blob: fea979d78e87fc17a6d04d9ad033a316cb005c35 [file] [log] [blame]
Chris Lattnerd934c702004-04-02 20:23:17 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
Misha Brukman01808ca2005-04-21 21:13:18 +00002//
Chris Lattnerd934c702004-04-02 20:23:17 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukman01808ca2005-04-21 21:13:18 +00007//
Chris Lattnerd934c702004-04-02 20:23:17 +00008//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
Dan Gohmanef2ae2c2009-07-25 16:18:07 +000017// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
Chris Lattnerd934c702004-04-02 20:23:17 +000019//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
Misha Brukman01808ca2005-04-21 21:13:18 +000030//
Chris Lattnerd934c702004-04-02 20:23:17 +000031// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
Chris Lattnerd934c702004-04-02 20:23:17 +000035// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
Chris Lattner57ef9422006-12-19 22:30:33 +000061#define DEBUG_TYPE "scalar-evolution"
Chandler Carruthed0881b2012-12-03 16:50:05 +000062#include "llvm/Analysis/ScalarEvolution.h"
63#include "llvm/ADT/STLExtras.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/Statistic.h"
John Criswellfe5f33b2005-10-27 15:54:34 +000066#include "llvm/Analysis/ConstantFolding.h"
Duncan Sandsd06f50e2010-11-17 04:18:45 +000067#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattnerd934c702004-04-02 20:23:17 +000068#include "llvm/Analysis/LoopInfo.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000069#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Dan Gohman1ee696d2009-06-16 19:52:01 +000070#include "llvm/Analysis/ValueTracking.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000071#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000072#include "llvm/IR/Constants.h"
73#include "llvm/IR/DataLayout.h"
74#include "llvm/IR/DerivedTypes.h"
Chandler Carruth5ad5f152014-01-13 09:26:24 +000075#include "llvm/IR/Dominators.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000076#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000077#include "llvm/IR/GlobalAlias.h"
78#include "llvm/IR/GlobalVariable.h"
Chandler Carruth83948572014-03-04 10:30:26 +000079#include "llvm/IR/InstIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000080#include "llvm/IR/Instructions.h"
81#include "llvm/IR/LLVMContext.h"
82#include "llvm/IR/Operator.h"
Chris Lattner996795b2006-06-28 23:17:24 +000083#include "llvm/Support/CommandLine.h"
David Greene2330f782009-12-23 22:58:38 +000084#include "llvm/Support/Debug.h"
Torok Edwin56d06592009-07-11 20:10:48 +000085#include "llvm/Support/ErrorHandling.h"
Chris Lattner0a1e9932006-12-19 01:16:02 +000086#include "llvm/Support/MathExtras.h"
Dan Gohmane20f8242009-04-21 00:47:46 +000087#include "llvm/Support/raw_ostream.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000088#include "llvm/Target/TargetLibraryInfo.h"
Alkis Evlogimenosa5c04ee2004-09-03 18:19:51 +000089#include <algorithm>
Chris Lattnerd934c702004-04-02 20:23:17 +000090using namespace llvm;
91
Chris Lattner57ef9422006-12-19 22:30:33 +000092STATISTIC(NumArrayLenItCounts,
93 "Number of trip counts computed with array length");
94STATISTIC(NumTripCountsComputed,
95 "Number of loops with predictable loop counts");
96STATISTIC(NumTripCountsNotComputed,
97 "Number of loops without predictable loop counts");
98STATISTIC(NumBruteForceTripCountsComputed,
99 "Number of loops with trip counts computed by force");
100
Dan Gohmand78c4002008-05-13 00:00:25 +0000101static cl::opt<unsigned>
Chris Lattner57ef9422006-12-19 22:30:33 +0000102MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
103 cl::desc("Maximum number of iterations SCEV will "
Dan Gohmance973df2009-06-24 04:48:43 +0000104 "symbolically execute a constant "
105 "derived loop"),
Chris Lattner57ef9422006-12-19 22:30:33 +0000106 cl::init(100));
107
Benjamin Kramer214935e2012-10-26 17:31:32 +0000108// FIXME: Enable this with XDEBUG when the test suite is clean.
109static cl::opt<bool>
110VerifySCEV("verify-scev",
111 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
112
Owen Anderson8ac477f2010-10-12 19:48:12 +0000113INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
114 "Scalar Evolution Analysis", false, true)
115INITIALIZE_PASS_DEPENDENCY(LoopInfo)
Chandler Carruth73523022014-01-13 13:07:17 +0000116INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
Chad Rosierc24b86f2011-12-01 03:08:23 +0000117INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
Owen Anderson8ac477f2010-10-12 19:48:12 +0000118INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
Owen Andersondf7a4f22010-10-07 22:25:06 +0000119 "Scalar Evolution Analysis", false, true)
Devang Patel8c78a0b2007-05-03 01:11:54 +0000120char ScalarEvolution::ID = 0;
Chris Lattnerd934c702004-04-02 20:23:17 +0000121
122//===----------------------------------------------------------------------===//
123// SCEV class definitions
124//===----------------------------------------------------------------------===//
125
126//===----------------------------------------------------------------------===//
127// Implementation of the SCEV class.
128//
Dan Gohman3423e722009-06-30 20:13:32 +0000129
Manman Ren49d684e2012-09-12 05:06:18 +0000130#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Chris Lattnerd934c702004-04-02 20:23:17 +0000131void SCEV::dump() const {
David Greenedf1c4972009-12-23 22:18:14 +0000132 print(dbgs());
133 dbgs() << '\n';
Dan Gohmane20f8242009-04-21 00:47:46 +0000134}
Manman Renc3366cc2012-09-06 19:55:56 +0000135#endif
Dan Gohmane20f8242009-04-21 00:47:46 +0000136
Dan Gohman534749b2010-11-17 22:27:42 +0000137void SCEV::print(raw_ostream &OS) const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000138 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000139 case scConstant:
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000140 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000141 return;
142 case scTruncate: {
143 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
144 const SCEV *Op = Trunc->getOperand();
145 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
146 << *Trunc->getType() << ")";
147 return;
148 }
149 case scZeroExtend: {
150 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
151 const SCEV *Op = ZExt->getOperand();
152 OS << "(zext " << *Op->getType() << " " << *Op << " to "
153 << *ZExt->getType() << ")";
154 return;
155 }
156 case scSignExtend: {
157 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
158 const SCEV *Op = SExt->getOperand();
159 OS << "(sext " << *Op->getType() << " " << *Op << " to "
160 << *SExt->getType() << ")";
161 return;
162 }
163 case scAddRecExpr: {
164 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
165 OS << "{" << *AR->getOperand(0);
166 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
167 OS << ",+," << *AR->getOperand(i);
168 OS << "}<";
Andrew Trick8b55b732011-03-14 16:50:06 +0000169 if (AR->getNoWrapFlags(FlagNUW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000170 OS << "nuw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000171 if (AR->getNoWrapFlags(FlagNSW))
Chris Lattnera337f5e2011-01-09 02:16:18 +0000172 OS << "nsw><";
Andrew Trick8b55b732011-03-14 16:50:06 +0000173 if (AR->getNoWrapFlags(FlagNW) &&
174 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
175 OS << "nw><";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000176 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohman534749b2010-11-17 22:27:42 +0000177 OS << ">";
178 return;
179 }
180 case scAddExpr:
181 case scMulExpr:
182 case scUMaxExpr:
183 case scSMaxExpr: {
184 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
Benjamin Kramerc77ebcc2010-11-19 11:37:26 +0000185 const char *OpStr = 0;
Dan Gohman534749b2010-11-17 22:27:42 +0000186 switch (NAry->getSCEVType()) {
187 case scAddExpr: OpStr = " + "; break;
188 case scMulExpr: OpStr = " * "; break;
189 case scUMaxExpr: OpStr = " umax "; break;
190 case scSMaxExpr: OpStr = " smax "; break;
191 }
192 OS << "(";
193 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
194 I != E; ++I) {
195 OS << **I;
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +0000196 if (std::next(I) != E)
Dan Gohman534749b2010-11-17 22:27:42 +0000197 OS << OpStr;
198 }
199 OS << ")";
Andrew Trickd912a5b2011-11-29 02:06:35 +0000200 switch (NAry->getSCEVType()) {
201 case scAddExpr:
202 case scMulExpr:
203 if (NAry->getNoWrapFlags(FlagNUW))
204 OS << "<nuw>";
205 if (NAry->getNoWrapFlags(FlagNSW))
206 OS << "<nsw>";
207 }
Dan Gohman534749b2010-11-17 22:27:42 +0000208 return;
209 }
210 case scUDivExpr: {
211 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
212 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
213 return;
214 }
215 case scUnknown: {
216 const SCEVUnknown *U = cast<SCEVUnknown>(this);
Chris Lattner229907c2011-07-18 04:54:35 +0000217 Type *AllocTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000218 if (U->isSizeOf(AllocTy)) {
219 OS << "sizeof(" << *AllocTy << ")";
220 return;
221 }
222 if (U->isAlignOf(AllocTy)) {
223 OS << "alignof(" << *AllocTy << ")";
224 return;
225 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000226
Chris Lattner229907c2011-07-18 04:54:35 +0000227 Type *CTy;
Dan Gohman534749b2010-11-17 22:27:42 +0000228 Constant *FieldNo;
229 if (U->isOffsetOf(CTy, FieldNo)) {
230 OS << "offsetof(" << *CTy << ", ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000231 FieldNo->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000232 OS << ")";
233 return;
234 }
Andrew Trick2a3b7162011-03-09 17:23:39 +0000235
Dan Gohman534749b2010-11-17 22:27:42 +0000236 // Otherwise just print it normally.
Chandler Carruthd48cdbf2014-01-09 02:29:41 +0000237 U->getValue()->printAsOperand(OS, false);
Dan Gohman534749b2010-11-17 22:27:42 +0000238 return;
239 }
240 case scCouldNotCompute:
241 OS << "***COULDNOTCOMPUTE***";
242 return;
Dan Gohman534749b2010-11-17 22:27:42 +0000243 }
244 llvm_unreachable("Unknown SCEV kind!");
245}
246
Chris Lattner229907c2011-07-18 04:54:35 +0000247Type *SCEV::getType() const {
Benjamin Kramer987b8502014-02-11 19:02:55 +0000248 switch (static_cast<SCEVTypes>(getSCEVType())) {
Dan Gohman534749b2010-11-17 22:27:42 +0000249 case scConstant:
250 return cast<SCEVConstant>(this)->getType();
251 case scTruncate:
252 case scZeroExtend:
253 case scSignExtend:
254 return cast<SCEVCastExpr>(this)->getType();
255 case scAddRecExpr:
256 case scMulExpr:
257 case scUMaxExpr:
258 case scSMaxExpr:
259 return cast<SCEVNAryExpr>(this)->getType();
260 case scAddExpr:
261 return cast<SCEVAddExpr>(this)->getType();
262 case scUDivExpr:
263 return cast<SCEVUDivExpr>(this)->getType();
264 case scUnknown:
265 return cast<SCEVUnknown>(this)->getType();
266 case scCouldNotCompute:
267 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman534749b2010-11-17 22:27:42 +0000268 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000269 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman534749b2010-11-17 22:27:42 +0000270}
271
Dan Gohmanbe928e32008-06-18 16:23:07 +0000272bool SCEV::isZero() const {
273 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
274 return SC->getValue()->isZero();
275 return false;
276}
277
Dan Gohmanba7f6d82009-05-18 15:22:39 +0000278bool SCEV::isOne() const {
279 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
280 return SC->getValue()->isOne();
281 return false;
282}
Chris Lattnerd934c702004-04-02 20:23:17 +0000283
Dan Gohman18a96bb2009-06-24 00:30:26 +0000284bool SCEV::isAllOnesValue() const {
285 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
286 return SC->getValue()->isAllOnesValue();
287 return false;
288}
289
Andrew Trick881a7762012-01-07 00:27:31 +0000290/// isNonConstantNegative - Return true if the specified scev is negated, but
291/// not a constant.
292bool SCEV::isNonConstantNegative() const {
293 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
294 if (!Mul) return false;
295
296 // If there is a constant factor, it will be first.
297 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
298 if (!SC) return false;
299
300 // Return true if the value is negative, this matches things like (-42 * V).
301 return SC->getValue()->getValue().isNegative();
302}
303
Owen Anderson04052ec2009-06-22 21:57:23 +0000304SCEVCouldNotCompute::SCEVCouldNotCompute() :
Dan Gohman24ceda82010-06-18 19:54:20 +0000305 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000306
Chris Lattnerd934c702004-04-02 20:23:17 +0000307bool SCEVCouldNotCompute::classof(const SCEV *S) {
308 return S->getSCEVType() == scCouldNotCompute;
309}
310
Dan Gohmanaf752342009-07-07 17:06:11 +0000311const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000312 FoldingSetNodeID ID;
313 ID.AddInteger(scConstant);
314 ID.AddPointer(V);
315 void *IP = 0;
316 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman24ceda82010-06-18 19:54:20 +0000317 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000318 UniqueSCEVs.InsertNode(S, IP);
319 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000320}
Chris Lattnerd934c702004-04-02 20:23:17 +0000321
Nick Lewycky31eaca52014-01-27 10:04:03 +0000322const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
Owen Andersonedb4a702009-07-24 23:12:02 +0000323 return getConstant(ConstantInt::get(getContext(), Val));
Dan Gohman0a76e7f2007-07-09 15:25:17 +0000324}
325
Dan Gohmanaf752342009-07-07 17:06:11 +0000326const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +0000327ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
328 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
Dan Gohmana029cbe2010-04-21 16:04:04 +0000329 return getConstant(ConstantInt::get(ITy, V, isSigned));
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000330}
331
Dan Gohman24ceda82010-06-18 19:54:20 +0000332SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000333 unsigned SCEVTy, const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000334 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000335
Dan Gohman24ceda82010-06-18 19:54:20 +0000336SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000337 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000338 : SCEVCastExpr(ID, scTruncate, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000339 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
340 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000341 "Cannot truncate non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000342}
Chris Lattnerd934c702004-04-02 20:23:17 +0000343
Dan Gohman24ceda82010-06-18 19:54:20 +0000344SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000345 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000346 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000347 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
348 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000349 "Cannot zero extend non-integer value!");
Chris Lattnerb4f681b2004-04-15 15:07:24 +0000350}
351
Dan Gohman24ceda82010-06-18 19:54:20 +0000352SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
Chris Lattner229907c2011-07-18 04:54:35 +0000353 const SCEV *op, Type *ty)
Dan Gohman24ceda82010-06-18 19:54:20 +0000354 : SCEVCastExpr(ID, scSignExtend, op, ty) {
Duncan Sands19d0b472010-02-16 11:11:14 +0000355 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
356 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000357 "Cannot sign extend non-integer value!");
Dan Gohmancb9e09a2007-06-15 14:38:12 +0000358}
359
Dan Gohman7cac9572010-08-02 23:49:30 +0000360void SCEVUnknown::deleted() {
Dan Gohman761065e2010-11-17 02:44:44 +0000361 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000362 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000363
364 // Remove this SCEVUnknown from the uniquing map.
365 SE->UniqueSCEVs.RemoveNode(this);
366
367 // Release the value.
368 setValPtr(0);
369}
370
371void SCEVUnknown::allUsesReplacedWith(Value *New) {
Dan Gohman761065e2010-11-17 02:44:44 +0000372 // Clear this SCEVUnknown from various maps.
Dan Gohman7e6b3932010-11-17 23:28:48 +0000373 SE->forgetMemoizedResults(this);
Dan Gohman7cac9572010-08-02 23:49:30 +0000374
375 // Remove this SCEVUnknown from the uniquing map.
376 SE->UniqueSCEVs.RemoveNode(this);
377
378 // Update this SCEVUnknown to point to the new value. This is needed
379 // because there may still be outstanding SCEVs which still point to
380 // this SCEVUnknown.
381 setValPtr(New);
382}
383
Chris Lattner229907c2011-07-18 04:54:35 +0000384bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000385 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000386 if (VCE->getOpcode() == Instruction::PtrToInt)
387 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000388 if (CE->getOpcode() == Instruction::GetElementPtr &&
389 CE->getOperand(0)->isNullValue() &&
390 CE->getNumOperands() == 2)
391 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
392 if (CI->isOne()) {
393 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
394 ->getElementType();
395 return true;
396 }
Dan Gohmancf913832010-01-28 02:15:55 +0000397
398 return false;
399}
400
Chris Lattner229907c2011-07-18 04:54:35 +0000401bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000402 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmancf913832010-01-28 02:15:55 +0000403 if (VCE->getOpcode() == Instruction::PtrToInt)
404 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000405 if (CE->getOpcode() == Instruction::GetElementPtr &&
406 CE->getOperand(0)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000407 Type *Ty =
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000408 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
Chris Lattner229907c2011-07-18 04:54:35 +0000409 if (StructType *STy = dyn_cast<StructType>(Ty))
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000410 if (!STy->isPacked() &&
411 CE->getNumOperands() == 3 &&
412 CE->getOperand(1)->isNullValue()) {
413 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
414 if (CI->isOne() &&
415 STy->getNumElements() == 2 &&
Duncan Sands9dff9be2010-02-15 16:12:20 +0000416 STy->getElementType(0)->isIntegerTy(1)) {
Dan Gohman7e5f1b22010-02-02 01:38:49 +0000417 AllocTy = STy->getElementType(1);
418 return true;
419 }
420 }
421 }
Dan Gohmancf913832010-01-28 02:15:55 +0000422
423 return false;
424}
425
Chris Lattner229907c2011-07-18 04:54:35 +0000426bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
Dan Gohman7cac9572010-08-02 23:49:30 +0000427 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000428 if (VCE->getOpcode() == Instruction::PtrToInt)
429 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
430 if (CE->getOpcode() == Instruction::GetElementPtr &&
431 CE->getNumOperands() == 3 &&
432 CE->getOperand(0)->isNullValue() &&
433 CE->getOperand(1)->isNullValue()) {
Chris Lattner229907c2011-07-18 04:54:35 +0000434 Type *Ty =
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000435 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
436 // Ignore vector types here so that ScalarEvolutionExpander doesn't
437 // emit getelementptrs that index into vectors.
Duncan Sands19d0b472010-02-16 11:11:14 +0000438 if (Ty->isStructTy() || Ty->isArrayTy()) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +0000439 CTy = Ty;
440 FieldNo = CE->getOperand(2);
441 return true;
442 }
443 }
444
445 return false;
446}
447
Chris Lattnereb3e8402004-06-20 06:23:15 +0000448//===----------------------------------------------------------------------===//
449// SCEV Utilities
450//===----------------------------------------------------------------------===//
451
452namespace {
453 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
454 /// than the complexity of the RHS. This comparator is used to canonicalize
455 /// expressions.
Nick Lewycky02d5f772009-10-25 06:33:48 +0000456 class SCEVComplexityCompare {
Dan Gohman3324b9e2010-08-13 20:17:27 +0000457 const LoopInfo *const LI;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000458 public:
Dan Gohman992db002010-07-23 21:18:55 +0000459 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
Dan Gohman9ba542c2009-05-07 14:39:04 +0000460
Dan Gohman27065672010-08-27 15:26:01 +0000461 // Return true or false if LHS is less than, or at least RHS, respectively.
Dan Gohman5e6ce7b2008-04-14 18:23:56 +0000462 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohman27065672010-08-27 15:26:01 +0000463 return compare(LHS, RHS) < 0;
464 }
465
466 // Return negative, zero, or positive, if LHS is less than, equal to, or
467 // greater than RHS, respectively. A three-way result allows recursive
468 // comparisons to be more efficient.
469 int compare(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000470 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
471 if (LHS == RHS)
Dan Gohman27065672010-08-27 15:26:01 +0000472 return 0;
Dan Gohmancc2f1eb2009-08-31 21:15:23 +0000473
Dan Gohman9ba542c2009-05-07 14:39:04 +0000474 // Primarily, sort the SCEVs by their getSCEVType().
Dan Gohman5ae31022010-07-23 21:20:52 +0000475 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
476 if (LType != RType)
Dan Gohman27065672010-08-27 15:26:01 +0000477 return (int)LType - (int)RType;
Dan Gohman9ba542c2009-05-07 14:39:04 +0000478
Dan Gohman24ceda82010-06-18 19:54:20 +0000479 // Aside from the getSCEVType() ordering, the particular ordering
480 // isn't very important except that it's beneficial to be consistent,
481 // so that (a + b) and (b + a) don't end up as different expressions.
Benjamin Kramer987b8502014-02-11 19:02:55 +0000482 switch (static_cast<SCEVTypes>(LType)) {
Dan Gohman27065672010-08-27 15:26:01 +0000483 case scUnknown: {
484 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000485 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000486
487 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
488 // not as complete as it could be.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000489 const Value *LV = LU->getValue(), *RV = RU->getValue();
Dan Gohman24ceda82010-06-18 19:54:20 +0000490
491 // Order pointer values after integer values. This helps SCEVExpander
492 // form GEPs.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000493 bool LIsPointer = LV->getType()->isPointerTy(),
494 RIsPointer = RV->getType()->isPointerTy();
Dan Gohman5ae31022010-07-23 21:20:52 +0000495 if (LIsPointer != RIsPointer)
Dan Gohman27065672010-08-27 15:26:01 +0000496 return (int)LIsPointer - (int)RIsPointer;
Dan Gohman24ceda82010-06-18 19:54:20 +0000497
498 // Compare getValueID values.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000499 unsigned LID = LV->getValueID(),
500 RID = RV->getValueID();
Dan Gohman5ae31022010-07-23 21:20:52 +0000501 if (LID != RID)
Dan Gohman27065672010-08-27 15:26:01 +0000502 return (int)LID - (int)RID;
Dan Gohman24ceda82010-06-18 19:54:20 +0000503
504 // Sort arguments by their position.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000505 if (const Argument *LA = dyn_cast<Argument>(LV)) {
506 const Argument *RA = cast<Argument>(RV);
Dan Gohman27065672010-08-27 15:26:01 +0000507 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
508 return (int)LArgNo - (int)RArgNo;
Dan Gohman24ceda82010-06-18 19:54:20 +0000509 }
510
Dan Gohman27065672010-08-27 15:26:01 +0000511 // For instructions, compare their loop depth, and their operand
512 // count. This is pretty loose.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000513 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
514 const Instruction *RInst = cast<Instruction>(RV);
Dan Gohman24ceda82010-06-18 19:54:20 +0000515
516 // Compare loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000517 const BasicBlock *LParent = LInst->getParent(),
518 *RParent = RInst->getParent();
519 if (LParent != RParent) {
520 unsigned LDepth = LI->getLoopDepth(LParent),
521 RDepth = LI->getLoopDepth(RParent);
522 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000523 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000524 }
Dan Gohman24ceda82010-06-18 19:54:20 +0000525
526 // Compare the number of operands.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000527 unsigned LNumOps = LInst->getNumOperands(),
528 RNumOps = RInst->getNumOperands();
Dan Gohman27065672010-08-27 15:26:01 +0000529 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000530 }
531
Dan Gohman27065672010-08-27 15:26:01 +0000532 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000533 }
534
Dan Gohman27065672010-08-27 15:26:01 +0000535 case scConstant: {
536 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000537 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000538
539 // Compare constant values.
Dan Gohmanf2961822010-08-16 16:25:35 +0000540 const APInt &LA = LC->getValue()->getValue();
541 const APInt &RA = RC->getValue()->getValue();
542 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
Dan Gohman5ae31022010-07-23 21:20:52 +0000543 if (LBitWidth != RBitWidth)
Dan Gohman27065672010-08-27 15:26:01 +0000544 return (int)LBitWidth - (int)RBitWidth;
545 return LA.ult(RA) ? -1 : 1;
Dan Gohman24ceda82010-06-18 19:54:20 +0000546 }
547
Dan Gohman27065672010-08-27 15:26:01 +0000548 case scAddRecExpr: {
549 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000550 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000551
552 // Compare addrec loop depths.
Dan Gohman0c436ab2010-08-13 21:24:58 +0000553 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
554 if (LLoop != RLoop) {
555 unsigned LDepth = LLoop->getLoopDepth(),
556 RDepth = RLoop->getLoopDepth();
557 if (LDepth != RDepth)
Dan Gohman27065672010-08-27 15:26:01 +0000558 return (int)LDepth - (int)RDepth;
Dan Gohman0c436ab2010-08-13 21:24:58 +0000559 }
Dan Gohman27065672010-08-27 15:26:01 +0000560
561 // Addrec complexity grows with operand count.
562 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
563 if (LNumOps != RNumOps)
564 return (int)LNumOps - (int)RNumOps;
565
566 // Lexicographically compare.
567 for (unsigned i = 0; i != LNumOps; ++i) {
568 long X = compare(LA->getOperand(i), RA->getOperand(i));
569 if (X != 0)
570 return X;
571 }
572
573 return 0;
Dan Gohman24ceda82010-06-18 19:54:20 +0000574 }
575
Dan Gohman27065672010-08-27 15:26:01 +0000576 case scAddExpr:
577 case scMulExpr:
578 case scSMaxExpr:
579 case scUMaxExpr: {
580 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000581 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000582
583 // Lexicographically compare n-ary expressions.
Dan Gohman5ae31022010-07-23 21:20:52 +0000584 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
Andrew Trickc3bc8b82013-07-31 02:43:40 +0000585 if (LNumOps != RNumOps)
586 return (int)LNumOps - (int)RNumOps;
587
Dan Gohman5ae31022010-07-23 21:20:52 +0000588 for (unsigned i = 0; i != LNumOps; ++i) {
589 if (i >= RNumOps)
Dan Gohman27065672010-08-27 15:26:01 +0000590 return 1;
591 long X = compare(LC->getOperand(i), RC->getOperand(i));
592 if (X != 0)
593 return X;
Dan Gohman24ceda82010-06-18 19:54:20 +0000594 }
Dan Gohman27065672010-08-27 15:26:01 +0000595 return (int)LNumOps - (int)RNumOps;
Dan Gohman24ceda82010-06-18 19:54:20 +0000596 }
597
Dan Gohman27065672010-08-27 15:26:01 +0000598 case scUDivExpr: {
599 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000600 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000601
602 // Lexicographically compare udiv expressions.
603 long X = compare(LC->getLHS(), RC->getLHS());
604 if (X != 0)
605 return X;
606 return compare(LC->getRHS(), RC->getRHS());
Dan Gohman24ceda82010-06-18 19:54:20 +0000607 }
608
Dan Gohman27065672010-08-27 15:26:01 +0000609 case scTruncate:
610 case scZeroExtend:
611 case scSignExtend: {
612 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
Dan Gohman24ceda82010-06-18 19:54:20 +0000613 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
Dan Gohman27065672010-08-27 15:26:01 +0000614
615 // Compare cast expressions by operand.
