16:18 +00004203 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004204 ValueExprMap.find_as(static_cast<Value *>(I));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004205 if (It != ValueExprMap.end()) {
4206 const SCEV *Old = It->second;
Dan Gohman761065e2010-11-17 02:44:44 +00004207
Chris Lattnera337f5e2011-01-09 02:16:18 +00004208 // SCEVUnknown for a PHI either means that it has an unrecognized
4209 // structure, or it's a PHI that's in the progress of being computed
4210 // by createNodeForPHI. In the former case, additional loop trip
4211 // count information isn't going to change anything. In the later
4212 // case, createNodeForPHI will perform the necessary updates on its
4213 // own when it gets to that point.
4214 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4215 forgetMemoizedResults(Old);
4216 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00004217 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00004218 if (PHINode *PN = dyn_cast<PHINode>(I))
4219 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmandc191042009-07-08 19:23:34 +00004220 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00004221
4222 PushDefUseChildren(I, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004223 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004224 }
Dan Gohman6acd95b2011-04-25 22:48:29 +00004225
4226 // Re-lookup the insert position, since the call to
4227 // ComputeBackedgeTakenCount above could result in a
4228 // recusive call to getBackedgeTakenInfo (on a different
4229 // loop), which would invalidate the iterator computed
4230 // earlier.
4231 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattnerd934c702004-04-02 20:23:17 +00004232}
4233
Dan Gohman880c92a2009-10-31 15:04:55 +00004234/// forgetLoop - This method should be called by the client when it has
4235/// changed a loop in a way that may effect ScalarEvolution's ability to
4236/// compute a trip count, or if the loop is deleted.
4237void ScalarEvolution::forgetLoop(const Loop *L) {
4238 // Drop any stored trip count value.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004239 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4240 BackedgeTakenCounts.find(L);
4241 if (BTCPos != BackedgeTakenCounts.end()) {
4242 BTCPos->second.clear();
4243 BackedgeTakenCounts.erase(BTCPos);
4244 }
Dan Gohmanf1505722009-05-02 17:43:35 +00004245
Dan Gohman880c92a2009-10-31 15:04:55 +00004246 // Drop information about expressions based on loop-header PHIs.
Dan Gohman48f82222009-05-04 22:30:44 +00004247 SmallVector<Instruction *, 16> Worklist;
Dan Gohmandc191042009-07-08 19:23:34 +00004248 PushLoopPHIs(L, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00004249
Dan Gohmandc191042009-07-08 19:23:34 +00004250 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00004251 while (!Worklist.empty()) {
4252 Instruction *I = Worklist.pop_back_val();
Dan Gohmandc191042009-07-08 19:23:34 +00004253 if (!Visited.insert(I)) continue;
4254
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004255 ValueExprMapType::iterator It =
4256 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004257 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00004258 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004259 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00004260 if (PHINode *PN = dyn_cast<PHINode>(I))
4261 ConstantEvolutionLoopExitValue.erase(PN);
4262 }
4263
4264 PushDefUseChildren(I, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00004265 }
Dan Gohmandcb354b2010-10-29 20:16:10 +00004266
4267 // Forget all contained loops too, to avoid dangling entries in the
4268 // ValuesAtScopes map.
4269 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4270 forgetLoop(*I);
Dan Gohman43300342009-02-17 20:49:49 +00004271}
4272
Eric Christopheref6d5932010-07-29 01:25:38 +00004273/// forgetValue - This method should be called by the client when it has
4274/// changed a value in a way that may effect its value, or which may
4275/// disconnect it from a def-use chain linking it to a loop.
4276void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004277 Instruction *I = dyn_cast<Instruction>(V);
4278 if (!I) return;
4279
4280 // Drop information about expressions based on loop-header PHIs.
4281 SmallVector<Instruction *, 16> Worklist;
4282 Worklist.push_back(I);
4283
4284 SmallPtrSet<Instruction *, 8> Visited;
4285 while (!Worklist.empty()) {
4286 I = Worklist.pop_back_val();
4287 if (!Visited.insert(I)) continue;
4288
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004289 ValueExprMapType::iterator It =
4290 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004291 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00004292 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004293 ValueExprMap.erase(It);
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004294 if (PHINode *PN = dyn_cast<PHINode>(I))
4295 ConstantEvolutionLoopExitValue.erase(PN);
4296 }
4297
4298 PushDefUseChildren(I, Worklist);
4299 }
4300}
4301
Andrew Trick3ca3f982011-07-26 17:19:55 +00004302/// getExact - Get the exact loop backedge taken count considering all loop
Andrew Trick90c7a102011-11-16 00:52:40 +00004303/// exits. A computable result can only be return for loops with a single exit.
4304/// Returning the minimum taken count among all exits is incorrect because one
4305/// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
4306/// the limit of each loop test is never skipped. This is a valid assumption as
4307/// long as the loop exits via that test. For precise results, it is the
4308/// caller's responsibility to specify the relevant loop exit using
4309/// getExact(ExitingBlock, SE).
Andrew Trick3ca3f982011-07-26 17:19:55 +00004310const SCEV *
4311ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4312 // If any exits were not computable, the loop is not computable.
4313 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4314
Andrew Trick90c7a102011-11-16 00:52:40 +00004315 // We need exactly one computable exit.
Andrew Trick77c55422011-08-02 04:23:35 +00004316 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00004317 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4318
4319 const SCEV *BECount = 0;
4320 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4321 ENT != 0; ENT = ENT->getNextExit()) {
4322
4323 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4324
4325 if (!BECount)
4326 BECount = ENT->ExactNotTaken;
Andrew Trick90c7a102011-11-16 00:52:40 +00004327 else if (BECount != ENT->ExactNotTaken)
4328 return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00004329 }
Andrew Trickbbb226a2011-09-02 21:20:46 +00004330 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick3ca3f982011-07-26 17:19:55 +00004331 return BECount;
4332}
4333
4334/// getExact - Get the exact not taken count for this loop exit.
4335const SCEV *
Andrew Trick77c55422011-08-02 04:23:35 +00004336ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick3ca3f982011-07-26 17:19:55 +00004337 ScalarEvolution *SE) const {
4338 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4339 ENT != 0; ENT = ENT->getNextExit()) {
4340
Andrew Trick77c55422011-08-02 04:23:35 +00004341 if (ENT->ExitingBlock == ExitingBlock)
Andrew Trick3ca3f982011-07-26 17:19:55 +00004342 return ENT->ExactNotTaken;
4343 }
4344 return SE->getCouldNotCompute();
4345}
4346
4347/// getMax - Get the max backedge taken count for the loop.
4348const SCEV *
4349ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4350 return Max ? Max : SE->getCouldNotCompute();
4351}
4352
Andrew Trick9093e152013-03-26 03:14:53 +00004353bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
4354 ScalarEvolution *SE) const {
4355 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
4356 return true;
4357
4358 if (!ExitNotTaken.ExitingBlock)
4359 return false;
4360
4361 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4362 ENT != 0; ENT = ENT->getNextExit()) {
4363
4364 if (ENT->ExactNotTaken != SE->getCouldNotCompute()
4365 && SE->hasOperand(ENT->ExactNotTaken, S)) {
4366 return true;
4367 }
4368 }
4369 return false;
4370}
4371
Andrew Trick3ca3f982011-07-26 17:19:55 +00004372/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4373/// computable exit into a persistent ExitNotTakenInfo array.
4374ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4375 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4376 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4377
4378 if (!Complete)
4379 ExitNotTaken.setIncomplete();
4380
4381 unsigned NumExits = ExitCounts.size();
4382 if (NumExits == 0) return;
4383
Andrew Trick77c55422011-08-02 04:23:35 +00004384 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004385 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4386 if (NumExits == 1) return;
4387
4388 // Handle the rare case of multiple computable exits.
4389 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4390
4391 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4392 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4393 PrevENT->setNextExit(ENT);
Andrew Trick77c55422011-08-02 04:23:35 +00004394 ENT->ExitingBlock = ExitCounts[i].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004395 ENT->ExactNotTaken = ExitCounts[i].second;
4396 }
4397}
4398
4399/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4400void ScalarEvolution::BackedgeTakenInfo::clear() {
Andrew Trick77c55422011-08-02 04:23:35 +00004401 ExitNotTaken.ExitingBlock = 0;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004402 ExitNotTaken.ExactNotTaken = 0;
4403 delete[] ExitNotTaken.getNextExit();
4404}
4405
Dan Gohman0bddac12009-02-24 18:55:53 +00004406/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4407/// of the specified loop will execute.
Dan Gohman2b8da352009-04-30 20:47:05 +00004408ScalarEvolution::BackedgeTakenInfo
4409ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00004410 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohman96212b62009-06-22 00:31:57 +00004411 L->getExitingBlocks(ExitingBlocks);
Chris Lattnerd934c702004-04-02 20:23:17 +00004412
Dan Gohman96212b62009-06-22 00:31:57 +00004413 // Examine all exits and pick the most conservative values.
Dan Gohmanaf752342009-07-07 17:06:11 +00004414 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00004415 bool CouldComputeBECount = true;
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004416 BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
4417 const SCEV *LatchMaxCount = 0;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004418 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
Dan Gohman96212b62009-06-22 00:31:57 +00004419 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004420 ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]);
4421 if (EL.Exact == getCouldNotCompute())
Dan Gohman96212b62009-06-22 00:31:57 +00004422 // We couldn't compute an exact value for this exit, so
Dan Gohman8885b372009-06-22 21:10:22 +00004423 // we won't be able to compute an exact value for the loop.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004424 CouldComputeBECount = false;
4425 else
4426 ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact));
4427
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004428 if (MaxBECount == getCouldNotCompute())
Andrew Trick3ca3f982011-07-26 17:19:55 +00004429 MaxBECount = EL.Max;
Andrew Trick90c7a102011-11-16 00:52:40 +00004430 else if (EL.Max != getCouldNotCompute()) {
4431 // We cannot take the "min" MaxBECount, because non-unit stride loops may
4432 // skip some loop tests. Taking the max over the exits is sufficiently
4433 // conservative. TODO: We could do better taking into consideration
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004434 // non-latch exits that dominate the latch.
4435 if (EL.MustExit && ExitingBlocks[i] == Latch)
4436 LatchMaxCount = EL.Max;
4437 else
4438 MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, EL.Max);
Andrew Trick90c7a102011-11-16 00:52:40 +00004439 }
Dan Gohman96212b62009-06-22 00:31:57 +00004440 }
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004441 // Be more precise in the easy case of a loop latch that must exit.
4442 if (LatchMaxCount) {
4443 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, LatchMaxCount);
4444 }
Andrew Trick3ca3f982011-07-26 17:19:55 +00004445 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00004446}
4447
Andrew Trick3ca3f982011-07-26 17:19:55 +00004448/// ComputeExitLimit - Compute the number of times the backedge of the specified
4449/// loop will execute if it exits via the specified block.
4450ScalarEvolution::ExitLimit
4451ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
Dan Gohman96212b62009-06-22 00:31:57 +00004452
4453 // Okay, we've chosen an exiting block. See what condition causes us to
Benjamin Kramer5a188542014-02-11 15:44:32 +00004454 // exit at this block and remember the exit block and whether all other targets
4455 // lead to the loop header.
4456 bool MustExecuteLoopHeader = true;
4457 BasicBlock *Exit = 0;
4458 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock);
4459 SI != SE; ++SI)
4460 if (!L->contains(*SI)) {
4461 if (Exit) // Multiple exit successors.
4462 return getCouldNotCompute();
4463 Exit = *SI;
4464 } else if (*SI != L->getHeader()) {
4465 MustExecuteLoopHeader = false;
4466 }
Dan Gohmance973df2009-06-24 04:48:43 +00004467
Chris Lattner18954852007-01-07 02:24:26 +00004468 // At this point, we know we have a conditional branch that determines whether
4469 // the loop is exited. However, we don't know if the branch is executed each
4470 // time through the loop. If not, then the execution count of the branch will
4471 // not be equal to the trip count of the loop.
4472 //
4473 // Currently we check for this by checking to see if the Exit branch goes to
4474 // the loop header. If so, we know it will always execute the same number of
Chris Lattner5a554762007-01-14 01:24:47 +00004475 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohman96212b62009-06-22 00:31:57 +00004476 // loop header. This is common for un-rotated loops.
4477 //
4478 // If both of those tests fail, walk up the unique predecessor chain to the
4479 // header, stopping if there is an edge that doesn't exit the loop. If the
4480 // header is reached, the execution count of the branch will be equal to the
4481 // trip count of the loop.
4482 //
4483 // More extensive analysis could be done to handle more cases here.
4484 //
Benjamin Kramer5a188542014-02-11 15:44:32 +00004485 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
Dan Gohman96212b62009-06-22 00:31:57 +00004486 // The simple checks failed, try climbing the unique predecessor chain
4487 // up to the header.
4488 bool Ok = false;
Benjamin Kramer5a188542014-02-11 15:44:32 +00004489 for (BasicBlock *BB = ExitingBlock; BB; ) {
Dan Gohman96212b62009-06-22 00:31:57 +00004490 BasicBlock *Pred = BB->getUniquePredecessor();
4491 if (!Pred)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004492 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004493 TerminatorInst *PredTerm = Pred->getTerminator();
4494 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4495 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4496 if (PredSucc == BB)
4497 continue;
4498 // If the predecessor has a successor that isn't BB and isn't
4499 // outside the loop, assume the worst.
4500 if (L->contains(PredSucc))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004501 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004502 }
4503 if (Pred == L->getHeader()) {
4504 Ok = true;
4505 break;
4506 }
4507 BB = Pred;
4508 }
4509 if (!Ok)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004510 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004511 }
4512
Benjamin Kramer5a188542014-02-11 15:44:32 +00004513 TerminatorInst *Term = ExitingBlock->getTerminator();
4514 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
4515 assert(BI->isConditional() && "If unconditional, it can't be in loop!");
4516 // Proceed to the next level to examine the exit condition expression.
4517 return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
4518 BI->getSuccessor(1),
4519 /*IsSubExpr=*/false);
4520 }
4521
4522 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
4523 return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit,
4524 /*IsSubExpr=*/false);
4525
4526 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004527}
4528
Andrew Trick3ca3f982011-07-26 17:19:55 +00004529/// ComputeExitLimitFromCond - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00004530/// backedge of the specified loop will execute if its exit condition
4531/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick5b245a12013-05-31 06:43:25 +00004532///
4533/// @param IsSubExpr is true if ExitCond does not directly control the exit
4534/// branch. In this case, we cannot assume that the loop only exits when the
4535/// condition is true and cannot infer that failing to meet the condition prior
4536/// to integer wraparound results in undefined behavior.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004537ScalarEvolution::ExitLimit
4538ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4539 Value *ExitCond,
4540 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00004541 BasicBlock *FBB,
4542 bool IsSubExpr) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00004543 // Check if the controlling expression for this loop is an And or Or.
Dan Gohman96212b62009-06-22 00:31:57 +00004544 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4545 if (BO->getOpcode() == Instruction::And) {
4546 // Recurse on the operands of the and.
Andrew Trick5b245a12013-05-31 06:43:25 +00004547 bool EitherMayExit = L->contains(TBB);
4548 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
4549 IsSubExpr || EitherMayExit);
4550 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
4551 IsSubExpr || EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00004552 const SCEV *BECount = getCouldNotCompute();
4553 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004554 bool MustExit = false;
Andrew Trick5b245a12013-05-31 06:43:25 +00004555 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00004556 // Both conditions must be true for the loop to continue executing.
4557 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004558 if (EL0.Exact == getCouldNotCompute() ||
4559 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004560 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00004561 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004562 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4563 if (EL0.Max == getCouldNotCompute())
4564 MaxBECount = EL1.Max;
4565 else if (EL1.Max == getCouldNotCompute())
4566 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00004567 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004568 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004569 MustExit = EL0.MustExit || EL1.MustExit;
Dan Gohman96212b62009-06-22 00:31:57 +00004570 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00004571 // Both conditions must be true at the same time for the loop to exit.
4572 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00004573 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00004574 if (EL0.Max == EL1.Max)
4575 MaxBECount = EL0.Max;
4576 if (EL0.Exact == EL1.Exact)
4577 BECount = EL0.Exact;
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004578 MustExit = EL0.MustExit && EL1.MustExit;
Dan Gohman96212b62009-06-22 00:31:57 +00004579 }
4580
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004581 return ExitLimit(BECount, MaxBECount, MustExit);
Dan Gohman96212b62009-06-22 00:31:57 +00004582 }
4583 if (BO->getOpcode() == Instruction::Or) {
4584 // Recurse on the operands of the or.
Andrew Trick5b245a12013-05-31 06:43:25 +00004585 bool EitherMayExit = L->contains(FBB);
4586 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
4587 IsSubExpr || EitherMayExit);
4588 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
4589 IsSubExpr || EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00004590 const SCEV *BECount = getCouldNotCompute();
4591 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004592 bool MustExit = false;
Andrew Trick5b245a12013-05-31 06:43:25 +00004593 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00004594 // Both conditions must be false for the loop to continue executing.
4595 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004596 if (EL0.Exact == getCouldNotCompute() ||
4597 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004598 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00004599 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004600 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4601 if (EL0.Max == getCouldNotCompute())
4602 MaxBECount = EL1.Max;
4603 else if (EL1.Max == getCouldNotCompute())
4604 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00004605 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004606 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004607 MustExit = EL0.MustExit || EL1.MustExit;
Dan Gohman96212b62009-06-22 00:31:57 +00004608 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00004609 // Both conditions must be false at the same time for the loop to exit.
4610 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00004611 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00004612 if (EL0.Max == EL1.Max)
4613 MaxBECount = EL0.Max;
4614 if (EL0.Exact == EL1.Exact)
4615 BECount = EL0.Exact;
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004616 MustExit = EL0.MustExit && EL1.MustExit;
Dan Gohman96212b62009-06-22 00:31:57 +00004617 }
4618
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004619 return ExitLimit(BECount, MaxBECount, MustExit);
Dan Gohman96212b62009-06-22 00:31:57 +00004620 }
4621 }
4622
4623 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman8b0a4192010-03-01 17:49:51 +00004624 // Proceed to the next level to examine the icmp.
Dan Gohman96212b62009-06-22 00:31:57 +00004625 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
Andrew Trick5b245a12013-05-31 06:43:25 +00004626 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, IsSubExpr);
Reid Spencer266e42b2006-12-23 06:05:41 +00004627
Dan Gohman6b1e2a82010-02-19 18:12:07 +00004628 // Check for a constant condition. These are normally stripped out by
4629 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4630 // preserve the CFG and is temporarily leaving constant conditions
4631 // in place.
4632 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4633 if (L->contains(FBB) == !CI->getZExtValue())
4634 // The backedge is always taken.
4635 return getCouldNotCompute();
4636 else
4637 // The backedge is never taken.
Dan Gohman1d2ded72010-05-03 22:09:21 +00004638 return getConstant(CI->getType(), 0);
Dan Gohman6b1e2a82010-02-19 18:12:07 +00004639 }
4640
Eli Friedmanebf98b02009-05-09 12:32:42 +00004641 // If it's not an integer or pointer comparison then compute it the hard way.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004642 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohman96212b62009-06-22 00:31:57 +00004643}
4644
Andrew Trick3ca3f982011-07-26 17:19:55 +00004645/// ComputeExitLimitFromICmp - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00004646/// backedge of the specified loop will execute if its exit condition
4647/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004648ScalarEvolution::ExitLimit
4649ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
4650 ICmpInst *ExitCond,
4651 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00004652 BasicBlock *FBB,
4653 bool IsSubExpr) {
Chris Lattnerd934c702004-04-02 20:23:17 +00004654
Reid Spencer266e42b2006-12-23 06:05:41 +00004655 // If the condition was exit on true, convert the condition to exit on false
4656 ICmpInst::Predicate Cond;
Dan Gohman96212b62009-06-22 00:31:57 +00004657 if (!L->contains(FBB))
Reid Spencer266e42b2006-12-23 06:05:41 +00004658 Cond = ExitCond->getPredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00004659 else
Reid Spencer266e42b2006-12-23 06:05:41 +00004660 Cond = ExitCond->getInversePredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00004661
4662 // Handle common loops like: for (X = "string"; *X; ++X)
4663 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4664 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004665 ExitLimit ItCnt =
4666 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanba820342010-02-24 17:31:30 +00004667 if (ItCnt.hasAnyInfo())
4668 return ItCnt;
Chris Lattnerec901cc2004-10-12 01:49:27 +00004669 }
4670
Dan Gohmanaf752342009-07-07 17:06:11 +00004671 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4672 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattnerd934c702004-04-02 20:23:17 +00004673
4674 // Try to evaluate any dependencies out of the loop.