616 return compare(LC->getOperand(), RC->getOperand());
617 }
618
Benjamin Kramer987b8502014-02-11 19:02:55 +0000619 case scCouldNotCompute:
620 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman24ceda82010-06-18 19:54:20 +0000621 }
Benjamin Kramer987b8502014-02-11 19:02:55 +0000622 llvm_unreachable("Unknown SCEV kind!");
Chris Lattnereb3e8402004-06-20 06:23:15 +0000623 }
624 };
625}
626
627/// GroupByComplexity - Given a list of SCEV objects, order them by their
628/// complexity, and group objects of the same complexity together by value.
629/// When this routine is finished, we know that any duplicates in the vector are
630/// consecutive and that complexity is monotonically increasing.
631///
Dan Gohman8b0a4192010-03-01 17:49:51 +0000632/// Note that we go take special precautions to ensure that we get deterministic
Chris Lattnereb3e8402004-06-20 06:23:15 +0000633/// results from this routine. In other words, we don't want the results of
634/// this to depend on where the addresses of various SCEV objects happened to
635/// land in memory.
636///
Dan Gohmanaf752342009-07-07 17:06:11 +0000637static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
Dan Gohman9ba542c2009-05-07 14:39:04 +0000638 LoopInfo *LI) {
Chris Lattnereb3e8402004-06-20 06:23:15 +0000639 if (Ops.size() < 2) return; // Noop
640 if (Ops.size() == 2) {
641 // This is the common case, which also happens to be trivially simple.
642 // Special case it.
Dan Gohman7712d292010-08-29 15:07:13 +0000643 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
644 if (SCEVComplexityCompare(LI)(RHS, LHS))
645 std::swap(LHS, RHS);
Chris Lattnereb3e8402004-06-20 06:23:15 +0000646 return;
647 }
648
Dan Gohman24ceda82010-06-18 19:54:20 +0000649 // Do the rough sort by complexity.
650 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
651
652 // Now that we are sorted by complexity, group elements of the same
653 // complexity. Note that this is, at worst, N^2, but the vector is likely to
654 // be extremely short in practice. Note that we take this approach because we
655 // do not want to depend on the addresses of the objects we are grouping.
656 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
657 const SCEV *S = Ops[i];
658 unsigned Complexity = S->getSCEVType();
659
660 // If there are any objects of the same complexity and same value as this
661 // one, group them.
662 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
663 if (Ops[j] == S) { // Found a duplicate.
664 // Move it to immediately after i'th element.
665 std::swap(Ops[i+1], Ops[j]);
666 ++i; // no need to rescan it.
667 if (i == e-2) return; // Done!
668 }
669 }
670 }
Chris Lattnereb3e8402004-06-20 06:23:15 +0000671}
672
Chris Lattnerd934c702004-04-02 20:23:17 +0000673
Chris Lattnerd934c702004-04-02 20:23:17 +0000674
675//===----------------------------------------------------------------------===//
676// Simple SCEV method implementations
677//===----------------------------------------------------------------------===//
678
Eli Friedman61f67622008-08-04 23:49:06 +0000679/// BinomialCoefficient - Compute BC(It, K). The result has width W.
Dan Gohman4d5435d2009-05-24 23:45:28 +0000680/// Assume, K > 0.
Dan Gohmanaf752342009-07-07 17:06:11 +0000681static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
Dan Gohman32291b12009-07-21 00:38:55 +0000682 ScalarEvolution &SE,
Nick Lewycky702cf1e2011-09-06 06:39:54 +0000683 Type *ResultTy) {
Eli Friedman61f67622008-08-04 23:49:06 +0000684 // Handle the simplest case efficiently.
685 if (K == 1)
686 return SE.getTruncateOrZeroExtend(It, ResultTy);
687
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000688 // We are using the following formula for BC(It, K):
689 //
690 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
691 //
Eli Friedman61f67622008-08-04 23:49:06 +0000692 // Suppose, W is the bitwidth of the return value. We must be prepared for
693 // overflow. Hence, we must assure that the result of our computation is
694 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
695 // safe in modular arithmetic.
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000696 //
Eli Friedman61f67622008-08-04 23:49:06 +0000697 // However, this code doesn't use exactly that formula; the formula it uses
Dan Gohmance973df2009-06-24 04:48:43 +0000698 // is something like the following, where T is the number of factors of 2 in
Eli Friedman61f67622008-08-04 23:49:06 +0000699 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
700 // exponentiation:
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000701 //
Eli Friedman61f67622008-08-04 23:49:06 +0000702 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000703 //
Eli Friedman61f67622008-08-04 23:49:06 +0000704 // This formula is trivially equivalent to the previous formula. However,
705 // this formula can be implemented much more efficiently. The trick is that
706 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
707 // arithmetic. To do exact division in modular arithmetic, all we have
708 // to do is multiply by the inverse. Therefore, this step can be done at
709 // width W.
Dan Gohmance973df2009-06-24 04:48:43 +0000710 //
Eli Friedman61f67622008-08-04 23:49:06 +0000711 // The next issue is how to safely do the division by 2^T. The way this
712 // is done is by doing the multiplication step at a width of at least W + T
713 // bits. This way, the bottom W+T bits of the product are accurate. Then,
714 // when we perform the division by 2^T (which is equivalent to a right shift
715 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
716 // truncated out after the division by 2^T.
717 //
718 // In comparison to just directly using the first formula, this technique
719 // is much more efficient; using the first formula requires W * K bits,
720 // but this formula less than W + K bits. Also, the first formula requires
721 // a division step, whereas this formula only requires multiplies and shifts.
722 //
723 // It doesn't matter whether the subtraction step is done in the calculation
724 // width or the input iteration count's width; if the subtraction overflows,
725 // the result must be zero anyway. We prefer here to do it in the width of
726 // the induction variable because it helps a lot for certain cases; CodeGen
727 // isn't smart enough to ignore the overflow, which leads to much less
728 // efficient code if the width of the subtraction is wider than the native
729 // register width.
730 //
731 // (It's possible to not widen at all by pulling out factors of 2 before
732 // the multiplication; for example, K=2 can be calculated as
733 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
734 // extra arithmetic, so it's not an obvious win, and it gets
735 // much more complicated for K > 3.)
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000736
Eli Friedman61f67622008-08-04 23:49:06 +0000737 // Protection from insane SCEVs; this bound is conservative,
738 // but it probably doesn't matter.
739 if (K > 1000)
Dan Gohman31efa302009-04-18 17:58:19 +0000740 return SE.getCouldNotCompute();
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000741
Dan Gohmanb397e1a2009-04-21 01:07:12 +0000742 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000743
Eli Friedman61f67622008-08-04 23:49:06 +0000744 // Calculate K! / 2^T and T; we divide out the factors of two before
745 // multiplying for calculating K! / 2^T to avoid overflow.
746 // Other overflow doesn't matter because we only care about the bottom
747 // W bits of the result.
748 APInt OddFactorial(W, 1);
749 unsigned T = 1;
750 for (unsigned i = 3; i <= K; ++i) {
751 APInt Mult(W, i);
752 unsigned TwoFactors = Mult.countTrailingZeros();
753 T += TwoFactors;
754 Mult = Mult.lshr(TwoFactors);
755 OddFactorial *= Mult;
Chris Lattnerd934c702004-04-02 20:23:17 +0000756 }
Nick Lewyckyed169d52008-06-13 04:38:55 +0000757
Eli Friedman61f67622008-08-04 23:49:06 +0000758 // We need at least W + T bits for the multiplication step
Nick Lewycky21add8f2009-01-25 08:16:27 +0000759 unsigned CalculationBits = W + T;
Eli Friedman61f67622008-08-04 23:49:06 +0000760
Dan Gohman8b0a4192010-03-01 17:49:51 +0000761 // Calculate 2^T, at width T+W.
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +0000762 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
Eli Friedman61f67622008-08-04 23:49:06 +0000763
764 // Calculate the multiplicative inverse of K! / 2^T;
765 // this multiplication factor will perform the exact division by
766 // K! / 2^T.
767 APInt Mod = APInt::getSignedMinValue(W+1);
768 APInt MultiplyFactor = OddFactorial.zext(W+1);
769 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
770 MultiplyFactor = MultiplyFactor.trunc(W);
771
772 // Calculate the product, at width T+W
Chris Lattner229907c2011-07-18 04:54:35 +0000773 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
Owen Anderson55f1c092009-08-13 21:58:54 +0000774 CalculationBits);
Dan Gohmanaf752342009-07-07 17:06:11 +0000775 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
Eli Friedman61f67622008-08-04 23:49:06 +0000776 for (unsigned i = 1; i != K; ++i) {
Dan Gohman1d2ded72010-05-03 22:09:21 +0000777 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
Eli Friedman61f67622008-08-04 23:49:06 +0000778 Dividend = SE.getMulExpr(Dividend,
779 SE.getTruncateOrZeroExtend(S, CalculationTy));
780 }
781
782 // Divide by 2^T
Dan Gohmanaf752342009-07-07 17:06:11 +0000783 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
Eli Friedman61f67622008-08-04 23:49:06 +0000784
785 // Truncate the result, and divide by K! / 2^T.
786
787 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
788 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Chris Lattnerd934c702004-04-02 20:23:17 +0000789}
790
Chris Lattnerd934c702004-04-02 20:23:17 +0000791/// evaluateAtIteration - Return the value of this chain of recurrences at
792/// the specified iteration number. We can evaluate this recurrence by
793/// multiplying each element in the chain by the binomial coefficient
794/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
795///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000796/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Chris Lattnerd934c702004-04-02 20:23:17 +0000797///
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000798/// where BC(It, k) stands for binomial coefficient.
Chris Lattnerd934c702004-04-02 20:23:17 +0000799///
Dan Gohmanaf752342009-07-07 17:06:11 +0000800const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
Dan Gohman32291b12009-07-21 00:38:55 +0000801 ScalarEvolution &SE) const {
Dan Gohmanaf752342009-07-07 17:06:11 +0000802 const SCEV *Result = getStart();
Chris Lattnerd934c702004-04-02 20:23:17 +0000803 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewiczd2d97642008-02-11 11:03:14 +0000804 // The computation is correct in the face of overflow provided that the
805 // multiplication is performed _after_ the evaluation of the binomial
806 // coefficient.
Dan Gohmanaf752342009-07-07 17:06:11 +0000807 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewycky707663e2008-10-13 03:58:02 +0000808 if (isa<SCEVCouldNotCompute>(Coeff))
809 return Coeff;
810
811 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Chris Lattnerd934c702004-04-02 20:23:17 +0000812 }
813 return Result;
814}
815
Chris Lattnerd934c702004-04-02 20:23:17 +0000816//===----------------------------------------------------------------------===//
817// SCEV Expression folder implementations
818//===----------------------------------------------------------------------===//
819
Dan Gohmanaf752342009-07-07 17:06:11 +0000820const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +0000821 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +0000822 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +0000823 "This is not a truncating conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +0000824 assert(isSCEVable(Ty) &&
825 "This is not a conversion to a SCEVable type!");
826 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +0000827
Dan Gohman3a302cb2009-07-13 20:50:19 +0000828 FoldingSetNodeID ID;
829 ID.AddInteger(scTruncate);
830 ID.AddPointer(Op);
831 ID.AddPointer(Ty);
832 void *IP = 0;
833 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
834
Dan Gohman3423e722009-06-30 20:13:32 +0000835 // Fold if the operand is constant.
Dan Gohmana30370b2009-05-04 22:02:23 +0000836 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman8d7576e2009-06-24 00:38:39 +0000837 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +0000838 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +0000839
Dan Gohman79af8542009-04-22 16:20:48 +0000840 // trunc(trunc(x)) --> trunc(x)
Dan Gohmana30370b2009-05-04 22:02:23 +0000841 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +0000842 return getTruncateExpr(ST->getOperand(), Ty);
843
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +0000844 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +0000845 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +0000846 return getTruncateOrSignExtend(SS->getOperand(), Ty);
847
848 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
Dan Gohmana30370b2009-05-04 22:02:23 +0000849 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Nick Lewyckyb4d9f7a2009-04-23 05:15:08 +0000850 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
851
Nick Lewycky5143f0f2011-01-19 16:59:46 +0000852 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
853 // eliminate all the truncates.
854 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
855 SmallVector<const SCEV *, 4> Operands;
856 bool hasTrunc = false;
857 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
858 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
859 hasTrunc = isa<SCEVTruncateExpr>(S);
860 Operands.push_back(S);
861 }
862 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +0000863 return getAddExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +0000864 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5143f0f2011-01-19 16:59:46 +0000865 }
866
Nick Lewycky5c901f32011-01-19 18:56:00 +0000867 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
868 // eliminate all the truncates.
869 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
870 SmallVector<const SCEV *, 4> Operands;
871 bool hasTrunc = false;
872 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
873 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
874 hasTrunc = isa<SCEVTruncateExpr>(S);
875 Operands.push_back(S);
876 }
877 if (!hasTrunc)
Andrew Trick8b55b732011-03-14 16:50:06 +0000878 return getMulExpr(Operands);
Nick Lewyckyd9e6b4a2011-01-26 08:40:22 +0000879 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
Nick Lewycky5c901f32011-01-19 18:56:00 +0000880 }
881
Dan Gohman5a728c92009-06-18 16:24:47 +0000882 // If the input value is a chrec scev, truncate the chrec's operands.
Dan Gohmana30370b2009-05-04 22:02:23 +0000883 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +0000884 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +0000885 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman2e55cc52009-05-08 21:03:19 +0000886 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
Andrew Trick8b55b732011-03-14 16:50:06 +0000887 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +0000888 }
889
Dan Gohman89dd42a2010-06-25 18:47:08 +0000890 // The cast wasn't folded; create an explicit cast node. We can reuse
891 // the existing insert position since if we get here, we won't have
892 // made any changes which would invalidate it.
Dan Gohman01c65a22010-03-18 18:49:47 +0000893 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
894 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +0000895 UniqueSCEVs.InsertNode(S, IP);
896 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +0000897}
898
Dan Gohmanaf752342009-07-07 17:06:11 +0000899const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +0000900 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +0000901 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanc1c2ba72009-04-16 19:25:55 +0000902 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +0000903 assert(isSCEVable(Ty) &&
904 "This is not a conversion to a SCEVable type!");
905 Ty = getEffectiveSCEVType(Ty);
Dan Gohmanc1c2ba72009-04-16 19:25:55 +0000906
Dan Gohman3423e722009-06-30 20:13:32 +0000907 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +0000908 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
909 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +0000910 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
Chris Lattnerd934c702004-04-02 20:23:17 +0000911
Dan Gohman79af8542009-04-22 16:20:48 +0000912 // zext(zext(x)) --> zext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +0000913 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +0000914 return getZeroExtendExpr(SZ->getOperand(), Ty);
915
Dan Gohman74a0ba12009-07-13 20:55:53 +0000916 // Before doing any expensive analysis, check to see if we've already
917 // computed a SCEV for this Op and Ty.
918 FoldingSetNodeID ID;
919 ID.AddInteger(scZeroExtend);
920 ID.AddPointer(Op);
921 ID.AddPointer(Ty);
922 void *IP = 0;
923 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
924
Nick Lewyckybc98f5b2011-01-23 06:20:19 +0000925 // zext(trunc(x)) --> zext(x) or x or trunc(x)
926 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
927 // It's possible the bits taken off by the truncate were all zero bits. If
928 // so, we should be able to simplify this further.
929 const SCEV *X = ST->getOperand();
930 ConstantRange CR = getUnsignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +0000931 unsigned TruncBits = getTypeSizeInBits(ST->getType());
932 unsigned NewBits = getTypeSizeInBits(Ty);
933 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +0000934 CR.zextOrTrunc(NewBits)))
935 return getTruncateOrZeroExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +0000936 }
937
Dan Gohman76466372009-04-27 20:16:15 +0000938 // If the input value is a chrec scev, and we can prove that the value
Chris Lattnerd934c702004-04-02 20:23:17 +0000939 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohman76466372009-04-27 20:16:15 +0000940 // operands (often constants). This allows analysis of something like
Chris Lattnerd934c702004-04-02 20:23:17 +0000941 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +0000942 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +0000943 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +0000944 const SCEV *Start = AR->getStart();
945 const SCEV *Step = AR->getStepRecurrence(*this);
946 unsigned BitWidth = getTypeSizeInBits(AR->getType());
947 const Loop *L = AR->getLoop();
948
Dan Gohman62ef6a72009-07-25 01:22:26 +0000949 // If we have special knowledge that this addrec won't overflow,
950 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +0000951 if (AR->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohman62ef6a72009-07-25 01:22:26 +0000952 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
953 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +0000954 L, AR->getNoWrapFlags());
Dan Gohman62ef6a72009-07-25 01:22:26 +0000955
Dan Gohman76466372009-04-27 20:16:15 +0000956 // Check whether the backedge-taken count is SCEVCouldNotCompute.
957 // Note that this serves two purposes: It filters out loops that are
958 // simply not analyzable, and it covers the case where this code is
959 // being called from within backedge-taken count analysis, such that
960 // attempting to ask for the backedge-taken count would likely result
961 // in infinite recursion. In the later case, the analysis code will
962 // cope with a conservative value, and it will take care to purge
963 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +0000964 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +0000965 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +0000966 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +0000967 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +0000968
969 // Check whether the backedge-taken count can be losslessly casted to
970 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +0000971 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +0000972 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +0000973 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +0000974 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
975 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +0000976 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +0000977 // Check whether Start+Step*MaxBECount has no unsigned overflow.
Dan Gohman007f5042010-02-24 19:31:06 +0000978 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +0000979 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
980 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
981 const SCEV *WideMaxBECount =
982 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +0000983 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +0000984 getAddExpr(WideStart,
985 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +0000986 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +0000987 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +0000988 // Cache knowledge of AR NUW, which is propagated to this AddRec.
989 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohman494dac32009-04-29 22:28:28 +0000990 // Return the expression with the addrec on the outside.
991 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
992 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +0000993 L, AR->getNoWrapFlags());
994 }
Dan Gohman76466372009-04-27 20:16:15 +0000995 // Similar to above, only this time treat the step value as signed.
996 // This covers loops that count down.
Dan Gohman4fc36682009-05-18 15:58:39 +0000997 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +0000998 getAddExpr(WideStart,
999 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001000 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001001 if (ZAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001002 // Cache knowledge of AR NW, which is propagated to this AddRec.
1003 // Negative step causes unsigned wrap, but it still can't self-wrap.
1004 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
Dan Gohman494dac32009-04-29 22:28:28 +00001005 // Return the expression with the addrec on the outside.
1006 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1007 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001008 L, AR->getNoWrapFlags());
1009 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001010 }
1011
1012 // If the backedge is guarded by a comparison with the pre-inc value
1013 // the addrec is safe. Also, if the entry is guarded by a comparison
1014 // with the start value and the backedge is guarded by a comparison
1015 // with the post-inc value, the addrec is safe.
1016 if (isKnownPositive(Step)) {
1017 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1018 getUnsignedRange(Step).getUnsignedMax());
1019 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
Dan Gohmanb50349a2010-04-11 19:27:13 +00001020 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001021 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001022 AR->getPostIncExpr(*this), N))) {
1023 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1024 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
Dan Gohmane65c9172009-07-13 21:35:55 +00001025 // Return the expression with the addrec on the outside.
1026 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1027 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001028 L, AR->getNoWrapFlags());
1029 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001030 } else if (isKnownNegative(Step)) {
1031 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1032 getSignedRange(Step).getSignedMin());
Dan Gohman5f18c542010-05-04 01:11:15 +00001033 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1034 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
Dan Gohmane65c9172009-07-13 21:35:55 +00001035 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001036 AR->getPostIncExpr(*this), N))) {
1037 // Cache knowledge of AR NW, which is propagated to this AddRec.
1038 // Negative step causes unsigned wrap, but it still can't self-wrap.
1039 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1040 // Return the expression with the addrec on the outside.
Dan Gohmane65c9172009-07-13 21:35:55 +00001041 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1042 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001043 L, AR->getNoWrapFlags());
1044 }
Dan Gohman76466372009-04-27 20:16:15 +00001045 }
1046 }
1047 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001048
Dan Gohman74a0ba12009-07-13 20:55:53 +00001049 // The cast wasn't folded; create an explicit cast node.
1050 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001051 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001052 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1053 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001054 UniqueSCEVs.InsertNode(S, IP);
1055 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001056}
1057
Andrew Trick812276e2011-05-31 21:17:47 +00001058// Get the limit of a recurrence such that incrementing by Step cannot cause
1059// signed overflow as long as the value of the recurrence within the loop does
1060// not exceed this limit before incrementing.
1061static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1062 ICmpInst::Predicate *Pred,
1063 ScalarEvolution *SE) {
1064 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1065 if (SE->isKnownPositive(Step)) {
1066 *Pred = ICmpInst::ICMP_SLT;
1067 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1068 SE->getSignedRange(Step).getSignedMax());
1069 }
1070 if (SE->isKnownNegative(Step)) {
1071 *Pred = ICmpInst::ICMP_SGT;
1072 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1073 SE->getSignedRange(Step).getSignedMin());
1074 }
1075 return 0;
1076}
1077
1078// The recurrence AR has been shown to have no signed wrap. Typically, if we can
1079// prove NSW for AR, then we can just as easily prove NSW for its preincrement
1080// or postincrement sibling. This allows normalizing a sign extended AddRec as
1081// such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1082// result, the expression "Step + sext(PreIncAR)" is congruent with
1083// "sext(PostIncAR)"
1084static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
Chris Lattner229907c2011-07-18 04:54:35 +00001085 Type *Ty,
Andrew Trick812276e2011-05-31 21:17:47 +00001086 ScalarEvolution *SE) {
1087 const Loop *L = AR->getLoop();
1088 const SCEV *Start = AR->getStart();
1089 const SCEV *Step = AR->getStepRecurrence(*SE);
1090
1091 // Check for a simple looking step prior to loop entry.
1092 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001093 if (!SA)
1094 return 0;
1095
1096 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1097 // subtraction is expensive. For this purpose, perform a quick and dirty
1098 // difference, by checking for Step in the operand list.
1099 SmallVector<const SCEV *, 4> DiffOps;
1100 for (SCEVAddExpr::op_iterator I = SA->op_begin(), E = SA->op_end();
1101 I != E; ++I) {
1102 if (*I != Step)
1103 DiffOps.push_back(*I);
1104 }
1105 if (DiffOps.size() == SA->getNumOperands())
Andrew Trick812276e2011-05-31 21:17:47 +00001106 return 0;
1107
1108 // This is a postinc AR. Check for overflow on the preinc recurrence using the
1109 // same three conditions that getSignExtendedExpr checks.
1110
1111 // 1. NSW flags on the step increment.
Andrew Trickef8e4ef2011-09-28 17:02:54 +00001112 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
Andrew Trick812276e2011-05-31 21:17:47 +00001113 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1114 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1115
Andrew Trick8ef3ad02011-06-01 19:14:56 +00001116 if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trick812276e2011-05-31 21:17:47 +00001117 return PreStart;
Andrew Trick812276e2011-05-31 21:17:47 +00001118
1119 // 2. Direct overflow check on the step operation's expression.
1120 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
Chris Lattner229907c2011-07-18 04:54:35 +00001121 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
Andrew Trick812276e2011-05-31 21:17:47 +00001122 const SCEV *OperandExtendedStart =
1123 SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1124 SE->getSignExtendExpr(Step, WideTy));
1125 if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1126 // Cache knowledge of PreAR NSW.
1127 if (PreAR)
1128 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1129 // FIXME: this optimization needs a unit test
1130 DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1131 return PreStart;
1132 }
1133
1134 // 3. Loop precondition.
1135 ICmpInst::Predicate Pred;
1136 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1137
Andrew Trick8ef3ad02011-06-01 19:14:56 +00001138 if (OverflowLimit &&
1139 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
Andrew Trick812276e2011-05-31 21:17:47 +00001140 return PreStart;
1141 }
1142 return 0;
1143}
1144
1145// Get the normalized sign-extended expression for this AddRec's Start.
1146static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
Chris Lattner229907c2011-07-18 04:54:35 +00001147 Type *Ty,
Andrew Trick812276e2011-05-31 21:17:47 +00001148 ScalarEvolution *SE) {
1149 const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1150 if (!PreStart)
1151 return SE->getSignExtendExpr(AR->getStart(), Ty);
1152
1153 return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1154 SE->getSignExtendExpr(PreStart, Ty));
1155}
1156
Dan Gohmanaf752342009-07-07 17:06:11 +00001157const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001158 Type *Ty) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00001159 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman413e91f2009-04-21 00:55:22 +00001160 "This is not an extending conversion!");
Dan Gohman194e42c2009-05-01 16:44:18 +00001161 assert(isSCEVable(Ty) &&
1162 "This is not a conversion to a SCEVable type!");
1163 Ty = getEffectiveSCEVType(Ty);
Dan Gohman413e91f2009-04-21 00:55:22 +00001164
Dan Gohman3423e722009-06-30 20:13:32 +00001165 // Fold if the operand is constant.
Dan Gohman5235cc22010-06-24 16:47:03 +00001166 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1167 return getConstant(
Nuno Lopesab5c9242012-05-15 15:44:38 +00001168 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001169
Dan Gohman79af8542009-04-22 16:20:48 +00001170 // sext(sext(x)) --> sext(x)
Dan Gohmana30370b2009-05-04 22:02:23 +00001171 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
Dan Gohman79af8542009-04-22 16:20:48 +00001172 return getSignExtendExpr(SS->getOperand(), Ty);
1173
Nick Lewyckye9ea75e2011-01-19 15:56:12 +00001174 // sext(zext(x)) --> zext(x)
1175 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1176 return getZeroExtendExpr(SZ->getOperand(), Ty);
1177
Dan Gohman74a0ba12009-07-13 20:55:53 +00001178 // Before doing any expensive analysis, check to see if we've already
1179 // computed a SCEV for this Op and Ty.
1180 FoldingSetNodeID ID;
1181 ID.AddInteger(scSignExtend);
1182 ID.AddPointer(Op);
1183 ID.AddPointer(Ty);
1184 void *IP = 0;
1185 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1186
Nick Lewyckyb32c8942011-01-22 22:06:21 +00001187 // If the input value is provably positive, build a zext instead.
1188 if (isKnownNonNegative(Op))
1189 return getZeroExtendExpr(Op, Ty);
1190
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001191 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1192 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1193 // It's possible the bits taken off by the truncate were all sign bits. If
1194 // so, we should be able to simplify this further.