Dan Gohman8ca08852009-05-24 23:25:42 +00004675 LHS = getSCEVAtScope(LHS, L);
4676 RHS = getSCEVAtScope(RHS, L);
Chris Lattnerd934c702004-04-02 20:23:17 +00004677
Dan Gohmance973df2009-06-24 04:48:43 +00004678 // At this point, we would like to compute how many iterations of the
Reid Spencer266e42b2006-12-23 06:05:41 +00004679 // loop the predicate will return true for these inputs.
Dan Gohmanafd6db92010-11-17 21:23:15 +00004680 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohmandc5f5cb2008-09-16 18:52:57 +00004681 // If there is a loop-invariant, force it into the RHS.
Chris Lattnerd934c702004-04-02 20:23:17 +00004682 std::swap(LHS, RHS);
Reid Spencer266e42b2006-12-23 06:05:41 +00004683 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattnerd934c702004-04-02 20:23:17 +00004684 }
4685
Dan Gohman81585c12010-05-03 16:35:17 +00004686 // Simplify the operands before analyzing them.
4687 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4688
Chris Lattnerd934c702004-04-02 20:23:17 +00004689 // If we have a comparison of a chrec against a constant, try to use value
4690 // ranges to answer this query.
Dan Gohmana30370b2009-05-04 22:02:23 +00004691 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4692 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattnerd934c702004-04-02 20:23:17 +00004693 if (AddRec->getLoop() == L) {
Eli Friedmanebf98b02009-05-09 12:32:42 +00004694 // Form the constant range.
4695 ConstantRange CompRange(
4696 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman01808ca2005-04-21 21:13:18 +00004697
Dan Gohmanaf752342009-07-07 17:06:11 +00004698 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedmanebf98b02009-05-09 12:32:42 +00004699 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattnerd934c702004-04-02 20:23:17 +00004700 }
Misha Brukman01808ca2005-04-21 21:13:18 +00004701
Chris Lattnerd934c702004-04-02 20:23:17 +00004702 switch (Cond) {
Reid Spencer266e42b2006-12-23 06:05:41 +00004703 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattnerd934c702004-04-02 20:23:17 +00004704 // Convert to: while (X-Y != 0)
Andrew Trick5b245a12013-05-31 06:43:25 +00004705 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, IsSubExpr);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004706 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00004707 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00004708 }
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00004709 case ICmpInst::ICMP_EQ: { // while (X == Y)
4710 // Convert to: while (X-Y == 0)
Andrew Trick3ca3f982011-07-26 17:19:55 +00004711 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4712 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00004713 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00004714 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00004715 case ICmpInst::ICMP_SLT:
4716 case ICmpInst::ICMP_ULT: { // while (X < Y)
4717 bool IsSigned = Cond == ICmpInst::ICMP_SLT;
4718 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, IsSubExpr);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004719 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00004720 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00004721 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00004722 case ICmpInst::ICMP_SGT:
4723 case ICmpInst::ICMP_UGT: { // while (X > Y)
4724 bool IsSigned = Cond == ICmpInst::ICMP_SGT;
4725 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, IsSubExpr);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004726 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00004727 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00004728 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004729 default:
Chris Lattner09169212004-04-02 20:26:46 +00004730#if 0
David Greenedf1c4972009-12-23 22:18:14 +00004731 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattnerd934c702004-04-02 20:23:17 +00004732 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greenedf1c4972009-12-23 22:18:14 +00004733 dbgs() << "[unsigned] ";
4734 dbgs() << *LHS << " "
Dan Gohmance973df2009-06-24 04:48:43 +00004735 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencer266e42b2006-12-23 06:05:41 +00004736 << " " << *RHS << "\n";
Chris Lattner09169212004-04-02 20:26:46 +00004737#endif
Chris Lattner0defaa12004-04-03 00:43:03 +00004738 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00004739 }
Andrew Trick3ca3f982011-07-26 17:19:55 +00004740 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner4021d1a2004-04-17 18:36:24 +00004741}
4742
Benjamin Kramer5a188542014-02-11 15:44:32 +00004743ScalarEvolution::ExitLimit
4744ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L,
4745 SwitchInst *Switch,
4746 BasicBlock *ExitingBlock,
4747 bool IsSubExpr) {
4748 assert(!L->contains(ExitingBlock) && "Not an exiting block!");
4749
4750 // Give up if the exit is the default dest of a switch.
4751 if (Switch->getDefaultDest() == ExitingBlock)
4752 return getCouldNotCompute();
4753
4754 assert(L->contains(Switch->getDefaultDest()) &&
4755 "Default case must not exit the loop!");
4756 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
4757 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
4758
4759 // while (X != Y) --> while (X-Y != 0)
4760 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, IsSubExpr);
4761 if (EL.hasAnyInfo())
4762 return EL;
4763
4764 return getCouldNotCompute();
4765}
4766
Chris Lattnerec901cc2004-10-12 01:49:27 +00004767static ConstantInt *
Dan Gohmana37eaf22007-10-22 18:31:58 +00004768EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4769 ScalarEvolution &SE) {
Dan Gohmanaf752342009-07-07 17:06:11 +00004770 const SCEV *InVal = SE.getConstant(C);
4771 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattnerec901cc2004-10-12 01:49:27 +00004772 assert(isa<SCEVConstant>(Val) &&
4773 "Evaluation of SCEV at constant didn't fold correctly?");
4774 return cast<SCEVConstant>(Val)->getValue();
4775}
4776
Andrew Trick3ca3f982011-07-26 17:19:55 +00004777/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman0bddac12009-02-24 18:55:53 +00004778/// 'icmp op load X, cst', try to see if we can compute the backedge
4779/// execution count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004780ScalarEvolution::ExitLimit
4781ScalarEvolution::ComputeLoadConstantCompareExitLimit(
4782 LoadInst *LI,
4783 Constant *RHS,
4784 const Loop *L,
4785 ICmpInst::Predicate predicate) {
4786
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004787 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00004788
4789 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanba820342010-02-24 17:31:30 +00004790 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattnerec901cc2004-10-12 01:49:27 +00004791 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004792 if (!GEP) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00004793
4794 // Make sure that it is really a constant global we are gepping, with an
4795 // initializer, and make sure the first IDX is really 0.
4796 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00004797 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00004798 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4799 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004800 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00004801
4802 // Okay, we allow one non-constant index into the GEP instruction.
4803 Value *VarIdx = 0;
Chris Lattnere166a852012-01-24 05:49:24 +00004804 std::vector<Constant*> Indexes;
Chris Lattnerec901cc2004-10-12 01:49:27 +00004805 unsigned VarIdxNum = 0;
4806 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4807 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4808 Indexes.push_back(CI);
4809 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004810 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattnerec901cc2004-10-12 01:49:27 +00004811 VarIdx = GEP->getOperand(i);
4812 VarIdxNum = i-2;
4813 Indexes.push_back(0);
4814 }
4815
Andrew Trick7004e4b2012-03-26 22:33:59 +00004816 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
4817 if (!VarIdx)
4818 return getCouldNotCompute();
4819
Chris Lattnerec901cc2004-10-12 01:49:27 +00004820 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4821 // Check to see if X is a loop variant variable value now.
Dan Gohmanaf752342009-07-07 17:06:11 +00004822 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohman8ca08852009-05-24 23:25:42 +00004823 Idx = getSCEVAtScope(Idx, L);
Chris Lattnerec901cc2004-10-12 01:49:27 +00004824
4825 // We can only recognize very limited forms of loop index expressions, in
4826 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman48f82222009-05-04 22:30:44 +00004827 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohmanafd6db92010-11-17 21:23:15 +00004828 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00004829 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4830 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004831 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00004832
4833 unsigned MaxSteps = MaxBruteForceIterations;
4834 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersonedb4a702009-07-24 23:12:02 +00004835 ConstantInt *ItCst = ConstantInt::get(
Owen Andersonb6b25302009-07-14 23:09:55 +00004836 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanc8e23622009-04-21 23:15:49 +00004837 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattnerec901cc2004-10-12 01:49:27 +00004838
4839 // Form the GEP offset.
4840 Indexes[VarIdxNum] = Val;
4841
Chris Lattnere166a852012-01-24 05:49:24 +00004842 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
4843 Indexes);
Chris Lattnerec901cc2004-10-12 01:49:27 +00004844 if (Result == 0) break; // Cannot compute!
4845
4846 // Evaluate the condition for this iteration.
Reid Spencer266e42b2006-12-23 06:05:41 +00004847 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng75b871f2007-01-11 12:24:14 +00004848 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencer983e3b32007-03-01 07:25:48 +00004849 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattnerec901cc2004-10-12 01:49:27 +00004850#if 0
David Greenedf1c4972009-12-23 22:18:14 +00004851 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmane20f8242009-04-21 00:47:46 +00004852 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4853 << "***\n";
Chris Lattnerec901cc2004-10-12 01:49:27 +00004854#endif
4855 ++NumArrayLenItCounts;
Dan Gohmanc8e23622009-04-21 23:15:49 +00004856 return getConstant(ItCst); // Found terminating iteration!
Chris Lattnerec901cc2004-10-12 01:49:27 +00004857 }
4858 }
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004859 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00004860}
4861
4862
Chris Lattnerdd730472004-04-17 22:58:41 +00004863/// CanConstantFold - Return true if we can constant fold an instruction of the
4864/// specified type, assuming that all operands were constants.
4865static bool CanConstantFold(const Instruction *I) {
Reid Spencer2341c222007-02-02 02:16:23 +00004866 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Nick Lewyckya6674c72011-10-22 19:58:20 +00004867 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
4868 isa<LoadInst>(I))
Chris Lattnerdd730472004-04-17 22:58:41 +00004869 return true;
Misha Brukman01808ca2005-04-21 21:13:18 +00004870
Chris Lattnerdd730472004-04-17 22:58:41 +00004871 if (const CallInst *CI = dyn_cast<CallInst>(I))
4872 if (const Function *F = CI->getCalledFunction())
Dan Gohmana65951f2008-01-31 01:05:10 +00004873 return canConstantFoldCallTo(F);
Chris Lattnerdd730472004-04-17 22:58:41 +00004874 return false;
Chris Lattner4021d1a2004-04-17 18:36:24 +00004875}
4876
Andrew Trick3a86ba72011-10-05 03:25:31 +00004877/// Determine whether this instruction can constant evolve within this loop
4878/// assuming its operands can all constant evolve.
4879static bool canConstantEvolve(Instruction *I, const Loop *L) {
4880 // An instruction outside of the loop can't be derived from a loop PHI.
4881 if (!L->contains(I)) return false;
4882
4883 if (isa<PHINode>(I)) {
4884 if (L->getHeader() == I->getParent())
4885 return true;
4886 else
4887 // We don't currently keep track of the control flow needed to evaluate
4888 // PHIs, so we cannot handle PHIs inside of loops.
4889 return false;
4890 }
4891
4892 // If we won't be able to constant fold this expression even if the operands
4893 // are constants, bail early.
4894 return CanConstantFold(I);
4895}
4896
4897/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
4898/// recursing through each instruction operand until reaching a loop header phi.
4899static PHINode *
4900getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
Andrew Tricke9162f12011-10-05 05:58:49 +00004901 DenseMap<Instruction *, PHINode *> &PHIMap) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00004902
4903 // Otherwise, we can evaluate this instruction if all of its operands are
4904 // constant or derived from a PHI node themselves.
4905 PHINode *PHI = 0;
4906 for (Instruction::op_iterator OpI = UseInst->op_begin(),
4907 OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
4908
4909 if (isa<Constant>(*OpI)) continue;
4910
4911 Instruction *OpInst = dyn_cast<Instruction>(*OpI);
4912 if (!OpInst || !canConstantEvolve(OpInst, L)) return 0;
4913
4914 PHINode *P = dyn_cast<PHINode>(OpInst);
Andrew Trick3e8a5762011-10-05 22:06:53 +00004915 if (!P)
4916 // If this operand is already visited, reuse the prior result.
4917 // We may have P != PHI if this is the deepest point at which the
4918 // inconsistent paths meet.
4919 P = PHIMap.lookup(OpInst);
4920 if (!P) {
4921 // Recurse and memoize the results, whether a phi is found or not.
4922 // This recursive call invalidates pointers into PHIMap.
4923 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
4924 PHIMap[OpInst] = P;
Andrew Tricke9162f12011-10-05 05:58:49 +00004925 }
Andrew Tricke9162f12011-10-05 05:58:49 +00004926 if (P == 0) return 0; // Not evolving from PHI
4927 if (PHI && PHI != P) return 0; // Evolving from multiple different PHIs.
4928 PHI = P;
Andrew Trick3a86ba72011-10-05 03:25:31 +00004929 }
4930 // This is a expression evolving from a constant PHI!
4931 return PHI;
4932}
4933
Chris Lattnerdd730472004-04-17 22:58:41 +00004934/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4935/// in the loop that V is derived from. We allow arbitrary operations along the
4936/// way, but the operands of an operation must either be constants or a value
4937/// derived from a constant PHI. If this expression does not fit with these
4938/// constraints, return null.
4939static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00004940 Instruction *I = dyn_cast<Instruction>(V);
Andrew Trick3a86ba72011-10-05 03:25:31 +00004941 if (I == 0 || !canConstantEvolve(I, L)) return 0;
Chris Lattnerdd730472004-04-17 22:58:41 +00004942
Anton Korobeynikov579f0712008-02-20 11:08:44 +00004943 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00004944 return PN;
Anton Korobeynikov579f0712008-02-20 11:08:44 +00004945 }
Chris Lattnerdd730472004-04-17 22:58:41 +00004946
Andrew Trick3a86ba72011-10-05 03:25:31 +00004947 // Record non-constant instructions contained by the loop.
Andrew Tricke9162f12011-10-05 05:58:49 +00004948 DenseMap<Instruction *, PHINode *> PHIMap;
4949 return getConstantEvolvingPHIOperands(I, L, PHIMap);
Chris Lattnerdd730472004-04-17 22:58:41 +00004950}
4951
4952/// EvaluateExpression - Given an expression that passes the
4953/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4954/// in the loop has the value PHIVal. If we can't fold this expression for some
4955/// reason, return null.
Andrew Trick3a86ba72011-10-05 03:25:31 +00004956static Constant *EvaluateExpression(Value *V, const Loop *L,
4957 DenseMap<Instruction *, Constant *> &Vals,
Rafael Espindola7c68beb2014-02-18 15:33:12 +00004958 const DataLayout *DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00004959 const TargetLibraryInfo *TLI) {
Andrew Tricke9162f12011-10-05 05:58:49 +00004960 // Convenient constant check, but redundant for recursive calls.
Reid Spencer30d69a52004-07-18 00:18:30 +00004961 if (Constant *C = dyn_cast<Constant>(V)) return C;
Nick Lewyckya6674c72011-10-22 19:58:20 +00004962 Instruction *I = dyn_cast<Instruction>(V);
4963 if (!I) return 0;
Andrew Trick3a86ba72011-10-05 03:25:31 +00004964
Andrew Trick3a86ba72011-10-05 03:25:31 +00004965 if (Constant *C = Vals.lookup(I)) return C;
4966
Nick Lewyckya6674c72011-10-22 19:58:20 +00004967 // An instruction inside the loop depends on a value outside the loop that we
4968 // weren't given a mapping for, or a value such as a call inside the loop.
4969 if (!canConstantEvolve(I, L)) return 0;
4970
4971 // An unmapped PHI can be due to a branch or another loop inside this loop,
4972 // or due to this not being the initial iteration through a loop where we
4973 // couldn't compute the evolution of this particular PHI last time.
4974 if (isa<PHINode>(I)) return 0;
Chris Lattnerdd730472004-04-17 22:58:41 +00004975
Dan Gohmanf820bd32010-06-22 13:15:46 +00004976 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattnerdd730472004-04-17 22:58:41 +00004977
4978 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Andrew Tricke9162f12011-10-05 05:58:49 +00004979 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
4980 if (!Operand) {
Nick Lewyckya447e0f32011-10-14 09:38:46 +00004981 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
4982 if (!Operands[i]) return 0;
Andrew Tricke9162f12011-10-05 05:58:49 +00004983 continue;
4984 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00004985 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
Andrew Tricke9162f12011-10-05 05:58:49 +00004986 Vals[Operand] = C;
4987 if (!C) return 0;
4988 Operands[i] = C;
Chris Lattnerdd730472004-04-17 22:58:41 +00004989 }
4990
Nick Lewyckya6674c72011-10-22 19:58:20 +00004991 if (CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattnercdfb80d2009-11-09 23:06:58 +00004992 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Rafael Espindola7c68beb2014-02-18 15:33:12 +00004993 Operands[1], DL, TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00004994 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
4995 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00004996 return ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00004997 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00004998 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00004999 TLI);
Chris Lattnerdd730472004-04-17 22:58:41 +00005000}
5001
5002/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
5003/// in the header of its containing loop, we know the loop executes a
5004/// constant number of times, and the PHI node is just a recurrence
5005/// involving constants, fold it.
Dan Gohmance973df2009-06-24 04:48:43 +00005006Constant *
5007ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohmancb0efec2009-12-18 01:14:11 +00005008 const APInt &BEs,
Dan Gohmance973df2009-06-24 04:48:43 +00005009 const Loop *L) {
Dan Gohman0daf6872011-05-09 18:44:09 +00005010 DenseMap<PHINode*, Constant*>::const_iterator I =
Chris Lattnerdd730472004-04-17 22:58:41 +00005011 ConstantEvolutionLoopExitValue.find(PN);
5012 if (I != ConstantEvolutionLoopExitValue.end())
5013 return I->second;
5014
Dan Gohman4ce1fb12010-04-08 23:03:40 +00005015 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattnerdd730472004-04-17 22:58:41 +00005016 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
5017
5018 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
5019
Andrew Trick3a86ba72011-10-05 03:25:31 +00005020 DenseMap<Instruction *, Constant *> CurrentIterVals;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005021 BasicBlock *Header = L->getHeader();
5022 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
Andrew Trick3a86ba72011-10-05 03:25:31 +00005023
Chris Lattnerdd730472004-04-17 22:58:41 +00005024 // Since the loop is canonicalized, the PHI node must have two entries. One
5025 // entry must be a constant (coming in from outside of the loop), and the
5026 // second must be derived from the same PHI.
5027 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Nick Lewyckya6674c72011-10-22 19:58:20 +00005028 PHINode *PHI = 0;
5029 for (BasicBlock::iterator I = Header->begin();
5030 (PHI = dyn_cast<PHINode>(I)); ++I) {
5031 Constant *StartCST =
5032 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
5033 if (StartCST == 0) continue;
5034 CurrentIterVals[PHI] = StartCST;
5035 }
5036 if (!CurrentIterVals.count(PN))
5037 return RetVal = 0;
Chris Lattnerdd730472004-04-17 22:58:41 +00005038
5039 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Chris Lattnerdd730472004-04-17 22:58:41 +00005040
5041 // Execute the loop symbolically to determine the exit value.