1195 const SCEV *X = ST->getOperand();
1196 ConstantRange CR = getSignedRange(X);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001197 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1198 unsigned NewBits = getTypeSizeInBits(Ty);
1199 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
Nick Lewyckyd4192f72011-01-23 20:06:05 +00001200 CR.sextOrTrunc(NewBits)))
1201 return getTruncateOrSignExtend(X, Ty);
Nick Lewyckybc98f5b2011-01-23 06:20:19 +00001202 }
1203
Dan Gohman76466372009-04-27 20:16:15 +00001204 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001205 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohman76466372009-04-27 20:16:15 +00001206 // operands (often constants). This allows analysis of something like
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001207 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana30370b2009-05-04 22:02:23 +00001208 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
Dan Gohman76466372009-04-27 20:16:15 +00001209 if (AR->isAffine()) {
Dan Gohmane65c9172009-07-13 21:35:55 +00001210 const SCEV *Start = AR->getStart();
1211 const SCEV *Step = AR->getStepRecurrence(*this);
1212 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1213 const Loop *L = AR->getLoop();
1214
Dan Gohman62ef6a72009-07-25 01:22:26 +00001215 // If we have special knowledge that this addrec won't overflow,
1216 // we don't need to do any further analysis.
Andrew Trick8b55b732011-03-14 16:50:06 +00001217 if (AR->getNoWrapFlags(SCEV::FlagNSW))
Andrew Trick812276e2011-05-31 21:17:47 +00001218 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman62ef6a72009-07-25 01:22:26 +00001219 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001220 L, SCEV::FlagNSW);
Dan Gohman62ef6a72009-07-25 01:22:26 +00001221
Dan Gohman76466372009-04-27 20:16:15 +00001222 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1223 // Note that this serves two purposes: It filters out loops that are
1224 // simply not analyzable, and it covers the case where this code is
1225 // being called from within backedge-taken count analysis, such that
1226 // attempting to ask for the backedge-taken count would likely result
1227 // in infinite recursion. In the later case, the analysis code will
1228 // cope with a conservative value, and it will take care to purge
1229 // that value once it has finished.
Dan Gohmane65c9172009-07-13 21:35:55 +00001230 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
Dan Gohman2b8da352009-04-30 20:47:05 +00001231 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
Dan Gohman95c5b0e2009-04-29 01:54:20 +00001232 // Manually compute the final value for AR, checking for
Dan Gohman494dac32009-04-29 22:28:28 +00001233 // overflow.
Dan Gohman76466372009-04-27 20:16:15 +00001234
1235 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohman494dac32009-04-29 22:28:28 +00001236 // the addrec's type. The count is always unsigned.
Dan Gohmanaf752342009-07-07 17:06:11 +00001237 const SCEV *CastedMaxBECount =
Dan Gohman2b8da352009-04-30 20:47:05 +00001238 getTruncateOrZeroExtend(MaxBECount, Start->getType());
Dan Gohmanaf752342009-07-07 17:06:11 +00001239 const SCEV *RecastedMaxBECount =
Dan Gohman4fc36682009-05-18 15:58:39 +00001240 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1241 if (MaxBECount == RecastedMaxBECount) {
Chris Lattner229907c2011-07-18 04:54:35 +00001242 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
Dan Gohman2b8da352009-04-30 20:47:05 +00001243 // Check whether Start+Step*MaxBECount has no signed overflow.
Dan Gohman007f5042010-02-24 19:31:06 +00001244 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001245 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1246 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1247 const SCEV *WideMaxBECount =
1248 getZeroExtendExpr(CastedMaxBECount, WideTy);
Dan Gohmanaf752342009-07-07 17:06:11 +00001249 const SCEV *OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001250 getAddExpr(WideStart,
1251 getMulExpr(WideMaxBECount,
Dan Gohman4fc36682009-05-18 15:58:39 +00001252 getSignExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001253 if (SAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001254 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1255 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman494dac32009-04-29 22:28:28 +00001256 // Return the expression with the addrec on the outside.
Andrew Trick812276e2011-05-31 21:17:47 +00001257 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman494dac32009-04-29 22:28:28 +00001258 getSignExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001259 L, AR->getNoWrapFlags());
1260 }
Dan Gohman8c129d72009-07-16 17:34:36 +00001261 // Similar to above, only this time treat the step value as unsigned.
1262 // This covers loops that count up with an unsigned step.
Dan Gohman8c129d72009-07-16 17:34:36 +00001263 OperandExtendedAdd =
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001264 getAddExpr(WideStart,
1265 getMulExpr(WideMaxBECount,
Dan Gohman8c129d72009-07-16 17:34:36 +00001266 getZeroExtendExpr(Step, WideTy)));
Nuno Lopesc2a170e2012-05-15 20:20:14 +00001267 if (SAdd == OperandExtendedAdd) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001268 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1269 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
Dan Gohman8c129d72009-07-16 17:34:36 +00001270 // Return the expression with the addrec on the outside.
Andrew Trick812276e2011-05-31 21:17:47 +00001271 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
Dan Gohman8c129d72009-07-16 17:34:36 +00001272 getZeroExtendExpr(Step, Ty),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001273 L, AR->getNoWrapFlags());
1274 }
Dan Gohmane65c9172009-07-13 21:35:55 +00001275 }
1276
1277 // If the backedge is guarded by a comparison with the pre-inc value
1278 // the addrec is safe. Also, if the entry is guarded by a comparison
1279 // with the start value and the backedge is guarded by a comparison
1280 // with the post-inc value, the addrec is safe.
Andrew Trick812276e2011-05-31 21:17:47 +00001281 ICmpInst::Predicate Pred;
1282 const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1283 if (OverflowLimit &&
1284 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1285 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1286 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1287 OverflowLimit)))) {
1288 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1289 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1290 return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1291 getSignExtendExpr(Step, Ty),
1292 L, AR->getNoWrapFlags());
Dan Gohman76466372009-04-27 20:16:15 +00001293 }
1294 }
1295 }
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001296
Dan Gohman74a0ba12009-07-13 20:55:53 +00001297 // The cast wasn't folded; create an explicit cast node.
1298 // Recompute the insert position, as it may have been invalidated.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001299 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00001300 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1301 Op, Ty);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001302 UniqueSCEVs.InsertNode(S, IP);
1303 return S;
Dan Gohmancb9e09a2007-06-15 14:38:12 +00001304}
1305
Dan Gohman8db2edc2009-06-13 15:56:47 +00001306/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1307/// unspecified bits out to the given type.
1308///
Dan Gohmanaf752342009-07-07 17:06:11 +00001309const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
Chris Lattner229907c2011-07-18 04:54:35 +00001310 Type *Ty) {
Dan Gohman8db2edc2009-06-13 15:56:47 +00001311 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1312 "This is not an extending conversion!");
1313 assert(isSCEVable(Ty) &&
1314 "This is not a conversion to a SCEVable type!");
1315 Ty = getEffectiveSCEVType(Ty);
1316
1317 // Sign-extend negative constants.
1318 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1319 if (SC->getValue()->getValue().isNegative())
1320 return getSignExtendExpr(Op, Ty);
1321
1322 // Peel off a truncate cast.
1323 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001324 const SCEV *NewOp = T->getOperand();
Dan Gohman8db2edc2009-06-13 15:56:47 +00001325 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1326 return getAnyExtendExpr(NewOp, Ty);
1327 return getTruncateOrNoop(NewOp, Ty);
1328 }
1329
1330 // Next try a zext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001331 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001332 if (!isa<SCEVZeroExtendExpr>(ZExt))
1333 return ZExt;
1334
1335 // Next try a sext cast. If the cast is folded, use it.
Dan Gohmanaf752342009-07-07 17:06:11 +00001336 const SCEV *SExt = getSignExtendExpr(Op, Ty);
Dan Gohman8db2edc2009-06-13 15:56:47 +00001337 if (!isa<SCEVSignExtendExpr>(SExt))
1338 return SExt;
1339
Dan Gohman51ad99d2010-01-21 02:09:26 +00001340 // Force the cast to be folded into the operands of an addrec.
1341 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1342 SmallVector<const SCEV *, 4> Ops;
1343 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1344 I != E; ++I)
1345 Ops.push_back(getAnyExtendExpr(*I, Ty));
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001346 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001347 }
1348
Dan Gohman8db2edc2009-06-13 15:56:47 +00001349 // If the expression is obviously signed, use the sext cast value.
1350 if (isa<SCEVSMaxExpr>(Op))
1351 return SExt;
1352
1353 // Absent any other information, use the zext cast value.
1354 return ZExt;
1355}
1356
Dan Gohman038d02e2009-06-14 22:58:51 +00001357/// CollectAddOperandsWithScales - Process the given Ops list, which is
1358/// a list of operands to be added under the given scale, update the given
1359/// map. This is a helper function for getAddRecExpr. As an example of
1360/// what it does, given a sequence of operands that would form an add
1361/// expression like this:
1362///
Tobias Grosserba49e422014-03-05 10:37:17 +00001363/// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
Dan Gohman038d02e2009-06-14 22:58:51 +00001364///
1365/// where A and B are constants, update the map with these values:
1366///
1367/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1368///
1369/// and add 13 + A*B*29 to AccumulatedConstant.
1370/// This will allow getAddRecExpr to produce this:
1371///
1372/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1373///
1374/// This form often exposes folding opportunities that are hidden in
1375/// the original operand list.
1376///
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00001377/// Return true iff it appears that any interesting folding opportunities
Dan Gohman038d02e2009-06-14 22:58:51 +00001378/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1379/// the common case where no interesting opportunities are present, and
1380/// is also used as a check to avoid infinite recursion.
1381///
1382static bool
Dan Gohmanaf752342009-07-07 17:06:11 +00001383CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
Craig Topper2cd5ff82013-07-11 16:22:38 +00001384 SmallVectorImpl<const SCEV *> &NewOps,
Dan Gohman038d02e2009-06-14 22:58:51 +00001385 APInt &AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001386 const SCEV *const *Ops, size_t NumOperands,
Dan Gohman038d02e2009-06-14 22:58:51 +00001387 const APInt &Scale,
1388 ScalarEvolution &SE) {
1389 bool Interesting = false;
1390
Dan Gohman45073042010-06-18 19:12:32 +00001391 // Iterate over the add operands. They are sorted, with constants first.
1392 unsigned i = 0;
1393 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1394 ++i;
1395 // Pull a buried constant out to the outside.
1396 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1397 Interesting = true;
1398 AccumulatedConstant += Scale * C->getValue()->getValue();
1399 }
1400
1401 // Next comes everything else. We're especially interested in multiplies
1402 // here, but they're in the middle, so just visit the rest with one loop.
1403 for (; i != NumOperands; ++i) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001404 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1405 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1406 APInt NewScale =
1407 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1408 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1409 // A multiplication of a constant with another add; recurse.
Dan Gohman00524492010-03-18 01:17:13 +00001410 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
Dan Gohman038d02e2009-06-14 22:58:51 +00001411 Interesting |=
1412 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001413 Add->op_begin(), Add->getNumOperands(),
Dan Gohman038d02e2009-06-14 22:58:51 +00001414 NewScale, SE);
1415 } else {
1416 // A multiplication of a constant with some other value. Update
1417 // the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001418 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1419 const SCEV *Key = SE.getMulExpr(MulOps);
1420 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohmane00beaa2009-06-29 18:25:52 +00001421 M.insert(std::make_pair(Key, NewScale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001422 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001423 NewOps.push_back(Pair.first->first);
1424 } else {
1425 Pair.first->second += NewScale;
1426 // The map already had an entry for this value, which may indicate
1427 // a folding opportunity.
1428 Interesting = true;
1429 }
1430 }
Dan Gohman038d02e2009-06-14 22:58:51 +00001431 } else {
1432 // An ordinary operand. Update the map.
Dan Gohmanaf752342009-07-07 17:06:11 +00001433 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
Dan Gohmane00beaa2009-06-29 18:25:52 +00001434 M.insert(std::make_pair(Ops[i], Scale));
Dan Gohman038d02e2009-06-14 22:58:51 +00001435 if (Pair.second) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001436 NewOps.push_back(Pair.first->first);
1437 } else {
1438 Pair.first->second += Scale;
1439 // The map already had an entry for this value, which may indicate
1440 // a folding opportunity.
1441 Interesting = true;
1442 }
1443 }
1444 }
1445
1446 return Interesting;
1447}
1448
1449namespace {
1450 struct APIntCompare {
1451 bool operator()(const APInt &LHS, const APInt &RHS) const {
1452 return LHS.ult(RHS);
1453 }
1454 };
1455}
1456
Dan Gohman4d5435d2009-05-24 23:45:28 +00001457/// getAddExpr - Get a canonical add expression, or something simpler if
1458/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00001459const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00001460 SCEV::NoWrapFlags Flags) {
1461 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1462 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00001463 assert(!Ops.empty() && "Cannot get empty add!");
Chris Lattner74498e12004-04-07 16:16:11 +00001464 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00001465#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00001466 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00001467 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohman9136d9f2010-06-18 19:09:27 +00001468 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00001469 "SCEVAddExpr operand types don't match!");
1470#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00001471
Andrew Trick8b55b732011-03-14 16:50:06 +00001472 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001473 // And vice-versa.
1474 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1475 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1476 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00001477 bool All = true;
Dan Gohman74c61502010-08-16 16:27:53 +00001478 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1479 E = Ops.end(); I != E; ++I)
1480 if (!isKnownNonNegative(*I)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00001481 All = false;
1482 break;
1483 }
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001484 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001485 }
1486
Chris Lattnerd934c702004-04-02 20:23:17 +00001487 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00001488 GroupByComplexity(Ops, LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00001489
1490 // If there are any constants, fold them together.
1491 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00001492 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001493 ++Idx;
Chris Lattner74498e12004-04-07 16:16:11 +00001494 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00001495 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001496 // We found two constants, fold them together!
Dan Gohman0652fd52009-06-14 22:47:23 +00001497 Ops[0] = getConstant(LHSC->getValue()->getValue() +
1498 RHSC->getValue()->getValue());
Dan Gohman011cf682009-06-14 22:53:57 +00001499 if (Ops.size() == 2) return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00001500 Ops.erase(Ops.begin()+1); // Erase the folded element
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00001501 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00001502 }
1503
1504 // If we are left with a constant zero being added, strip it off.
Dan Gohmanebbd05f2010-04-12 23:08:18 +00001505 if (LHSC->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001506 Ops.erase(Ops.begin());
1507 --Idx;
1508 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001509
Dan Gohmanebbd05f2010-04-12 23:08:18 +00001510 if (Ops.size() == 1) return Ops[0];
1511 }
Misha Brukman01808ca2005-04-21 21:13:18 +00001512
Dan Gohman15871f22010-08-27 21:39:59 +00001513 // Okay, check to see if the same value occurs in the operand list more than
1514 // once. If so, merge them together into an multiply expression. Since we
1515 // sorted the list, these values are required to be adjacent.
Chris Lattner229907c2011-07-18 04:54:35 +00001516 Type *Ty = Ops[0]->getType();
Dan Gohmane67b2872010-08-12 14:46:54 +00001517 bool FoundMatch = false;
Dan Gohman15871f22010-08-27 21:39:59 +00001518 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
Chris Lattnerd934c702004-04-02 20:23:17 +00001519 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
Dan Gohman15871f22010-08-27 21:39:59 +00001520 // Scan ahead to count how many equal operands there are.
1521 unsigned Count = 2;
1522 while (i+Count != e && Ops[i+Count] == Ops[i])
1523 ++Count;
1524 // Merge the values into a multiply.
1525 const SCEV *Scale = getConstant(Ty, Count);
1526 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1527 if (Ops.size() == Count)
Chris Lattnerd934c702004-04-02 20:23:17 +00001528 return Mul;
Dan Gohmane67b2872010-08-12 14:46:54 +00001529 Ops[i] = Mul;
Dan Gohman15871f22010-08-27 21:39:59 +00001530 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
Dan Gohmanfe22f1d2010-08-28 00:39:27 +00001531 --i; e -= Count - 1;
Dan Gohmane67b2872010-08-12 14:46:54 +00001532 FoundMatch = true;
Chris Lattnerd934c702004-04-02 20:23:17 +00001533 }
Dan Gohmane67b2872010-08-12 14:46:54 +00001534 if (FoundMatch)
Andrew Trick8b55b732011-03-14 16:50:06 +00001535 return getAddExpr(Ops, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00001536
Dan Gohman2e55cc52009-05-08 21:03:19 +00001537 // Check for truncates. If all the operands are truncated from the same
1538 // type, see if factoring out the truncate would permit the result to be
1539 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1540 // if the contents of the resulting outer trunc fold to something simple.
1541 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1542 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
Chris Lattner229907c2011-07-18 04:54:35 +00001543 Type *DstType = Trunc->getType();
1544 Type *SrcType = Trunc->getOperand()->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00001545 SmallVector<const SCEV *, 8> LargeOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00001546 bool Ok = true;
1547 // Check all the operands to see if they can be represented in the
1548 // source type of the truncate.
1549 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1550 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1551 if (T->getOperand()->getType() != SrcType) {
1552 Ok = false;
1553 break;
1554 }
1555 LargeOps.push_back(T->getOperand());
1556 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00001557 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00001558 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
Dan Gohmanaf752342009-07-07 17:06:11 +00001559 SmallVector<const SCEV *, 8> LargeMulOps;
Dan Gohman2e55cc52009-05-08 21:03:19 +00001560 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1561 if (const SCEVTruncateExpr *T =
1562 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1563 if (T->getOperand()->getType() != SrcType) {
1564 Ok = false;
1565 break;
1566 }
1567 LargeMulOps.push_back(T->getOperand());
1568 } else if (const SCEVConstant *C =
1569 dyn_cast<SCEVConstant>(M->getOperand(j))) {
Dan Gohmanff3174e2010-04-23 01:51:29 +00001570 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
Dan Gohman2e55cc52009-05-08 21:03:19 +00001571 } else {
1572 Ok = false;
1573 break;
1574 }
1575 }
1576 if (Ok)
1577 LargeOps.push_back(getMulExpr(LargeMulOps));
1578 } else {
1579 Ok = false;
1580 break;
1581 }
1582 }
1583 if (Ok) {
1584 // Evaluate the expression in the larger type.
Andrew Trick8b55b732011-03-14 16:50:06 +00001585 const SCEV *Fold = getAddExpr(LargeOps, Flags);
Dan Gohman2e55cc52009-05-08 21:03:19 +00001586 // If it folds to something simple, use it. Otherwise, don't.
1587 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1588 return getTruncateExpr(Fold, DstType);
1589 }
1590 }
1591
1592 // Skip past any other cast SCEVs.
Dan Gohmaneed125f2007-06-18 19:30:09 +00001593 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1594 ++Idx;
1595
1596 // If there are add operands they would be next.
Chris Lattnerd934c702004-04-02 20:23:17 +00001597 if (Idx < Ops.size()) {
1598 bool DeletedAdd = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00001599 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001600 // If we have an add, expand the add operands onto the end of the operands
1601 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00001602 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00001603 Ops.append(Add->op_begin(), Add->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00001604 DeletedAdd = true;
1605 }
1606
1607 // If we deleted at least one add, we added operands to the end of the list,
1608 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00001609 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00001610 if (DeletedAdd)
Dan Gohmana37eaf22007-10-22 18:31:58 +00001611 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00001612 }
1613
1614 // Skip over the add expression until we get to a multiply.
1615 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1616 ++Idx;
1617
Dan Gohman038d02e2009-06-14 22:58:51 +00001618 // Check to see if there are any folding opportunities present with
1619 // operands multiplied by constant values.
1620 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1621 uint64_t BitWidth = getTypeSizeInBits(Ty);
Dan Gohmanaf752342009-07-07 17:06:11 +00001622 DenseMap<const SCEV *, APInt> M;
1623 SmallVector<const SCEV *, 8> NewOps;
Dan Gohman038d02e2009-06-14 22:58:51 +00001624 APInt AccumulatedConstant(BitWidth, 0);
1625 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
Dan Gohman00524492010-03-18 01:17:13 +00001626 Ops.data(), Ops.size(),
1627 APInt(BitWidth, 1), *this)) {
Dan Gohman038d02e2009-06-14 22:58:51 +00001628 // Some interesting folding opportunity is present, so its worthwhile to
1629 // re-generate the operands list. Group the operands by constant scale,
1630 // to avoid multiplying by the same constant scale multiple times.
Dan Gohmanaf752342009-07-07 17:06:11 +00001631 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
Craig Topper31ee5862013-07-03 15:07:05 +00001632 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(),
Dan Gohman038d02e2009-06-14 22:58:51 +00001633 E = NewOps.end(); I != E; ++I)
1634 MulOpLists[M.find(*I)->second].push_back(*I);
1635 // Re-generate the operands list.
1636 Ops.clear();
1637 if (AccumulatedConstant != 0)
1638 Ops.push_back(getConstant(AccumulatedConstant));
Dan Gohmance973df2009-06-24 04:48:43 +00001639 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1640 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
Dan Gohman038d02e2009-06-14 22:58:51 +00001641 if (I->first != 0)
Dan Gohmance973df2009-06-24 04:48:43 +00001642 Ops.push_back(getMulExpr(getConstant(I->first),
1643 getAddExpr(I->second)));
Dan Gohman038d02e2009-06-14 22:58:51 +00001644 if (Ops.empty())
Dan Gohman1d2ded72010-05-03 22:09:21 +00001645 return getConstant(Ty, 0);
Dan Gohman038d02e2009-06-14 22:58:51 +00001646 if (Ops.size() == 1)
1647 return Ops[0];
1648 return getAddExpr(Ops);
1649 }
1650 }
1651
Chris Lattnerd934c702004-04-02 20:23:17 +00001652 // If we are adding something to a multiply expression, make sure the
1653 // something is not already an operand of the multiply. If so, merge it into
1654 // the multiply.
1655 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
Dan Gohman48f82222009-05-04 22:30:44 +00001656 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00001657 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
Dan Gohman48f82222009-05-04 22:30:44 +00001658 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
Dan Gohman157847f2010-08-12 14:52:55 +00001659 if (isa<SCEVConstant>(MulOpSCEV))
1660 continue;
Chris Lattnerd934c702004-04-02 20:23:17 +00001661 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
Dan Gohman157847f2010-08-12 14:52:55 +00001662 if (MulOpSCEV == Ops[AddOp]) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001663 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
Dan Gohmanaf752342009-07-07 17:06:11 +00001664 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00001665 if (Mul->getNumOperands() != 2) {
1666 // If the multiply has more than two operands, we must get the
1667 // Y*Z term.
Dan Gohman797a1db2010-08-16 16:57:24 +00001668 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1669 Mul->op_begin()+MulOp);
1670 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00001671 InnerMul = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00001672 }
Dan Gohman1d2ded72010-05-03 22:09:21 +00001673 const SCEV *One = getConstant(Ty, 1);
Dan Gohmancf32f2b2010-08-13 20:17:14 +00001674 const SCEV *AddOne = getAddExpr(One, InnerMul);
Dan Gohman157847f2010-08-12 14:52:55 +00001675 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
Chris Lattnerd934c702004-04-02 20:23:17 +00001676 if (Ops.size() == 2) return OuterMul;
1677 if (AddOp < Idx) {
1678 Ops.erase(Ops.begin()+AddOp);
1679 Ops.erase(Ops.begin()+Idx-1);
1680 } else {
1681 Ops.erase(Ops.begin()+Idx);
1682 Ops.erase(Ops.begin()+AddOp-1);
1683 }
1684 Ops.push_back(OuterMul);
Dan Gohmana37eaf22007-10-22 18:31:58 +00001685 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00001686 }
Misha Brukman01808ca2005-04-21 21:13:18 +00001687
Chris Lattnerd934c702004-04-02 20:23:17 +00001688 // Check this multiply against other multiplies being added together.
1689 for (unsigned OtherMulIdx = Idx+1;
1690 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1691 ++OtherMulIdx) {
Dan Gohman48f82222009-05-04 22:30:44 +00001692 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
Chris Lattnerd934c702004-04-02 20:23:17 +00001693 // If MulOp occurs in OtherMul, we can fold the two multiplies
1694 // together.
1695 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1696 OMulOp != e; ++OMulOp)
1697 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1698 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
Dan Gohmanaf752342009-07-07 17:06:11 +00001699 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00001700 if (Mul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00001701 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00001702 Mul->op_begin()+MulOp);
1703 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00001704 InnerMul1 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00001705 }
Dan Gohmanaf752342009-07-07 17:06:11 +00001706 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
Chris Lattnerd934c702004-04-02 20:23:17 +00001707 if (OtherMul->getNumOperands() != 2) {
Dan Gohmance973df2009-06-24 04:48:43 +00001708 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
Dan Gohman797a1db2010-08-16 16:57:24 +00001709 OtherMul->op_begin()+OMulOp);
1710 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00001711 InnerMul2 = getMulExpr(MulOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00001712 }
Dan Gohmanaf752342009-07-07 17:06:11 +00001713 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1714 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Chris Lattnerd934c702004-04-02 20:23:17 +00001715 if (Ops.size() == 2) return OuterMul;
Dan Gohmanaabfc522010-08-31 22:50:31 +00001716 Ops.erase(Ops.begin()+Idx);
1717 Ops.erase(Ops.begin()+OtherMulIdx-1);
1718 Ops.push_back(OuterMul);
1719 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00001720 }
1721 }
1722 }
1723 }
1724
1725 // If there are any add recurrences in the operands list, see if any other
1726 // added values are loop invariant. If so, we can fold them into the
1727 // recurrence.
1728 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1729 ++Idx;
1730
1731 // Scan over all recurrences, trying to fold loop invariants into them.
1732 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1733 // Scan all of the other operands to this add and add them to the vector if
1734 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00001735 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00001736 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohmanebbd05f2010-04-12 23:08:18 +00001737 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00001738 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00001739 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001740 LIOps.push_back(Ops[i]);
1741 Ops.erase(Ops.begin()+i);
1742 --i; --e;
1743 }
1744
1745 // If we found some loop invariants, fold them into the recurrence.
1746 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00001747 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Chris Lattnerd934c702004-04-02 20:23:17 +00001748 LIOps.push_back(AddRec->getStart());
1749
Dan Gohmanaf752342009-07-07 17:06:11 +00001750 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
Dan Gohman7a2dab82009-12-18 03:57:04 +00001751 AddRec->op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00001752 AddRecOps[0] = getAddExpr(LIOps);
Chris Lattnerd934c702004-04-02 20:23:17 +00001753
Dan Gohman16206132010-06-30 07:16:37 +00001754 // Build the new addrec. Propagate the NUW and NSW flags if both the
Eric Christopher23bf3ba2011-01-11 09:02:09 +00001755 // outer add and the inner addrec are guaranteed to have no overflow.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001756 // Always propagate NW.