Dan Gohman0bddac12009-02-24 18:55:53 +00005042 if (BEs.getActiveBits() >= 32)
Reid Spencer983e3b32007-03-01 07:25:48 +00005043 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattnerdd730472004-04-17 22:58:41 +00005044
Dan Gohman0bddac12009-02-24 18:55:53 +00005045 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencer983e3b32007-03-01 07:25:48 +00005046 unsigned IterationNum = 0;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005047 for (; ; ++IterationNum) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005048 if (IterationNum == NumIterations)
Andrew Trick3a86ba72011-10-05 03:25:31 +00005049 return RetVal = CurrentIterVals[PN]; // Got exit value!
Chris Lattnerdd730472004-04-17 22:58:41 +00005050
Nick Lewyckya6674c72011-10-22 19:58:20 +00005051 // Compute the value of the PHIs for the next iteration.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005052 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
Nick Lewyckya6674c72011-10-22 19:58:20 +00005053 DenseMap<Instruction *, Constant *> NextIterVals;
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005054 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005055 TLI);
Chris Lattnerdd730472004-04-17 22:58:41 +00005056 if (NextPHI == 0)
5057 return 0; // Couldn't evaluate!
Andrew Trick3a86ba72011-10-05 03:25:31 +00005058 NextIterVals[PN] = NextPHI;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005059
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005060 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
5061
Nick Lewyckya6674c72011-10-22 19:58:20 +00005062 // Also evaluate the other PHI nodes. However, we don't get to stop if we
5063 // cease to be able to evaluate one of them or if they stop evolving,
5064 // because that doesn't necessarily prevent us from computing PN.
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005065 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005066 for (DenseMap<Instruction *, Constant *>::const_iterator
5067 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5068 PHINode *PHI = dyn_cast<PHINode>(I->first);
Nick Lewycky8e904de2011-10-24 05:51:01 +00005069 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005070 PHIsToCompute.push_back(std::make_pair(PHI, I->second));
5071 }
5072 // We use two distinct loops because EvaluateExpression may invalidate any
5073 // iterators into CurrentIterVals.
5074 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
5075 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
5076 PHINode *PHI = I->first;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005077 Constant *&NextPHI = NextIterVals[PHI];
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005078 if (!NextPHI) { // Not already computed.
5079 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005080 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005081 }
5082 if (NextPHI != I->second)
5083 StoppedEvolving = false;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005084 }
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005085
5086 // If all entries in CurrentIterVals == NextIterVals then we can stop
5087 // iterating, the loop can't continue to change.
5088 if (StoppedEvolving)
5089 return RetVal = CurrentIterVals[PN];
5090
Andrew Trick3a86ba72011-10-05 03:25:31 +00005091 CurrentIterVals.swap(NextIterVals);
Chris Lattnerdd730472004-04-17 22:58:41 +00005092 }
5093}
5094
Andrew Trick3ca3f982011-07-26 17:19:55 +00005095/// ComputeExitCountExhaustively - If the loop is known to execute a
Chris Lattner4021d1a2004-04-17 18:36:24 +00005096/// constant number of times (the condition evolves only from constants),
5097/// try to evaluate a few iterations of the loop until we get the exit
5098/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005099/// evaluate the trip count of the loop, return getCouldNotCompute().
Nick Lewyckya6674c72011-10-22 19:58:20 +00005100const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
5101 Value *Cond,
5102 bool ExitWhen) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00005103 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005104 if (PN == 0) return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00005105
Dan Gohman866971e2010-06-19 14:17:24 +00005106 // If the loop is canonicalized, the PHI will have exactly two entries.
5107 // That's the only form we support here.
5108 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
5109
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005110 DenseMap<Instruction *, Constant *> CurrentIterVals;
5111 BasicBlock *Header = L->getHeader();
5112 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
5113
Dan Gohman866971e2010-06-19 14:17:24 +00005114 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner4021d1a2004-04-17 18:36:24 +00005115 // second must be derived from the same PHI.
5116 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005117 PHINode *PHI = 0;
5118 for (BasicBlock::iterator I = Header->begin();
5119 (PHI = dyn_cast<PHINode>(I)); ++I) {
5120 Constant *StartCST =
5121 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
5122 if (StartCST == 0) continue;
5123 CurrentIterVals[PHI] = StartCST;
5124 }
5125 if (!CurrentIterVals.count(PN))
5126 return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00005127
5128 // Okay, we find a PHI node that defines the trip count of this loop. Execute
5129 // the loop symbolically to determine when the condition gets a value of
5130 // "ExitWhen".
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005131
Andrew Trick90c7a102011-11-16 00:52:40 +00005132 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005133 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
Zhou Sheng75b871f2007-01-11 12:24:14 +00005134 ConstantInt *CondVal =
Chad Rosiere6de63d2011-12-01 21:29:16 +00005135 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals,
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005136 DL, TLI));
Chris Lattnerdd730472004-04-17 22:58:41 +00005137
Zhou Sheng75b871f2007-01-11 12:24:14 +00005138 // Couldn't symbolically evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005139 if (!CondVal) return getCouldNotCompute();
Zhou Sheng75b871f2007-01-11 12:24:14 +00005140
Reid Spencer983e3b32007-03-01 07:25:48 +00005141 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00005142 ++NumBruteForceTripCountsComputed;
Owen Anderson55f1c092009-08-13 21:58:54 +00005143 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner4021d1a2004-04-17 18:36:24 +00005144 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005145
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005146 // Update all the PHI nodes for the next iteration.
5147 DenseMap<Instruction *, Constant *> NextIterVals;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005148
5149 // Create a list of which PHIs we need to compute. We want to do this before
5150 // calling EvaluateExpression on them because that may invalidate iterators
5151 // into CurrentIterVals.
5152 SmallVector<PHINode *, 8> PHIsToCompute;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005153 for (DenseMap<Instruction *, Constant *>::const_iterator
5154 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5155 PHINode *PHI = dyn_cast<PHINode>(I->first);
5156 if (!PHI || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005157 PHIsToCompute.push_back(PHI);
5158 }
5159 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
5160 E = PHIsToCompute.end(); I != E; ++I) {
5161 PHINode *PHI = *I;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005162 Constant *&NextPHI = NextIterVals[PHI];
5163 if (NextPHI) continue; // Already computed!
5164
5165 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005166 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005167 }
5168 CurrentIterVals.swap(NextIterVals);
Chris Lattner4021d1a2004-04-17 18:36:24 +00005169 }
5170
5171 // Too many iterations were needed to evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005172 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005173}
5174
Dan Gohman237d9e52009-09-03 15:00:26 +00005175/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohmanb81f47d2009-05-08 20:38:54 +00005176/// at the specified scope in the program. The L value specifies a loop
5177/// nest to evaluate the expression at, where null is the top-level or a
5178/// specified loop is immediately inside of the loop.
5179///
5180/// This method can be used to compute the exit value for a variable defined
5181/// in a loop by querying what the value will hold in the parent loop.
5182///
Dan Gohman8ca08852009-05-24 23:25:42 +00005183/// In the case that a relevant loop exit value cannot be computed, the
5184/// original value V is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00005185const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005186 // Check to see if we've folded this expression at this loop before.
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00005187 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V];
5188 for (unsigned u = 0; u < Values.size(); u++) {
5189 if (Values[u].first == L)
5190 return Values[u].second ? Values[u].second : V;
5191 }
5192 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(0)));
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005193 // Otherwise compute it.
5194 const SCEV *C = computeSCEVAtScope(V, L);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00005195 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V];
5196 for (unsigned u = Values2.size(); u > 0; u--) {
5197 if (Values2[u - 1].first == L) {
5198 Values2[u - 1].second = C;
5199 break;
5200 }
5201 }
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005202 return C;
5203}
5204
Nick Lewyckya6674c72011-10-22 19:58:20 +00005205/// This builds up a Constant using the ConstantExpr interface. That way, we
5206/// will return Constants for objects which aren't represented by a
5207/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5208/// Returns NULL if the SCEV isn't representable as a Constant.
5209static Constant *BuildConstantFromSCEV(const SCEV *V) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00005210 switch (static_cast<SCEVTypes>(V->getSCEVType())) {
Nick Lewyckya6674c72011-10-22 19:58:20 +00005211 case scCouldNotCompute:
5212 case scAddRecExpr:
5213 break;
5214 case scConstant:
5215 return cast<SCEVConstant>(V)->getValue();
5216 case scUnknown:
5217 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5218 case scSignExtend: {
5219 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5220 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5221 return ConstantExpr::getSExt(CastOp, SS->getType());
5222 break;
5223 }
5224 case scZeroExtend: {
5225 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5226 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5227 return ConstantExpr::getZExt(CastOp, SZ->getType());
5228 break;
5229 }
5230 case scTruncate: {
5231 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5232 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5233 return ConstantExpr::getTrunc(CastOp, ST->getType());
5234 break;
5235 }
5236 case scAddExpr: {
5237 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5238 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005239 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5240 unsigned AS = PTy->getAddressSpace();
5241 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
5242 C = ConstantExpr::getBitCast(C, DestPtrTy);
5243 }
Nick Lewyckya6674c72011-10-22 19:58:20 +00005244 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5245 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
5246 if (!C2) return 0;
5247
5248 // First pointer!
5249 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005250 unsigned AS = C2->getType()->getPointerAddressSpace();
Nick Lewyckya6674c72011-10-22 19:58:20 +00005251 std::swap(C, C2);
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005252 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005253 // The offsets have been converted to bytes. We can add bytes to an
5254 // i8* by GEP with the byte count in the first index.
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005255 C = ConstantExpr::getBitCast(C, DestPtrTy);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005256 }
5257
5258 // Don't bother trying to sum two pointers. We probably can't
5259 // statically compute a load that results from it anyway.
5260 if (C2->getType()->isPointerTy())
5261 return 0;
5262
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005263 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5264 if (PTy->getElementType()->isStructTy())
Nick Lewyckya6674c72011-10-22 19:58:20 +00005265 C2 = ConstantExpr::getIntegerCast(
5266 C2, Type::getInt32Ty(C->getContext()), true);
5267 C = ConstantExpr::getGetElementPtr(C, C2);
5268 } else
5269 C = ConstantExpr::getAdd(C, C2);
5270 }
5271 return C;
5272 }
5273 break;
5274 }
5275 case scMulExpr: {
5276 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5277 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5278 // Don't bother with pointers at all.
5279 if (C->getType()->isPointerTy()) return 0;
5280 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5281 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
5282 if (!C2 || C2->getType()->isPointerTy()) return 0;
5283 C = ConstantExpr::getMul(C, C2);
5284 }
5285 return C;
5286 }
5287 break;
5288 }
5289 case scUDivExpr: {
5290 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5291 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5292 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5293 if (LHS->getType() == RHS->getType())
5294 return ConstantExpr::getUDiv(LHS, RHS);
5295 break;
5296 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00005297 case scSMaxExpr:
5298 case scUMaxExpr:
5299 break; // TODO: smax, umax.
Nick Lewyckya6674c72011-10-22 19:58:20 +00005300 }
5301 return 0;
5302}
5303
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005304const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005305 if (isa<SCEVConstant>(V)) return V;
Misha Brukman01808ca2005-04-21 21:13:18 +00005306
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00005307 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattnerdd730472004-04-17 22:58:41 +00005308 // exit value from the loop without using SCEVs.
Dan Gohmana30370b2009-05-04 22:02:23 +00005309 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005310 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00005311 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattnerdd730472004-04-17 22:58:41 +00005312 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
5313 if (PHINode *PN = dyn_cast<PHINode>(I))
5314 if (PN->getParent() == LI->getHeader()) {
5315 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman0bddac12009-02-24 18:55:53 +00005316 // to see if the loop that contains it has a known backedge-taken
5317 // count. If so, we may be able to force computation of the exit
5318 // value.
Dan Gohmanaf752342009-07-07 17:06:11 +00005319 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohmana30370b2009-05-04 22:02:23 +00005320 if (const SCEVConstant *BTCC =
Dan Gohman0bddac12009-02-24 18:55:53 +00005321 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005322 // Okay, we know how many times the containing loop executes. If
5323 // this is a constant evolving PHI node, get the final value at
5324 // the specified iteration number.
5325 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman0bddac12009-02-24 18:55:53 +00005326 BTCC->getValue()->getValue(),
Chris Lattnerdd730472004-04-17 22:58:41 +00005327 LI);
Dan Gohman9d203c62009-06-29 21:31:18 +00005328 if (RV) return getSCEV(RV);
Chris Lattnerdd730472004-04-17 22:58:41 +00005329 }
5330 }
5331
Reid Spencere6328ca2006-12-04 21:33:23 +00005332 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattnerdd730472004-04-17 22:58:41 +00005333 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencere6328ca2006-12-04 21:33:23 +00005334 // the arguments into constants, and if so, try to constant propagate the
Chris Lattnerdd730472004-04-17 22:58:41 +00005335 // result. This is particularly useful for computing loop exit values.
5336 if (CanConstantFold(I)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005337 SmallVector<Constant *, 4> Operands;
5338 bool MadeImprovement = false;
Chris Lattnerdd730472004-04-17 22:58:41 +00005339 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5340 Value *Op = I->getOperand(i);
5341 if (Constant *C = dyn_cast<Constant>(Op)) {
5342 Operands.push_back(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005343 continue;
Chris Lattnerdd730472004-04-17 22:58:41 +00005344 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005345
5346 // If any of the operands is non-constant and if they are
5347 // non-integer and non-pointer, don't even try to analyze them
5348 // with scev techniques.
5349 if (!isSCEVable(Op->getType()))
5350 return V;
5351
5352 const SCEV *OrigV = getSCEV(Op);
5353 const SCEV *OpV = getSCEVAtScope(OrigV, L);
5354 MadeImprovement |= OrigV != OpV;
5355
Nick Lewyckya6674c72011-10-22 19:58:20 +00005356 Constant *C = BuildConstantFromSCEV(OpV);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005357 if (!C) return V;
5358 if (C->getType() != Op->getType())
5359 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5360 Op->getType(),
5361 false),
5362 C, Op->getType());
5363 Operands.push_back(C);
Chris Lattnerdd730472004-04-17 22:58:41 +00005364 }
Dan Gohmance973df2009-06-24 04:48:43 +00005365
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005366 // Check to see if getSCEVAtScope actually made an improvement.
5367 if (MadeImprovement) {
5368 Constant *C = 0;
5369 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
5370 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005371 Operands[0], Operands[1], DL,
Chad Rosier43a33062011-12-02 01:26:24 +00005372 TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005373 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5374 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005375 C = ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005376 } else
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005377 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005378 Operands, DL, TLI);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005379 if (!C) return V;
Dan Gohman4aad7502010-02-24 19:31:47 +00005380 return getSCEV(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005381 }
Chris Lattnerdd730472004-04-17 22:58:41 +00005382 }
5383 }
5384
5385 // This is some other type of SCEVUnknown, just return it.
5386 return V;
5387 }
5388
Dan Gohmana30370b2009-05-04 22:02:23 +00005389 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005390 // Avoid performing the look-up in the common case where the specified
5391 // expression has no loop-variant portions.
5392 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005393 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005394 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005395 // Okay, at least one of these operands is loop variant but might be
5396 // foldable. Build a new instance of the folded commutative expression.
Dan Gohmance973df2009-06-24 04:48:43 +00005397 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5398 Comm->op_begin()+i);
Chris Lattnerd934c702004-04-02 20:23:17 +00005399 NewOps.push_back(OpAtScope);
5400
5401 for (++i; i != e; ++i) {
5402 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005403 NewOps.push_back(OpAtScope);
5404 }
5405 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005406 return getAddExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00005407 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005408 return getMulExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00005409 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005410 return getSMaxExpr(NewOps);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00005411 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005412 return getUMaxExpr(NewOps);
Torok Edwinfbcc6632009-07-14 16:55:14 +00005413 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00005414 }
5415 }
5416 // If we got here, all operands are loop invariant.
5417 return Comm;
5418 }
5419
Dan Gohmana30370b2009-05-04 22:02:23 +00005420 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005421 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5422 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky52348302009-01-13 09:18:58 +00005423 if (LHS == Div->getLHS() && RHS == Div->getRHS())
5424 return Div; // must be loop invariant
Dan Gohmanc8e23622009-04-21 23:15:49 +00005425 return getUDivExpr(LHS, RHS);
Chris Lattnerd934c702004-04-02 20:23:17 +00005426 }
5427
5428 // If this is a loop recurrence for a loop that does not contain L, then we
5429 // are dealing with the final value computed by the loop.
Dan Gohmana30370b2009-05-04 22:02:23 +00005430 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005431 // First, attempt to evaluate each operand.
5432 // Avoid performing the look-up in the common case where the specified
5433 // expression has no loop-variant portions.
5434 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5435 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5436 if (OpAtScope == AddRec->getOperand(i))
5437 continue;
5438
5439 // Okay, at least one of these operands is loop variant but might be
5440 // foldable. Build a new instance of the folded commutative expression.
5441 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
5442 AddRec->op_begin()+i);
5443 NewOps.push_back(OpAtScope);
5444 for (++i; i != e; ++i)
5445 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
5446
Andrew Trick759ba082011-04-27 01:21:25 +00005447 const SCEV *FoldedRec =
Andrew Trick8b55b732011-03-14 16:50:06 +00005448 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick759ba082011-04-27 01:21:25 +00005449 AddRec->getNoWrapFlags(SCEV::FlagNW));
5450 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick01eff822011-04-27 05:42:17 +00005451 // The addrec may be folded to a nonrecurrence, for example, if the
5452 // induction variable is multiplied by zero after constant folding. Go
5453 // ahead and return the folded value.
Andrew Trick759ba082011-04-27 01:21:25 +00005454 if (!AddRec)
5455 return FoldedRec;
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005456 break;
5457 }
5458
5459 // If the scope is outside the addrec's loop, evaluate it by using the
5460 // loop exit value of the addrec.
5461 if (!AddRec->getLoop()->contains(L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005462 // To evaluate this recurrence, we need to know how many times the AddRec
5463 // loop iterates. Compute this now.
Dan Gohmanaf752342009-07-07 17:06:11 +00005464 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005465 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman01808ca2005-04-21 21:13:18 +00005466
Eli Friedman61f67622008-08-04 23:49:06 +00005467 // Then, evaluate the AddRec.
Dan Gohmanc8e23622009-04-21 23:15:49 +00005468 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattnerd934c702004-04-02 20:23:17 +00005469 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005470
Dan Gohman8ca08852009-05-24 23:25:42 +00005471 return AddRec;
Chris Lattnerd934c702004-04-02 20:23:17 +00005472 }
5473
Dan Gohmana30370b2009-05-04 22:02:23 +00005474 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005475 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00005476 if (Op == Cast->getOperand())
5477 return Cast; // must be loop invariant
5478 return getZeroExtendExpr(Op, Cast->getType());
5479 }
5480
Dan Gohmana30370b2009-05-04 22:02:23 +00005481 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005482 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00005483 if (Op == Cast->getOperand())
5484 return Cast; // must be loop invariant
5485 return getSignExtendExpr(Op, Cast->getType());
5486 }
5487
Dan Gohmana30370b2009-05-04 22:02:23 +00005488 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005489 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00005490 if (Op == Cast->getOperand())
5491 return Cast; // must be loop invariant
5492 return getTruncateExpr(Op, Cast->getType());
5493 }
5494
Torok Edwinfbcc6632009-07-14 16:55:14 +00005495 llvm_unreachable("Unknown SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00005496}
5497
Dan Gohmanb81f47d2009-05-08 20:38:54 +00005498/// getSCEVAtScope - This is a convenience function which does
5499/// getSCEVAtScope(getSCEV(V), L).
Dan Gohmanaf752342009-07-07 17:06:11 +00005500const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00005501 return getSCEVAtScope(getSCEV(V), L);
5502}
5503
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005504/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5505/// following equation:
5506///
5507/// A * X = B (mod N)
5508///
5509/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5510/// A and B isn't important.
5511///
5512/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00005513static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005514 ScalarEvolution &SE) {
5515 uint32_t BW = A.getBitWidth();
5516 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5517 assert(A != 0 && "A must be non-zero.");
5518
5519 // 1. D = gcd(A, N)
5520 //
5521 // The gcd of A and N may have only one prime factor: 2. The number of
5522 // trailing zeros in A is its multiplicity
5523 uint32_t Mult2 = A.countTrailingZeros();
5524 // D = 2^Mult2
5525
5526 // 2. Check if B is divisible by D.
5527 //
5528 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5529 // is not less than multiplicity of this prime factor for D.
5530 if (B.countTrailingZeros() < Mult2)
Dan Gohman31efa302009-04-18 17:58:19 +00005531 return SE.getCouldNotCompute();
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005532
5533 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5534 // modulo (N / D).
5535 //
5536 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
5537 // bit width during computations.
5538 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
5539 APInt Mod(BW + 1, 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00005540 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005541 APInt I = AD.multiplicativeInverse(Mod);
5542
5543 // 4. Compute the minimum unsigned root of the equation:
5544 // I * (B / D) mod (N / D)
5545 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5546
5547 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5548 // bits.
5549 return SE.getConstant(Result.trunc(BW));
5550}
Chris Lattnerd934c702004-04-02 20:23:17 +00005551
5552/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5553/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
5554/// might be the same) or two SCEVCouldNotCompute objects.
5555///
Dan Gohmanaf752342009-07-07 17:06:11 +00005556static std::pair<const SCEV *,const SCEV *>
Dan Gohmana37eaf22007-10-22 18:31:58 +00005557SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005558 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman48f82222009-05-04 22:30:44 +00005559 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5560 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5561 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman01808ca2005-04-21 21:13:18 +00005562
Chris Lattnerd934c702004-04-02 20:23:17 +00005563 // We currently can only solve this if the coefficients are constants.
Reid Spencer983e3b32007-03-01 07:25:48 +00005564 if (!LC || !MC || !NC) {
Dan Gohman48f82222009-05-04 22:30:44 +00005565 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005566 return std::make_pair(CNC, CNC);
5567 }
5568
Reid Spencer983e3b32007-03-01 07:25:48 +00005569 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnercad61e82007-04-15 19:52:49 +00005570 const APInt &L = LC->getValue()->getValue();
5571 const APInt &M = MC->getValue()->getValue();
5572 const APInt &N = NC->getValue()->getValue();
Reid Spencer983e3b32007-03-01 07:25:48 +00005573 APInt Two(BitWidth, 2);
5574 APInt Four(BitWidth, 4);
Misha Brukman01808ca2005-04-21 21:13:18 +00005575
Dan Gohmance973df2009-06-24 04:48:43 +00005576 {
Reid Spencer983e3b32007-03-01 07:25:48 +00005577 using namespace APIntOps;
Zhou Sheng2852d992007-04-07 17:48:27 +00005578 const APInt& C = L;
Reid Spencer983e3b32007-03-01 07:25:48 +00005579 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
5580 // The B coefficient is M-N/2
5581 APInt B(M);
5582 B -= sdiv(N,Two);
Misha Brukman01808ca2005-04-21 21:13:18 +00005583
Reid Spencer983e3b32007-03-01 07:25:48 +00005584 // The A coefficient is N/2
Zhou Sheng2852d992007-04-07 17:48:27 +00005585 APInt A(N.sdiv(Two));
Chris Lattnerd934c702004-04-02 20:23:17 +00005586
Reid Spencer983e3b32007-03-01 07:25:48 +00005587 // Compute the B^2-4ac term.
5588 APInt SqrtTerm(B);
5589 SqrtTerm *= B;
5590 SqrtTerm -= Four * (A * C);
Chris Lattnerd934c702004-04-02 20:23:17 +00005591
Nick Lewyckyfb780832012-08-01 09:14:36 +00005592 if (SqrtTerm.isNegative()) {
5593 // The loop is provably infinite.
5594 const SCEV *CNC = SE.getCouldNotCompute();
5595 return std::make_pair(CNC, CNC);
5596 }
5597
Reid Spencer983e3b32007-03-01 07:25:48 +00005598 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
5599 // integer value or else APInt::sqrt() will assert.
5600 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman01808ca2005-04-21 21:13:18 +00005601
Dan Gohmance973df2009-06-24 04:48:43 +00005602 // Compute the two solutions for the quadratic formula.
Reid Spencer983e3b32007-03-01 07:25:48 +00005603 // The divisions must be performed as signed divisions.
5604 APInt NegB(-B);
Nick Lewycky31555522011-10-03 07:10:45 +00005605 APInt TwoA(A << 1);
Nick Lewycky7b14e202008-11-03 02:43:49 +00005606 if (TwoA.isMinValue()) {
Dan Gohman48f82222009-05-04 22:30:44 +00005607 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky7b14e202008-11-03 02:43:49 +00005608 return std::make_pair(CNC, CNC);
5609 }
5610
Owen Anderson47db9412009-07-22 00:24:57 +00005611 LLVMContext &Context = SE.getContext();
Owen Andersonf1f17432009-07-06 22:37:39 +00005612
5613 ConstantInt *Solution1 =
Owen Andersonedb4a702009-07-24 23:12:02 +00005614 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Andersonf1f17432009-07-06 22:37:39 +00005615 ConstantInt *Solution2 =
Owen Andersonedb4a702009-07-24 23:12:02 +00005616 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman01808ca2005-04-21 21:13:18 +00005617
Dan Gohmance973df2009-06-24 04:48:43 +00005618 return std::make_pair(SE.getConstant(Solution1),
Dan Gohmana37eaf22007-10-22 18:31:58 +00005619 SE.getConstant(Solution2));
Nick Lewycky31555522011-10-03 07:10:45 +00005620 } // end APIntOps namespace
Chris Lattnerd934c702004-04-02 20:23:17 +00005621}
5622
5623/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman4c720c02009-06-06 14:37:11 +00005624/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick8b55b732011-03-14 16:50:06 +00005625///
5626/// This is only used for loops with a "x != y" exit test. The exit condition is
5627/// now expressed as a single expression, V = x-y. So the exit test is
5628/// effectively V != 0. We know and take advantage of the fact that this
5629/// expression only being used in a comparison by zero context.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005630ScalarEvolution::ExitLimit
Andrew Trick5b245a12013-05-31 06:43:25 +00005631ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005632 // If the value is a constant
Dan Gohmana30370b2009-05-04 22:02:23 +00005633 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005634 // If the value is already zero, the branch will execute zero times.
Reid Spencer2e54a152007-03-02 00:28:52 +00005635 if (C->getValue()->isZero()) return C;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005636 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00005637 }
5638
Dan Gohman48f82222009-05-04 22:30:44 +00005639 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00005640 if (!AddRec || AddRec->getLoop() != L)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005641 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005642
Chris Lattnerdff679f2011-01-09 22:39:48 +00005643 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
5644 // the quadratic equation to solve it.
5645 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
5646 std::pair<const SCEV *,const SCEV *> Roots =
5647 SolveQuadraticEquation(AddRec, *this);
Dan Gohman48f82222009-05-04 22:30:44 +00005648 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5649 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerdff679f2011-01-09 22:39:48 +00005650 if (R1 && R2) {
Chris Lattner09169212004-04-02 20:26:46 +00005651#if 0
David Greenedf1c4972009-12-23 22:18:14 +00005652 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmane20f8242009-04-21 00:47:46 +00005653 << " sol#2: " << *R2 << "\n";
Chris Lattner09169212004-04-02 20:26:46 +00005654#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00005655 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00005656 if (ConstantInt *CB =
Chris Lattner28f140a2011-01-09 22:58:47 +00005657 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
5658 R1->getValue(),
5659 R2->getValue()))) {
Reid Spencercddc9df2007-01-12 04:24:46 +00005660 if (CB->getZExtValue() == false)
Chris Lattnerd934c702004-04-02 20:23:17 +00005661 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick2a3b7162011-03-09 17:23:39 +00005662
Chris Lattnerd934c702004-04-02 20:23:17 +00005663 // We can only use this value if the chrec ends up with an exact zero
5664 // value at this index. When solving for "X*X != 5", for example, we
5665 // should not accept a root of 2.
Dan Gohmanaf752342009-07-07 17:06:11 +00005666 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmanbe928e32008-06-18 16:23:07 +00005667 if (Val->isZero())
5668 return R1; // We found a quadratic root!
Chris Lattnerd934c702004-04-02 20:23:17 +00005669 }
5670 }
Chris Lattnerdff679f2011-01-09 22:39:48 +00005671 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005672 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005673
Chris Lattnerdff679f2011-01-09 22:39:48 +00005674 // Otherwise we can only handle this if it is affine.
5675 if (!AddRec->isAffine())
5676 return getCouldNotCompute();
5677
5678 // If this is an affine expression, the execution count of this branch is
5679 // the minimum unsigned root of the following equation:
5680 //
5681 // Start + Step*N = 0 (mod 2^BW)
5682 //
5683 // equivalent to:
5684 //
5685 // Step*N = -Start (mod 2^BW)
5686 //
5687 // where BW is the common bit width of Start and Step.
5688
5689 // Get the initial value for the loop.
5690 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
5691 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
5692
5693 // For now we handle only constant steps.
Andrew Trick8b55b732011-03-14 16:50:06 +00005694 //
5695 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
5696 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
5697 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
5698 // We have not yet seen any such cases.
Chris Lattnerdff679f2011-01-09 22:39:48 +00005699 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
Nick Lewycky474112d2012-06-28 23:44:57 +00005700 if (StepC == 0 || StepC->getValue()->equalsInt(0))
Chris Lattnerdff679f2011-01-09 22:39:48 +00005701 return getCouldNotCompute();
5702
Andrew Trick8b55b732011-03-14 16:50:06 +00005703 // For positive steps (counting up until unsigned overflow):
5704 // N = -Start/Step (as unsigned)
5705 // For negative steps (counting down to zero):
5706 // N = Start/-Step
5707 // First compute the unsigned distance from zero in the direction of Step.
Andrew Trickf1781db2011-03-14 17:28:02 +00005708 bool CountDown = StepC->getValue()->getValue().isNegative();
5709 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick8b55b732011-03-14 16:50:06 +00005710
5711 // Handle unitary steps, which cannot wraparound.
Andrew Trickf1781db2011-03-14 17:28:02 +00005712 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
5713 // N = Distance (as unsigned)
Nick Lewycky31555522011-10-03 07:10:45 +00005714 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
5715 ConstantRange CR = getUnsignedRange(Start);
5716 const SCEV *MaxBECount;
5717 if (!CountDown && CR.getUnsignedMin().isMinValue())
5718 // When counting up, the worst starting value is 1, not 0.
5719 MaxBECount = CR.getUnsignedMax().isMinValue()
5720 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
5721 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
5722 else
5723 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
5724 : -CR.getUnsignedMin());
Andrew Trickee5aa7f2014-01-15 06:42:11 +00005725 return ExitLimit(Distance, MaxBECount, /*MustExit=*/true);
Nick Lewycky31555522011-10-03 07:10:45 +00005726 }
Andrew Trick2a3b7162011-03-09 17:23:39 +00005727
Andrew Trickf1781db2011-03-14 17:28:02 +00005728 // If the recurrence is known not to wraparound, unsigned divide computes the
Andrew Trick5b245a12013-05-31 06:43:25 +00005729 // back edge count. (Ideally we would have an "isexact" bit for udiv). We know
5730 // that the value will either become zero (and thus the loop terminates), that
5731 // the loop will terminate through some other exit condition first, or that
5732 // the loop has undefined behavior. This means we can't "miss" the exit
Andrew Trickee5aa7f2014-01-15 06:42:11 +00005733 // value, even with nonunit stride, and exit later via the same branch. Note
5734 // that we can skip this exit if loop later exits via a different
5735 // branch. Hence MustExit=false.
Andrew Trickf1781db2011-03-14 17:28:02 +00005736 //
Andrew Trick5b245a12013-05-31 06:43:25 +00005737 // This is only valid for expressions that directly compute the loop exit. It
5738 // is invalid for subexpressions in which the loop may exit through this
5739 // branch even if this subexpression is false. In that case, the trip count
5740 // computed by this udiv could be smaller than the number of well-defined
5741 // iterations.
Andrew Trickee5aa7f2014-01-15 06:42:11 +00005742 if (!IsSubExpr && AddRec->getNoWrapFlags(SCEV::FlagNW)) {
5743 const SCEV *Exact =
5744 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
5745 return ExitLimit(Exact, Exact, /*MustExit=*/false);
5746 }
Benjamin Kramere75eaca2014-03-25 16:25:12 +00005747
5748 // If Step is a power of two that evenly divides Start we know that the loop
5749 // will always terminate. Start may not be a constant so we just have the
5750 // number of trailing zeros available. This is safe even in presence of
5751 // overflow as the recurrence will overflow to exactly 0.
5752 const APInt &StepV = StepC->getValue()->getValue();
5753 if (StepV.isPowerOf2() &&
5754 GetMinTrailingZeros(getNegativeSCEV(Start)) >= StepV.countTrailingZeros())
5755 return getUDivExactExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
5756
Chris Lattnerdff679f2011-01-09 22:39:48 +00005757 // Then, try to solve the above equation provided that Start is constant.
5758 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
5759 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
5760 -StartC->getValue()->getValue(),
5761 *this);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005762 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005763}
5764
5765/// HowFarToNonZero - Return the number of times a backedge checking the
5766/// specified value for nonzero will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00005767/// CouldNotCompute
Andrew Trick3ca3f982011-07-26 17:19:55 +00005768ScalarEvolution::ExitLimit
Dan Gohmanba820342010-02-24 17:31:30 +00005769ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005770 // Loops that look like: while (X == 0) are very strange indeed. We don't
5771 // handle them yet except for the trivial case. This could be expanded in the
5772 // future as needed.
Misha Brukman01808ca2005-04-21 21:13:18 +00005773
Chris Lattnerd934c702004-04-02 20:23:17 +00005774 // If the value is a constant, check to see if it is known to be non-zero
5775 // already. If so, the backedge will execute zero times.
Dan Gohmana30370b2009-05-04 22:02:23 +00005776 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky5a3db142008-02-21 09:14:53 +00005777 if (!C->getValue()->isNullValue())
Dan Gohman1d2ded72010-05-03 22:09:21 +00005778 return getConstant(C->getType(), 0);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005779 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00005780 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005781
Chris Lattnerd934c702004-04-02 20:23:17 +00005782 // We could implement others, but I really doubt anyone writes loops like
5783 // this, and if they did, they would already be constant folded.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005784 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005785}
5786
Dan Gohmanf9081a22008-09-15 22:18:04 +00005787/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
5788/// (which may not be an immediate predecessor) which has exactly one
5789/// successor from which BB is reachable, or null if no such block is
5790/// found.
5791///
Dan Gohman4e3c1132010-04-15 16:19:08 +00005792std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanc8e23622009-04-21 23:15:49 +00005793ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohmanfa066ef2009-04-30 20:48:53 +00005794 // If the block has a unique predecessor, then there is no path from the
5795 // predecessor to the block that does not go through the direct edge
5796 // from the predecessor to the block.
Dan Gohmanf9081a22008-09-15 22:18:04 +00005797 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman4e3c1132010-04-15 16:19:08 +00005798 return std::make_pair(Pred, BB);
Dan Gohmanf9081a22008-09-15 22:18:04 +00005799
5800 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman8c77f1a2009-05-18 15:36:09 +00005801 // If the header has a unique predecessor outside the loop, it must be
5802 // a block that has exactly one successor that can reach the loop.
Dan Gohmanc8e23622009-04-21 23:15:49 +00005803 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman75c6b0b2010-06-22 23:43:28 +00005804 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanf9081a22008-09-15 22:18:04 +00005805
Dan Gohman4e3c1132010-04-15 16:19:08 +00005806 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanf9081a22008-09-15 22:18:04 +00005807}
5808
Dan Gohman450f4e02009-06-20 00:35:32 +00005809/// HasSameValue - SCEV structural equivalence is usually sufficient for
5810/// testing whether two expressions are equal, however for the purposes of
5811/// looking for a condition guarding a loop, it can be useful to be a little
5812/// more general, since a front-end may have replicated the controlling
5813/// expression.
5814///
Dan Gohmanaf752342009-07-07 17:06:11 +00005815static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman450f4e02009-06-20 00:35:32 +00005816 // Quick check to see if they are the same SCEV.
5817 if (A == B) return true;
5818
5819 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
5820 // two different instructions with the same value. Check for this case.
5821 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
5822 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
5823 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
5824 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman2d085562009-08-25 17:56:57 +00005825 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman450f4e02009-06-20 00:35:32 +00005826 return true;
5827
5828 // Otherwise assume they may have a different value.
5829 return false;
5830}
5831
Dan Gohman48ff3cf2010-04-24 01:28:42 +00005832/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00005833/// predicate Pred. Return true iff any changes were made.
Dan Gohman48ff3cf2010-04-24 01:28:42 +00005834///
5835bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00005836 const SCEV *&LHS, const SCEV *&RHS,
5837 unsigned Depth) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00005838 bool Changed = false;
5839
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00005840 // If we hit the max recursion limit bail out.
5841 if (Depth >= 3)
5842 return false;
5843
Dan Gohman48ff3cf2010-04-24 01:28:42 +00005844 // Canonicalize a constant to the right side.
5845 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
5846 // Check for both operands constant.
5847 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
5848 if (ConstantExpr::getICmp(Pred,
5849 LHSC->getValue(),
5850 RHSC->getValue())->isNullValue())
5851 goto trivially_false;
5852 else
5853 goto trivially_true;
5854 }
5855 // Otherwise swap the operands to put the constant on the right.
5856 std::swap(LHS, RHS);
5857 Pred = ICmpInst::getSwappedPredicate(Pred);
5858 Changed = true;
5859 }
5860
5861 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohmandf564ca2010-05-03 17:00:11 +00005862 // addrec's loop, put the addrec on the left. Also make a dominance check,
5863 // as both operands could be addrecs loop-invariant in each other's loop.