1757 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
Andrew Trick8b55b732011-03-14 16:50:06 +00001758 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
Dan Gohman51f13052009-12-18 18:45:31 +00001759
Chris Lattnerd934c702004-04-02 20:23:17 +00001760 // If all of the other operands were loop invariant, we are done.
1761 if (Ops.size() == 1) return NewRec;
1762
Nick Lewyckydb66b822011-09-06 05:08:09 +00001763 // Otherwise, add the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00001764 for (unsigned i = 0;; ++i)
1765 if (Ops[i] == AddRec) {
1766 Ops[i] = NewRec;
1767 break;
1768 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00001769 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00001770 }
1771
1772 // Okay, if there weren't any loop invariants to be folded, check to see if
1773 // there are multiple AddRec's with the same loop induction variable being
1774 // added together. If so, we can fold them.
1775 for (unsigned OtherIdx = Idx+1;
Dan Gohmanc866bf42010-08-27 20:45:56 +00001776 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1777 ++OtherIdx)
1778 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1779 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
1780 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1781 AddRec->op_end());
1782 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1783 ++OtherIdx)
Dan Gohman028c1812010-08-29 14:53:34 +00001784 if (const SCEVAddRecExpr *OtherAddRec =
Dan Gohmanc866bf42010-08-27 20:45:56 +00001785 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
Dan Gohman028c1812010-08-29 14:53:34 +00001786 if (OtherAddRec->getLoop() == AddRecLoop) {
1787 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1788 i != e; ++i) {
Dan Gohmanc866bf42010-08-27 20:45:56 +00001789 if (i >= AddRecOps.size()) {
Dan Gohman028c1812010-08-29 14:53:34 +00001790 AddRecOps.append(OtherAddRec->op_begin()+i,
1791 OtherAddRec->op_end());
Dan Gohmanc866bf42010-08-27 20:45:56 +00001792 break;
1793 }
Dan Gohman028c1812010-08-29 14:53:34 +00001794 AddRecOps[i] = getAddExpr(AddRecOps[i],
1795 OtherAddRec->getOperand(i));
Dan Gohmanc866bf42010-08-27 20:45:56 +00001796 }
1797 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
Chris Lattnerd934c702004-04-02 20:23:17 +00001798 }
Andrew Trick8b55b732011-03-14 16:50:06 +00001799 // Step size has changed, so we cannot guarantee no self-wraparound.
1800 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
Dan Gohmanc866bf42010-08-27 20:45:56 +00001801 return getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00001802 }
1803
1804 // Otherwise couldn't fold anything into this recurrence. Move onto the
1805 // next one.
1806 }
1807
1808 // Okay, it looks like we really DO need an add expr. Check to see if we
1809 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001810 FoldingSetNodeID ID;
1811 ID.AddInteger(scAddExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001812 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1813 ID.AddPointer(Ops[i]);
1814 void *IP = 0;
Dan Gohman51ad99d2010-01-21 02:09:26 +00001815 SCEVAddExpr *S =
1816 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1817 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00001818 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1819 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00001820 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1821 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00001822 UniqueSCEVs.InsertNode(S, IP);
1823 }
Andrew Trick8b55b732011-03-14 16:50:06 +00001824 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00001825 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00001826}
1827
Nick Lewycky287682e2011-10-04 06:51:26 +00001828static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
1829 uint64_t k = i*j;
1830 if (j > 1 && k / j != i) Overflow = true;
1831 return k;
1832}
1833
1834/// Compute the result of "n choose k", the binomial coefficient. If an
1835/// intermediate computation overflows, Overflow will be set and the return will
Benjamin Kramerbde91762012-06-02 10:20:22 +00001836/// be garbage. Overflow is not cleared on absence of overflow.
Nick Lewycky287682e2011-10-04 06:51:26 +00001837static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
1838 // We use the multiplicative formula:
1839 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
1840 // At each iteration, we take the n-th term of the numeral and divide by the
1841 // (k-n)th term of the denominator. This division will always produce an
1842 // integral result, and helps reduce the chance of overflow in the
1843 // intermediate computations. However, we can still overflow even when the
1844 // final result would fit.
1845
1846 if (n == 0 || n == k) return 1;
1847 if (k > n) return 0;
1848
1849 if (k > n/2)
1850 k = n-k;
1851
1852 uint64_t r = 1;
1853 for (uint64_t i = 1; i <= k; ++i) {
1854 r = umul_ov(r, n-(i-1), Overflow);
1855 r /= i;
1856 }
1857 return r;
1858}
1859
Dan Gohman4d5435d2009-05-24 23:45:28 +00001860/// getMulExpr - Get a canonical multiply expression, or something simpler if
1861/// possible.
Dan Gohman816fe0a2009-10-09 00:10:36 +00001862const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
Andrew Trick8b55b732011-03-14 16:50:06 +00001863 SCEV::NoWrapFlags Flags) {
1864 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
1865 "only nuw or nsw allowed");
Chris Lattnerd934c702004-04-02 20:23:17 +00001866 assert(!Ops.empty() && "Cannot get empty mul!");
Dan Gohman51ad99d2010-01-21 02:09:26 +00001867 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00001868#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00001869 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00001870 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00001871 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00001872 "SCEVMulExpr operand types don't match!");
1873#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00001874
Andrew Trick8b55b732011-03-14 16:50:06 +00001875 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001876 // And vice-versa.
1877 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1878 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1879 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00001880 bool All = true;
Dan Gohman74c61502010-08-16 16:27:53 +00001881 for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1882 E = Ops.end(); I != E; ++I)
1883 if (!isKnownNonNegative(*I)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00001884 All = false;
1885 break;
1886 }
Andrew Trickf6b01ff2011-03-15 00:37:00 +00001887 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohman51ad99d2010-01-21 02:09:26 +00001888 }
1889
Chris Lattnerd934c702004-04-02 20:23:17 +00001890 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00001891 GroupByComplexity(Ops, LI);
Chris Lattnerd934c702004-04-02 20:23:17 +00001892
1893 // If there are any constants, fold them together.
1894 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00001895 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001896
1897 // C1*(C2+V) -> C1*C2 + C1*V
1898 if (Ops.size() == 2)
Dan Gohmana30370b2009-05-04 22:02:23 +00001899 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
Chris Lattnerd934c702004-04-02 20:23:17 +00001900 if (Add->getNumOperands() == 2 &&
1901 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohmana37eaf22007-10-22 18:31:58 +00001902 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1903 getMulExpr(LHSC, Add->getOperand(1)));
Chris Lattnerd934c702004-04-02 20:23:17 +00001904
Chris Lattnerd934c702004-04-02 20:23:17 +00001905 ++Idx;
Dan Gohmana30370b2009-05-04 22:02:23 +00001906 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001907 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00001908 ConstantInt *Fold = ConstantInt::get(getContext(),
1909 LHSC->getValue()->getValue() *
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00001910 RHSC->getValue()->getValue());
1911 Ops[0] = getConstant(Fold);
1912 Ops.erase(Ops.begin()+1); // Erase the folded element
1913 if (Ops.size() == 1) return Ops[0];
1914 LHSC = cast<SCEVConstant>(Ops[0]);
Chris Lattnerd934c702004-04-02 20:23:17 +00001915 }
1916
1917 // If we are left with a constant one being multiplied, strip it off.
1918 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1919 Ops.erase(Ops.begin());
1920 --Idx;
Reid Spencer2e54a152007-03-02 00:28:52 +00001921 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001922 // If we have a multiply of zero, it will always be zero.
1923 return Ops[0];
Dan Gohman51ad99d2010-01-21 02:09:26 +00001924 } else if (Ops[0]->isAllOnesValue()) {
1925 // If we have a mul by -1 of an add, try distributing the -1 among the
1926 // add operands.
Andrew Trick8b55b732011-03-14 16:50:06 +00001927 if (Ops.size() == 2) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00001928 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1929 SmallVector<const SCEV *, 4> NewOps;
1930 bool AnyFolded = false;
Andrew Trick8b55b732011-03-14 16:50:06 +00001931 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
1932 E = Add->op_end(); I != E; ++I) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00001933 const SCEV *Mul = getMulExpr(Ops[0], *I);
1934 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1935 NewOps.push_back(Mul);
1936 }
1937 if (AnyFolded)
1938 return getAddExpr(NewOps);
1939 }
Andrew Tricke92dcce2011-03-14 17:38:54 +00001940 else if (const SCEVAddRecExpr *
1941 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
1942 // Negation preserves a recurrence's no self-wrap property.
1943 SmallVector<const SCEV *, 4> Operands;
1944 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
1945 E = AddRec->op_end(); I != E; ++I) {
1946 Operands.push_back(getMulExpr(Ops[0], *I));
1947 }
1948 return getAddRecExpr(Operands, AddRec->getLoop(),
1949 AddRec->getNoWrapFlags(SCEV::FlagNW));
1950 }
Andrew Trick8b55b732011-03-14 16:50:06 +00001951 }
Chris Lattnerd934c702004-04-02 20:23:17 +00001952 }
Dan Gohmanfe4b2912010-04-13 16:49:23 +00001953
1954 if (Ops.size() == 1)
1955 return Ops[0];
Chris Lattnerd934c702004-04-02 20:23:17 +00001956 }
1957
1958 // Skip over the add expression until we get to a multiply.
1959 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1960 ++Idx;
1961
Chris Lattnerd934c702004-04-02 20:23:17 +00001962 // If there are mul operands inline them all into this expression.
1963 if (Idx < Ops.size()) {
1964 bool DeletedMul = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00001965 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001966 // If we have an mul, expand the mul operands onto the end of the operands
1967 // list.
Chris Lattnerd934c702004-04-02 20:23:17 +00001968 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00001969 Ops.append(Mul->op_begin(), Mul->op_end());
Chris Lattnerd934c702004-04-02 20:23:17 +00001970 DeletedMul = true;
1971 }
1972
1973 // If we deleted at least one mul, we added operands to the end of the list,
1974 // and they are not necessarily sorted. Recurse to resort and resimplify
Dan Gohman8b0a4192010-03-01 17:49:51 +00001975 // any operands we just acquired.
Chris Lattnerd934c702004-04-02 20:23:17 +00001976 if (DeletedMul)
Dan Gohmana37eaf22007-10-22 18:31:58 +00001977 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00001978 }
1979
1980 // If there are any add recurrences in the operands list, see if any other
1981 // added values are loop invariant. If so, we can fold them into the
1982 // recurrence.
1983 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1984 ++Idx;
1985
1986 // Scan over all recurrences, trying to fold loop invariants into them.
1987 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1988 // Scan all of the other operands to this mul and add them to the vector if
1989 // they are loop invariant w.r.t. the recurrence.
Dan Gohmanaf752342009-07-07 17:06:11 +00001990 SmallVector<const SCEV *, 8> LIOps;
Dan Gohman48f82222009-05-04 22:30:44 +00001991 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
Dan Gohman0f2de012010-08-29 14:55:19 +00001992 const Loop *AddRecLoop = AddRec->getLoop();
Chris Lattnerd934c702004-04-02 20:23:17 +00001993 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00001994 if (isLoopInvariant(Ops[i], AddRecLoop)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00001995 LIOps.push_back(Ops[i]);
1996 Ops.erase(Ops.begin()+i);
1997 --i; --e;
1998 }
1999
2000 // If we found some loop invariants, fold them into the recurrence.
2001 if (!LIOps.empty()) {
Dan Gohman81313fd2008-09-14 17:21:12 +00002002 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohmanaf752342009-07-07 17:06:11 +00002003 SmallVector<const SCEV *, 4> NewOps;
Chris Lattnerd934c702004-04-02 20:23:17 +00002004 NewOps.reserve(AddRec->getNumOperands());
Dan Gohman8f5954f2010-06-17 23:34:09 +00002005 const SCEV *Scale = getMulExpr(LIOps);
2006 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2007 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Chris Lattnerd934c702004-04-02 20:23:17 +00002008
Dan Gohman16206132010-06-30 07:16:37 +00002009 // Build the new addrec. Propagate the NUW and NSW flags if both the
2010 // outer mul and the inner addrec are guaranteed to have no overflow.
Andrew Trick8b55b732011-03-14 16:50:06 +00002011 //
2012 // No self-wrap cannot be guaranteed after changing the step size, but
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00002013 // will be inferred if either NUW or NSW is true.
Andrew Trick8b55b732011-03-14 16:50:06 +00002014 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2015 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002016
2017 // If all of the other operands were loop invariant, we are done.
2018 if (Ops.size() == 1) return NewRec;
2019
Nick Lewyckydb66b822011-09-06 05:08:09 +00002020 // Otherwise, multiply the folded AddRec by the non-invariant parts.
Chris Lattnerd934c702004-04-02 20:23:17 +00002021 for (unsigned i = 0;; ++i)
2022 if (Ops[i] == AddRec) {
2023 Ops[i] = NewRec;
2024 break;
2025 }
Dan Gohmana37eaf22007-10-22 18:31:58 +00002026 return getMulExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00002027 }
2028
2029 // Okay, if there weren't any loop invariants to be folded, check to see if
2030 // there are multiple AddRec's with the same loop induction variable being
2031 // multiplied together. If so, we can fold them.
2032 for (unsigned OtherIdx = Idx+1;
Dan Gohmanf01a5ee2010-08-31 22:52:12 +00002033 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002034 ++OtherIdx) {
Andrew Trick946f76b2012-05-30 03:35:17 +00002035 if (AddRecLoop != cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop())
2036 continue;
2037
2038 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2039 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2040 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2041 // ]]],+,...up to x=2n}.
2042 // Note that the arguments to choose() are always integers with values
2043 // known at compile time, never SCEV objects.
2044 //
2045 // The implementation avoids pointless extra computations when the two
2046 // addrec's are of different length (mathematically, it's equivalent to
2047 // an infinite stream of zeros on the right).
2048 bool OpsModified = false;
2049 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2050 ++OtherIdx) {
2051 const SCEVAddRecExpr *OtherAddRec =
2052 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2053 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2054 continue;
2055
2056 bool Overflow = false;
2057 Type *Ty = AddRec->getType();
2058 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2059 SmallVector<const SCEV*, 7> AddRecOps;
2060 for (int x = 0, xe = AddRec->getNumOperands() +
2061 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2062 const SCEV *Term = getConstant(Ty, 0);
2063 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2064 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2065 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2066 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2067 z < ze && !Overflow; ++z) {
2068 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2069 uint64_t Coeff;
2070 if (LargerThan64Bits)
2071 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2072 else
2073 Coeff = Coeff1*Coeff2;
2074 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2075 const SCEV *Term1 = AddRec->getOperand(y-z);
2076 const SCEV *Term2 = OtherAddRec->getOperand(z);
2077 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
Dan Gohmanf01a5ee2010-08-31 22:52:12 +00002078 }
Andrew Trick946f76b2012-05-30 03:35:17 +00002079 }
2080 AddRecOps.push_back(Term);
2081 }
2082 if (!Overflow) {
2083 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2084 SCEV::FlagAnyWrap);
2085 if (Ops.size() == 2) return NewAddRec;
Andrew Tricka3f90432012-05-30 03:35:20 +00002086 Ops[Idx] = NewAddRec;
Andrew Trick946f76b2012-05-30 03:35:17 +00002087 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2088 OpsModified = true;
Andrew Tricka3f90432012-05-30 03:35:20 +00002089 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2090 if (!AddRec)
2091 break;
Andrew Trick946f76b2012-05-30 03:35:17 +00002092 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002093 }
Andrew Trick946f76b2012-05-30 03:35:17 +00002094 if (OpsModified)
2095 return getMulExpr(Ops);
Nick Lewyckye0aa54b2011-09-06 21:42:18 +00002096 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002097
2098 // Otherwise couldn't fold anything into this recurrence. Move onto the
2099 // next one.
2100 }
2101
2102 // Okay, it looks like we really DO need an mul expr. Check to see if we
2103 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002104 FoldingSetNodeID ID;
2105 ID.AddInteger(scMulExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002106 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2107 ID.AddPointer(Ops[i]);
2108 void *IP = 0;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002109 SCEVMulExpr *S =
2110 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2111 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002112 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2113 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002114 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2115 O, Ops.size());
Dan Gohman51ad99d2010-01-21 02:09:26 +00002116 UniqueSCEVs.InsertNode(S, IP);
2117 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002118 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002119 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002120}
2121
Andreas Bolka7a5c8db2009-08-07 22:55:26 +00002122/// getUDivExpr - Get a canonical unsigned division expression, or something
2123/// simpler if possible.
Dan Gohmanabd17092009-06-24 14:49:00 +00002124const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2125 const SCEV *RHS) {
Dan Gohmand33f36e2009-05-18 15:44:58 +00002126 assert(getEffectiveSCEVType(LHS->getType()) ==
2127 getEffectiveSCEVType(RHS->getType()) &&
2128 "SCEVUDivExpr operand types don't match!");
2129
Dan Gohmana30370b2009-05-04 22:02:23 +00002130 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002131 if (RHSC->getValue()->equalsInt(1))
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00002132 return LHS; // X udiv 1 --> x
Dan Gohmanacd700a2010-04-22 01:35:11 +00002133 // If the denominator is zero, the result of the udiv is undefined. Don't
2134 // try to analyze it, because the resolution chosen here may differ from
2135 // the resolution chosen in other parts of the compiler.
2136 if (!RHSC->getValue()->isZero()) {
2137 // Determine if the division can be folded into the operands of
2138 // its operands.
2139 // TODO: Generalize this to non-constants by using known-bits information.
Chris Lattner229907c2011-07-18 04:54:35 +00002140 Type *Ty = LHS->getType();
Dan Gohmanacd700a2010-04-22 01:35:11 +00002141 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
Dan Gohmandb764c62010-08-04 19:52:50 +00002142 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
Dan Gohmanacd700a2010-04-22 01:35:11 +00002143 // For non-power-of-two values, effectively round the value up to the
2144 // nearest power of two.
2145 if (!RHSC->getValue()->getValue().isPowerOf2())
2146 ++MaxShiftAmt;
Chris Lattner229907c2011-07-18 04:54:35 +00002147 IntegerType *ExtTy =
Dan Gohmanacd700a2010-04-22 01:35:11 +00002148 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
Dan Gohmanacd700a2010-04-22 01:35:11 +00002149 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2150 if (const SCEVConstant *Step =
Andrew Trick6d45a012011-08-06 07:00:37 +00002151 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2152 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2153 const APInt &StepInt = Step->getValue()->getValue();
2154 const APInt &DivInt = RHSC->getValue()->getValue();
2155 if (!StepInt.urem(DivInt) &&
Dan Gohmanacd700a2010-04-22 01:35:11 +00002156 getZeroExtendExpr(AR, ExtTy) ==
2157 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2158 getZeroExtendExpr(Step, ExtTy),
Andrew Trick8b55b732011-03-14 16:50:06 +00002159 AR->getLoop(), SCEV::FlagAnyWrap)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002160 SmallVector<const SCEV *, 4> Operands;
2161 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2162 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
Andrew Trick8b55b732011-03-14 16:50:06 +00002163 return getAddRecExpr(Operands, AR->getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002164 SCEV::FlagNW);
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002165 }
Andrew Trick6d45a012011-08-06 07:00:37 +00002166 /// Get a canonical UDivExpr for a recurrence.
2167 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2168 // We can currently only fold X%N if X is constant.
2169 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2170 if (StartC && !DivInt.urem(StepInt) &&
2171 getZeroExtendExpr(AR, ExtTy) ==
2172 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2173 getZeroExtendExpr(Step, ExtTy),
2174 AR->getLoop(), SCEV::FlagAnyWrap)) {
2175 const APInt &StartInt = StartC->getValue()->getValue();
2176 const APInt &StartRem = StartInt.urem(StepInt);
2177 if (StartRem != 0)
2178 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2179 AR->getLoop(), SCEV::FlagNW);
2180 }
2181 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002182 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2183 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2184 SmallVector<const SCEV *, 4> Operands;
2185 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2186 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2187 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2188 // Find an operand that's safely divisible.
2189 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2190 const SCEV *Op = M->getOperand(i);
2191 const SCEV *Div = getUDivExpr(Op, RHSC);
2192 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2193 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2194 M->op_end());
2195 Operands[i] = Div;
2196 return getMulExpr(Operands);
2197 }
2198 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002199 }
Dan Gohmanacd700a2010-04-22 01:35:11 +00002200 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
Andrew Trick7d1eea82011-04-27 18:17:36 +00002201 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00002202 SmallVector<const SCEV *, 4> Operands;
2203 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2204 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2205 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2206 Operands.clear();
2207 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2208 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2209 if (isa<SCEVUDivExpr>(Op) ||
2210 getMulExpr(Op, RHS) != A->getOperand(i))
2211 break;
2212 Operands.push_back(Op);
2213 }
2214 if (Operands.size() == A->getNumOperands())
2215 return getAddExpr(Operands);
2216 }
2217 }
Dan Gohmanc3a3cb42009-05-08 20:18:49 +00002218
Dan Gohmanacd700a2010-04-22 01:35:11 +00002219 // Fold if both operands are constant.
2220 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2221 Constant *LHSCV = LHSC->getValue();
2222 Constant *RHSCV = RHSC->getValue();
2223 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2224 RHSCV)));
2225 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002226 }
2227 }
2228
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002229 FoldingSetNodeID ID;
2230 ID.AddInteger(scUDivExpr);
2231 ID.AddPointer(LHS);
2232 ID.AddPointer(RHS);
2233 void *IP = 0;
2234 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman01c65a22010-03-18 18:49:47 +00002235 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2236 LHS, RHS);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002237 UniqueSCEVs.InsertNode(S, IP);
2238 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002239}
2240
Nick Lewycky31eaca52014-01-27 10:04:03 +00002241static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2242 APInt A = C1->getValue()->getValue().abs();
2243 APInt B = C2->getValue()->getValue().abs();
2244 uint32_t ABW = A.getBitWidth();
2245 uint32_t BBW = B.getBitWidth();
2246
2247 if (ABW > BBW)
2248 B = B.zext(ABW);
2249 else if (ABW < BBW)
2250 A = A.zext(BBW);
2251
2252 return APIntOps::GreatestCommonDivisor(A, B);
2253}
2254
2255/// getUDivExactExpr - Get a canonical unsigned division expression, or
2256/// something simpler if possible. There is no representation for an exact udiv
2257/// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
2258/// We can't do this when it's not exact because the udiv may be clearing bits.
2259const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2260 const SCEV *RHS) {
2261 // TODO: we could try to find factors in all sorts of things, but for now we
2262 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2263 // end of this file for inspiration.
2264
2265 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2266 if (!Mul)
2267 return getUDivExpr(LHS, RHS);
2268
2269 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2270 // If the mulexpr multiplies by a constant, then that constant must be the
2271 // first element of the mulexpr.
2272 if (const SCEVConstant *LHSCst =
2273 dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2274 if (LHSCst == RHSCst) {
2275 SmallVector<const SCEV *, 2> Operands;
2276 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2277 return getMulExpr(Operands);
2278 }
2279
2280 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2281 // that there's a factor provided by one of the other terms. We need to
2282 // check.
2283 APInt Factor = gcd(LHSCst, RHSCst);
2284 if (!Factor.isIntN(1)) {
2285 LHSCst = cast<SCEVConstant>(
2286 getConstant(LHSCst->getValue()->getValue().udiv(Factor)));
2287 RHSCst = cast<SCEVConstant>(
2288 getConstant(RHSCst->getValue()->getValue().udiv(Factor)));
2289 SmallVector<const SCEV *, 2> Operands;
2290 Operands.push_back(LHSCst);
2291 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2292 LHS = getMulExpr(Operands);
2293 RHS = RHSCst;
Nick Lewycky629199c2014-01-27 10:47:44 +00002294 Mul = dyn_cast<SCEVMulExpr>(LHS);
2295 if (!Mul)
2296 return getUDivExactExpr(LHS, RHS);
Nick Lewycky31eaca52014-01-27 10:04:03 +00002297 }
2298 }
2299 }
2300
2301 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2302 if (Mul->getOperand(i) == RHS) {
2303 SmallVector<const SCEV *, 2> Operands;
2304 Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2305 Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2306 return getMulExpr(Operands);
2307 }
2308 }
2309
2310 return getUDivExpr(LHS, RHS);
2311}
Chris Lattnerd934c702004-04-02 20:23:17 +00002312
Dan Gohman4d5435d2009-05-24 23:45:28 +00002313/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2314/// Simplify the expression as much as possible.
Andrew Trick8b55b732011-03-14 16:50:06 +00002315const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2316 const Loop *L,
2317 SCEV::NoWrapFlags Flags) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002318 SmallVector<const SCEV *, 4> Operands;
Chris Lattnerd934c702004-04-02 20:23:17 +00002319 Operands.push_back(Start);
Dan Gohmana30370b2009-05-04 22:02:23 +00002320 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
Chris Lattnerd934c702004-04-02 20:23:17 +00002321 if (StepChrec->getLoop() == L) {
Dan Gohmandd41bba2010-06-21 19:47:52 +00002322 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002323 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
Chris Lattnerd934c702004-04-02 20:23:17 +00002324 }
2325
2326 Operands.push_back(Step);
Andrew Trick8b55b732011-03-14 16:50:06 +00002327 return getAddRecExpr(Operands, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00002328}
2329
Dan Gohman4d5435d2009-05-24 23:45:28 +00002330/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2331/// Simplify the expression as much as possible.
Dan Gohmance973df2009-06-24 04:48:43 +00002332const SCEV *
Dan Gohmanaf752342009-07-07 17:06:11 +00002333ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
Andrew Trick8b55b732011-03-14 16:50:06 +00002334 const Loop *L, SCEV::NoWrapFlags Flags) {
Chris Lattnerd934c702004-04-02 20:23:17 +00002335 if (Operands.size() == 1) return Operands[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002336#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002337 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002338 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002339 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002340 "SCEVAddRecExpr operand types don't match!");
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002341 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002342 assert(isLoopInvariant(Operands[i], L) &&
Dan Gohmand3a32ae2010-11-17 20:48:38 +00002343 "SCEVAddRecExpr operand is not loop-invariant!");
Dan Gohmand33f36e2009-05-18 15:44:58 +00002344#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00002345
Dan Gohmanbe928e32008-06-18 16:23:07 +00002346 if (Operands.back()->isZero()) {
2347 Operands.pop_back();
Andrew Trick8b55b732011-03-14 16:50:06 +00002348 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
Dan Gohmanbe928e32008-06-18 16:23:07 +00002349 }
Chris Lattnerd934c702004-04-02 20:23:17 +00002350
Dan Gohmancf9c64e2010-02-19 18:49:22 +00002351 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2352 // use that information to infer NUW and NSW flags. However, computing a
2353 // BE count requires calling getAddRecExpr, so we may not yet have a
2354 // meaningful BE count at this point (and if we don't, we'd be stuck
2355 // with a SCEVCouldNotCompute as the cached BE count).