5864 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5865 const Loop *L = AR->getLoop();
Dan Gohman20d9ce22010-11-17 21:41:58 +00005866 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00005867 std::swap(LHS, RHS);
5868 Pred = ICmpInst::getSwappedPredicate(Pred);
5869 Changed = true;
5870 }
Dan Gohmandf564ca2010-05-03 17:00:11 +00005871 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00005872
5873 // If there's a constant operand, canonicalize comparisons with boundary
5874 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5875 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5876 const APInt &RA = RC->getValue()->getValue();
5877 switch (Pred) {
5878 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5879 case ICmpInst::ICMP_EQ:
5880 case ICmpInst::ICMP_NE:
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00005881 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
5882 if (!RA)
5883 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
5884 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
Benjamin Kramer406a2db2012-05-30 18:42:43 +00005885 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
5886 ME->getOperand(0)->isAllOnesValue()) {
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00005887 RHS = AE->getOperand(1);
5888 LHS = ME->getOperand(1);
5889 Changed = true;
5890 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00005891 break;
5892 case ICmpInst::ICMP_UGE:
5893 if ((RA - 1).isMinValue()) {
5894 Pred = ICmpInst::ICMP_NE;
5895 RHS = getConstant(RA - 1);
5896 Changed = true;
5897 break;
5898 }
5899 if (RA.isMaxValue()) {
5900 Pred = ICmpInst::ICMP_EQ;
5901 Changed = true;
5902 break;
5903 }
5904 if (RA.isMinValue()) goto trivially_true;
5905
5906 Pred = ICmpInst::ICMP_UGT;
5907 RHS = getConstant(RA - 1);
5908 Changed = true;
5909 break;
5910 case ICmpInst::ICMP_ULE:
5911 if ((RA + 1).isMaxValue()) {
5912 Pred = ICmpInst::ICMP_NE;
5913 RHS = getConstant(RA + 1);
5914 Changed = true;
5915 break;
5916 }
5917 if (RA.isMinValue()) {
5918 Pred = ICmpInst::ICMP_EQ;
5919 Changed = true;
5920 break;
5921 }
5922 if (RA.isMaxValue()) goto trivially_true;
5923
5924 Pred = ICmpInst::ICMP_ULT;
5925 RHS = getConstant(RA + 1);
5926 Changed = true;
5927 break;
5928 case ICmpInst::ICMP_SGE:
5929 if ((RA - 1).isMinSignedValue()) {
5930 Pred = ICmpInst::ICMP_NE;
5931 RHS = getConstant(RA - 1);
5932 Changed = true;
5933 break;
5934 }
5935 if (RA.isMaxSignedValue()) {
5936 Pred = ICmpInst::ICMP_EQ;
5937 Changed = true;
5938 break;
5939 }
5940 if (RA.isMinSignedValue()) goto trivially_true;
5941
5942 Pred = ICmpInst::ICMP_SGT;
5943 RHS = getConstant(RA - 1);
5944 Changed = true;
5945 break;
5946 case ICmpInst::ICMP_SLE:
5947 if ((RA + 1).isMaxSignedValue()) {
5948 Pred = ICmpInst::ICMP_NE;
5949 RHS = getConstant(RA + 1);
5950 Changed = true;
5951 break;
5952 }
5953 if (RA.isMinSignedValue()) {
5954 Pred = ICmpInst::ICMP_EQ;
5955 Changed = true;
5956 break;
5957 }
5958 if (RA.isMaxSignedValue()) goto trivially_true;
5959
5960 Pred = ICmpInst::ICMP_SLT;
5961 RHS = getConstant(RA + 1);
5962 Changed = true;
5963 break;
5964 case ICmpInst::ICMP_UGT:
5965 if (RA.isMinValue()) {
5966 Pred = ICmpInst::ICMP_NE;
5967 Changed = true;
5968 break;
5969 }
5970 if ((RA + 1).isMaxValue()) {
5971 Pred = ICmpInst::ICMP_EQ;
5972 RHS = getConstant(RA + 1);
5973 Changed = true;
5974 break;
5975 }
5976 if (RA.isMaxValue()) goto trivially_false;
5977 break;
5978 case ICmpInst::ICMP_ULT:
5979 if (RA.isMaxValue()) {
5980 Pred = ICmpInst::ICMP_NE;
5981 Changed = true;
5982 break;
5983 }
5984 if ((RA - 1).isMinValue()) {
5985 Pred = ICmpInst::ICMP_EQ;
5986 RHS = getConstant(RA - 1);
5987 Changed = true;
5988 break;
5989 }
5990 if (RA.isMinValue()) goto trivially_false;
5991 break;
5992 case ICmpInst::ICMP_SGT:
5993 if (RA.isMinSignedValue()) {
5994 Pred = ICmpInst::ICMP_NE;
5995 Changed = true;
5996 break;
5997 }
5998 if ((RA + 1).isMaxSignedValue()) {
5999 Pred = ICmpInst::ICMP_EQ;
6000 RHS = getConstant(RA + 1);
6001 Changed = true;
6002 break;
6003 }
6004 if (RA.isMaxSignedValue()) goto trivially_false;
6005 break;
6006 case ICmpInst::ICMP_SLT:
6007 if (RA.isMaxSignedValue()) {
6008 Pred = ICmpInst::ICMP_NE;
6009 Changed = true;
6010 break;
6011 }
6012 if ((RA - 1).isMinSignedValue()) {
6013 Pred = ICmpInst::ICMP_EQ;
6014 RHS = getConstant(RA - 1);
6015 Changed = true;
6016 break;
6017 }
6018 if (RA.isMinSignedValue()) goto trivially_false;
6019 break;
6020 }
6021 }
6022
6023 // Check for obvious equality.
6024 if (HasSameValue(LHS, RHS)) {
6025 if (ICmpInst::isTrueWhenEqual(Pred))
6026 goto trivially_true;
6027 if (ICmpInst::isFalseWhenEqual(Pred))
6028 goto trivially_false;
6029 }
6030
Dan Gohman81585c12010-05-03 16:35:17 +00006031 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
6032 // adding or subtracting 1 from one of the operands.
6033 switch (Pred) {
6034 case ICmpInst::ICMP_SLE:
6035 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
6036 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006037 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006038 Pred = ICmpInst::ICMP_SLT;
6039 Changed = true;
6040 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006041 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006042 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006043 Pred = ICmpInst::ICMP_SLT;
6044 Changed = true;
6045 }
6046 break;
6047 case ICmpInst::ICMP_SGE:
6048 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006049 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006050 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006051 Pred = ICmpInst::ICMP_SGT;
6052 Changed = true;
6053 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
6054 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006055 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006056 Pred = ICmpInst::ICMP_SGT;
6057 Changed = true;
6058 }
6059 break;
6060 case ICmpInst::ICMP_ULE:
6061 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006062 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006063 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006064 Pred = ICmpInst::ICMP_ULT;
6065 Changed = true;
6066 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006067 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006068 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006069 Pred = ICmpInst::ICMP_ULT;
6070 Changed = true;
6071 }
6072 break;
6073 case ICmpInst::ICMP_UGE:
6074 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006075 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006076 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006077 Pred = ICmpInst::ICMP_UGT;
6078 Changed = true;
6079 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006080 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006081 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006082 Pred = ICmpInst::ICMP_UGT;
6083 Changed = true;
6084 }
6085 break;
6086 default:
6087 break;
6088 }
6089
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006090 // TODO: More simplifications are possible here.
6091
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006092 // Recursively simplify until we either hit a recursion limit or nothing
6093 // changes.
6094 if (Changed)
6095 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
6096
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006097 return Changed;
6098
6099trivially_true:
6100 // Return 0 == 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00006101 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006102 Pred = ICmpInst::ICMP_EQ;
6103 return true;
6104
6105trivially_false:
6106 // Return 0 != 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00006107 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006108 Pred = ICmpInst::ICMP_NE;
6109 return true;
6110}
6111
Dan Gohmane65c9172009-07-13 21:35:55 +00006112bool ScalarEvolution::isKnownNegative(const SCEV *S) {
6113 return getSignedRange(S).getSignedMax().isNegative();
6114}
6115
6116bool ScalarEvolution::isKnownPositive(const SCEV *S) {
6117 return getSignedRange(S).getSignedMin().isStrictlyPositive();
6118}
6119
6120bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
6121 return !getSignedRange(S).getSignedMin().isNegative();
6122}
6123
6124bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
6125 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
6126}
6127
6128bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
6129 return isKnownNegative(S) || isKnownPositive(S);
6130}
6131
6132bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
6133 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman36cce7e2010-04-24 01:38:36 +00006134 // Canonicalize the inputs first.
6135 (void)SimplifyICmpOperands(Pred, LHS, RHS);
6136
Dan Gohman07591692010-04-11 22:16:48 +00006137 // If LHS or RHS is an addrec, check to see if the condition is true in
6138 // every iteration of the loop.
6139 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
6140 if (isLoopEntryGuardedByCond(
6141 AR->getLoop(), Pred, AR->getStart(), RHS) &&
6142 isLoopBackedgeGuardedByCond(
Dan Gohman70a3b122010-05-04 01:12:27 +00006143 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman07591692010-04-11 22:16:48 +00006144 return true;
6145 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
6146 if (isLoopEntryGuardedByCond(
6147 AR->getLoop(), Pred, LHS, AR->getStart()) &&
6148 isLoopBackedgeGuardedByCond(
Dan Gohman70a3b122010-05-04 01:12:27 +00006149 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman07591692010-04-11 22:16:48 +00006150 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00006151
Dan Gohman07591692010-04-11 22:16:48 +00006152 // Otherwise see what can be done with known constant ranges.
6153 return isKnownPredicateWithRanges(Pred, LHS, RHS);
6154}
6155
6156bool
6157ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
6158 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmane65c9172009-07-13 21:35:55 +00006159 if (HasSameValue(LHS, RHS))
6160 return ICmpInst::isTrueWhenEqual(Pred);
6161
Dan Gohman07591692010-04-11 22:16:48 +00006162 // This code is split out from isKnownPredicate because it is called from
6163 // within isLoopEntryGuardedByCond.
Dan Gohmane65c9172009-07-13 21:35:55 +00006164 switch (Pred) {
6165 default:
Dan Gohman8c129d72009-07-16 17:34:36 +00006166 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohmane65c9172009-07-13 21:35:55 +00006167 case ICmpInst::ICMP_SGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00006168 std::swap(LHS, RHS);
6169 case ICmpInst::ICMP_SLT: {
6170 ConstantRange LHSRange = getSignedRange(LHS);
6171 ConstantRange RHSRange = getSignedRange(RHS);
6172 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
6173 return true;
6174 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
6175 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006176 break;
6177 }
6178 case ICmpInst::ICMP_SGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00006179 std::swap(LHS, RHS);
6180 case ICmpInst::ICMP_SLE: {
6181 ConstantRange LHSRange = getSignedRange(LHS);
6182 ConstantRange RHSRange = getSignedRange(RHS);
6183 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
6184 return true;
6185 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
6186 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006187 break;
6188 }
6189 case ICmpInst::ICMP_UGT:
Dan Gohmane65c9172009-07-13 21:35:55 +00006190 std::swap(LHS, RHS);
6191 case ICmpInst::ICMP_ULT: {
6192 ConstantRange LHSRange = getUnsignedRange(LHS);
6193 ConstantRange RHSRange = getUnsignedRange(RHS);
6194 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
6195 return true;
6196 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
6197 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006198 break;
6199 }
6200 case ICmpInst::ICMP_UGE:
Dan Gohmane65c9172009-07-13 21:35:55 +00006201 std::swap(LHS, RHS);
6202 case ICmpInst::ICMP_ULE: {
6203 ConstantRange LHSRange = getUnsignedRange(LHS);
6204 ConstantRange RHSRange = getUnsignedRange(RHS);
6205 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
6206 return true;
6207 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
6208 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006209 break;
6210 }
6211 case ICmpInst::ICMP_NE: {
6212 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
6213 return true;
6214 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
6215 return true;
6216
6217 const SCEV *Diff = getMinusSCEV(LHS, RHS);
6218 if (isKnownNonZero(Diff))
6219 return true;
6220 break;
6221 }
6222 case ICmpInst::ICMP_EQ:
Dan Gohman34392622009-07-20 23:54:43 +00006223 // The check at the top of the function catches the case where
6224 // the values are known to be equal.
Dan Gohmane65c9172009-07-13 21:35:55 +00006225 break;
6226 }
6227 return false;
6228}
6229
6230/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
6231/// protected by a conditional between LHS and RHS. This is used to
6232/// to eliminate casts.
6233bool
6234ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
6235 ICmpInst::Predicate Pred,
6236 const SCEV *LHS, const SCEV *RHS) {
6237 // Interpret a null as meaning no loop, where there is obviously no guard
6238 // (interprocedural conditions notwithstanding).
6239 if (!L) return true;
6240
6241 BasicBlock *Latch = L->getLoopLatch();
6242 if (!Latch)
6243 return false;
6244
6245 BranchInst *LoopContinuePredicate =
6246 dyn_cast<BranchInst>(Latch->getTerminator());
6247 if (!LoopContinuePredicate ||
6248 LoopContinuePredicate->isUnconditional())
6249 return false;
6250
Dan Gohmane18c2d62010-08-10 23:46:30 +00006251 return isImpliedCond(Pred, LHS, RHS,
6252 LoopContinuePredicate->getCondition(),
Dan Gohman430f0cc2009-07-21 23:03:19 +00006253 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohmane65c9172009-07-13 21:35:55 +00006254}
6255
Dan Gohmanb50349a2010-04-11 19:27:13 +00006256/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohmane65c9172009-07-13 21:35:55 +00006257/// by a conditional between LHS and RHS. This is used to help avoid max
6258/// expressions in loop trip counts, and to eliminate casts.
6259bool
Dan Gohmanb50349a2010-04-11 19:27:13 +00006260ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
6261 ICmpInst::Predicate Pred,
6262 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman9cf09f82009-05-18 16:03:58 +00006263 // Interpret a null as meaning no loop, where there is obviously no guard
6264 // (interprocedural conditions notwithstanding).
6265 if (!L) return false;
6266
Dan Gohman8c77f1a2009-05-18 15:36:09 +00006267 // Starting at the loop predecessor, climb up the predecessor chain, as long
6268 // as there are predecessors that can be found that have unique successors
Dan Gohmanf9081a22008-09-15 22:18:04 +00006269 // leading to the original header.
Dan Gohman4e3c1132010-04-15 16:19:08 +00006270 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman75c6b0b2010-06-22 23:43:28 +00006271 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman4e3c1132010-04-15 16:19:08 +00006272 Pair.first;
6273 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman2a62fd92008-08-12 20:17:31 +00006274
6275 BranchInst *LoopEntryPredicate =
Dan Gohman4e3c1132010-04-15 16:19:08 +00006276 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman2a62fd92008-08-12 20:17:31 +00006277 if (!LoopEntryPredicate ||
6278 LoopEntryPredicate->isUnconditional())
6279 continue;
6280
Dan Gohmane18c2d62010-08-10 23:46:30 +00006281 if (isImpliedCond(Pred, LHS, RHS,
6282 LoopEntryPredicate->getCondition(),
Dan Gohman4e3c1132010-04-15 16:19:08 +00006283 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman2a62fd92008-08-12 20:17:31 +00006284 return true;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00006285 }
6286
Dan Gohman2a62fd92008-08-12 20:17:31 +00006287 return false;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00006288}
6289
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00006290/// RAII wrapper to prevent recursive application of isImpliedCond.
6291/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
6292/// currently evaluating isImpliedCond.
6293struct MarkPendingLoopPredicate {
6294 Value *Cond;
6295 DenseSet<Value*> &LoopPreds;
6296 bool Pending;
6297
6298 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
6299 : Cond(C), LoopPreds(LP) {
6300 Pending = !LoopPreds.insert(Cond).second;
6301 }
6302 ~MarkPendingLoopPredicate() {
6303 if (!Pending)
6304 LoopPreds.erase(Cond);
6305 }
6306};
6307
Dan Gohman430f0cc2009-07-21 23:03:19 +00006308/// isImpliedCond - Test whether the condition described by Pred, LHS,
6309/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmane18c2d62010-08-10 23:46:30 +00006310bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006311 const SCEV *LHS, const SCEV *RHS,
Dan Gohmane18c2d62010-08-10 23:46:30 +00006312 Value *FoundCondValue,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006313 bool Inverse) {
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00006314 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
6315 if (Mark.Pending)
6316 return false;
6317
Dan Gohman8b0a4192010-03-01 17:49:51 +00006318 // Recursively handle And and Or conditions.
Dan Gohmane18c2d62010-08-10 23:46:30 +00006319 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006320 if (BO->getOpcode() == Instruction::And) {
6321 if (!Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00006322 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6323 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006324 } else if (BO->getOpcode() == Instruction::Or) {
6325 if (Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00006326 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6327 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006328 }
6329 }
6330
Dan Gohmane18c2d62010-08-10 23:46:30 +00006331 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006332 if (!ICI) return false;
6333
Dan Gohmane65c9172009-07-13 21:35:55 +00006334 // Bail if the ICmp's operands' types are wider than the needed type
6335 // before attempting to call getSCEV on them. This avoids infinite
6336 // recursion, since the analysis of widening casts can require loop
6337 // exit condition information for overflow checking, which would
6338 // lead back here.
6339 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman430f0cc2009-07-21 23:03:19 +00006340 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohmane65c9172009-07-13 21:35:55 +00006341 return false;
6342
Andrew Trickfa594032012-11-29 18:35:13 +00006343 // Now that we found a conditional branch that dominates the loop or controls
6344 // the loop latch. Check to see if it is the comparison we are looking for.
Dan Gohman430f0cc2009-07-21 23:03:19 +00006345 ICmpInst::Predicate FoundPred;
6346 if (Inverse)
6347 FoundPred = ICI->getInversePredicate();
6348 else
6349 FoundPred = ICI->getPredicate();
6350
6351 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
6352 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohmane65c9172009-07-13 21:35:55 +00006353
6354 // Balance the types. The case where FoundLHS' type is wider than
6355 // LHS' type is checked for above.
6356 if (getTypeSizeInBits(LHS->getType()) >
6357 getTypeSizeInBits(FoundLHS->getType())) {
Stepan Dyatkovskiy431993b2014-01-09 12:26:12 +00006358 if (CmpInst::isSigned(FoundPred)) {
Dan Gohmane65c9172009-07-13 21:35:55 +00006359 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
6360 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
6361 } else {
6362 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
6363 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
6364 }
6365 }
6366
Dan Gohman430f0cc2009-07-21 23:03:19 +00006367 // Canonicalize the query to match the way instcombine will have
6368 // canonicalized the comparison.
Dan Gohman3673aa12010-04-24 01:34:53 +00006369 if (SimplifyICmpOperands(Pred, LHS, RHS))
6370 if (LHS == RHS)
Dan Gohmanb5025c72010-05-03 18:00:24 +00006371 return CmpInst::isTrueWhenEqual(Pred);
Benjamin Kramerba11a982012-11-29 19:07:57 +00006372 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
6373 if (FoundLHS == FoundRHS)
6374 return CmpInst::isFalseWhenEqual(FoundPred);
Dan Gohman430f0cc2009-07-21 23:03:19 +00006375
6376 // Check to see if we can make the LHS or RHS match.
6377 if (LHS == FoundRHS || RHS == FoundLHS) {
6378 if (isa<SCEVConstant>(RHS)) {
6379 std::swap(FoundLHS, FoundRHS);
6380 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
6381 } else {
6382 std::swap(LHS, RHS);
6383 Pred = ICmpInst::getSwappedPredicate(Pred);
6384 }
6385 }
6386
6387 // Check whether the found predicate is the same as the desired predicate.
6388 if (FoundPred == Pred)
6389 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
6390
6391 // Check whether swapping the found predicate makes it the same as the
6392 // desired predicate.
6393 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
6394 if (isa<SCEVConstant>(RHS))
6395 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
6396 else
6397 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
6398 RHS, LHS, FoundLHS, FoundRHS);
6399 }
6400
6401 // Check whether the actual condition is beyond sufficient.
6402 if (FoundPred == ICmpInst::ICMP_EQ)
6403 if (ICmpInst::isTrueWhenEqual(Pred))
6404 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
6405 return true;
6406 if (Pred == ICmpInst::ICMP_NE)
6407 if (!ICmpInst::isTrueWhenEqual(FoundPred))
6408 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
6409 return true;
6410
6411 // Otherwise assume the worst.
6412 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006413}
6414
Dan Gohman430f0cc2009-07-21 23:03:19 +00006415/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman8b0a4192010-03-01 17:49:51 +00006416/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006417/// and FoundRHS is true.
6418bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
6419 const SCEV *LHS, const SCEV *RHS,
6420 const SCEV *FoundLHS,
6421 const SCEV *FoundRHS) {
6422 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
6423 FoundLHS, FoundRHS) ||
6424 // ~x < ~y --> x > y
6425 isImpliedCondOperandsHelper(Pred, LHS, RHS,
6426 getNotSCEV(FoundRHS),
6427 getNotSCEV(FoundLHS));
6428}
6429
6430/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman8b0a4192010-03-01 17:49:51 +00006431/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006432/// FoundLHS, and FoundRHS is true.
Dan Gohmane65c9172009-07-13 21:35:55 +00006433bool
Dan Gohman430f0cc2009-07-21 23:03:19 +00006434ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
6435 const SCEV *LHS, const SCEV *RHS,
6436 const SCEV *FoundLHS,
6437 const SCEV *FoundRHS) {
Dan Gohmane65c9172009-07-13 21:35:55 +00006438 switch (Pred) {
Dan Gohman8c129d72009-07-16 17:34:36 +00006439 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6440 case ICmpInst::ICMP_EQ:
6441 case ICmpInst::ICMP_NE:
6442 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
6443 return true;
6444 break;
Dan Gohmane65c9172009-07-13 21:35:55 +00006445 case ICmpInst::ICMP_SLT:
Dan Gohman8c129d72009-07-16 17:34:36 +00006446 case ICmpInst::ICMP_SLE:
Dan Gohman07591692010-04-11 22:16:48 +00006447 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
6448 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00006449 return true;
6450 break;
6451 case ICmpInst::ICMP_SGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00006452 case ICmpInst::ICMP_SGE:
Dan Gohman07591692010-04-11 22:16:48 +00006453 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
6454 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00006455 return true;
6456 break;
6457 case ICmpInst::ICMP_ULT:
Dan Gohman8c129d72009-07-16 17:34:36 +00006458 case ICmpInst::ICMP_ULE:
Dan Gohman07591692010-04-11 22:16:48 +00006459 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
6460 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00006461 return true;
6462 break;
6463 case ICmpInst::ICMP_UGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00006464 case ICmpInst::ICMP_UGE:
Dan Gohman07591692010-04-11 22:16:48 +00006465 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
6466 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00006467 return true;
6468 break;
6469 }
6470
6471 return false;
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006472}
6473
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006474// Verify if an linear IV with positive stride can overflow when in a
6475// less-than comparison, knowing the invariant term of the comparison, the
6476// stride and the knowledge of NSW/NUW flags on the recurrence.
6477bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
6478 bool IsSigned, bool NoWrap) {
6479 if (NoWrap) return false;
Dan Gohman51aaf022010-01-26 04:40:18 +00006480
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006481 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
6482 const SCEV *One = getConstant(Stride->getType(), 1);
Andrew Trick2afa3252011-03-09 17:29:58 +00006483
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006484 if (IsSigned) {
6485 APInt MaxRHS = getSignedRange(RHS).getSignedMax();
6486 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
6487 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
6488 .getSignedMax();
Andrew Trick2afa3252011-03-09 17:29:58 +00006489
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006490 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
6491 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
Dan Gohman36bad002009-09-17 18:05:20 +00006492 }
Dan Gohman01048422009-06-21 23:46:38 +00006493
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006494 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
6495 APInt MaxValue = APInt::getMaxValue(BitWidth);
6496 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
6497 .getUnsignedMax();
6498
6499 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
6500 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
6501}
6502
6503// Verify if an linear IV with negative stride can overflow when in a
6504// greater-than comparison, knowing the invariant term of the comparison,
6505// the stride and the knowledge of NSW/NUW flags on the recurrence.
6506bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
6507 bool IsSigned, bool NoWrap) {
6508 if (NoWrap) return false;
6509
6510 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
6511 const SCEV *One = getConstant(Stride->getType(), 1);
6512
6513 if (IsSigned) {
6514 APInt MinRHS = getSignedRange(RHS).getSignedMin();
6515 APInt MinValue = APInt::getSignedMinValue(BitWidth);
6516 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
6517 .getSignedMax();
6518
6519 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
6520 return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
6521 }
6522
6523 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
6524 APInt MinValue = APInt::getMinValue(BitWidth);
6525 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
6526 .getUnsignedMax();
6527
6528 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
6529 return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
6530}
6531
6532// Compute the backedge taken count knowing the interval difference, the
6533// stride and presence of the equality in the comparison.
6534const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
6535 bool Equality) {
6536 const SCEV *One = getConstant(Step->getType(), 1);
6537 Delta = Equality ? getAddExpr(Delta, Step)
6538 : getAddExpr(Delta, getMinusSCEV(Step, One));
6539 return getUDivExpr(Delta, Step);
Dan Gohman01048422009-06-21 23:46:38 +00006540}
6541
Chris Lattner587a75b2005-08-15 23:33:51 +00006542/// HowManyLessThans - Return the number of times a backedge containing the
6543/// specified less-than comparison will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00006544/// CouldNotCompute.
Andrew Trick5b245a12013-05-31 06:43:25 +00006545///
6546/// @param IsSubExpr is true when the LHS < RHS condition does not directly
6547/// control the branch. In this case, we can only compute an iteration count for
6548/// a subexpression that cannot overflow before evaluating true.
Andrew Trick3ca3f982011-07-26 17:19:55 +00006549ScalarEvolution::ExitLimit
Dan Gohmance973df2009-06-24 04:48:43 +00006550ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006551 const Loop *L, bool IsSigned,
Andrew Trick5b245a12013-05-31 06:43:25 +00006552 bool IsSubExpr) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006553 // We handle only IV < Invariant
6554 if (!isLoopInvariant(RHS, L))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006555 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00006556
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006557 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
Dan Gohman2b8da352009-04-30 20:47:05 +00006558
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006559 // Avoid weird loops
6560 if (!IV || IV->getLoop() != L || !IV->isAffine())
6561 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00006562
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006563 bool NoWrap = !IsSubExpr &&
6564 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00006565
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006566 const SCEV *Stride = IV->getStepRecurrence(*this);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00006567
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006568 // Avoid negative or zero stride values
6569 if (!isKnownPositive(Stride))
6570 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00006571
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006572 // Avoid proven overflow cases: this will ensure that the backedge taken count
6573 // will not generate any unsigned overflow. Relaxed no-overflow conditions
6574 // exploit NoWrapFlags, allowing to optimize in presence of undefined
6575 // behaviors like the case of C language.
6576 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
6577 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00006578
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006579 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
6580 : ICmpInst::ICMP_ULT;
6581 const SCEV *Start = IV->getStart();
6582 const SCEV *End = RHS;
6583 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
6584 End = IsSigned ? getSMaxExpr(RHS, Start)
6585 : getUMaxExpr(RHS, Start);
Dan Gohman51aaf022010-01-26 04:40:18 +00006586
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006587 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
Dan Gohman2b8da352009-04-30 20:47:05 +00006588
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006589 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
6590 : getUnsignedRange(Start).getUnsignedMin();
Andrew Trick2afa3252011-03-09 17:29:58 +00006591
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006592 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
6593 : getUnsignedRange(Stride).getUnsignedMin();
Dan Gohman2b8da352009-04-30 20:47:05 +00006594
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006595 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
6596 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
6597 : APInt::getMaxValue(BitWidth) - (MinStride - 1);
Chris Lattner587a75b2005-08-15 23:33:51 +00006598
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006599 // Although End can be a MAX expression we estimate MaxEnd considering only
6600 // the case End = RHS. This is safe because in the other case (End - Start)
6601 // is zero, leading to a zero maximum backedge taken count.
6602 APInt MaxEnd =
6603 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
6604 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
6605
Arnaud A. de Grandmaison75c9e6d2014-03-15 22:13:15 +00006606 const SCEV *MaxBECount;
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006607 if (isa<SCEVConstant>(BECount))
6608 MaxBECount = BECount;
6609 else
6610 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
6611 getConstant(MinStride), false);
6612
6613 if (isa<SCEVCouldNotCompute>(MaxBECount))
6614 MaxBECount = BECount;
6615
Andrew Trickee5aa7f2014-01-15 06:42:11 +00006616 return ExitLimit(BECount, MaxBECount, /*MustExit=*/true);
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006617}
6618
6619ScalarEvolution::ExitLimit
6620ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
6621 const Loop *L, bool IsSigned,
6622 bool IsSubExpr) {
6623 // We handle only IV > Invariant
6624 if (!isLoopInvariant(RHS, L))
6625 return getCouldNotCompute();
6626
6627 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
6628
6629 // Avoid weird loops
6630 if (!IV || IV->getLoop() != L || !IV->isAffine())
6631 return getCouldNotCompute();
6632
6633 bool NoWrap = !IsSubExpr &&
6634 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
6635
6636 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
6637
6638 // Avoid negative or zero stride values
6639 if (!isKnownPositive(Stride))
6640 return getCouldNotCompute();
6641
6642 // Avoid proven overflow cases: this will ensure that the backedge taken count
6643 // will not generate any unsigned overflow. Relaxed no-overflow conditions
6644 // exploit NoWrapFlags, allowing to optimize in presence of undefined
6645 // behaviors like the case of C language.
6646 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
6647 return getCouldNotCompute();
6648
6649 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
6650 : ICmpInst::ICMP_UGT;
6651
6652 const SCEV *Start = IV->getStart();
6653 const SCEV *End = RHS;
6654 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS))
6655 End = IsSigned ? getSMinExpr(RHS, Start)
6656 : getUMinExpr(RHS, Start);
6657
6658 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
6659
6660 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
6661 : getUnsignedRange(Start).getUnsignedMax();
6662
6663 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
6664 : getUnsignedRange(Stride).getUnsignedMin();
6665
6666 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
6667 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
6668 : APInt::getMinValue(BitWidth) + (MinStride - 1);
6669
6670 // Although End can be a MIN expression we estimate MinEnd considering only
6671 // the case End = RHS. This is safe because in the other case (Start - End)
6672 // is zero, leading to a zero maximum backedge taken count.
6673 APInt MinEnd =
6674 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
6675 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
6676
6677
6678 const SCEV *MaxBECount = getCouldNotCompute();
6679 if (isa<SCEVConstant>(BECount))
6680 MaxBECount = BECount;
6681 else
6682 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
6683 getConstant(MinStride), false);
6684
6685 if (isa<SCEVCouldNotCompute>(MaxBECount))
6686 MaxBECount = BECount;
6687
Andrew Trickee5aa7f2014-01-15 06:42:11 +00006688 return ExitLimit(BECount, MaxBECount, /*MustExit=*/true);
Chris Lattner587a75b2005-08-15 23:33:51 +00006689}
6690
Chris Lattnerd934c702004-04-02 20:23:17 +00006691/// getNumIterationsInRange - Return the number of iterations of this loop that
6692/// produce values in the specified constant range. Another way of looking at
6693/// this is that it returns the first iteration number where the value is not in
6694/// the condition, thus computing the exit count. If the iteration count can't
6695/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00006696const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohmance973df2009-06-24 04:48:43 +00006697 ScalarEvolution &SE) const {
Chris Lattnerd934c702004-04-02 20:23:17 +00006698 if (Range.isFullSet()) // Infinite loop.
Dan Gohman31efa302009-04-18 17:58:19 +00006699 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006700
6701 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohmana30370b2009-05-04 22:02:23 +00006702 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencer2e54a152007-03-02 00:28:52 +00006703 if (!SC->getValue()->isZero()) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006704 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohman1d2ded72010-05-03 22:09:21 +00006705 Operands[0] = SE.getConstant(SC->getType(), 0);
Andrew Trick8b55b732011-03-14 16:50:06 +00006706 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00006707 getNoWrapFlags(FlagNW));
Dan Gohmana30370b2009-05-04 22:02:23 +00006708 if (const SCEVAddRecExpr *ShiftedAddRec =
6709 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattnerd934c702004-04-02 20:23:17 +00006710 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohmana37eaf22007-10-22 18:31:58 +00006711 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattnerd934c702004-04-02 20:23:17 +00006712 // This is strange and shouldn't happen.
Dan Gohman31efa302009-04-18 17:58:19 +00006713 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006714 }
6715
6716 // The only time we can solve this is when we have all constant indices.
6717 // Otherwise, we cannot determine the overflow conditions.
6718 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
6719 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohman31efa302009-04-18 17:58:19 +00006720 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006721
6722
6723 // Okay at this point we know that all elements of the chrec are constants and
6724 // that the start element is zero.
6725
6726 // First check to see if the range contains zero. If not, the first
6727 // iteration exits.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00006728 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman0a40ad92009-04-16 03:18:22 +00006729 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohman1d2ded72010-05-03 22:09:21 +00006730 return SE.getConstant(getType(), 0);
Misha Brukman01808ca2005-04-21 21:13:18 +00006731
Chris Lattnerd934c702004-04-02 20:23:17 +00006732 if (isAffine()) {
6733 // If this is an affine expression then we have this situation:
6734 // Solve {0,+,A} in Range === Ax in Range
6735
Nick Lewycky52460262007-07-16 02:08:00 +00006736 // We know that zero is in the range. If A is positive then we know that
6737 // the upper value of the range must be the first possible exit value.
6738 // If A is negative then the lower of the range is the last possible loop
6739 // value. Also note that we already checked for a full range.
Dan Gohman0a40ad92009-04-16 03:18:22 +00006740 APInt One(BitWidth,1);
Nick Lewycky52460262007-07-16 02:08:00 +00006741 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
6742 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattnerd934c702004-04-02 20:23:17 +00006743
Nick Lewycky52460262007-07-16 02:08:00 +00006744 // The exit value should be (End+A)/A.
Nick Lewycky39349612007-09-27 14:12:54 +00006745 APInt ExitVal = (End + A).udiv(A);
Owen Andersonedb4a702009-07-24 23:12:02 +00006746 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattnerd934c702004-04-02 20:23:17 +00006747
6748 // Evaluate at the exit value. If we really did fall out of the valid
6749 // range, then we computed our trip count, otherwise wrap around or other
6750 // things must have happened.
Dan Gohmana37eaf22007-10-22 18:31:58 +00006751 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00006752 if (Range.contains(Val->getValue()))
Dan Gohman31efa302009-04-18 17:58:19 +00006753 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00006754
6755 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer3a7e9d82007-02-28 19:57:34 +00006756 assert(Range.contains(
Dan Gohmance973df2009-06-24 04:48:43 +00006757 EvaluateConstantChrecAtConstant(this,
Owen Andersonedb4a702009-07-24 23:12:02 +00006758 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattnerd934c702004-04-02 20:23:17 +00006759 "Linear scev computation is off in a bad way!");
Dan Gohmana37eaf22007-10-22 18:31:58 +00006760 return SE.getConstant(ExitValue);
Chris Lattnerd934c702004-04-02 20:23:17 +00006761 } else if (isQuadratic()) {
6762 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
6763 // quadratic equation to solve it. To do this, we must frame our problem in
6764 // terms of figuring out when zero is crossed, instead of when
6765 // Range.getUpper() is crossed.
Dan Gohmanaf752342009-07-07 17:06:11 +00006766 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00006767 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick8b55b732011-03-14 16:50:06 +00006768 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
6769 // getNoWrapFlags(FlagNW)
6770 FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00006771
6772 // Next, solve the constructed addrec
Dan Gohmanaf752342009-07-07 17:06:11 +00006773 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohmana37eaf22007-10-22 18:31:58 +00006774 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman48f82222009-05-04 22:30:44 +00006775 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6776 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerd934c702004-04-02 20:23:17 +00006777 if (R1) {
6778 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00006779 if (ConstantInt *CB =
Owen Anderson487375e2009-07-29 18:55:55 +00006780 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Andersonf1f17432009-07-06 22:37:39 +00006781 R1->getValue(), R2->getValue()))) {
Reid Spencercddc9df2007-01-12 04:24:46 +00006782 if (CB->getZExtValue() == false)
Chris Lattnerd934c702004-04-02 20:23:17 +00006783 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman01808ca2005-04-21 21:13:18 +00006784
Chris Lattnerd934c702004-04-02 20:23:17 +00006785 // Make sure the root is not off by one. The returned iteration should
6786 // not be in the range, but the previous one should be. When solving
6787 // for "X*X < 5", for example, we should not return a root of 2.
6788 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohmana37eaf22007-10-22 18:31:58 +00006789 R1->getValue(),
6790 SE);
Reid Spencer6a440332007-03-01 07:54:15 +00006791 if (Range.contains(R1Val->getValue())) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006792 // The next iteration must be out of the range...
Owen Andersonf1f17432009-07-06 22:37:39 +00006793 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00006794 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman01808ca2005-04-21 21:13:18 +00006795
Dan Gohmana37eaf22007-10-22 18:31:58 +00006796 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00006797 if (!Range.contains(R1Val->getValue()))
Dan Gohmana37eaf22007-10-22 18:31:58 +00006798 return SE.getConstant(NextVal);
Dan Gohman31efa302009-04-18 17:58:19 +00006799 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00006800 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006801
Chris Lattnerd934c702004-04-02 20:23:17 +00006802 // If R1 was not in the range, then it is a good return value. Make
6803 // sure that R1-1 WAS in the range though, just in case.
Owen Andersonf1f17432009-07-06 22:37:39 +00006804 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00006805 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohmana37eaf22007-10-22 18:31:58 +00006806 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00006807 if (Range.contains(R1Val->getValue()))
Chris Lattnerd934c702004-04-02 20:23:17 +00006808 return R1;
Dan Gohman31efa302009-04-18 17:58:19 +00006809 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00006810 }
6811 }
6812 }
6813
Dan Gohman31efa302009-04-18 17:58:19 +00006814 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006815}
6816
Sebastian Popc62c6792013-11-12 22:47:20 +00006817static const APInt srem(const SCEVConstant *C1, const SCEVConstant *C2) {
6818 APInt A = C1->getValue()->getValue();
6819 APInt B = C2->getValue()->getValue();
6820 uint32_t ABW = A.getBitWidth();
6821 uint32_t BBW = B.getBitWidth();
6822
6823 if (ABW > BBW)
Benjamin Kramer5f2768c2013-11-16 16:25:41 +00006824 B = B.sext(ABW);
Sebastian Popc62c6792013-11-12 22:47:20 +00006825 else if (ABW < BBW)
Benjamin Kramer5f2768c2013-11-16 16:25:41 +00006826 A = A.sext(BBW);
Sebastian Popc62c6792013-11-12 22:47:20 +00006827
6828 return APIntOps::srem(A, B);
6829}
6830
6831static const APInt sdiv(const SCEVConstant *C1, const SCEVConstant *C2) {
6832 APInt A = C1->getValue()->getValue();
6833 APInt B = C2->getValue()->getValue();
6834 uint32_t ABW = A.getBitWidth();
6835 uint32_t BBW = B.getBitWidth();
6836
6837 if (ABW > BBW)
Benjamin Kramer5f2768c2013-11-16 16:25:41 +00006838 B = B.sext(ABW);
Sebastian Popc62c6792013-11-12 22:47:20 +00006839 else if (ABW < BBW)
Benjamin Kramer5f2768c2013-11-16 16:25:41 +00006840 A = A.sext(BBW);
Sebastian Popc62c6792013-11-12 22:47:20 +00006841
6842 return APIntOps::sdiv(A, B);
6843}
6844
6845namespace {
6846struct SCEVGCD : public SCEVVisitor<SCEVGCD, const SCEV *> {
6847public:
6848 // Pattern match Step into Start. When Step is a multiply expression, find
6849 // the largest subexpression of Step that appears in Start. When Start is an
6850 // add expression, try to match Step in the subexpressions of Start, non
6851 // matching subexpressions are returned under Remainder.
6852 static const SCEV *findGCD(ScalarEvolution &SE, const SCEV *Start,
6853 const SCEV *Step, const SCEV **Remainder) {
6854 assert(Remainder && "Remainder should not be NULL");
6855 SCEVGCD R(SE, Step, SE.getConstant(Step->getType(), 0));
6856 const SCEV *Res = R.visit(Start);
6857 *Remainder = R.Remainder;
6858 return Res;
6859 }
6860
6861 SCEVGCD(ScalarEvolution &S, const SCEV *G, const SCEV *R)
6862 : SE(S), GCD(G), Remainder(R) {
6863 Zero = SE.getConstant(GCD->getType(), 0);
6864 One = SE.getConstant(GCD->getType(), 1);
6865 }
6866
6867 const SCEV *visitConstant(const SCEVConstant *Constant) {
6868 if (GCD == Constant || Constant == Zero)
6869 return GCD;
6870
6871 if (const SCEVConstant *CGCD = dyn_cast<SCEVConstant>(GCD)) {
6872 const SCEV *Res = SE.getConstant(gcd(Constant, CGCD));
6873 if (Res != One)
6874 return Res;
6875
6876 Remainder = SE.getConstant(srem(Constant, CGCD));
6877 Constant = cast<SCEVConstant>(SE.getMinusSCEV(Constant, Remainder));
6878 Res = SE.getConstant(gcd(Constant, CGCD));
6879 return Res;
6880 }
6881
6882 // When GCD is not a constant, it could be that the GCD is an Add, Mul,
6883 // AddRec, etc., in which case we want to find out how many times the
6884 // Constant divides the GCD: we then return that as the new GCD.