2356
Andrew Trick8b55b732011-03-14 16:50:06 +00002357 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002358 // And vice-versa.
2359 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2360 SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2361 if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002362 bool All = true;
Dan Gohman74c61502010-08-16 16:27:53 +00002363 for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2364 E = Operands.end(); I != E; ++I)
2365 if (!isKnownNonNegative(*I)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00002366 All = false;
2367 break;
2368 }
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002369 if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002370 }
2371
Dan Gohman223a5d22008-08-08 18:33:12 +00002372 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
Dan Gohmana30370b2009-05-04 22:02:23 +00002373 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00002374 const Loop *NestedLoop = NestedAR->getLoop();
Dan Gohman63c020a2010-08-13 20:23:25 +00002375 if (L->contains(NestedLoop) ?
Dan Gohman51ad99d2010-01-21 02:09:26 +00002376 (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
Dan Gohman63c020a2010-08-13 20:23:25 +00002377 (!NestedLoop->contains(L) &&
Dan Gohman51ad99d2010-01-21 02:09:26 +00002378 DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002379 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
Dan Gohmancb0efec2009-12-18 01:14:11 +00002380 NestedAR->op_end());
Dan Gohman223a5d22008-08-08 18:33:12 +00002381 Operands[0] = NestedAR->getStart();
Dan Gohmancc030b72009-06-26 22:36:20 +00002382 // AddRecs require their operands be loop-invariant with respect to their
2383 // loops. Don't perform this transformation if it would break this
2384 // requirement.
2385 bool AllInvariant = true;
2386 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002387 if (!isLoopInvariant(Operands[i], L)) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002388 AllInvariant = false;
2389 break;
2390 }
2391 if (AllInvariant) {
Andrew Trick8b55b732011-03-14 16:50:06 +00002392 // Create a recurrence for the outer loop with the same step size.
2393 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002394 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2395 // inner recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002396 SCEV::NoWrapFlags OuterFlags =
2397 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
Andrew Trick8b55b732011-03-14 16:50:06 +00002398
2399 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
Dan Gohmancc030b72009-06-26 22:36:20 +00002400 AllInvariant = true;
2401 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
Dan Gohmanafd6db92010-11-17 21:23:15 +00002402 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002403 AllInvariant = false;
2404 break;
2405 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002406 if (AllInvariant) {
Dan Gohmancc030b72009-06-26 22:36:20 +00002407 // Ok, both add recurrences are valid after the transformation.
Andrew Trick8b55b732011-03-14 16:50:06 +00002408 //
Andrew Trick8b55b732011-03-14 16:50:06 +00002409 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2410 // the outer recurrence has the same property.
Andrew Trickf6b01ff2011-03-15 00:37:00 +00002411 SCEV::NoWrapFlags InnerFlags =
2412 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
Andrew Trick8b55b732011-03-14 16:50:06 +00002413 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2414 }
Dan Gohmancc030b72009-06-26 22:36:20 +00002415 }
2416 // Reset Operands to its original state.
2417 Operands[0] = NestedAR;
Dan Gohman223a5d22008-08-08 18:33:12 +00002418 }
2419 }
2420
Dan Gohman8d67d2f2010-01-19 22:27:22 +00002421 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2422 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002423 FoldingSetNodeID ID;
2424 ID.AddInteger(scAddRecExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002425 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2426 ID.AddPointer(Operands[i]);
2427 ID.AddPointer(L);
2428 void *IP = 0;
Dan Gohman51ad99d2010-01-21 02:09:26 +00002429 SCEVAddRecExpr *S =
2430 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2431 if (!S) {
Dan Gohman00524492010-03-18 01:17:13 +00002432 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2433 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002434 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2435 O, Operands.size(), L);
Dan Gohman51ad99d2010-01-21 02:09:26 +00002436 UniqueSCEVs.InsertNode(S, IP);
2437 }
Andrew Trick8b55b732011-03-14 16:50:06 +00002438 S->setNoWrapFlags(Flags);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002439 return S;
Chris Lattnerd934c702004-04-02 20:23:17 +00002440}
2441
Dan Gohmanabd17092009-06-24 14:49:00 +00002442const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2443 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002444 SmallVector<const SCEV *, 2> Ops;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002445 Ops.push_back(LHS);
2446 Ops.push_back(RHS);
2447 return getSMaxExpr(Ops);
2448}
2449
Dan Gohmanaf752342009-07-07 17:06:11 +00002450const SCEV *
2451ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002452 assert(!Ops.empty() && "Cannot get empty smax!");
2453 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002454#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002455 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002456 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002457 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002458 "SCEVSMaxExpr operand types don't match!");
2459#endif
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002460
2461 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00002462 GroupByComplexity(Ops, LI);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002463
2464 // If there are any constants, fold them together.
2465 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002466 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002467 ++Idx;
2468 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00002469 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002470 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002471 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002472 APIntOps::smax(LHSC->getValue()->getValue(),
2473 RHSC->getValue()->getValue()));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002474 Ops[0] = getConstant(Fold);
2475 Ops.erase(Ops.begin()+1); // Erase the folded element
2476 if (Ops.size() == 1) return Ops[0];
2477 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002478 }
2479
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002480 // If we are left with a constant minimum-int, strip it off.
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002481 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2482 Ops.erase(Ops.begin());
2483 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002484 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2485 // If we have an smax with a constant maximum-int, it will always be
2486 // maximum-int.
2487 return Ops[0];
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002488 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002489
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002490 if (Ops.size() == 1) return Ops[0];
2491 }
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002492
2493 // Find the first SMax
2494 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2495 ++Idx;
2496
2497 // Check to see if one of the operands is an SMax. If so, expand its operands
2498 // onto our operand list, and recurse to simplify.
2499 if (Idx < Ops.size()) {
2500 bool DeletedSMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002501 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002502 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002503 Ops.append(SMax->op_begin(), SMax->op_end());
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002504 DeletedSMax = true;
2505 }
2506
2507 if (DeletedSMax)
2508 return getSMaxExpr(Ops);
2509 }
2510
2511 // Okay, check to see if the same value occurs in the operand list twice. If
2512 // so, delete one. Since we sorted the list, these values are required to
2513 // be adjacent.
2514 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00002515 // X smax Y smax Y --> X smax Y
2516 // X smax Y --> X, if X is always greater than Y
2517 if (Ops[i] == Ops[i+1] ||
2518 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2519 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2520 --i; --e;
2521 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002522 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2523 --i; --e;
2524 }
2525
2526 if (Ops.size() == 1) return Ops[0];
2527
2528 assert(!Ops.empty() && "Reduced smax down to nothing!");
2529
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002530 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002531 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002532 FoldingSetNodeID ID;
2533 ID.AddInteger(scSMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002534 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2535 ID.AddPointer(Ops[i]);
2536 void *IP = 0;
2537 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00002538 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2539 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002540 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2541 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002542 UniqueSCEVs.InsertNode(S, IP);
2543 return S;
Nick Lewyckycdb7e542007-11-25 22:41:31 +00002544}
2545
Dan Gohmanabd17092009-06-24 14:49:00 +00002546const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2547 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002548 SmallVector<const SCEV *, 2> Ops;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002549 Ops.push_back(LHS);
2550 Ops.push_back(RHS);
2551 return getUMaxExpr(Ops);
2552}
2553
Dan Gohmanaf752342009-07-07 17:06:11 +00002554const SCEV *
2555ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002556 assert(!Ops.empty() && "Cannot get empty umax!");
2557 if (Ops.size() == 1) return Ops[0];
Dan Gohmand33f36e2009-05-18 15:44:58 +00002558#ifndef NDEBUG
Chris Lattner229907c2011-07-18 04:54:35 +00002559 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
Dan Gohmand33f36e2009-05-18 15:44:58 +00002560 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
Dan Gohmanb6c773e2010-08-16 16:13:54 +00002561 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
Dan Gohmand33f36e2009-05-18 15:44:58 +00002562 "SCEVUMaxExpr operand types don't match!");
2563#endif
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002564
2565 // Sort by complexity, this groups all similar expression types together.
Dan Gohman9ba542c2009-05-07 14:39:04 +00002566 GroupByComplexity(Ops, LI);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002567
2568 // If there are any constants, fold them together.
2569 unsigned Idx = 0;
Dan Gohmana30370b2009-05-04 22:02:23 +00002570 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002571 ++Idx;
2572 assert(Idx < Ops.size());
Dan Gohmana30370b2009-05-04 22:02:23 +00002573 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002574 // We found two constants, fold them together!
Owen Andersonedb4a702009-07-24 23:12:02 +00002575 ConstantInt *Fold = ConstantInt::get(getContext(),
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002576 APIntOps::umax(LHSC->getValue()->getValue(),
2577 RHSC->getValue()->getValue()));
2578 Ops[0] = getConstant(Fold);
2579 Ops.erase(Ops.begin()+1); // Erase the folded element
2580 if (Ops.size() == 1) return Ops[0];
2581 LHSC = cast<SCEVConstant>(Ops[0]);
2582 }
2583
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002584 // If we are left with a constant minimum-int, strip it off.
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002585 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2586 Ops.erase(Ops.begin());
2587 --Idx;
Dan Gohmanf57bdb72009-06-24 14:46:22 +00002588 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2589 // If we have an umax with a constant maximum-int, it will always be
2590 // maximum-int.
2591 return Ops[0];
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002592 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002593
Dan Gohmanfe4b2912010-04-13 16:49:23 +00002594 if (Ops.size() == 1) return Ops[0];
2595 }
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002596
2597 // Find the first UMax
2598 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2599 ++Idx;
2600
2601 // Check to see if one of the operands is a UMax. If so, expand its operands
2602 // onto our operand list, and recurse to simplify.
2603 if (Idx < Ops.size()) {
2604 bool DeletedUMax = false;
Dan Gohmana30370b2009-05-04 22:02:23 +00002605 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002606 Ops.erase(Ops.begin()+Idx);
Dan Gohmandd41bba2010-06-21 19:47:52 +00002607 Ops.append(UMax->op_begin(), UMax->op_end());
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002608 DeletedUMax = true;
2609 }
2610
2611 if (DeletedUMax)
2612 return getUMaxExpr(Ops);
2613 }
2614
2615 // Okay, check to see if the same value occurs in the operand list twice. If
2616 // so, delete one. Since we sorted the list, these values are required to
2617 // be adjacent.
2618 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
Dan Gohman7ef0dc22010-04-13 16:51:03 +00002619 // X umax Y umax Y --> X umax Y
2620 // X umax Y --> X, if X is always greater than Y
2621 if (Ops[i] == Ops[i+1] ||
2622 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2623 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2624 --i; --e;
2625 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002626 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2627 --i; --e;
2628 }
2629
2630 if (Ops.size() == 1) return Ops[0];
2631
2632 assert(!Ops.empty() && "Reduced umax down to nothing!");
2633
2634 // Okay, it looks like we really DO need a umax expr. Check to see if we
2635 // already have one, otherwise create a new one.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002636 FoldingSetNodeID ID;
2637 ID.AddInteger(scUMaxExpr);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002638 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2639 ID.AddPointer(Ops[i]);
2640 void *IP = 0;
2641 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
Dan Gohman00524492010-03-18 01:17:13 +00002642 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2643 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
Dan Gohman01c65a22010-03-18 18:49:47 +00002644 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2645 O, Ops.size());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002646 UniqueSCEVs.InsertNode(S, IP);
2647 return S;
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00002648}
2649
Dan Gohmanabd17092009-06-24 14:49:00 +00002650const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2651 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00002652 // ~smax(~x, ~y) == smin(x, y).
2653 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2654}
2655
Dan Gohmanabd17092009-06-24 14:49:00 +00002656const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2657 const SCEV *RHS) {
Dan Gohman692b4682009-06-22 03:18:45 +00002658 // ~umax(~x, ~y) == umin(x, y)
2659 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2660}
2661
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002662const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002663 // If we have DataLayout, we can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00002664 // constant expression and then folding it back into a ConstantInt.
2665 // This is just a compile-time optimization.
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002666 if (DL)
2667 return getConstant(IntTy, DL->getTypeAllocSize(AllocTy));
Dan Gohman11862a62010-04-12 23:03:26 +00002668
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00002669 Constant *C = ConstantExpr::getSizeOf(AllocTy);
2670 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002671 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
Dan Gohmana3b6c4b2010-05-28 16:12:08 +00002672 C = Folded;
Chris Lattner229907c2011-07-18 04:54:35 +00002673 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002674 assert(Ty == IntTy && "Effective SCEV type doesn't match");
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00002675 return getTruncateOrZeroExtend(getSCEV(C), Ty);
2676}
2677
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002678const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
2679 StructType *STy,
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00002680 unsigned FieldNo) {
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002681 // If we have DataLayout, we can bypass creating a target-independent
Dan Gohman11862a62010-04-12 23:03:26 +00002682 // constant expression and then folding it back into a ConstantInt.
2683 // This is just a compile-time optimization.
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002684 if (DL) {
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002685 return getConstant(IntTy,
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002686 DL->getStructLayout(STy)->getElementOffset(FieldNo));
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002687 }
Dan Gohman11862a62010-04-12 23:03:26 +00002688
Dan Gohmancf913832010-01-28 02:15:55 +00002689 Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2690 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002691 if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
Dan Gohmana3b6c4b2010-05-28 16:12:08 +00002692 C = Folded;
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002693
Matt Arsenault4ed49b52013-10-21 18:08:09 +00002694 Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
Dan Gohmancf913832010-01-28 02:15:55 +00002695 return getTruncateOrZeroExtend(getSCEV(C), Ty);
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002696}
2697
Dan Gohmanaf752342009-07-07 17:06:11 +00002698const SCEV *ScalarEvolution::getUnknown(Value *V) {
Dan Gohmanf436bac2009-06-24 00:54:57 +00002699 // Don't attempt to do anything other than create a SCEVUnknown object
2700 // here. createSCEV only calls getUnknown after checking for all other
2701 // interesting possibilities, and any other code that calls getUnknown
2702 // is doing so in order to hide a value from SCEV canonicalization.
2703
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002704 FoldingSetNodeID ID;
2705 ID.AddInteger(scUnknown);
2706 ID.AddPointer(V);
2707 void *IP = 0;
Dan Gohman7cac9572010-08-02 23:49:30 +00002708 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2709 assert(cast<SCEVUnknown>(S)->getValue() == V &&
2710 "Stale SCEVUnknown in uniquing map!");
2711 return S;
2712 }
2713 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2714 FirstUnknown);
2715 FirstUnknown = cast<SCEVUnknown>(S);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002716 UniqueSCEVs.InsertNode(S, IP);
2717 return S;
Chris Lattnerb4f681b2004-04-15 15:07:24 +00002718}
2719
Chris Lattnerd934c702004-04-02 20:23:17 +00002720//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00002721// Basic SCEV Analysis and PHI Idiom Recognition Code
2722//
2723
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002724/// isSCEVable - Test if values of the given type are analyzable within
2725/// the SCEV framework. This primarily includes integer types, and it
2726/// can optionally include pointer types if the ScalarEvolution class
2727/// has access to target-specific information.
Chris Lattner229907c2011-07-18 04:54:35 +00002728bool ScalarEvolution::isSCEVable(Type *Ty) const {
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002729 // Integers and pointers are always SCEVable.
Duncan Sands19d0b472010-02-16 11:11:14 +00002730 return Ty->isIntegerTy() || Ty->isPointerTy();
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002731}
2732
2733/// getTypeSizeInBits - Return the size in bits of the specified type,
2734/// for which isSCEVable must return true.
Chris Lattner229907c2011-07-18 04:54:35 +00002735uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002736 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2737
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002738 // If we have a DataLayout, use it!
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002739 if (DL)
2740 return DL->getTypeSizeInBits(Ty);
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002741
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002742 // Integer types have fixed sizes.
Duncan Sands9dff9be2010-02-15 16:12:20 +00002743 if (Ty->isIntegerTy())
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002744 return Ty->getPrimitiveSizeInBits();
2745
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002746 // The only other support type is pointer. Without DataLayout, conservatively
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002747 // assume pointers are 64-bit.
Duncan Sands19d0b472010-02-16 11:11:14 +00002748 assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002749 return 64;
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002750}
2751
2752/// getEffectiveSCEVType - Return a type with the same bitwidth as
2753/// the given type and which represents how SCEV will treat the given
2754/// type, for which isSCEVable must return true. For pointer types,
2755/// this is the pointer-sized integer type.
Chris Lattner229907c2011-07-18 04:54:35 +00002756Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002757 assert(isSCEVable(Ty) && "Type is not SCEVable!");
2758
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002759 if (Ty->isIntegerTy()) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002760 return Ty;
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002761 }
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002762
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002763 // The only other support type is pointer.
Duncan Sands19d0b472010-02-16 11:11:14 +00002764 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00002765
Rafael Espindola7c68beb2014-02-18 15:33:12 +00002766 if (DL)
2767 return DL->getIntPtrType(Ty);
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002768
Micah Villmowcdfe20b2012-10-08 16:38:25 +00002769 // Without DataLayout, conservatively assume pointers are 64-bit.
Dan Gohmanbf2a9ae2009-08-18 16:46:41 +00002770 return Type::getInt64Ty(getContext());
Dan Gohman0a40ad92009-04-16 03:18:22 +00002771}
Chris Lattnerd934c702004-04-02 20:23:17 +00002772
Dan Gohmanaf752342009-07-07 17:06:11 +00002773const SCEV *ScalarEvolution::getCouldNotCompute() {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00002774 return &CouldNotCompute;
Dan Gohman31efa302009-04-18 17:58:19 +00002775}
2776
Shuxin Yangefc4c012013-07-08 17:33:13 +00002777namespace {
2778 // Helper class working with SCEVTraversal to figure out if a SCEV contains
2779 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
2780 // is set iff if find such SCEVUnknown.
2781 //
2782 struct FindInvalidSCEVUnknown {
2783 bool FindOne;
2784 FindInvalidSCEVUnknown() { FindOne = false; }
2785 bool follow(const SCEV *S) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00002786 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Shuxin Yangefc4c012013-07-08 17:33:13 +00002787 case scConstant:
2788 return false;
2789 case scUnknown:
Shuxin Yang23773b32013-07-12 07:25:38 +00002790 if (!cast<SCEVUnknown>(S)->getValue())
Shuxin Yangefc4c012013-07-08 17:33:13 +00002791 FindOne = true;
2792 return false;
2793 default:
2794 return true;
2795 }
2796 }
2797 bool isDone() const { return FindOne; }
2798 };
2799}
2800
2801bool ScalarEvolution::checkValidity(const SCEV *S) const {
2802 FindInvalidSCEVUnknown F;
2803 SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
2804 ST.visitAll(S);
2805
2806 return !F.FindOne;
2807}
2808
Chris Lattnerd934c702004-04-02 20:23:17 +00002809/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2810/// expression and create a new one.
Dan Gohmanaf752342009-07-07 17:06:11 +00002811const SCEV *ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002812 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Chris Lattnerd934c702004-04-02 20:23:17 +00002813
Shuxin Yangefc4c012013-07-08 17:33:13 +00002814 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
2815 if (I != ValueExprMap.end()) {
2816 const SCEV *S = I->second;
Shuxin Yang23773b32013-07-12 07:25:38 +00002817 if (checkValidity(S))
Shuxin Yangefc4c012013-07-08 17:33:13 +00002818 return S;
2819 else
2820 ValueExprMap.erase(I);
2821 }
Dan Gohmanaf752342009-07-07 17:06:11 +00002822 const SCEV *S = createSCEV(V);
Dan Gohmanc29eeae2010-08-16 16:31:39 +00002823
2824 // The process of creating a SCEV for V may have caused other SCEVs
2825 // to have been created, so it's necessary to insert the new entry
2826 // from scratch, rather than trying to remember the insert position
2827 // above.
Dan Gohman9bad2fb2010-08-27 18:55:03 +00002828 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
Chris Lattnerd934c702004-04-02 20:23:17 +00002829 return S;
2830}
2831
Dan Gohman0a40ad92009-04-16 03:18:22 +00002832/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2833///
Dan Gohmanaf752342009-07-07 17:06:11 +00002834const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00002835 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson53a52212009-07-13 04:09:18 +00002836 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00002837 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00002838
Chris Lattner229907c2011-07-18 04:54:35 +00002839 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00002840 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00002841 return getMulExpr(V,
Owen Anderson5a1acd92009-07-31 20:28:14 +00002842 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
Dan Gohman0a40ad92009-04-16 03:18:22 +00002843}
2844
2845/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohmanaf752342009-07-07 17:06:11 +00002846const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
Dan Gohmana30370b2009-05-04 22:02:23 +00002847 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Owen Anderson542619e2009-07-13 20:58:05 +00002848 return getConstant(
Owen Anderson487375e2009-07-29 18:55:55 +00002849 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
Dan Gohman0a40ad92009-04-16 03:18:22 +00002850
Chris Lattner229907c2011-07-18 04:54:35 +00002851 Type *Ty = V->getType();
Dan Gohmanc8e23622009-04-21 23:15:49 +00002852 Ty = getEffectiveSCEVType(Ty);
Owen Anderson542619e2009-07-13 20:58:05 +00002853 const SCEV *AllOnes =
Owen Anderson5a1acd92009-07-31 20:28:14 +00002854 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
Dan Gohman0a40ad92009-04-16 03:18:22 +00002855 return getMinusSCEV(AllOnes, V);
2856}
2857
Andrew Trick8b55b732011-03-14 16:50:06 +00002858/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
Chris Lattnerfc877522011-01-09 22:26:35 +00002859const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00002860 SCEV::NoWrapFlags Flags) {
Andrew Tricka34f1b12011-03-15 01:16:14 +00002861 assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
2862
Dan Gohman46f00a22010-07-20 16:53:00 +00002863 // Fast path: X - X --> 0.
2864 if (LHS == RHS)
2865 return getConstant(LHS->getType(), 0);
2866
Dan Gohman0a40ad92009-04-16 03:18:22 +00002867 // X - Y --> X + -Y
Andrew Trick8b55b732011-03-14 16:50:06 +00002868 return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
Dan Gohman0a40ad92009-04-16 03:18:22 +00002869}
2870
2871/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2872/// input value to the specified type. If the type must be extended, it is zero
2873/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00002874const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00002875ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
2876 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00002877 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2878 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00002879 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002880 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00002881 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002882 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00002883 return getTruncateExpr(V, Ty);
2884 return getZeroExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00002885}
2886
2887/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2888/// input value to the specified type. If the type must be extended, it is sign
2889/// extended.
Dan Gohmanaf752342009-07-07 17:06:11 +00002890const SCEV *
2891ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
Chris Lattner229907c2011-07-18 04:54:35 +00002892 Type *Ty) {
2893 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00002894 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2895 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman0a40ad92009-04-16 03:18:22 +00002896 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002897 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman0a40ad92009-04-16 03:18:22 +00002898 return V; // No conversion
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002899 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanc8e23622009-04-21 23:15:49 +00002900 return getTruncateExpr(V, Ty);
2901 return getSignExtendExpr(V, Ty);
Dan Gohman0a40ad92009-04-16 03:18:22 +00002902}
2903
Dan Gohmane712a2f2009-05-13 03:46:30 +00002904/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2905/// input value to the specified type. If the type must be extended, it is zero
2906/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00002907const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00002908ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
2909 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00002910 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2911 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00002912 "Cannot noop or zero extend with non-integer arguments!");
2913 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2914 "getNoopOrZeroExtend cannot truncate!");
2915 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2916 return V; // No conversion
2917 return getZeroExtendExpr(V, Ty);
2918}
2919
2920/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2921/// input value to the specified type. If the type must be extended, it is sign
2922/// extended. The conversion must not be narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00002923const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00002924ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
2925 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00002926 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2927 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00002928 "Cannot noop or sign extend with non-integer arguments!");
2929 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2930 "getNoopOrSignExtend cannot truncate!");
2931 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2932 return V; // No conversion
2933 return getSignExtendExpr(V, Ty);
2934}
2935
Dan Gohman8db2edc2009-06-13 15:56:47 +00002936/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2937/// the input value to the specified type. If the type must be extended,
2938/// it is extended with unspecified bits. The conversion must not be
2939/// narrowing.
Dan Gohmanaf752342009-07-07 17:06:11 +00002940const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00002941ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
2942 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00002943 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2944 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohman8db2edc2009-06-13 15:56:47 +00002945 "Cannot noop or any extend with non-integer arguments!");
2946 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2947 "getNoopOrAnyExtend cannot truncate!");
2948 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2949 return V; // No conversion
2950 return getAnyExtendExpr(V, Ty);
2951}
2952
Dan Gohmane712a2f2009-05-13 03:46:30 +00002953/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2954/// input value to the specified type. The conversion must not be widening.
Dan Gohmanaf752342009-07-07 17:06:11 +00002955const SCEV *
Chris Lattner229907c2011-07-18 04:54:35 +00002956ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
2957 Type *SrcTy = V->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +00002958 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2959 (Ty->isIntegerTy() || Ty->isPointerTy()) &&
Dan Gohmane712a2f2009-05-13 03:46:30 +00002960 "Cannot truncate or noop with non-integer arguments!");
2961 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2962 "getTruncateOrNoop cannot extend!");
2963 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2964 return V; // No conversion
2965 return getTruncateExpr(V, Ty);
2966}
2967
Dan Gohman96212b62009-06-22 00:31:57 +00002968/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2969/// the types using zero-extension, and then perform a umax operation
2970/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00002971const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2972 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002973 const SCEV *PromotedLHS = LHS;
2974 const SCEV *PromotedRHS = RHS;
Dan Gohman96212b62009-06-22 00:31:57 +00002975
2976 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2977 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2978 else
2979 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2980
2981 return getUMaxExpr(PromotedLHS, PromotedRHS);
2982}
2983
Dan Gohman2bc22302009-06-22 15:03:27 +00002984/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2985/// the types using zero-extension, and then perform a umin operation
2986/// with them.
Dan Gohmanabd17092009-06-24 14:49:00 +00002987const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2988 const SCEV *RHS) {
Dan Gohmanaf752342009-07-07 17:06:11 +00002989 const SCEV *PromotedLHS = LHS;
2990 const SCEV *PromotedRHS = RHS;
Dan Gohman2bc22302009-06-22 15:03:27 +00002991
2992 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2993 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2994 else
2995 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2996
2997 return getUMinExpr(PromotedLHS, PromotedRHS);
2998}
2999
Andrew Trick87716c92011-03-17 23:51:11 +00003000/// getPointerBase - Transitively follow the chain of pointer-type operands
3001/// until reaching a SCEV that does not have a single pointer operand. This
3002/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
3003/// but corner cases do exist.
3004const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3005 // A pointer operand may evaluate to a nonpointer expression, such as null.
3006 if (!V->getType()->isPointerTy())
3007 return V;
3008
3009 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3010 return getPointerBase(Cast->getOperand());
3011 }
3012 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
3013 const SCEV *PtrOp = 0;
3014 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
3015 I != E; ++I) {
3016 if ((*I)->getType()->isPointerTy()) {
3017 // Cannot find the base of an expression with multiple pointer operands.
3018 if (PtrOp)
3019 return V;
3020 PtrOp = *I;
3021 }
3022 }
3023 if (!PtrOp)
3024 return V;
3025 return getPointerBase(PtrOp);
3026 }
3027 return V;
3028}
3029
Dan Gohman0b89dff2009-07-25 01:13:03 +00003030/// PushDefUseChildren - Push users of the given Instruction
3031/// onto the given Worklist.
3032static void
3033PushDefUseChildren(Instruction *I,
3034 SmallVectorImpl<Instruction *> &Worklist) {
3035 // Push the def-use children onto the Worklist stack.
3036 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
3037 UI != UE; ++UI)
Gabor Greifdde79d82010-07-22 13:36:47 +00003038 Worklist.push_back(cast<Instruction>(*UI));
Dan Gohman0b89dff2009-07-25 01:13:03 +00003039}
3040
3041/// ForgetSymbolicValue - This looks up computed SCEV values for all
3042/// instructions that depend on the given instruction and removes them from
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003043/// the ValueExprMapType map if they reference SymName. This is used during PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003044/// resolution.
Dan Gohmance973df2009-06-24 04:48:43 +00003045void
Dan Gohmana9c205c2010-02-25 06:57:05 +00003046ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
Dan Gohman0b89dff2009-07-25 01:13:03 +00003047 SmallVector<Instruction *, 16> Worklist;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003048 PushDefUseChildren(PN, Worklist);
Chris Lattnerd934c702004-04-02 20:23:17 +00003049
Dan Gohman0b89dff2009-07-25 01:13:03 +00003050 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohmana9c205c2010-02-25 06:57:05 +00003051 Visited.insert(PN);
Dan Gohman0b89dff2009-07-25 01:13:03 +00003052 while (!Worklist.empty()) {
Dan Gohmana9c205c2010-02-25 06:57:05 +00003053 Instruction *I = Worklist.pop_back_val();
Dan Gohman0b89dff2009-07-25 01:13:03 +00003054 if (!Visited.insert(I)) continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003055
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003056 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00003057 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003058 if (It != ValueExprMap.end()) {
Dan Gohman761065e2010-11-17 02:44:44 +00003059 const SCEV *Old = It->second;
3060
Dan Gohman0b89dff2009-07-25 01:13:03 +00003061 // Short-circuit the def-use traversal if the symbolic name
3062 // ceases to appear in expressions.
Dan Gohman534749b2010-11-17 22:27:42 +00003063 if (Old != SymName && !hasOperand(Old, SymName))
Dan Gohman0b89dff2009-07-25 01:13:03 +00003064 continue;
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003065
Dan Gohman0b89dff2009-07-25 01:13:03 +00003066 // SCEVUnknown for a PHI either means that it has an unrecognized
Dan Gohmana9c205c2010-02-25 06:57:05 +00003067 // structure, it's a PHI that's in the progress of being computed
3068 // by createNodeForPHI, or it's a single-value PHI. In the first case,
3069 // additional loop trip count information isn't going to change anything.
3070 // In the second case, createNodeForPHI will perform the necessary
3071 // updates on its own when it gets to that point. In the third, we do
3072 // want to forget the SCEVUnknown.
3073 if (!isa<PHINode>(I) ||
Dan Gohman761065e2010-11-17 02:44:44 +00003074 !isa<SCEVUnknown>(Old) ||
3075 (I != PN && Old == SymName)) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00003076 forgetMemoizedResults(Old);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003077 ValueExprMap.erase(It);
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00003078 }
Dan Gohman0b89dff2009-07-25 01:13:03 +00003079 }
3080
3081 PushDefUseChildren(I, Worklist);
3082 }
Chris Lattner7b0fbe72005-02-13 04:37:18 +00003083}
Chris Lattnerd934c702004-04-02 20:23:17 +00003084
3085/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
3086/// a loop header, making it a potential recurrence, or it doesn't.
3087///
Dan Gohmanaf752342009-07-07 17:06:11 +00003088const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohman6635bb22010-04-12 07:49:36 +00003089 if (const Loop *L = LI->getLoopFor(PN->getParent()))
3090 if (L->getHeader() == PN->getParent()) {
3091 // The loop may have multiple entrances or multiple exits; we can analyze
3092 // this phi as an addrec if it has a unique entry value and a unique
3093 // backedge value.
3094 Value *BEValueV = 0, *StartValueV = 0;
3095 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3096 Value *V = PN->getIncomingValue(i);
3097 if (L->contains(PN->getIncomingBlock(i))) {
3098 if (!BEValueV) {
3099 BEValueV = V;
3100 } else if (BEValueV != V) {
3101 BEValueV = 0;
3102 break;
3103 }
3104 } else if (!StartValueV) {
3105 StartValueV = V;
3106 } else if (StartValueV != V) {
3107 StartValueV = 0;
3108 break;
3109 }
3110 }
3111 if (BEValueV && StartValueV) {
Chris Lattnerd934c702004-04-02 20:23:17 +00003112 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohmanaf752342009-07-07 17:06:11 +00003113 const SCEV *SymbolicName = getUnknown(PN);
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00003114 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
Chris Lattnerd934c702004-04-02 20:23:17 +00003115 "PHI node already processed?");
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003116 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
Chris Lattnerd934c702004-04-02 20:23:17 +00003117
3118 // Using this symbolic name for the PHI, analyze the value coming around
3119 // the back-edge.
Dan Gohman0b89dff2009-07-25 01:13:03 +00003120 const SCEV *BEValue = getSCEV(BEValueV);
Chris Lattnerd934c702004-04-02 20:23:17 +00003121
3122 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3123 // has a special value for the first iteration of the loop.
3124
3125 // If the value coming around the backedge is an add with the symbolic
3126 // value we just inserted, then we found a simple induction variable!
Dan Gohmana30370b2009-05-04 22:02:23 +00003127 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00003128 // If there is a single occurrence of the symbolic value, replace it
3129 // with a recurrence.
3130 unsigned FoundIndex = Add->getNumOperands();
3131 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3132 if (Add->getOperand(i) == SymbolicName)
3133 if (FoundIndex == e) {
3134 FoundIndex = i;
3135 break;
3136 }
3137
3138 if (FoundIndex != Add->getNumOperands()) {
3139 // Create an add with everything but the specified operand.
Dan Gohmanaf752342009-07-07 17:06:11 +00003140 SmallVector<const SCEV *, 8> Ops;
Chris Lattnerd934c702004-04-02 20:23:17 +00003141 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3142 if (i != FoundIndex)
3143 Ops.push_back(Add->getOperand(i));
Dan Gohmanaf752342009-07-07 17:06:11 +00003144 const SCEV *Accum = getAddExpr(Ops);
Chris Lattnerd934c702004-04-02 20:23:17 +00003145
3146 // This is not a valid addrec if the step amount is varying each
3147 // loop iteration, but is not itself an addrec in this loop.
Dan Gohmanafd6db92010-11-17 21:23:15 +00003148 if (isLoopInvariant(Accum, L) ||
Chris Lattnerd934c702004-04-02 20:23:17 +00003149 (isa<SCEVAddRecExpr>(Accum) &&
3150 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003151 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
Dan Gohman51ad99d2010-01-21 02:09:26 +00003152
3153 // If the increment doesn't overflow, then neither the addrec nor
3154 // the post-increment will overflow.
3155 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3156 if (OBO->hasNoUnsignedWrap())
Andrew Trick8b55b732011-03-14 16:50:06 +00003157 Flags = setFlags(Flags, SCEV::FlagNUW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00003158 if (OBO->hasNoSignedWrap())
Andrew Trick8b55b732011-03-14 16:50:06 +00003159 Flags = setFlags(Flags, SCEV::FlagNSW);
Benjamin Kramer6094f302013-10-28 07:30:06 +00003160 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003161 // If the increment is an inbounds GEP, then we know the address
3162 // space cannot be wrapped around. We cannot make any guarantee
3163 // about signed or unsigned overflow because pointers are
3164 // unsigned but we may have a negative index from the base
Benjamin Kramer6094f302013-10-28 07:30:06 +00003165 // pointer. We can guarantee that no unsigned wrap occurs if the
3166 // indices form a positive value.
3167 if (GEP->isInBounds()) {
Andrew Trickf6b01ff2011-03-15 00:37:00 +00003168 Flags = setFlags(Flags, SCEV::FlagNW);
Benjamin Kramer6094f302013-10-28 07:30:06 +00003169
3170 const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
3171 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
3172 Flags = setFlags(Flags, SCEV::FlagNUW);
3173 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00003174 } else if (const SubOperator *OBO =
3175 dyn_cast<SubOperator>(BEValueV)) {
3176 if (OBO->hasNoUnsignedWrap())
3177 Flags = setFlags(Flags, SCEV::FlagNUW);
3178 if (OBO->hasNoSignedWrap())
3179 Flags = setFlags(Flags, SCEV::FlagNSW);
Dan Gohman51ad99d2010-01-21 02:09:26 +00003180 }
3181
Dan Gohman6635bb22010-04-12 07:49:36 +00003182 const SCEV *StartVal = getSCEV(StartValueV);
Andrew Trick8b55b732011-03-14 16:50:06 +00003183 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
Dan Gohman62ef6a72009-07-25 01:22:26 +00003184
Dan Gohman51ad99d2010-01-21 02:09:26 +00003185 // Since the no-wrap flags are on the increment, they apply to the
3186 // post-incremented value as well.
Dan Gohmanafd6db92010-11-17 21:23:15 +00003187 if (isLoopInvariant(Accum, L))
Dan Gohman51ad99d2010-01-21 02:09:26 +00003188 (void)getAddRecExpr(getAddExpr(StartVal, Accum),
Andrew Trick8b55b732011-03-14 16:50:06 +00003189 Accum, L, Flags);
Chris Lattnerd934c702004-04-02 20:23:17 +00003190
3191 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003192 // to be symbolic. We now need to go back and purge all of the
3193 // entries for the scalars that use the symbolic expression.
3194 ForgetSymbolicName(PN, SymbolicName);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003195 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattnerd934c702004-04-02 20:23:17 +00003196 return PHISCEV;
3197 }
3198 }
Dan Gohmana30370b2009-05-04 22:02:23 +00003199 } else if (const SCEVAddRecExpr *AddRec =
3200 dyn_cast<SCEVAddRecExpr>(BEValue)) {
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003201 // Otherwise, this could be a loop like this:
3202 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
3203 // In this case, j = {1,+,1} and BEValue is j.
3204 // Because the other in-value of i (0) fits the evolution of BEValue
3205 // i really is an addrec evolution.
3206 if (AddRec->getLoop() == L && AddRec->isAffine()) {
Dan Gohman6635bb22010-04-12 07:49:36 +00003207 const SCEV *StartVal = getSCEV(StartValueV);
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003208
3209 // If StartVal = j.start - j.stride, we can use StartVal as the
3210 // initial step of the addrec evolution.
Dan Gohmanc8e23622009-04-21 23:15:49 +00003211 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman068b7932010-04-11 23:44:58 +00003212 AddRec->getOperand(1))) {
Andrew Trick8b55b732011-03-14 16:50:06 +00003213 // FIXME: For constant StartVal, we should be able to infer
3214 // no-wrap flags.
Dan Gohmanaf752342009-07-07 17:06:11 +00003215 const SCEV *PHISCEV =
Andrew Trick8b55b732011-03-14 16:50:06 +00003216 getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3217 SCEV::FlagAnyWrap);
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003218
3219 // Okay, for the entire analysis of this edge we assumed the PHI
Dan Gohman0b89dff2009-07-25 01:13:03 +00003220 // to be symbolic. We now need to go back and purge all of the
3221 // entries for the scalars that use the symbolic expression.
3222 ForgetSymbolicName(PN, SymbolicName);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00003223 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
Chris Lattnere8cbdbf2006-04-26 18:34:07 +00003224 return PHISCEV;
3225 }
3226 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003227 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003228 }
Dan Gohman6635bb22010-04-12 07:49:36 +00003229 }
Misha Brukman01808ca2005-04-21 21:13:18 +00003230
Dan Gohmana9c205c2010-02-25 06:57:05 +00003231 // If the PHI has a single incoming value, follow that value, unless the
3232 // PHI's incoming blocks are in a different loop, in which case doing so
3233 // risks breaking LCSSA form. Instcombine would normally zap these, but
3234 // it doesn't have DominatorTree information, so it may miss cases.
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003235 if (Value *V = SimplifyInstruction(PN, DL, TLI, DT))
Duncan Sandsaef146b2010-11-18 19:59:41 +00003236 if (LI->replacementPreservesLCSSAForm(PN, V))
Dan Gohmana9c205c2010-02-25 06:57:05 +00003237 return getSCEV(V);
Duncan Sands39d771312010-11-17 20:49:12 +00003238
Chris Lattnerd934c702004-04-02 20:23:17 +00003239 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanc8e23622009-04-21 23:15:49 +00003240 return getUnknown(PN);
Chris Lattnerd934c702004-04-02 20:23:17 +00003241}
3242
Dan Gohmanee750d12009-05-08 20:26:55 +00003243/// createNodeForGEP - Expand GEP instructions into add and multiply
3244/// operations. This allows them to be analyzed by regular SCEV code.
3245///
Dan Gohmanb256ccf2009-12-18 02:09:29 +00003246const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
Chris Lattner229907c2011-07-18 04:54:35 +00003247 Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
Dan Gohman2173bd32009-05-08 20:36:47 +00003248 Value *Base = GEP->getOperand(0);
Dan Gohman30f24fe2009-05-09 00:14:52 +00003249 // Don't attempt to analyze GEPs over unsized objects.
Matt Arsenault404c60a2013-10-21 19:43:56 +00003250 if (!Base->getType()->getPointerElementType()->isSized())
Dan Gohman30f24fe2009-05-09 00:14:52 +00003251 return getUnknown(GEP);
Matt Arsenault4c265902013-09-27 22:38:23 +00003252
3253 // Don't blindly transfer the inbounds flag from the GEP instruction to the
3254 // Add expression, because the Instruction may be guarded by control flow
3255 // and the no-overflow bits may not be valid for the expression in any
3256 // context.
3257 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3258
Dan Gohman1d2ded72010-05-03 22:09:21 +00003259 const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
Dan Gohman2173bd32009-05-08 20:36:47 +00003260 gep_type_iterator GTI = gep_type_begin(GEP);
Benjamin Kramerb6d0bd42014-03-02 12:27:27 +00003261 for (GetElementPtrInst::op_iterator I = std::next(GEP->op_begin()),
Dan Gohman2173bd32009-05-08 20:36:47 +00003262 E = GEP->op_end();
Dan Gohmanee750d12009-05-08 20:26:55 +00003263 I != E; ++I) {
3264 Value *Index = *I;
3265 // Compute the (potentially symbolic) offset in bytes for this index.
Chris Lattner229907c2011-07-18 04:54:35 +00003266 if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
Dan Gohmanee750d12009-05-08 20:26:55 +00003267 // For a struct, add the member offset.
Dan Gohmanee750d12009-05-08 20:26:55 +00003268 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003269 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
Dan Gohman16206132010-06-30 07:16:37 +00003270
Dan Gohman16206132010-06-30 07:16:37 +00003271 // Add the field offset to the running total offset.
Dan Gohmanc0cca7f2010-06-30 17:27:11 +00003272 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
Dan Gohmanee750d12009-05-08 20:26:55 +00003273 } else {
3274 // For an array, add the element offset, explicitly scaled.
Matt Arsenaulta90a18e2013-09-10 19:55:24 +00003275 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, *GTI);
Dan Gohman16206132010-06-30 07:16:37 +00003276 const SCEV *IndexS = getSCEV(Index);
Dan Gohman8b0a4192010-03-01 17:49:51 +00003277 // Getelementptr indices are signed.
Dan Gohman16206132010-06-30 07:16:37 +00003278 IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3279
Dan Gohman16206132010-06-30 07:16:37 +00003280 // Multiply the index by the element size to compute the element offset.
Matt Arsenault4c265902013-09-27 22:38:23 +00003281 const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize, Wrap);
Dan Gohman16206132010-06-30 07:16:37 +00003282
3283 // Add the element offset to the running total offset.
Dan Gohmanc0cca7f2010-06-30 17:27:11 +00003284 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohmanee750d12009-05-08 20:26:55 +00003285 }
3286 }
Dan Gohman16206132010-06-30 07:16:37 +00003287
3288 // Get the SCEV for the GEP base.
3289 const SCEV *BaseS = getSCEV(Base);
3290
Dan Gohman16206132010-06-30 07:16:37 +00003291 // Add the total offset from all the GEP indices to the base.
Matt Arsenault4c265902013-09-27 22:38:23 +00003292 return getAddExpr(BaseS, TotalOffset, Wrap);
Dan Gohmanee750d12009-05-08 20:26:55 +00003293}
3294
Nick Lewycky3783b462007-11-22 07:59:40 +00003295/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3296/// guaranteed to end in (at every loop iteration). It is, at the same time,
3297/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
3298/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003299uint32_t
Dan Gohmanaf752342009-07-07 17:06:11 +00003300ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
Dan Gohmana30370b2009-05-04 22:02:23 +00003301 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner69ec1ec2007-11-23 22:36:49 +00003302 return C->getValue()->getValue().countTrailingZeros();
Chris Lattner49b090e2006-12-12 02:26:09 +00003303
Dan Gohmana30370b2009-05-04 22:02:23 +00003304 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohmanc702fc02009-06-19 23:29:04 +00003305 return std::min(GetMinTrailingZeros(T->getOperand()),
3306 (uint32_t)getTypeSizeInBits(T->getType()));
Nick Lewycky3783b462007-11-22 07:59:40 +00003307
Dan Gohmana30370b2009-05-04 22:02:23 +00003308 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00003309 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3310 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3311 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00003312 }
3313
Dan Gohmana30370b2009-05-04 22:02:23 +00003314 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohmanc702fc02009-06-19 23:29:04 +00003315 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3316 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3317 getTypeSizeInBits(E->getType()) : OpRes;
Nick Lewycky3783b462007-11-22 07:59:40 +00003318 }
3319
Dan Gohmana30370b2009-05-04 22:02:23 +00003320 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003321 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003322 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00003323 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003324 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00003325 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003326 }
3327
Dan Gohmana30370b2009-05-04 22:02:23 +00003328 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003329 // The result is the sum of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003330 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3331 uint32_t BitWidth = getTypeSizeInBits(M->getType());
Nick Lewycky3783b462007-11-22 07:59:40 +00003332 for (unsigned i = 1, e = M->getNumOperands();
3333 SumOpRes != BitWidth && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003334 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
Nick Lewycky3783b462007-11-22 07:59:40 +00003335 BitWidth);
3336 return SumOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003337 }
Nick Lewycky3783b462007-11-22 07:59:40 +00003338
Dan Gohmana30370b2009-05-04 22:02:23 +00003339 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky3783b462007-11-22 07:59:40 +00003340 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003341 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
Nick Lewycky3783b462007-11-22 07:59:40 +00003342 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003343 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
Nick Lewycky3783b462007-11-22 07:59:40 +00003344 return MinOpRes;
Chris Lattner49b090e2006-12-12 02:26:09 +00003345 }
Nick Lewycky3783b462007-11-22 07:59:40 +00003346
Dan Gohmana30370b2009-05-04 22:02:23 +00003347 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003348 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003349 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003350 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003351 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewyckycdb7e542007-11-25 22:41:31 +00003352 return MinOpRes;
3353 }
3354
Dan Gohmana30370b2009-05-04 22:02:23 +00003355 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003356 // The result is the min of all operands results.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003357 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003358 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanc702fc02009-06-19 23:29:04 +00003359 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00003360 return MinOpRes;
3361 }
3362
Dan Gohmanc702fc02009-06-19 23:29:04 +00003363 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3364 // For a SCEVUnknown, ask ValueTracking.
3365 unsigned BitWidth = getTypeSizeInBits(U->getType());
Dan Gohmanc702fc02009-06-19 23:29:04 +00003366 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00003367 ComputeMaskedBits(U->getValue(), Zeros, Ones);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003368 return Zeros.countTrailingOnes();
3369 }
3370
3371 // SCEVUDivExpr
Nick Lewycky3783b462007-11-22 07:59:40 +00003372 return 0;
Chris Lattner49b090e2006-12-12 02:26:09 +00003373}
Chris Lattnerd934c702004-04-02 20:23:17 +00003374
Dan Gohmane65c9172009-07-13 21:35:55 +00003375/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3376///
3377ConstantRange
3378ScalarEvolution::getUnsignedRange(const SCEV *S) {
Dan Gohman761065e2010-11-17 02:44:44 +00003379 // See if we've computed this range already.
3380 DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3381 if (I != UnsignedRanges.end())
3382 return I->second;
Dan Gohmanc702fc02009-06-19 23:29:04 +00003383
3384 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohmaned756312010-11-17 20:23:08 +00003385 return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003386
Dan Gohman85be4332010-01-26 19:19:05 +00003387 unsigned BitWidth = getTypeSizeInBits(S->getType());
3388 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3389
3390 // If the value has known zeros, the maximum unsigned value will have those
3391 // known zeros as well.
3392 uint32_t TZ = GetMinTrailingZeros(S);
3393 if (TZ != 0)
3394 ConservativeResult =
3395 ConstantRange(APInt::getMinValue(BitWidth),
3396 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3397
Dan Gohmane65c9172009-07-13 21:35:55 +00003398 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3399 ConstantRange X = getUnsignedRange(Add->getOperand(0));
3400 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3401 X = X.add(getUnsignedRange(Add->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003402 return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003403 }
3404
3405 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3406 ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3407 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3408 X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003409 return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003410 }
3411
3412 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3413 ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3414 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3415 X = X.smax(getUnsignedRange(SMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003416 return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003417 }
3418
3419 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3420 ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3421 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3422 X = X.umax(getUnsignedRange(UMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003423 return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003424 }
3425
3426 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3427 ConstantRange X = getUnsignedRange(UDiv->getLHS());
3428 ConstantRange Y = getUnsignedRange(UDiv->getRHS());
Dan Gohmaned756312010-11-17 20:23:08 +00003429 return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003430 }
3431
3432 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3433 ConstantRange X = getUnsignedRange(ZExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003434 return setUnsignedRange(ZExt,
3435 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003436 }
3437
3438 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3439 ConstantRange X = getUnsignedRange(SExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003440 return setUnsignedRange(SExt,
3441 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003442 }
3443
3444 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3445 ConstantRange X = getUnsignedRange(Trunc->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003446 return setUnsignedRange(Trunc,
3447 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003448 }
3449
Dan Gohmane65c9172009-07-13 21:35:55 +00003450 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003451 // If there's no unsigned wrap, the value will never be less than its
3452 // initial value.
Andrew Trick8b55b732011-03-14 16:50:06 +00003453 if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
Dan Gohman51ad99d2010-01-21 02:09:26 +00003454 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
Dan Gohmanebbd05f2010-04-12 23:08:18 +00003455 if (!C->getValue()->isZero())
Dan Gohmanae4a4142010-04-11 22:12:18 +00003456 ConservativeResult =
Dan Gohman9396b422010-06-30 06:58:35 +00003457 ConservativeResult.intersectWith(
3458 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003459
3460 // TODO: non-affine addrec
Dan Gohman85be4332010-01-26 19:19:05 +00003461 if (AddRec->isAffine()) {
Chris Lattner229907c2011-07-18 04:54:35 +00003462 Type *Ty = AddRec->getType();
Dan Gohmane65c9172009-07-13 21:35:55 +00003463 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohman85be4332010-01-26 19:19:05 +00003464 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3465 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohmane65c9172009-07-13 21:35:55 +00003466 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3467
3468 const SCEV *Start = AddRec->getStart();
Dan Gohmanf76210e2010-04-12 07:39:33 +00003469 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmane65c9172009-07-13 21:35:55 +00003470
3471 ConstantRange StartRange = getUnsignedRange(Start);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003472 ConstantRange StepRange = getSignedRange(Step);
3473 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3474 ConstantRange EndRange =
3475 StartRange.add(MaxBECountRange.multiply(StepRange));
3476
3477 // Check for overflow. This must be done with ConstantRange arithmetic
3478 // because we could be called from within the ScalarEvolution overflow
3479 // checking code.
3480 ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3481 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3482 ConstantRange ExtMaxBECountRange =
3483 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3484 ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3485 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3486 ExtEndRange)
Dan Gohmaned756312010-11-17 20:23:08 +00003487 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003488
Dan Gohmane65c9172009-07-13 21:35:55 +00003489 APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3490 EndRange.getUnsignedMin());
3491 APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3492 EndRange.getUnsignedMax());
3493 if (Min.isMinValue() && Max.isMaxValue())
Dan Gohmaned756312010-11-17 20:23:08 +00003494 return setUnsignedRange(AddRec, ConservativeResult);
3495 return setUnsignedRange(AddRec,
3496 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003497 }
3498 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00003499
Dan Gohmaned756312010-11-17 20:23:08 +00003500 return setUnsignedRange(AddRec, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003501 }
3502
3503 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3504 // For a SCEVUnknown, ask ValueTracking.
Dan Gohmanc702fc02009-06-19 23:29:04 +00003505 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003506 ComputeMaskedBits(U->getValue(), Zeros, Ones, DL);
Dan Gohman1a7ab942009-07-20 22:34:18 +00003507 if (Ones == ~Zeros + 1)
Dan Gohmaned756312010-11-17 20:23:08 +00003508 return setUnsignedRange(U, ConservativeResult);
3509 return setUnsignedRange(U,
3510 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003511 }
3512
Dan Gohmaned756312010-11-17 20:23:08 +00003513 return setUnsignedRange(S, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003514}
3515
Dan Gohmane65c9172009-07-13 21:35:55 +00003516/// getSignedRange - Determine the signed range for a particular SCEV.