6885 const SCEV *Rem = Zero;
6886 const SCEV *Res = findGCD(SE, GCD, Constant, &Rem);
6887
6888 if (Res == One || Rem != Zero) {
6889 Remainder = Constant;
6890 return One;
6891 }
6892
6893 assert(isa<SCEVConstant>(Res) && "Res should be a constant");
6894 Remainder = SE.getConstant(srem(Constant, cast<SCEVConstant>(Res)));
6895 return Res;
6896 }
6897
6898 const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) {
6899 if (GCD != Expr)
6900 Remainder = Expr;
6901 return GCD;
6902 }
6903
6904 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
6905 if (GCD != Expr)
6906 Remainder = Expr;
6907 return GCD;
6908 }
6909
6910 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
6911 if (GCD != Expr)
6912 Remainder = Expr;
6913 return GCD;
6914 }
6915
6916 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
6917 if (GCD == Expr)
6918 return GCD;
6919
6920 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
6921 const SCEV *Rem = Zero;
6922 const SCEV *Res = findGCD(SE, Expr->getOperand(e - 1 - i), GCD, &Rem);
6923
6924 // FIXME: There may be ambiguous situations: for instance,
6925 // GCD(-4 + (3 * %m), 2 * %m) where 2 divides -4 and %m divides (3 * %m).
6926 // The order in which the AddExpr is traversed computes a different GCD
6927 // and Remainder.
6928 if (Res != One)
6929 GCD = Res;
6930 if (Rem != Zero)
6931 Remainder = SE.getAddExpr(Remainder, Rem);
6932 }
6933
6934 return GCD;
6935 }
6936
6937 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
6938 if (GCD == Expr)
6939 return GCD;
6940
6941 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
6942 if (Expr->getOperand(i) == GCD)
6943 return GCD;
6944 }
6945
6946 // If we have not returned yet, it means that GCD is not part of Expr.
6947 const SCEV *PartialGCD = One;
6948 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
6949 const SCEV *Rem = Zero;
6950 const SCEV *Res = findGCD(SE, Expr->getOperand(i), GCD, &Rem);
6951 if (Rem != Zero)
6952 // GCD does not divide Expr->getOperand(i).
6953 continue;
6954
6955 if (Res == GCD)
6956 return GCD;
6957 PartialGCD = SE.getMulExpr(PartialGCD, Res);
6958 if (PartialGCD == GCD)
6959 return GCD;
6960 }
6961
6962 if (PartialGCD != One)
6963 return PartialGCD;
6964
Sebastian Popb5b84e02014-04-08 21:21:05 +00006965 // Failed to find a PartialGCD: set the Remainder to the full expression,
6966 // and return the GCD.
Sebastian Popc62c6792013-11-12 22:47:20 +00006967 Remainder = Expr;
6968 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(GCD);
6969 if (!Mul)
Sebastian Popb5b84e02014-04-08 21:21:05 +00006970 return GCD;
Sebastian Popc62c6792013-11-12 22:47:20 +00006971
6972 // When the GCD is a multiply expression, try to decompose it:
6973 // this occurs when Step does not divide the Start expression
6974 // as in: {(-4 + (3 * %m)),+,(2 * %m)}
6975 for (int i = 0, e = Mul->getNumOperands(); i < e; ++i) {
6976 const SCEV *Rem = Zero;
6977 const SCEV *Res = findGCD(SE, Expr, Mul->getOperand(i), &Rem);
6978 if (Rem == Zero) {
6979 Remainder = Rem;
6980 return Res;
6981 }
6982 }
6983
Sebastian Popb5b84e02014-04-08 21:21:05 +00006984 return GCD;
Sebastian Popc62c6792013-11-12 22:47:20 +00006985 }
6986
6987 const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) {
6988 if (GCD != Expr)
6989 Remainder = Expr;
6990 return GCD;
6991 }
6992
6993 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
6994 if (GCD == Expr)
6995 return GCD;
6996
6997 if (!Expr->isAffine()) {
6998 Remainder = Expr;
6999 return GCD;
7000 }
7001
7002 const SCEV *Rem = Zero;
7003 const SCEV *Res = findGCD(SE, Expr->getOperand(0), GCD, &Rem);
Sebastian Pop9738e832014-04-08 21:21:10 +00007004 if (Res == One || Res->isAllOnesValue()) {
7005 Remainder = Expr;
7006 return GCD;
7007 }
7008
Sebastian Popc62c6792013-11-12 22:47:20 +00007009 if (Rem != Zero)
7010 Remainder = SE.getAddExpr(Remainder, Rem);
7011
7012 Rem = Zero;
7013 Res = findGCD(SE, Expr->getOperand(1), Res, &Rem);
Sebastian Pop9738e832014-04-08 21:21:10 +00007014 if (Rem != Zero || Res == One || Res->isAllOnesValue()) {
Sebastian Popc62c6792013-11-12 22:47:20 +00007015 Remainder = Expr;
7016 return GCD;
7017 }
7018
7019 return Res;
7020 }
7021
7022 const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
7023 if (GCD != Expr)
7024 Remainder = Expr;
7025 return GCD;
7026 }
7027
7028 const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) {
7029 if (GCD != Expr)
7030 Remainder = Expr;
7031 return GCD;
7032 }
7033
7034 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
7035 if (GCD != Expr)
7036 Remainder = Expr;
7037 return GCD;
7038 }
7039
7040 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
7041 return One;
7042 }
7043
7044private:
7045 ScalarEvolution &SE;
7046 const SCEV *GCD, *Remainder, *Zero, *One;
7047};
7048
7049struct SCEVDivision : public SCEVVisitor<SCEVDivision, const SCEV *> {
7050public:
7051 // Remove from Start all multiples of Step.
7052 static const SCEV *divide(ScalarEvolution &SE, const SCEV *Start,
7053 const SCEV *Step) {
7054 SCEVDivision D(SE, Step);
7055 const SCEV *Rem = D.Zero;
7056 (void)Rem;
7057 // The division is guaranteed to succeed: Step should divide Start with no
7058 // remainder.
7059 assert(Step == SCEVGCD::findGCD(SE, Start, Step, &Rem) && Rem == D.Zero &&
7060 "Step should divide Start with no remainder.");
7061 return D.visit(Start);
7062 }
7063
7064 SCEVDivision(ScalarEvolution &S, const SCEV *G) : SE(S), GCD(G) {
7065 Zero = SE.getConstant(GCD->getType(), 0);
7066 One = SE.getConstant(GCD->getType(), 1);
7067 }
7068
7069 const SCEV *visitConstant(const SCEVConstant *Constant) {
7070 if (GCD == Constant)
7071 return One;
7072
7073 if (const SCEVConstant *CGCD = dyn_cast<SCEVConstant>(GCD))
7074 return SE.getConstant(sdiv(Constant, CGCD));
7075 return Constant;
7076 }
7077
7078 const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) {
7079 if (GCD == Expr)
7080 return One;
7081 return Expr;
7082 }
7083
7084 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
7085 if (GCD == Expr)
7086 return One;
7087 return Expr;
7088 }
7089
7090 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
7091 if (GCD == Expr)
7092 return One;
7093 return Expr;
7094 }
7095
7096 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
7097 if (GCD == Expr)
7098 return One;
7099
7100 SmallVector<const SCEV *, 2> Operands;
7101 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
7102 Operands.push_back(divide(SE, Expr->getOperand(i), GCD));
7103
7104 if (Operands.size() == 1)
7105 return Operands[0];
7106 return SE.getAddExpr(Operands);
7107 }
7108
7109 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
7110 if (GCD == Expr)
7111 return One;
7112
7113 bool FoundGCDTerm = false;
7114 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
7115 if (Expr->getOperand(i) == GCD)
7116 FoundGCDTerm = true;
7117
7118 SmallVector<const SCEV *, 2> Operands;
7119 if (FoundGCDTerm) {
7120 FoundGCDTerm = false;
7121 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
7122 if (FoundGCDTerm)
7123 Operands.push_back(Expr->getOperand(i));
7124 else if (Expr->getOperand(i) == GCD)
7125 FoundGCDTerm = true;
7126 else
7127 Operands.push_back(Expr->getOperand(i));
7128 }
7129 } else {
Sebastian Popc62c6792013-11-12 22:47:20 +00007130 const SCEV *PartialGCD = One;
7131 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
7132 if (PartialGCD == GCD) {
7133 Operands.push_back(Expr->getOperand(i));
7134 continue;
7135 }
7136
7137 const SCEV *Rem = Zero;
7138 const SCEV *Res = SCEVGCD::findGCD(SE, Expr->getOperand(i), GCD, &Rem);
7139 if (Rem == Zero) {
7140 PartialGCD = SE.getMulExpr(PartialGCD, Res);
7141 Operands.push_back(divide(SE, Expr->getOperand(i), GCD));
7142 } else {
7143 Operands.push_back(Expr->getOperand(i));
7144 }
7145 }
7146 }
7147
7148 if (Operands.size() == 1)
7149 return Operands[0];
7150 return SE.getMulExpr(Operands);
7151 }
7152
7153 const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) {
7154 if (GCD == Expr)
7155 return One;
7156 return Expr;
7157 }
7158
7159 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
7160 if (GCD == Expr)
7161 return One;
7162
7163 assert(Expr->isAffine() && "Expr should be affine");
7164
7165 const SCEV *Start = divide(SE, Expr->getStart(), GCD);
7166 const SCEV *Step = divide(SE, Expr->getStepRecurrence(SE), GCD);
7167
7168 return SE.getAddRecExpr(Start, Step, Expr->getLoop(),
7169 Expr->getNoWrapFlags());
7170 }
7171
7172 const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
7173 if (GCD == Expr)
7174 return One;
7175 return Expr;
7176 }
7177
7178 const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) {
7179 if (GCD == Expr)
7180 return One;
7181 return Expr;
7182 }
7183
7184 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
7185 if (GCD == Expr)
7186 return One;
7187 return Expr;
7188 }
7189
7190 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
7191 return Expr;
7192 }
7193
7194private:
7195 ScalarEvolution &SE;
7196 const SCEV *GCD, *Zero, *One;
7197};
7198}
7199
7200/// Splits the SCEV into two vectors of SCEVs representing the subscripts and
7201/// sizes of an array access. Returns the remainder of the delinearization that
Sebastian Pop7ee14722013-11-13 22:37:58 +00007202/// is the offset start of the array. The SCEV->delinearize algorithm computes
7203/// the multiples of SCEV coefficients: that is a pattern matching of sub
7204/// expressions in the stride and base of a SCEV corresponding to the
7205/// computation of a GCD (greatest common divisor) of base and stride. When
7206/// SCEV->delinearize fails, it returns the SCEV unchanged.
7207///
7208/// For example: when analyzing the memory access A[i][j][k] in this loop nest
7209///
7210/// void foo(long n, long m, long o, double A[n][m][o]) {
7211///
7212/// for (long i = 0; i < n; i++)
7213/// for (long j = 0; j < m; j++)
7214/// for (long k = 0; k < o; k++)
7215/// A[i][j][k] = 1.0;
7216/// }
7217///
7218/// the delinearization input is the following AddRec SCEV:
7219///
7220/// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
7221///
7222/// From this SCEV, we are able to say that the base offset of the access is %A
7223/// because it appears as an offset that does not divide any of the strides in
7224/// the loops:
7225///
7226/// CHECK: Base offset: %A
7227///
7228/// and then SCEV->delinearize determines the size of some of the dimensions of
7229/// the array as these are the multiples by which the strides are happening:
7230///
7231/// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
7232///
7233/// Note that the outermost dimension remains of UnknownSize because there are
7234/// no strides that would help identifying the size of the last dimension: when
7235/// the array has been statically allocated, one could compute the size of that
7236/// dimension by dividing the overall size of the array by the size of the known
7237/// dimensions: %m * %o * 8.
7238///
7239/// Finally delinearize provides the access functions for the array reference
7240/// that does correspond to A[i][j][k] of the above C testcase:
7241///
7242/// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
7243///
7244/// The testcases are checking the output of a function pass:
7245/// DelinearizationPass that walks through all loads and stores of a function
7246/// asking for the SCEV of the memory access with respect to all enclosing
7247/// loops, calling SCEV->delinearize on that and printing the results.
7248
Sebastian Popc62c6792013-11-12 22:47:20 +00007249const SCEV *
7250SCEVAddRecExpr::delinearize(ScalarEvolution &SE,
7251 SmallVectorImpl<const SCEV *> &Subscripts,
7252 SmallVectorImpl<const SCEV *> &Sizes) const {
Sebastian Pop7ee14722013-11-13 22:37:58 +00007253 // Early exit in case this SCEV is not an affine multivariate function.
Sebastian Popc62c6792013-11-12 22:47:20 +00007254 if (!this->isAffine())
7255 return this;
7256
7257 const SCEV *Start = this->getStart();
7258 const SCEV *Step = this->getStepRecurrence(SE);
Sebastian Pop7ee14722013-11-13 22:37:58 +00007259
Alp Tokercb402912014-01-24 17:20:08 +00007260 // Build the SCEV representation of the canonical induction variable in the
Sebastian Pop7ee14722013-11-13 22:37:58 +00007261 // loop of this SCEV.
Sebastian Popc62c6792013-11-12 22:47:20 +00007262 const SCEV *Zero = SE.getConstant(this->getType(), 0);
7263 const SCEV *One = SE.getConstant(this->getType(), 1);
7264 const SCEV *IV =
7265 SE.getAddRecExpr(Zero, One, this->getLoop(), this->getNoWrapFlags());
7266
7267 DEBUG(dbgs() << "(delinearize: " << *this << "\n");
7268
Sebastian Pop64f12d52014-02-21 18:15:15 +00007269 // When the stride of this SCEV is 1, do not compute the GCD: the size of this
7270 // subscript is 1, and this same SCEV for the access function.
7271 const SCEV *Remainder = Zero;
7272 const SCEV *GCD = One;
Sebastian Popc62c6792013-11-12 22:47:20 +00007273
Sebastian Pop7ee14722013-11-13 22:37:58 +00007274 // Find the GCD and Remainder of the Start and Step coefficients of this SCEV.
Sebastian Pop64f12d52014-02-21 18:15:15 +00007275 if (Step != One && !Step->isAllOnesValue())
7276 GCD = SCEVGCD::findGCD(SE, Start, Step, &Remainder);
Sebastian Popc62c6792013-11-12 22:47:20 +00007277
7278 DEBUG(dbgs() << "GCD: " << *GCD << "\n");
7279 DEBUG(dbgs() << "Remainder: " << *Remainder << "\n");
7280
Sebastian Pop64f12d52014-02-21 18:15:15 +00007281 const SCEV *Quotient = Start;
7282 if (GCD != One && !GCD->isAllOnesValue())
7283 // As findGCD computed Remainder, GCD divides "Start - Remainder." The
7284 // Quotient is then this SCEV without Remainder, scaled down by the GCD. The
7285 // Quotient is what will be used in the next subscript delinearization.
7286 Quotient = SCEVDivision::divide(SE, SE.getMinusSCEV(Start, Remainder), GCD);
Sebastian Popc62c6792013-11-12 22:47:20 +00007287
Sebastian Popc62c6792013-11-12 22:47:20 +00007288 DEBUG(dbgs() << "Quotient: " << *Quotient << "\n");
7289
Sebastian Pop64f12d52014-02-21 18:15:15 +00007290 const SCEV *Rem = Quotient;
Sebastian Popc62c6792013-11-12 22:47:20 +00007291 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Quotient))
Sebastian Pop7ee14722013-11-13 22:37:58 +00007292 // Recursively call delinearize on the Quotient until there are no more
7293 // multiples that can be recognized.
Sebastian Popc62c6792013-11-12 22:47:20 +00007294 Rem = AR->delinearize(SE, Subscripts, Sizes);
Sebastian Popc62c6792013-11-12 22:47:20 +00007295
Alp Tokercb402912014-01-24 17:20:08 +00007296 // Scale up the canonical induction variable IV by whatever remains from the
Sebastian Pop7ee14722013-11-13 22:37:58 +00007297 // Step after division by the GCD: the GCD is the size of all the sub-array.
Sebastian Pop64f12d52014-02-21 18:15:15 +00007298 if (Step != One && !Step->isAllOnesValue() && GCD != One &&
7299 !GCD->isAllOnesValue() && Step != GCD) {
Sebastian Popc62c6792013-11-12 22:47:20 +00007300 Step = SCEVDivision::divide(SE, Step, GCD);
7301 IV = SE.getMulExpr(IV, Step);
7302 }
Alp Tokercb402912014-01-24 17:20:08 +00007303 // The access function in the current subscript is computed as the canonical
Sebastian Pop7ee14722013-11-13 22:37:58 +00007304 // induction variable IV (potentially scaled up by the step) and offset by
7305 // Rem, the offset of delinearization in the sub-array.
Sebastian Popc62c6792013-11-12 22:47:20 +00007306 const SCEV *Index = SE.getAddExpr(IV, Rem);
7307
Sebastian Pop7ee14722013-11-13 22:37:58 +00007308 // Record the access function and the size of the current subscript.
Sebastian Popc62c6792013-11-12 22:47:20 +00007309 Subscripts.push_back(Index);
7310 Sizes.push_back(GCD);
7311
7312#ifndef NDEBUG
7313 int Size = Sizes.size();
7314 DEBUG(dbgs() << "succeeded to delinearize " << *this << "\n");
7315 DEBUG(dbgs() << "ArrayDecl[UnknownSize]");
7316 for (int i = 0; i < Size - 1; i++)
7317 DEBUG(dbgs() << "[" << *Sizes[i] << "]");
7318 DEBUG(dbgs() << " with elements of " << *Sizes[Size - 1] << " bytes.\n");
7319
7320 DEBUG(dbgs() << "ArrayRef");
7321 for (int i = 0; i < Size; i++)
7322 DEBUG(dbgs() << "[" << *Subscripts[i] << "]");
7323 DEBUG(dbgs() << "\n)\n");
7324#endif
7325
7326 return Remainder;
7327}
Chris Lattnerd934c702004-04-02 20:23:17 +00007328
7329//===----------------------------------------------------------------------===//
Dan Gohman48f82222009-05-04 22:30:44 +00007330// SCEVCallbackVH Class Implementation
7331//===----------------------------------------------------------------------===//
7332
Dan Gohmand33a0902009-05-19 19:22:47 +00007333void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmandd707af2009-07-13 22:20:53 +00007334 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman48f82222009-05-04 22:30:44 +00007335 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
7336 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007337 SE->ValueExprMap.erase(getValPtr());
Dan Gohman48f82222009-05-04 22:30:44 +00007338 // this now dangles!
7339}
7340
Dan Gohman7a066722010-07-28 01:09:07 +00007341void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmandd707af2009-07-13 22:20:53 +00007342 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christopheref6d5932010-07-29 01:25:38 +00007343
Dan Gohman48f82222009-05-04 22:30:44 +00007344 // Forget all the expressions associated with users of the old value,
7345 // so that future queries will recompute the expressions using the new
7346 // value.
Dan Gohman7cac9572010-08-02 23:49:30 +00007347 Value *Old = getValPtr();
Chandler Carruthcdf47882014-03-09 03:16:01 +00007348 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
Dan Gohmanf34f8632009-07-14 14:34:04 +00007349 SmallPtrSet<User *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00007350 while (!Worklist.empty()) {
7351 User *U = Worklist.pop_back_val();
7352 // Deleting the Old value will cause this to dangle. Postpone
7353 // that until everything else is done.
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00007354 if (U == Old)
Dan Gohman48f82222009-05-04 22:30:44 +00007355 continue;
Dan Gohmanf34f8632009-07-14 14:34:04 +00007356 if (!Visited.insert(U))
7357 continue;
Dan Gohman48f82222009-05-04 22:30:44 +00007358 if (PHINode *PN = dyn_cast<PHINode>(U))
7359 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007360 SE->ValueExprMap.erase(U);
Chandler Carruthcdf47882014-03-09 03:16:01 +00007361 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
Dan Gohman48f82222009-05-04 22:30:44 +00007362 }
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00007363 // Delete the Old value.