3517///
3518ConstantRange
3519ScalarEvolution::getSignedRange(const SCEV *S) {
Dan Gohman3ac8cd62011-01-24 17:54:18 +00003520 // See if we've computed this range already.
Dan Gohman761065e2010-11-17 02:44:44 +00003521 DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3522 if (I != SignedRanges.end())
3523 return I->second;
Dan Gohmanc702fc02009-06-19 23:29:04 +00003524
Dan Gohmane65c9172009-07-13 21:35:55 +00003525 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Dan Gohmaned756312010-11-17 20:23:08 +00003526 return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
Dan Gohmane65c9172009-07-13 21:35:55 +00003527
Dan Gohman51aaf022010-01-26 04:40:18 +00003528 unsigned BitWidth = getTypeSizeInBits(S->getType());
3529 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3530
3531 // If the value has known zeros, the maximum signed value will have those
3532 // known zeros as well.
3533 uint32_t TZ = GetMinTrailingZeros(S);
3534 if (TZ != 0)
3535 ConservativeResult =
3536 ConstantRange(APInt::getSignedMinValue(BitWidth),
3537 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3538
Dan Gohmane65c9172009-07-13 21:35:55 +00003539 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3540 ConstantRange X = getSignedRange(Add->getOperand(0));
3541 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3542 X = X.add(getSignedRange(Add->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003543 return setSignedRange(Add, ConservativeResult.intersectWith(X));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003544 }
3545
Dan Gohmane65c9172009-07-13 21:35:55 +00003546 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3547 ConstantRange X = getSignedRange(Mul->getOperand(0));
3548 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3549 X = X.multiply(getSignedRange(Mul->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003550 return setSignedRange(Mul, ConservativeResult.intersectWith(X));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003551 }
3552
Dan Gohmane65c9172009-07-13 21:35:55 +00003553 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3554 ConstantRange X = getSignedRange(SMax->getOperand(0));
3555 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3556 X = X.smax(getSignedRange(SMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003557 return setSignedRange(SMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003558 }
Dan Gohmand261d272009-06-24 01:05:09 +00003559
Dan Gohmane65c9172009-07-13 21:35:55 +00003560 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3561 ConstantRange X = getSignedRange(UMax->getOperand(0));
3562 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3563 X = X.umax(getSignedRange(UMax->getOperand(i)));
Dan Gohmaned756312010-11-17 20:23:08 +00003564 return setSignedRange(UMax, ConservativeResult.intersectWith(X));
Dan Gohmane65c9172009-07-13 21:35:55 +00003565 }
Dan Gohmand261d272009-06-24 01:05:09 +00003566
Dan Gohmane65c9172009-07-13 21:35:55 +00003567 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3568 ConstantRange X = getSignedRange(UDiv->getLHS());
3569 ConstantRange Y = getSignedRange(UDiv->getRHS());
Dan Gohmaned756312010-11-17 20:23:08 +00003570 return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003571 }
Dan Gohmand261d272009-06-24 01:05:09 +00003572
Dan Gohmane65c9172009-07-13 21:35:55 +00003573 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3574 ConstantRange X = getSignedRange(ZExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003575 return setSignedRange(ZExt,
3576 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003577 }
3578
3579 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3580 ConstantRange X = getSignedRange(SExt->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003581 return setSignedRange(SExt,
3582 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003583 }
3584
3585 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3586 ConstantRange X = getSignedRange(Trunc->getOperand());
Dan Gohmaned756312010-11-17 20:23:08 +00003587 return setSignedRange(Trunc,
3588 ConservativeResult.intersectWith(X.truncate(BitWidth)));
Dan Gohmane65c9172009-07-13 21:35:55 +00003589 }
3590
Dan Gohmane65c9172009-07-13 21:35:55 +00003591 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003592 // If there's no signed wrap, and all the operands have the same sign or
3593 // zero, the value won't ever change sign.
Andrew Trick8b55b732011-03-14 16:50:06 +00003594 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
Dan Gohman51ad99d2010-01-21 02:09:26 +00003595 bool AllNonNeg = true;
3596 bool AllNonPos = true;
3597 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3598 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3599 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3600 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00003601 if (AllNonNeg)
Dan Gohman51aaf022010-01-26 04:40:18 +00003602 ConservativeResult = ConservativeResult.intersectWith(
3603 ConstantRange(APInt(BitWidth, 0),
3604 APInt::getSignedMinValue(BitWidth)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00003605 else if (AllNonPos)
Dan Gohman51aaf022010-01-26 04:40:18 +00003606 ConservativeResult = ConservativeResult.intersectWith(
3607 ConstantRange(APInt::getSignedMinValue(BitWidth),
3608 APInt(BitWidth, 1)));
Dan Gohman51ad99d2010-01-21 02:09:26 +00003609 }
Dan Gohmane65c9172009-07-13 21:35:55 +00003610
3611 // TODO: non-affine addrec
Dan Gohman85be4332010-01-26 19:19:05 +00003612 if (AddRec->isAffine()) {
Chris Lattner229907c2011-07-18 04:54:35 +00003613 Type *Ty = AddRec->getType();
Dan Gohmane65c9172009-07-13 21:35:55 +00003614 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
Dan Gohman85be4332010-01-26 19:19:05 +00003615 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3616 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
Dan Gohmane65c9172009-07-13 21:35:55 +00003617 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3618
3619 const SCEV *Start = AddRec->getStart();
Dan Gohmanf76210e2010-04-12 07:39:33 +00003620 const SCEV *Step = AddRec->getStepRecurrence(*this);
Dan Gohmane65c9172009-07-13 21:35:55 +00003621
3622 ConstantRange StartRange = getSignedRange(Start);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003623 ConstantRange StepRange = getSignedRange(Step);
3624 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3625 ConstantRange EndRange =
3626 StartRange.add(MaxBECountRange.multiply(StepRange));
3627
3628 // Check for overflow. This must be done with ConstantRange arithmetic
3629 // because we could be called from within the ScalarEvolution overflow
3630 // checking code.
3631 ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3632 ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3633 ConstantRange ExtMaxBECountRange =
3634 MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3635 ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3636 if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3637 ExtEndRange)
Dan Gohmaned756312010-11-17 20:23:08 +00003638 return setSignedRange(AddRec, ConservativeResult);
Dan Gohmanf76210e2010-04-12 07:39:33 +00003639
Dan Gohmane65c9172009-07-13 21:35:55 +00003640 APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3641 EndRange.getSignedMin());
3642 APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3643 EndRange.getSignedMax());
3644 if (Min.isMinSignedValue() && Max.isMaxSignedValue())
Dan Gohmaned756312010-11-17 20:23:08 +00003645 return setSignedRange(AddRec, ConservativeResult);
3646 return setSignedRange(AddRec,
3647 ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
Dan Gohmand261d272009-06-24 01:05:09 +00003648 }
Dan Gohmand261d272009-06-24 01:05:09 +00003649 }
Dan Gohman51ad99d2010-01-21 02:09:26 +00003650
Dan Gohmaned756312010-11-17 20:23:08 +00003651 return setSignedRange(AddRec, ConservativeResult);
Dan Gohmand261d272009-06-24 01:05:09 +00003652 }
3653
Dan Gohmanc702fc02009-06-19 23:29:04 +00003654 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3655 // For a SCEVUnknown, ask ValueTracking.
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003656 if (!U->getValue()->getType()->isIntegerTy() && !DL)
Dan Gohmaned756312010-11-17 20:23:08 +00003657 return setSignedRange(U, ConservativeResult);
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003658 unsigned NS = ComputeNumSignBits(U->getValue(), DL);
Hal Finkelff666bd2013-07-09 18:16:16 +00003659 if (NS <= 1)
Dan Gohmaned756312010-11-17 20:23:08 +00003660 return setSignedRange(U, ConservativeResult);
3661 return setSignedRange(U, ConservativeResult.intersectWith(
Dan Gohmane65c9172009-07-13 21:35:55 +00003662 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
Dan Gohmaned756312010-11-17 20:23:08 +00003663 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
Dan Gohmanc702fc02009-06-19 23:29:04 +00003664 }
3665
Dan Gohmaned756312010-11-17 20:23:08 +00003666 return setSignedRange(S, ConservativeResult);
Dan Gohmanc702fc02009-06-19 23:29:04 +00003667}
3668
Chris Lattnerd934c702004-04-02 20:23:17 +00003669/// createSCEV - We know that there is no SCEV for the specified value.
3670/// Analyze the expression.
3671///
Dan Gohmanaf752342009-07-07 17:06:11 +00003672const SCEV *ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003673 if (!isSCEVable(V->getType()))
Dan Gohmanc8e23622009-04-21 23:15:49 +00003674 return getUnknown(V);
Dan Gohman0a40ad92009-04-16 03:18:22 +00003675
Dan Gohman05e89732008-06-22 19:56:46 +00003676 unsigned Opcode = Instruction::UserOp1;
Dan Gohman69451a02010-03-09 23:46:50 +00003677 if (Instruction *I = dyn_cast<Instruction>(V)) {
Dan Gohman05e89732008-06-22 19:56:46 +00003678 Opcode = I->getOpcode();
Dan Gohman69451a02010-03-09 23:46:50 +00003679
3680 // Don't attempt to analyze instructions in blocks that aren't
3681 // reachable. Such instructions don't matter, and they aren't required
3682 // to obey basic rules for definitions dominating uses which this
3683 // analysis depends on.
3684 if (!DT->isReachableFromEntry(I->getParent()))
3685 return getUnknown(V);
3686 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Dan Gohman05e89732008-06-22 19:56:46 +00003687 Opcode = CE->getOpcode();
Dan Gohmanf436bac2009-06-24 00:54:57 +00003688 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3689 return getConstant(CI);
3690 else if (isa<ConstantPointerNull>(V))
Dan Gohman1d2ded72010-05-03 22:09:21 +00003691 return getConstant(V->getType(), 0);
Dan Gohmanf161e06e2009-08-25 17:49:57 +00003692 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3693 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
Dan Gohman05e89732008-06-22 19:56:46 +00003694 else
Dan Gohmanc8e23622009-04-21 23:15:49 +00003695 return getUnknown(V);
Chris Lattnera3e0bb42007-04-02 05:41:38 +00003696
Dan Gohman80ca01c2009-07-17 20:47:02 +00003697 Operator *U = cast<Operator>(V);
Dan Gohman05e89732008-06-22 19:56:46 +00003698 switch (Opcode) {
Dan Gohmane5fb1032010-08-16 16:03:49 +00003699 case Instruction::Add: {
3700 // The simple thing to do would be to just call getSCEV on both operands
3701 // and call getAddExpr with the result. However if we're looking at a
3702 // bunch of things all added together, this can be quite inefficient,
3703 // because it leads to N-1 getAddExpr calls for N ultimate operands.
3704 // Instead, gather up all the operands and make a single getAddExpr call.
3705 // LLVM IR canonical form means we need only traverse the left operands.
Andrew Trickd25089f2011-11-29 02:16:38 +00003706 //
3707 // Don't apply this instruction's NSW or NUW flags to the new
3708 // expression. The instruction may be guarded by control flow that the
3709 // no-wrap behavior depends on. Non-control-equivalent instructions can be
3710 // mapped to the same SCEV expression, and it would be incorrect to transfer
3711 // NSW/NUW semantics to those operations.
Dan Gohmane5fb1032010-08-16 16:03:49 +00003712 SmallVector<const SCEV *, 4> AddOps;
3713 AddOps.push_back(getSCEV(U->getOperand(1)));
Dan Gohman47308d52010-08-31 22:53:17 +00003714 for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3715 unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3716 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3717 break;
Dan Gohmane5fb1032010-08-16 16:03:49 +00003718 U = cast<Operator>(Op);
Dan Gohman47308d52010-08-31 22:53:17 +00003719 const SCEV *Op1 = getSCEV(U->getOperand(1));
3720 if (Opcode == Instruction::Sub)
3721 AddOps.push_back(getNegativeSCEV(Op1));
3722 else
3723 AddOps.push_back(Op1);
Dan Gohmane5fb1032010-08-16 16:03:49 +00003724 }
3725 AddOps.push_back(getSCEV(U->getOperand(0)));
Andrew Trickd25089f2011-11-29 02:16:38 +00003726 return getAddExpr(AddOps);
Dan Gohmane5fb1032010-08-16 16:03:49 +00003727 }
3728 case Instruction::Mul: {
Andrew Trickd25089f2011-11-29 02:16:38 +00003729 // Don't transfer NSW/NUW for the same reason as AddExpr.
Dan Gohmane5fb1032010-08-16 16:03:49 +00003730 SmallVector<const SCEV *, 4> MulOps;
3731 MulOps.push_back(getSCEV(U->getOperand(1)));
3732 for (Value *Op = U->getOperand(0);
Andrew Trick2a3b7162011-03-09 17:23:39 +00003733 Op->getValueID() == Instruction::Mul + Value::InstructionVal;
Dan Gohmane5fb1032010-08-16 16:03:49 +00003734 Op = U->getOperand(0)) {
3735 U = cast<Operator>(Op);
3736 MulOps.push_back(getSCEV(U->getOperand(1)));
3737 }
3738 MulOps.push_back(getSCEV(U->getOperand(0)));
3739 return getMulExpr(MulOps);
3740 }
Dan Gohman05e89732008-06-22 19:56:46 +00003741 case Instruction::UDiv:
Dan Gohmanc8e23622009-04-21 23:15:49 +00003742 return getUDivExpr(getSCEV(U->getOperand(0)),
3743 getSCEV(U->getOperand(1)));
Dan Gohman05e89732008-06-22 19:56:46 +00003744 case Instruction::Sub:
Dan Gohmanc8e23622009-04-21 23:15:49 +00003745 return getMinusSCEV(getSCEV(U->getOperand(0)),
3746 getSCEV(U->getOperand(1)));
Dan Gohman0ec05372009-04-21 02:26:00 +00003747 case Instruction::And:
3748 // For an expression like x&255 that merely masks off the high bits,
3749 // use zext(trunc(x)) as the SCEV expression.
3750 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmandf199482009-04-25 17:05:40 +00003751 if (CI->isNullValue())
3752 return getSCEV(U->getOperand(1));
Dan Gohman05c1d372009-04-27 01:41:10 +00003753 if (CI->isAllOnesValue())
3754 return getSCEV(U->getOperand(0));
Dan Gohman0ec05372009-04-21 02:26:00 +00003755 const APInt &A = CI->getValue();
Dan Gohman1ee696d2009-06-16 19:52:01 +00003756
3757 // Instcombine's ShrinkDemandedConstant may strip bits out of
3758 // constants, obscuring what would otherwise be a low-bits mask.
3759 // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3760 // knew about to reconstruct a low-bits mask value.
3761 unsigned LZ = A.countLeadingZeros();
Nick Lewycky31eaca52014-01-27 10:04:03 +00003762 unsigned TZ = A.countTrailingZeros();
Dan Gohman1ee696d2009-06-16 19:52:01 +00003763 unsigned BitWidth = A.getBitWidth();
Dan Gohman1ee696d2009-06-16 19:52:01 +00003764 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
Rafael Espindola7c68beb2014-02-18 15:33:12 +00003765 ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, DL);
Dan Gohman1ee696d2009-06-16 19:52:01 +00003766
Nick Lewycky31eaca52014-01-27 10:04:03 +00003767 APInt EffectiveMask =
3768 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
3769 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
3770 const SCEV *MulCount = getConstant(
3771 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ)));
3772 return getMulExpr(
3773 getZeroExtendExpr(
3774 getTruncateExpr(
3775 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount),
3776 IntegerType::get(getContext(), BitWidth - LZ - TZ)),
3777 U->getType()),
3778 MulCount);
3779 }
Dan Gohman0ec05372009-04-21 02:26:00 +00003780 }
3781 break;
Dan Gohman1ee696d2009-06-16 19:52:01 +00003782
Dan Gohman05e89732008-06-22 19:56:46 +00003783 case Instruction::Or:
3784 // If the RHS of the Or is a constant, we may have something like:
3785 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
3786 // optimizations will transparently handle this case.
3787 //
3788 // In order for this transformation to be safe, the LHS must be of the
3789 // form X*(2^n) and the Or constant must be less than 2^n.
3790 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmanaf752342009-07-07 17:06:11 +00003791 const SCEV *LHS = getSCEV(U->getOperand(0));
Dan Gohman05e89732008-06-22 19:56:46 +00003792 const APInt &CIVal = CI->getValue();
Dan Gohmanc702fc02009-06-19 23:29:04 +00003793 if (GetMinTrailingZeros(LHS) >=
Dan Gohman36bad002009-09-17 18:05:20 +00003794 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3795 // Build a plain add SCEV.
3796 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3797 // If the LHS of the add was an addrec and it has no-wrap flags,
3798 // transfer the no-wrap flags, since an or won't introduce a wrap.
3799 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3800 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
Andrew Trick8b55b732011-03-14 16:50:06 +00003801 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
3802 OldAR->getNoWrapFlags());
Dan Gohman36bad002009-09-17 18:05:20 +00003803 }
3804 return S;
3805 }
Chris Lattnerd934c702004-04-02 20:23:17 +00003806 }
Dan Gohman05e89732008-06-22 19:56:46 +00003807 break;
3808 case Instruction::Xor:
Dan Gohman05e89732008-06-22 19:56:46 +00003809 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00003810 // If the RHS of the xor is a signbit, then this is just an add.
3811 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman05e89732008-06-22 19:56:46 +00003812 if (CI->getValue().isSignBit())
Dan Gohmanc8e23622009-04-21 23:15:49 +00003813 return getAddExpr(getSCEV(U->getOperand(0)),
3814 getSCEV(U->getOperand(1)));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00003815
3816 // If the RHS of xor is -1, then this is a not operation.
Dan Gohmand277a1e2009-05-18 16:17:44 +00003817 if (CI->isAllOnesValue())
Dan Gohmanc8e23622009-04-21 23:15:49 +00003818 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman6350296e2009-05-18 16:29:04 +00003819
3820 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3821 // This is a variant of the check for xor with -1, and it handles
3822 // the case where instcombine has trimmed non-demanded bits out
3823 // of an xor with -1.
3824 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3825 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3826 if (BO->getOpcode() == Instruction::And &&
3827 LCI->getValue() == CI->getValue())
3828 if (const SCEVZeroExtendExpr *Z =
Dan Gohmanb50f5a42009-06-17 01:22:39 +00003829 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
Chris Lattner229907c2011-07-18 04:54:35 +00003830 Type *UTy = U->getType();
Dan Gohmanaf752342009-07-07 17:06:11 +00003831 const SCEV *Z0 = Z->getOperand();
Chris Lattner229907c2011-07-18 04:54:35 +00003832 Type *Z0Ty = Z0->getType();
Dan Gohmaneddf7712009-06-18 00:00:20 +00003833 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3834
Dan Gohman8b0a4192010-03-01 17:49:51 +00003835 // If C is a low-bits mask, the zero extend is serving to
Dan Gohmaneddf7712009-06-18 00:00:20 +00003836 // mask off the high bits. Complement the operand and
3837 // re-apply the zext.
3838 if (APIntOps::isMask(Z0TySize, CI->getValue()))
3839 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3840
3841 // If C is a single bit, it may be in the sign-bit position
3842 // before the zero-extend. In this case, represent the xor
3843 // using an add, which is equivalent, and re-apply the zext.
Jay Foad583abbc2010-12-07 08:25:19 +00003844 APInt Trunc = CI->getValue().trunc(Z0TySize);
3845 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
Dan Gohmaneddf7712009-06-18 00:00:20 +00003846 Trunc.isSignBit())
3847 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3848 UTy);
Dan Gohmanb50f5a42009-06-17 01:22:39 +00003849 }
Dan Gohman05e89732008-06-22 19:56:46 +00003850 }
3851 break;
3852
3853 case Instruction::Shl:
3854 // Turn shift left of a constant amount into a multiply.
3855 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003856 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00003857
3858 // If the shift count is not less than the bitwidth, the result of
3859 // the shift is undefined. Don't try to analyze it, because the
3860 // resolution chosen here may differ from the resolution chosen in
3861 // other parts of the compiler.
3862 if (SA->getValue().uge(BitWidth))
3863 break;
3864
Owen Andersonedb4a702009-07-24 23:12:02 +00003865 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00003866 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanc8e23622009-04-21 23:15:49 +00003867 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman05e89732008-06-22 19:56:46 +00003868 }
3869 break;
3870
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00003871 case Instruction::LShr:
Nick Lewycky52348302009-01-13 09:18:58 +00003872 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00003873 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003874 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
Dan Gohmanacd700a2010-04-22 01:35:11 +00003875
3876 // If the shift count is not less than the bitwidth, the result of
3877 // the shift is undefined. Don't try to analyze it, because the
3878 // resolution chosen here may differ from the resolution chosen in
3879 // other parts of the compiler.
3880 if (SA->getValue().uge(BitWidth))
3881 break;
3882
Owen Andersonedb4a702009-07-24 23:12:02 +00003883 Constant *X = ConstantInt::get(getContext(),
Benjamin Kramerfc3ea6f2013-07-11 16:05:50 +00003884 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
Dan Gohmanc8e23622009-04-21 23:15:49 +00003885 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewyckyf5c547d2008-07-07 06:15:49 +00003886 }
3887 break;
3888
Dan Gohman0ec05372009-04-21 02:26:00 +00003889 case Instruction::AShr:
3890 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3891 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
Dan Gohmanacd700a2010-04-22 01:35:11 +00003892 if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
Dan Gohman0ec05372009-04-21 02:26:00 +00003893 if (L->getOpcode() == Instruction::Shl &&
3894 L->getOperand(1) == U->getOperand(1)) {
Dan Gohmanacd700a2010-04-22 01:35:11 +00003895 uint64_t BitWidth = getTypeSizeInBits(U->getType());
3896
3897 // If the shift count is not less than the bitwidth, the result of
3898 // the shift is undefined. Don't try to analyze it, because the
3899 // resolution chosen here may differ from the resolution chosen in
3900 // other parts of the compiler.
3901 if (CI->getValue().uge(BitWidth))
3902 break;
3903
Dan Gohmandf199482009-04-25 17:05:40 +00003904 uint64_t Amt = BitWidth - CI->getZExtValue();
3905 if (Amt == BitWidth)
3906 return getSCEV(L->getOperand(0)); // shift by zero --> noop
Dan Gohman0ec05372009-04-21 02:26:00 +00003907 return
Dan Gohmanc8e23622009-04-21 23:15:49 +00003908 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohmanacd700a2010-04-22 01:35:11 +00003909 IntegerType::get(getContext(),
3910 Amt)),
3911 U->getType());
Dan Gohman0ec05372009-04-21 02:26:00 +00003912 }
3913 break;
3914
Dan Gohman05e89732008-06-22 19:56:46 +00003915 case Instruction::Trunc:
Dan Gohmanc8e23622009-04-21 23:15:49 +00003916 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00003917
3918 case Instruction::ZExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00003919 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00003920
3921 case Instruction::SExt:
Dan Gohmanc8e23622009-04-21 23:15:49 +00003922 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman05e89732008-06-22 19:56:46 +00003923
3924 case Instruction::BitCast:
3925 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00003926 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman05e89732008-06-22 19:56:46 +00003927 return getSCEV(U->getOperand(0));
3928 break;
3929
Dan Gohmane5e1b7b2010-02-01 18:27:38 +00003930 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3931 // lead to pointer expressions which cannot safely be expanded to GEPs,
3932 // because ScalarEvolution doesn't respect the GEP aliasing rules when
3933 // simplifying integer expressions.
Dan Gohman0a40ad92009-04-16 03:18:22 +00003934
Dan Gohmanee750d12009-05-08 20:26:55 +00003935 case Instruction::GetElementPtr:
Dan Gohmanb256ccf2009-12-18 02:09:29 +00003936 return createNodeForGEP(cast<GEPOperator>(U));
Dan Gohman0a40ad92009-04-16 03:18:22 +00003937
Dan Gohman05e89732008-06-22 19:56:46 +00003938 case Instruction::PHI:
3939 return createNodeForPHI(cast<PHINode>(U));
3940
3941 case Instruction::Select:
3942 // This could be a smax or umax that was lowered earlier.
3943 // Try to recover it.
3944 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3945 Value *LHS = ICI->getOperand(0);
3946 Value *RHS = ICI->getOperand(1);
3947 switch (ICI->getPredicate()) {
3948 case ICmpInst::ICMP_SLT:
3949 case ICmpInst::ICMP_SLE:
3950 std::swap(LHS, RHS);
3951 // fall through
3952 case ICmpInst::ICMP_SGT:
3953 case ICmpInst::ICMP_SGE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00003954 // a >s b ? a+x : b+x -> smax(a, b)+x
3955 // a >s b ? b+x : a+x -> smin(a, b)+x
3956 if (LHS->getType() == U->getType()) {
3957 const SCEV *LS = getSCEV(LHS);
3958 const SCEV *RS = getSCEV(RHS);
3959 const SCEV *LA = getSCEV(U->getOperand(1));
3960 const SCEV *RA = getSCEV(U->getOperand(2));
3961 const SCEV *LDiff = getMinusSCEV(LA, LS);
3962 const SCEV *RDiff = getMinusSCEV(RA, RS);
3963 if (LDiff == RDiff)
3964 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3965 LDiff = getMinusSCEV(LA, RS);
3966 RDiff = getMinusSCEV(RA, LS);
3967 if (LDiff == RDiff)
3968 return getAddExpr(getSMinExpr(LS, RS), LDiff);
3969 }
Dan Gohman05e89732008-06-22 19:56:46 +00003970 break;
3971 case ICmpInst::ICMP_ULT:
3972 case ICmpInst::ICMP_ULE:
3973 std::swap(LHS, RHS);
3974 // fall through
3975 case ICmpInst::ICMP_UGT:
3976 case ICmpInst::ICMP_UGE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00003977 // a >u b ? a+x : b+x -> umax(a, b)+x
3978 // a >u b ? b+x : a+x -> umin(a, b)+x
3979 if (LHS->getType() == U->getType()) {
3980 const SCEV *LS = getSCEV(LHS);
3981 const SCEV *RS = getSCEV(RHS);
3982 const SCEV *LA = getSCEV(U->getOperand(1));
3983 const SCEV *RA = getSCEV(U->getOperand(2));
3984 const SCEV *LDiff = getMinusSCEV(LA, LS);
3985 const SCEV *RDiff = getMinusSCEV(RA, RS);
3986 if (LDiff == RDiff)
3987 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3988 LDiff = getMinusSCEV(LA, RS);
3989 RDiff = getMinusSCEV(RA, LS);
3990 if (LDiff == RDiff)
3991 return getAddExpr(getUMinExpr(LS, RS), LDiff);
3992 }
Dan Gohman05e89732008-06-22 19:56:46 +00003993 break;
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00003994 case ICmpInst::ICMP_NE:
Dan Gohmanf33bac32010-04-24 03:09:42 +00003995 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
3996 if (LHS->getType() == U->getType() &&
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00003997 isa<ConstantInt>(RHS) &&
Dan Gohmanf33bac32010-04-24 03:09:42 +00003998 cast<ConstantInt>(RHS)->isZero()) {
3999 const SCEV *One = getConstant(LHS->getType(), 1);
4000 const SCEV *LS = getSCEV(LHS);
4001 const SCEV *LA = getSCEV(U->getOperand(1));
4002 const SCEV *RA = getSCEV(U->getOperand(2));
4003 const SCEV *LDiff = getMinusSCEV(LA, LS);
4004 const SCEV *RDiff = getMinusSCEV(RA, One);
4005 if (LDiff == RDiff)
Dan Gohmancf32f2b2010-08-13 20:17:14 +00004006 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohmanf33bac32010-04-24 03:09:42 +00004007 }
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004008 break;
4009 case ICmpInst::ICMP_EQ:
Dan Gohmanf33bac32010-04-24 03:09:42 +00004010 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
4011 if (LHS->getType() == U->getType() &&
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004012 isa<ConstantInt>(RHS) &&
Dan Gohmanf33bac32010-04-24 03:09:42 +00004013 cast<ConstantInt>(RHS)->isZero()) {
4014 const SCEV *One = getConstant(LHS->getType(), 1);
4015 const SCEV *LS = getSCEV(LHS);
4016 const SCEV *LA = getSCEV(U->getOperand(1));
4017 const SCEV *RA = getSCEV(U->getOperand(2));
4018 const SCEV *LDiff = getMinusSCEV(LA, One);
4019 const SCEV *RDiff = getMinusSCEV(RA, LS);
4020 if (LDiff == RDiff)
Dan Gohmancf32f2b2010-08-13 20:17:14 +00004021 return getAddExpr(getUMaxExpr(One, LS), LDiff);
Dan Gohmanf33bac32010-04-24 03:09:42 +00004022 }
Dan Gohman4d3c3cf2009-06-18 20:21:07 +00004023 break;
Dan Gohman05e89732008-06-22 19:56:46 +00004024 default:
4025 break;
4026 }
4027 }
4028
4029 default: // We cannot analyze this expression.