7364 if (PHINode *PN = dyn_cast<PHINode>(Old))
7365 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007366 SE->ValueExprMap.erase(Old);
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00007367 // this now dangles!
Dan Gohman48f82222009-05-04 22:30:44 +00007368}
7369
Dan Gohmand33a0902009-05-19 19:22:47 +00007370ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman48f82222009-05-04 22:30:44 +00007371 : CallbackVH(V), SE(se) {}
7372
7373//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00007374// ScalarEvolution Class Implementation
7375//===----------------------------------------------------------------------===//
7376
Dan Gohmanc8e23622009-04-21 23:15:49 +00007377ScalarEvolution::ScalarEvolution()
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00007378 : FunctionPass(ID), ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64), FirstUnknown(0) {
Owen Anderson6c18d1a2010-10-19 17:21:58 +00007379 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanc8e23622009-04-21 23:15:49 +00007380}
7381
Chris Lattnerd934c702004-04-02 20:23:17 +00007382bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00007383 this->F = &F;
7384 LI = &getAnalysis<LoopInfo>();
Rafael Espindola93512512014-02-25 17:30:31 +00007385 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
7386 DL = DLP ? &DLP->getDataLayout() : 0;
Chad Rosierc24b86f2011-12-01 03:08:23 +00007387 TLI = &getAnalysis<TargetLibraryInfo>();
Chandler Carruth73523022014-01-13 13:07:17 +00007388 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
Chris Lattnerd934c702004-04-02 20:23:17 +00007389 return false;
7390}
7391
7392void ScalarEvolution::releaseMemory() {
Dan Gohman7cac9572010-08-02 23:49:30 +00007393 // Iterate through all the SCEVUnknown instances and call their
7394 // destructors, so that they release their references to their values.
7395 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
7396 U->~SCEVUnknown();
7397 FirstUnknown = 0;
7398
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007399 ValueExprMap.clear();
Andrew Trick3ca3f982011-07-26 17:19:55 +00007400
7401 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
7402 // that a loop had multiple computable exits.
7403 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
7404 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
7405 I != E; ++I) {
7406 I->second.clear();
7407 }
7408
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00007409 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
7410
Dan Gohmanc8e23622009-04-21 23:15:49 +00007411 BackedgeTakenCounts.clear();
7412 ConstantEvolutionLoopExitValue.clear();
Dan Gohman5122d612009-05-08 20:47:27 +00007413 ValuesAtScopes.clear();
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007414 LoopDispositions.clear();
Dan Gohman8ea83d82010-11-18 00:34:22 +00007415 BlockDispositions.clear();
Dan Gohman761065e2010-11-17 02:44:44 +00007416 UnsignedRanges.clear();
7417 SignedRanges.clear();
Dan Gohmanc5c85c02009-06-27 21:21:31 +00007418 UniqueSCEVs.clear();
7419 SCEVAllocator.Reset();
Chris Lattnerd934c702004-04-02 20:23:17 +00007420}
7421
7422void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
7423 AU.setPreservesAll();
Chris Lattnerd934c702004-04-02 20:23:17 +00007424 AU.addRequiredTransitive<LoopInfo>();
Chandler Carruth73523022014-01-13 13:07:17 +00007425 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
Chad Rosierc24b86f2011-12-01 03:08:23 +00007426 AU.addRequired<TargetLibraryInfo>();
Dan Gohman0a40ad92009-04-16 03:18:22 +00007427}
7428
Dan Gohmanc8e23622009-04-21 23:15:49 +00007429bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman0bddac12009-02-24 18:55:53 +00007430 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattnerd934c702004-04-02 20:23:17 +00007431}
7432
Dan Gohmanc8e23622009-04-21 23:15:49 +00007433static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattnerd934c702004-04-02 20:23:17 +00007434 const Loop *L) {
7435 // Print all inner loops first
7436 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
7437 PrintLoopInfo(OS, SE, *I);
Misha Brukman01808ca2005-04-21 21:13:18 +00007438
Dan Gohmanbc694912010-01-09 18:17:45 +00007439 OS << "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007440 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007441 OS << ": ";
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00007442
Dan Gohmancb0efec2009-12-18 01:14:11 +00007443 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00007444 L->getExitBlocks(ExitBlocks);
7445 if (ExitBlocks.size() != 1)
Nick Lewyckyd1200b02008-01-02 02:49:20 +00007446 OS << "<multiple exits> ";
Chris Lattnerd934c702004-04-02 20:23:17 +00007447
Dan Gohman0bddac12009-02-24 18:55:53 +00007448 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
7449 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattnerd934c702004-04-02 20:23:17 +00007450 } else {
Dan Gohman0bddac12009-02-24 18:55:53 +00007451 OS << "Unpredictable backedge-taken count. ";
Chris Lattnerd934c702004-04-02 20:23:17 +00007452 }
7453
Dan Gohmanbc694912010-01-09 18:17:45 +00007454 OS << "\n"
7455 "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007456 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007457 OS << ": ";
Dan Gohman69942932009-06-24 00:33:16 +00007458
7459 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
7460 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
7461 } else {
7462 OS << "Unpredictable max backedge-taken count. ";
7463 }
7464
7465 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00007466}
7467
Dan Gohmancb0efec2009-12-18 01:14:11 +00007468void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman8b0a4192010-03-01 17:49:51 +00007469 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanc8e23622009-04-21 23:15:49 +00007470 // out SCEV values of all instructions that are interesting. Doing
7471 // this potentially causes it to create new SCEV objects though,
7472 // which technically conflicts with the const qualifier. This isn't
Dan Gohman028e6152009-07-10 20:25:29 +00007473 // observable from outside the class though, so casting away the
7474 // const isn't dangerous.
Dan Gohmancb0efec2009-12-18 01:14:11 +00007475 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattnerd934c702004-04-02 20:23:17 +00007476
Dan Gohmanbc694912010-01-09 18:17:45 +00007477 OS << "Classifying expressions for: ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007478 F->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007479 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00007480 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmand18dc2c2010-05-03 17:03:23 +00007481 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanfda3c4a2009-07-13 23:03:05 +00007482 OS << *I << '\n';
Dan Gohman81313fd2008-09-14 17:21:12 +00007483 OS << " --> ";
Dan Gohmanaf752342009-07-07 17:06:11 +00007484 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattnerd934c702004-04-02 20:23:17 +00007485 SV->print(OS);
Misha Brukman01808ca2005-04-21 21:13:18 +00007486
Dan Gohmanb9063a82009-06-19 17:49:54 +00007487 const Loop *L = LI->getLoopFor((*I).getParent());
7488
Dan Gohmanaf752342009-07-07 17:06:11 +00007489 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohmanb9063a82009-06-19 17:49:54 +00007490 if (AtUse != SV) {
7491 OS << " --> ";
7492 AtUse->print(OS);
7493 }
7494
7495 if (L) {
Dan Gohman94c468f2009-06-18 00:37:45 +00007496 OS << "\t\t" "Exits: ";
Dan Gohmanaf752342009-07-07 17:06:11 +00007497 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmanafd6db92010-11-17 21:23:15 +00007498 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00007499 OS << "<<Unknown>>";
7500 } else {
7501 OS << *ExitValue;
7502 }
7503 }
7504
Chris Lattnerd934c702004-04-02 20:23:17 +00007505 OS << "\n";
7506 }
7507
Dan Gohmanbc694912010-01-09 18:17:45 +00007508 OS << "Determining loop execution counts for: ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007509 F->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007510 OS << "\n";
Dan Gohmanc8e23622009-04-21 23:15:49 +00007511 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
7512 PrintLoopInfo(OS, &SE, *I);
Chris Lattnerd934c702004-04-02 20:23:17 +00007513}
Dan Gohmane20f8242009-04-21 00:47:46 +00007514
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007515ScalarEvolution::LoopDisposition
7516ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00007517 SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values = LoopDispositions[S];
7518 for (unsigned u = 0; u < Values.size(); u++) {
7519 if (Values[u].first == L)
7520 return Values[u].second;
7521 }
7522 Values.push_back(std::make_pair(L, LoopVariant));
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007523 LoopDisposition D = computeLoopDisposition(S, L);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00007524 SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values2 = LoopDispositions[S];
7525 for (unsigned u = Values2.size(); u > 0; u--) {
7526 if (Values2[u - 1].first == L) {
7527 Values2[u - 1].second = D;
7528 break;
7529 }
7530 }
7531 return D;
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007532}
7533
7534ScalarEvolution::LoopDisposition
7535ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00007536 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohmanafd6db92010-11-17 21:23:15 +00007537 case scConstant:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007538 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007539 case scTruncate:
7540 case scZeroExtend:
7541 case scSignExtend:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007542 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohmanafd6db92010-11-17 21:23:15 +00007543 case scAddRecExpr: {
7544 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
7545
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007546 // If L is the addrec's loop, it's computable.
7547 if (AR->getLoop() == L)
7548 return LoopComputable;
7549
Dan Gohmanafd6db92010-11-17 21:23:15 +00007550 // Add recurrences are never invariant in the function-body (null loop).
7551 if (!L)
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007552 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007553
7554 // This recurrence is variant w.r.t. L if L contains AR's loop.
7555 if (L->contains(AR->getLoop()))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007556 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007557
7558 // This recurrence is invariant w.r.t. L if AR's loop contains L.
7559 if (AR->getLoop()->contains(L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007560 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007561
7562 // This recurrence is variant w.r.t. L if any of its operands
7563 // are variant.
7564 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
7565 I != E; ++I)
7566 if (!isLoopInvariant(*I, L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007567 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007568
7569 // Otherwise it's loop-invariant.
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007570 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007571 }
7572 case scAddExpr:
7573 case scMulExpr:
7574 case scUMaxExpr:
7575 case scSMaxExpr: {
7576 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohmanafd6db92010-11-17 21:23:15 +00007577 bool HasVarying = false;
7578 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
7579 I != E; ++I) {
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007580 LoopDisposition D = getLoopDisposition(*I, L);
7581 if (D == LoopVariant)
7582 return LoopVariant;
7583 if (D == LoopComputable)
7584 HasVarying = true;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007585 }
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007586 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007587 }
7588 case scUDivExpr: {
7589 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007590 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
7591 if (LD == LoopVariant)
7592 return LoopVariant;
7593 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
7594 if (RD == LoopVariant)
7595 return LoopVariant;
7596 return (LD == LoopInvariant && RD == LoopInvariant) ?
7597 LoopInvariant : LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007598 }
7599 case scUnknown:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007600 // All non-instruction values are loop invariant. All instructions are loop
7601 // invariant if they are not contained in the specified loop.
7602 // Instructions are never considered invariant in the function body
7603 // (null loop) because they are defined within the "loop".
7604 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
7605 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
7606 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007607 case scCouldNotCompute:
7608 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohmanafd6db92010-11-17 21:23:15 +00007609 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00007610 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007611}
7612
7613bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
7614 return getLoopDisposition(S, L) == LoopInvariant;
7615}
7616
7617bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
7618 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007619}
Dan Gohman20d9ce22010-11-17 21:41:58 +00007620
Dan Gohman8ea83d82010-11-18 00:34:22 +00007621ScalarEvolution::BlockDisposition
7622ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00007623 SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values = BlockDispositions[S];
7624 for (unsigned u = 0; u < Values.size(); u++) {
7625 if (Values[u].first == BB)
7626 return Values[u].second;
7627 }
7628 Values.push_back(std::make_pair(BB, DoesNotDominateBlock));
Dan Gohman8ea83d82010-11-18 00:34:22 +00007629 BlockDisposition D = computeBlockDisposition(S, BB);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00007630 SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values2 = BlockDispositions[S];
7631 for (unsigned u = Values2.size(); u > 0; u--) {
7632 if (Values2[u - 1].first == BB) {
7633 Values2[u - 1].second = D;
7634 break;
7635 }
7636 }
7637 return D;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007638}
7639
Dan Gohman8ea83d82010-11-18 00:34:22 +00007640ScalarEvolution::BlockDisposition
7641ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00007642 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohman20d9ce22010-11-17 21:41:58 +00007643 case scConstant:
Dan Gohman8ea83d82010-11-18 00:34:22 +00007644 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007645 case scTruncate:
7646 case scZeroExtend:
7647 case scSignExtend:
Dan Gohman8ea83d82010-11-18 00:34:22 +00007648 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohman20d9ce22010-11-17 21:41:58 +00007649 case scAddRecExpr: {
7650 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman8ea83d82010-11-18 00:34:22 +00007651 // to test for proper dominance too, because the instruction which
7652 // produces the addrec's value is a PHI, and a PHI effectively properly
7653 // dominates its entire containing block.
Dan Gohman20d9ce22010-11-17 21:41:58 +00007654 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
7655 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman8ea83d82010-11-18 00:34:22 +00007656 return DoesNotDominateBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007657 }
7658 // FALL THROUGH into SCEVNAryExpr handling.
7659 case scAddExpr:
7660 case scMulExpr:
7661 case scUMaxExpr:
7662 case scSMaxExpr: {
7663 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00007664 bool Proper = true;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007665 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman8ea83d82010-11-18 00:34:22 +00007666 I != E; ++I) {
7667 BlockDisposition D = getBlockDisposition(*I, BB);
7668 if (D == DoesNotDominateBlock)
7669 return DoesNotDominateBlock;
7670 if (D == DominatesBlock)
7671 Proper = false;
7672 }
7673 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007674 }
7675 case scUDivExpr: {
7676 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00007677 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
7678 BlockDisposition LD = getBlockDisposition(LHS, BB);
7679 if (LD == DoesNotDominateBlock)
7680 return DoesNotDominateBlock;
7681 BlockDisposition RD = getBlockDisposition(RHS, BB);
7682 if (RD == DoesNotDominateBlock)
7683 return DoesNotDominateBlock;
7684 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
7685 ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007686 }
7687 case scUnknown:
7688 if (Instruction *I =
Dan Gohman8ea83d82010-11-18 00:34:22 +00007689 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
7690 if (I->getParent() == BB)
7691 return DominatesBlock;
7692 if (DT->properlyDominates(I->getParent(), BB))
7693 return ProperlyDominatesBlock;
7694 return DoesNotDominateBlock;
7695 }
7696 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007697 case scCouldNotCompute:
7698 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman20d9ce22010-11-17 21:41:58 +00007699 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00007700 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman8ea83d82010-11-18 00:34:22 +00007701}
7702
7703bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
7704 return getBlockDisposition(S, BB) >= DominatesBlock;
7705}
7706
7707bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
7708 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007709}
Dan Gohman534749b2010-11-17 22:27:42 +00007710
Andrew Trick365e31c2012-07-13 23:33:03 +00007711namespace {
7712// Search for a SCEV expression node within an expression tree.
7713// Implements SCEVTraversal::Visitor.
7714struct SCEVSearch {
7715 const SCEV *Node;
7716 bool IsFound;
7717
7718 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
7719
7720 bool follow(const SCEV *S) {
7721 IsFound |= (S == Node);
7722 return !IsFound;
7723 }
7724 bool isDone() const { return IsFound; }
7725};
7726}
7727
Dan Gohman534749b2010-11-17 22:27:42 +00007728bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
Andrew Trick365e31c2012-07-13 23:33:03 +00007729 SCEVSearch Search(Op);
7730 visitAll(S, Search);
7731 return Search.IsFound;
Dan Gohman534749b2010-11-17 22:27:42 +00007732}
Dan Gohman7e6b3932010-11-17 23:28:48 +00007733
7734void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
7735 ValuesAtScopes.erase(S);
7736 LoopDispositions.erase(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00007737 BlockDispositions.erase(S);
Dan Gohman7e6b3932010-11-17 23:28:48 +00007738 UnsignedRanges.erase(S);
7739 SignedRanges.erase(S);
Andrew Trick9093e152013-03-26 03:14:53 +00007740
7741 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
7742 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
7743 BackedgeTakenInfo &BEInfo = I->second;
7744 if (BEInfo.hasOperand(S, this)) {
7745 BEInfo.clear();
7746 BackedgeTakenCounts.erase(I++);
7747 }
7748 else
7749 ++I;
7750 }
Dan Gohman7e6b3932010-11-17 23:28:48 +00007751}
Benjamin Kramer214935e2012-10-26 17:31:32 +00007752
7753typedef DenseMap<const Loop *, std::string> VerifyMap;
Benjamin Kramer24d270d2012-10-27 10:45:01 +00007754
Alp Tokercb402912014-01-24 17:20:08 +00007755/// replaceSubString - Replaces all occurrences of From in Str with To.
Benjamin Kramer24d270d2012-10-27 10:45:01 +00007756static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
7757 size_t Pos = 0;
7758 while ((Pos = Str.find(From, Pos)) != std::string::npos) {
7759 Str.replace(Pos, From.size(), To.data(), To.size());
7760 Pos += To.size();
7761 }
7762}
7763
Benjamin Kramer214935e2012-10-26 17:31:32 +00007764/// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
7765static void
7766getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
7767 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
7768 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
7769
7770 std::string &S = Map[L];
7771 if (S.empty()) {
7772 raw_string_ostream OS(S);
7773 SE.getBackedgeTakenCount(L)->print(OS);
Benjamin Kramer24d270d2012-10-27 10:45:01 +00007774
7775 // false and 0 are semantically equivalent. This can happen in dead loops.
7776 replaceSubString(OS.str(), "false", "0");
7777 // Remove wrap flags, their use in SCEV is highly fragile.
7778 // FIXME: Remove this when SCEV gets smarter about them.
7779 replaceSubString(OS.str(), "<nw>", "");
7780 replaceSubString(OS.str(), "<nsw>", "");
7781 replaceSubString(OS.str(), "<nuw>", "");
Benjamin Kramer214935e2012-10-26 17:31:32 +00007782 }
7783 }
7784}
7785
7786void ScalarEvolution::verifyAnalysis() const {
7787 if (!VerifySCEV)
7788 return;
7789
7790 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
7791
7792 // Gather stringified backedge taken counts for all loops using SCEV's caches.
7793 // FIXME: It would be much better to store actual values instead of strings,
7794 // but SCEV pointers will change if we drop the caches.
7795 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
7796 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
7797 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
7798
7799 // Gather stringified backedge taken counts for all loops without using
7800 // SCEV's caches.
7801 SE.releaseMemory();
7802 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
7803 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE);
7804
7805 // Now compare whether they're the same with and without caches. This allows
7806 // verifying that no pass changed the cache.
7807 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
7808 "New loops suddenly appeared!");
7809
7810 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
7811 OldE = BackedgeDumpsOld.end(),
7812 NewI = BackedgeDumpsNew.begin();
7813 OldI != OldE; ++OldI, ++NewI) {
7814 assert(OldI->first == NewI->first && "Loop order changed!");
7815
7816 // Compare the stringified SCEVs. We don't care if undef backedgetaken count
7817 // changes.
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00007818 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
Benjamin Kramer214935e2012-10-26 17:31:32 +00007819 // means that a pass is buggy or SCEV has to learn a new pattern but is
7820 // usually not harmful.
7821 if (OldI->second != NewI->second &&
7822 OldI->second.find("undef") == std::string::npos &&
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00007823 NewI->second.find("undef") == std::string::npos &&
7824 OldI->second != "***COULDNOTCOMPUTE***" &&
Benjamin Kramer214935e2012-10-26 17:31:32 +00007825 NewI->second != "***COULDNOTCOMPUTE***") {
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00007826 dbgs() << "SCEVValidator: SCEV for loop '"
Benjamin Kramer214935e2012-10-26 17:31:32 +00007827 << OldI->first->getHeader()->getName()
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00007828 << "' changed from '" << OldI->second
7829 << "' to '" << NewI->second << "'!\n";
Benjamin Kramer214935e2012-10-26 17:31:32 +00007830 std::abort();
7831 }
7832 }
7833
7834 // TODO: Verify more things.
7835}