4030 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00004031 }
4032
Dan Gohmanc8e23622009-04-21 23:15:49 +00004033 return getUnknown(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00004034}
4035
4036
4037
4038//===----------------------------------------------------------------------===//
4039// Iteration Count Computation Code
4040//
4041
Andrew Trick2b6860f2011-08-11 23:36:16 +00004042/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
Andrew Tricke81211f2012-01-11 06:52:55 +00004043/// normal unsigned value. Returns 0 if the trip count is unknown or not
4044/// constant. Will also return 0 if the maximum trip count is very large (>=
4045/// 2^32).
4046///
4047/// This "trip count" assumes that control exits via ExitingBlock. More
4048/// precisely, it is the number of times that control may reach ExitingBlock
4049/// before taking the branch. For loops with multiple exits, it may not be the
4050/// number times that the loop header executes because the loop may exit
4051/// prematurely via another branch.
Andrew Trickee9143a2013-05-31 23:34:46 +00004052///
4053/// FIXME: We conservatively call getBackedgeTakenCount(L) instead of
4054/// getExitCount(L, ExitingBlock) to compute a safe trip count considering all
4055/// loop exits. getExitCount() may return an exact count for this branch
4056/// assuming no-signed-wrap. The number of well-defined iterations may actually
4057/// be higher than this trip count if this exit test is skipped and the loop
4058/// exits via a different branch. Ideally, getExitCount() would know whether it
4059/// depends on a NSW assumption, and we would only fall back to a conservative
4060/// trip count in that case.
Andrew Tricke81211f2012-01-11 06:52:55 +00004061unsigned ScalarEvolution::
Aaron Ballmand07f5512013-06-04 01:01:56 +00004062getSmallConstantTripCount(Loop *L, BasicBlock * /*ExitingBlock*/) {
Andrew Trick2b6860f2011-08-11 23:36:16 +00004063 const SCEVConstant *ExitCount =
Andrew Trickee9143a2013-05-31 23:34:46 +00004064 dyn_cast<SCEVConstant>(getBackedgeTakenCount(L));
Andrew Trick2b6860f2011-08-11 23:36:16 +00004065 if (!ExitCount)
4066 return 0;
4067
4068 ConstantInt *ExitConst = ExitCount->getValue();
4069
4070 // Guard against huge trip counts.
4071 if (ExitConst->getValue().getActiveBits() > 32)
4072 return 0;
4073
4074 // In case of integer overflow, this returns 0, which is correct.
4075 return ((unsigned)ExitConst->getZExtValue()) + 1;
4076}
4077
4078/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
4079/// trip count of this loop as a normal unsigned value, if possible. This
4080/// means that the actual trip count is always a multiple of the returned
4081/// value (don't forget the trip count could very well be zero as well!).
4082///
4083/// Returns 1 if the trip count is unknown or not guaranteed to be the
4084/// multiple of a constant (which is also the case if the trip count is simply
4085/// constant, use getSmallConstantTripCount for that case), Will also return 1
4086/// if the trip count is very large (>= 2^32).
Andrew Tricke81211f2012-01-11 06:52:55 +00004087///
4088/// As explained in the comments for getSmallConstantTripCount, this assumes
4089/// that control exits the loop via ExitingBlock.
4090unsigned ScalarEvolution::
Aaron Ballmand07f5512013-06-04 01:01:56 +00004091getSmallConstantTripMultiple(Loop *L, BasicBlock * /*ExitingBlock*/) {
Andrew Trickee9143a2013-05-31 23:34:46 +00004092 const SCEV *ExitCount = getBackedgeTakenCount(L);
Andrew Trick2b6860f2011-08-11 23:36:16 +00004093 if (ExitCount == getCouldNotCompute())
4094 return 1;
4095
4096 // Get the trip count from the BE count by adding 1.
4097 const SCEV *TCMul = getAddExpr(ExitCount,
4098 getConstant(ExitCount->getType(), 1));
4099 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
4100 // to factor simple cases.
4101 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
4102 TCMul = Mul->getOperand(0);
4103
4104 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
4105 if (!MulC)
4106 return 1;
4107
4108 ConstantInt *Result = MulC->getValue();
4109
Hal Finkel30bd9342012-10-24 19:46:44 +00004110 // Guard against huge trip counts (this requires checking
4111 // for zero to handle the case where the trip count == -1 and the
4112 // addition wraps).
4113 if (!Result || Result->getValue().getActiveBits() > 32 ||
4114 Result->getValue().getActiveBits() == 0)
Andrew Trick2b6860f2011-08-11 23:36:16 +00004115 return 1;
4116
4117 return (unsigned)Result->getZExtValue();
4118}
4119
Andrew Trick3ca3f982011-07-26 17:19:55 +00004120// getExitCount - Get the expression for the number of loop iterations for which
Andrew Trickee9143a2013-05-31 23:34:46 +00004121// this loop is guaranteed not to exit via ExitingBlock. Otherwise return
Andrew Trick3ca3f982011-07-26 17:19:55 +00004122// SCEVCouldNotCompute.
Andrew Trick77c55422011-08-02 04:23:35 +00004123const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
4124 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004125}
4126
Dan Gohman0bddac12009-02-24 18:55:53 +00004127/// getBackedgeTakenCount - If the specified loop has a predictable
4128/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
4129/// object. The backedge-taken count is the number of times the loop header
4130/// will be branched to from within the loop. This is one less than the
4131/// trip count of the loop, since it doesn't count the first iteration,
4132/// when the header is branched to from outside the loop.
4133///
4134/// Note that it is not valid to call this method on a loop without a
4135/// loop-invariant backedge-taken count (see
4136/// hasLoopInvariantBackedgeTakenCount).
4137///
Dan Gohmanaf752342009-07-07 17:06:11 +00004138const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004139 return getBackedgeTakenInfo(L).getExact(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004140}
4141
4142/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4143/// return the least SCEV value that is known never to be less than the
4144/// actual backedge taken count.
Dan Gohmanaf752342009-07-07 17:06:11 +00004145const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004146 return getBackedgeTakenInfo(L).getMax(this);
Dan Gohman2b8da352009-04-30 20:47:05 +00004147}
4148
Dan Gohmandc191042009-07-08 19:23:34 +00004149/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4150/// onto the given Worklist.
4151static void
4152PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4153 BasicBlock *Header = L->getHeader();
4154
4155 // Push all Loop-header PHIs onto the Worklist stack.
4156 for (BasicBlock::iterator I = Header->begin();
4157 PHINode *PN = dyn_cast<PHINode>(I); ++I)
4158 Worklist.push_back(PN);
4159}
4160
Dan Gohman2b8da352009-04-30 20:47:05 +00004161const ScalarEvolution::BackedgeTakenInfo &
4162ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004163 // Initially insert an invalid entry for this loop. If the insertion
Dan Gohman8b0a4192010-03-01 17:49:51 +00004164 // succeeds, proceed to actually compute a backedge-taken count and
Dan Gohman76466372009-04-27 20:16:15 +00004165 // update the value. The temporary CouldNotCompute value tells SCEV
4166 // code elsewhere that it shouldn't attempt to request a new
4167 // backedge-taken count, which could result in infinite recursion.
Dan Gohman0daf6872011-05-09 18:44:09 +00004168 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
Andrew Trick3ca3f982011-07-26 17:19:55 +00004169 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004170 if (!Pair.second)
4171 return Pair.first->second;
Dan Gohman76466372009-04-27 20:16:15 +00004172
Andrew Trick3ca3f982011-07-26 17:19:55 +00004173 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4174 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4175 // must be cleared in this scope.
4176 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4177
4178 if (Result.getExact(this) != getCouldNotCompute()) {
4179 assert(isLoopInvariant(Result.getExact(this), L) &&
4180 isLoopInvariant(Result.getMax(this), L) &&
Chris Lattnera337f5e2011-01-09 02:16:18 +00004181 "Computed backedge-taken count isn't loop invariant for loop!");
4182 ++NumTripCountsComputed;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004183 }
4184 else if (Result.getMax(this) == getCouldNotCompute() &&
4185 isa<PHINode>(L->getHeader()->begin())) {
4186 // Only count loops that have phi nodes as not being computable.
4187 ++NumTripCountsNotComputed;
Chris Lattnera337f5e2011-01-09 02:16:18 +00004188 }
Dan Gohman2b8da352009-04-30 20:47:05 +00004189
Chris Lattnera337f5e2011-01-09 02:16:18 +00004190 // Now that we know more about the trip count for this loop, forget any
4191 // existing SCEV values for PHI nodes in this loop since they are only
4192 // conservative estimates made without the benefit of trip count
4193 // information. This is similar to the code in forgetLoop, except that
4194 // it handles SCEVUnknown PHI nodes specially.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004195 if (Result.hasAnyInfo()) {
Chris Lattnera337f5e2011-01-09 02:16:18 +00004196 SmallVector<Instruction *, 16> Worklist;
4197 PushLoopPHIs(L, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004198
Chris Lattnera337f5e2011-01-09 02:16:18 +00004199 SmallPtrSet<Instruction *, 8> Visited;
4200 while (!Worklist.empty()) {
4201 Instruction *I = Worklist.pop_back_val();
4202 if (!Visited.insert(I)) continue;
Dan Gohmandc191042009-07-08 19:23:34 +00004203
Chris Lattnera337f5e2011-01-09 02:16:18 +00004204 ValueExprMapType::iterator It =
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004205 ValueExprMap.find_as(static_cast<Value *>(I));
Chris Lattnera337f5e2011-01-09 02:16:18 +00004206 if (It != ValueExprMap.end()) {
4207 const SCEV *Old = It->second;
Dan Gohman761065e2010-11-17 02:44:44 +00004208
Chris Lattnera337f5e2011-01-09 02:16:18 +00004209 // SCEVUnknown for a PHI either means that it has an unrecognized
4210 // structure, or it's a PHI that's in the progress of being computed
4211 // by createNodeForPHI. In the former case, additional loop trip
4212 // count information isn't going to change anything. In the later
4213 // case, createNodeForPHI will perform the necessary updates on its
4214 // own when it gets to that point.
4215 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4216 forgetMemoizedResults(Old);
4217 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00004218 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00004219 if (PHINode *PN = dyn_cast<PHINode>(I))
4220 ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohmandc191042009-07-08 19:23:34 +00004221 }
Chris Lattnera337f5e2011-01-09 02:16:18 +00004222
4223 PushDefUseChildren(I, Worklist);
Dan Gohmandc191042009-07-08 19:23:34 +00004224 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004225 }
Dan Gohman6acd95b2011-04-25 22:48:29 +00004226
4227 // Re-lookup the insert position, since the call to
4228 // ComputeBackedgeTakenCount above could result in a
4229 // recusive call to getBackedgeTakenInfo (on a different
4230 // loop), which would invalidate the iterator computed
4231 // earlier.
4232 return BackedgeTakenCounts.find(L)->second = Result;
Chris Lattnerd934c702004-04-02 20:23:17 +00004233}
4234
Dan Gohman880c92a2009-10-31 15:04:55 +00004235/// forgetLoop - This method should be called by the client when it has
4236/// changed a loop in a way that may effect ScalarEvolution's ability to
4237/// compute a trip count, or if the loop is deleted.
4238void ScalarEvolution::forgetLoop(const Loop *L) {
4239 // Drop any stored trip count value.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004240 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4241 BackedgeTakenCounts.find(L);
4242 if (BTCPos != BackedgeTakenCounts.end()) {
4243 BTCPos->second.clear();
4244 BackedgeTakenCounts.erase(BTCPos);
4245 }
Dan Gohmanf1505722009-05-02 17:43:35 +00004246
Dan Gohman880c92a2009-10-31 15:04:55 +00004247 // Drop information about expressions based on loop-header PHIs.
Dan Gohman48f82222009-05-04 22:30:44 +00004248 SmallVector<Instruction *, 16> Worklist;
Dan Gohmandc191042009-07-08 19:23:34 +00004249 PushLoopPHIs(L, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00004250
Dan Gohmandc191042009-07-08 19:23:34 +00004251 SmallPtrSet<Instruction *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00004252 while (!Worklist.empty()) {
4253 Instruction *I = Worklist.pop_back_val();
Dan Gohmandc191042009-07-08 19:23:34 +00004254 if (!Visited.insert(I)) continue;
4255
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004256 ValueExprMapType::iterator It =
4257 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004258 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00004259 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004260 ValueExprMap.erase(It);
Dan Gohmandc191042009-07-08 19:23:34 +00004261 if (PHINode *PN = dyn_cast<PHINode>(I))
4262 ConstantEvolutionLoopExitValue.erase(PN);
4263 }
4264
4265 PushDefUseChildren(I, Worklist);
Dan Gohman48f82222009-05-04 22:30:44 +00004266 }
Dan Gohmandcb354b2010-10-29 20:16:10 +00004267
4268 // Forget all contained loops too, to avoid dangling entries in the
4269 // ValuesAtScopes map.
4270 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4271 forgetLoop(*I);
Dan Gohman43300342009-02-17 20:49:49 +00004272}
4273
Eric Christopheref6d5932010-07-29 01:25:38 +00004274/// forgetValue - This method should be called by the client when it has
4275/// changed a value in a way that may effect its value, or which may
4276/// disconnect it from a def-use chain linking it to a loop.
4277void ScalarEvolution::forgetValue(Value *V) {
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004278 Instruction *I = dyn_cast<Instruction>(V);
4279 if (!I) return;
4280
4281 // Drop information about expressions based on loop-header PHIs.
4282 SmallVector<Instruction *, 16> Worklist;
4283 Worklist.push_back(I);
4284
4285 SmallPtrSet<Instruction *, 8> Visited;
4286 while (!Worklist.empty()) {
4287 I = Worklist.pop_back_val();
4288 if (!Visited.insert(I)) continue;
4289
Benjamin Kramere2ef47c2012-06-30 22:37:15 +00004290 ValueExprMapType::iterator It =
4291 ValueExprMap.find_as(static_cast<Value *>(I));
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004292 if (It != ValueExprMap.end()) {
Dan Gohman7e6b3932010-11-17 23:28:48 +00004293 forgetMemoizedResults(It->second);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00004294 ValueExprMap.erase(It);
Dale Johannesen1d6827a2010-02-19 07:14:22 +00004295 if (PHINode *PN = dyn_cast<PHINode>(I))
4296 ConstantEvolutionLoopExitValue.erase(PN);
4297 }
4298
4299 PushDefUseChildren(I, Worklist);
4300 }
4301}
4302
Andrew Trick3ca3f982011-07-26 17:19:55 +00004303/// getExact - Get the exact loop backedge taken count considering all loop
Andrew Trick90c7a102011-11-16 00:52:40 +00004304/// exits. A computable result can only be return for loops with a single exit.
4305/// Returning the minimum taken count among all exits is incorrect because one
4306/// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
4307/// the limit of each loop test is never skipped. This is a valid assumption as
4308/// long as the loop exits via that test. For precise results, it is the
4309/// caller's responsibility to specify the relevant loop exit using
4310/// getExact(ExitingBlock, SE).
Andrew Trick3ca3f982011-07-26 17:19:55 +00004311const SCEV *
4312ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4313 // If any exits were not computable, the loop is not computable.
4314 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4315
Andrew Trick90c7a102011-11-16 00:52:40 +00004316 // We need exactly one computable exit.
Andrew Trick77c55422011-08-02 04:23:35 +00004317 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00004318 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4319
4320 const SCEV *BECount = 0;
4321 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4322 ENT != 0; ENT = ENT->getNextExit()) {
4323
4324 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4325
4326 if (!BECount)
4327 BECount = ENT->ExactNotTaken;
Andrew Trick90c7a102011-11-16 00:52:40 +00004328 else if (BECount != ENT->ExactNotTaken)
4329 return SE->getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00004330 }
Andrew Trickbbb226a2011-09-02 21:20:46 +00004331 assert(BECount && "Invalid not taken count for loop exit");
Andrew Trick3ca3f982011-07-26 17:19:55 +00004332 return BECount;
4333}
4334
4335/// getExact - Get the exact not taken count for this loop exit.
4336const SCEV *
Andrew Trick77c55422011-08-02 04:23:35 +00004337ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
Andrew Trick3ca3f982011-07-26 17:19:55 +00004338 ScalarEvolution *SE) const {
4339 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4340 ENT != 0; ENT = ENT->getNextExit()) {
4341
Andrew Trick77c55422011-08-02 04:23:35 +00004342 if (ENT->ExitingBlock == ExitingBlock)
Andrew Trick3ca3f982011-07-26 17:19:55 +00004343 return ENT->ExactNotTaken;
4344 }
4345 return SE->getCouldNotCompute();
4346}
4347
4348/// getMax - Get the max backedge taken count for the loop.
4349const SCEV *
4350ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4351 return Max ? Max : SE->getCouldNotCompute();
4352}
4353
Andrew Trick9093e152013-03-26 03:14:53 +00004354bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
4355 ScalarEvolution *SE) const {
4356 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
4357 return true;
4358
4359 if (!ExitNotTaken.ExitingBlock)
4360 return false;
4361
4362 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4363 ENT != 0; ENT = ENT->getNextExit()) {
4364
4365 if (ENT->ExactNotTaken != SE->getCouldNotCompute()
4366 && SE->hasOperand(ENT->ExactNotTaken, S)) {
4367 return true;
4368 }
4369 }
4370 return false;
4371}
4372
Andrew Trick3ca3f982011-07-26 17:19:55 +00004373/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4374/// computable exit into a persistent ExitNotTakenInfo array.
4375ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4376 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4377 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4378
4379 if (!Complete)
4380 ExitNotTaken.setIncomplete();
4381
4382 unsigned NumExits = ExitCounts.size();
4383 if (NumExits == 0) return;
4384
Andrew Trick77c55422011-08-02 04:23:35 +00004385 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004386 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4387 if (NumExits == 1) return;
4388
4389 // Handle the rare case of multiple computable exits.
4390 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4391
4392 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4393 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4394 PrevENT->setNextExit(ENT);
Andrew Trick77c55422011-08-02 04:23:35 +00004395 ENT->ExitingBlock = ExitCounts[i].first;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004396 ENT->ExactNotTaken = ExitCounts[i].second;
4397 }
4398}
4399
4400/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4401void ScalarEvolution::BackedgeTakenInfo::clear() {
Andrew Trick77c55422011-08-02 04:23:35 +00004402 ExitNotTaken.ExitingBlock = 0;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004403 ExitNotTaken.ExactNotTaken = 0;
4404 delete[] ExitNotTaken.getNextExit();
4405}
4406
Dan Gohman0bddac12009-02-24 18:55:53 +00004407/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4408/// of the specified loop will execute.
Dan Gohman2b8da352009-04-30 20:47:05 +00004409ScalarEvolution::BackedgeTakenInfo
4410ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohmancb0efec2009-12-18 01:14:11 +00004411 SmallVector<BasicBlock *, 8> ExitingBlocks;
Dan Gohman96212b62009-06-22 00:31:57 +00004412 L->getExitingBlocks(ExitingBlocks);
Chris Lattnerd934c702004-04-02 20:23:17 +00004413
Dan Gohman96212b62009-06-22 00:31:57 +00004414 // Examine all exits and pick the most conservative values.
Dan Gohmanaf752342009-07-07 17:06:11 +00004415 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trick3ca3f982011-07-26 17:19:55 +00004416 bool CouldComputeBECount = true;
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004417 BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
4418 const SCEV *LatchMaxCount = 0;
Andrew Trick3ca3f982011-07-26 17:19:55 +00004419 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
Dan Gohman96212b62009-06-22 00:31:57 +00004420 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004421 ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]);
4422 if (EL.Exact == getCouldNotCompute())
Dan Gohman96212b62009-06-22 00:31:57 +00004423 // We couldn't compute an exact value for this exit, so
Dan Gohman8885b372009-06-22 21:10:22 +00004424 // we won't be able to compute an exact value for the loop.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004425 CouldComputeBECount = false;
4426 else
4427 ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact));
4428
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004429 if (MaxBECount == getCouldNotCompute())
Andrew Trick3ca3f982011-07-26 17:19:55 +00004430 MaxBECount = EL.Max;
Andrew Trick90c7a102011-11-16 00:52:40 +00004431 else if (EL.Max != getCouldNotCompute()) {
4432 // We cannot take the "min" MaxBECount, because non-unit stride loops may
4433 // skip some loop tests. Taking the max over the exits is sufficiently
4434 // conservative. TODO: We could do better taking into consideration
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004435 // non-latch exits that dominate the latch.
4436 if (EL.MustExit && ExitingBlocks[i] == Latch)
4437 LatchMaxCount = EL.Max;
4438 else
4439 MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, EL.Max);
Andrew Trick90c7a102011-11-16 00:52:40 +00004440 }
Dan Gohman96212b62009-06-22 00:31:57 +00004441 }
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004442 // Be more precise in the easy case of a loop latch that must exit.
4443 if (LatchMaxCount) {
4444 MaxBECount = getUMinFromMismatchedTypes(MaxBECount, LatchMaxCount);
4445 }
Andrew Trick3ca3f982011-07-26 17:19:55 +00004446 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
Dan Gohman96212b62009-06-22 00:31:57 +00004447}
4448
Andrew Trick3ca3f982011-07-26 17:19:55 +00004449/// ComputeExitLimit - Compute the number of times the backedge of the specified
4450/// loop will execute if it exits via the specified block.
4451ScalarEvolution::ExitLimit
4452ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
Dan Gohman96212b62009-06-22 00:31:57 +00004453
4454 // Okay, we've chosen an exiting block. See what condition causes us to
Benjamin Kramer5a188542014-02-11 15:44:32 +00004455 // exit at this block and remember the exit block and whether all other targets
4456 // lead to the loop header.
4457 bool MustExecuteLoopHeader = true;
4458 BasicBlock *Exit = 0;
4459 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock);
4460 SI != SE; ++SI)
4461 if (!L->contains(*SI)) {
4462 if (Exit) // Multiple exit successors.
4463 return getCouldNotCompute();
4464 Exit = *SI;
4465 } else if (*SI != L->getHeader()) {
4466 MustExecuteLoopHeader = false;
4467 }
Dan Gohmance973df2009-06-24 04:48:43 +00004468
Chris Lattner18954852007-01-07 02:24:26 +00004469 // At this point, we know we have a conditional branch that determines whether
4470 // the loop is exited. However, we don't know if the branch is executed each
4471 // time through the loop. If not, then the execution count of the branch will
4472 // not be equal to the trip count of the loop.
4473 //
4474 // Currently we check for this by checking to see if the Exit branch goes to
4475 // the loop header. If so, we know it will always execute the same number of
Chris Lattner5a554762007-01-14 01:24:47 +00004476 // times as the loop. We also handle the case where the exit block *is* the
Dan Gohman96212b62009-06-22 00:31:57 +00004477 // loop header. This is common for un-rotated loops.
4478 //
4479 // If both of those tests fail, walk up the unique predecessor chain to the
4480 // header, stopping if there is an edge that doesn't exit the loop. If the
4481 // header is reached, the execution count of the branch will be equal to the
4482 // trip count of the loop.
4483 //
4484 // More extensive analysis could be done to handle more cases here.
4485 //
Benjamin Kramer5a188542014-02-11 15:44:32 +00004486 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
Dan Gohman96212b62009-06-22 00:31:57 +00004487 // The simple checks failed, try climbing the unique predecessor chain
4488 // up to the header.
4489 bool Ok = false;
Benjamin Kramer5a188542014-02-11 15:44:32 +00004490 for (BasicBlock *BB = ExitingBlock; BB; ) {
Dan Gohman96212b62009-06-22 00:31:57 +00004491 BasicBlock *Pred = BB->getUniquePredecessor();
4492 if (!Pred)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004493 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004494 TerminatorInst *PredTerm = Pred->getTerminator();
4495 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4496 BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4497 if (PredSucc == BB)
4498 continue;
4499 // If the predecessor has a successor that isn't BB and isn't
4500 // outside the loop, assume the worst.
4501 if (L->contains(PredSucc))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004502 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004503 }
4504 if (Pred == L->getHeader()) {
4505 Ok = true;
4506 break;
4507 }
4508 BB = Pred;
4509 }
4510 if (!Ok)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004511 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004512 }
4513
Benjamin Kramer5a188542014-02-11 15:44:32 +00004514 TerminatorInst *Term = ExitingBlock->getTerminator();
4515 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
4516 assert(BI->isConditional() && "If unconditional, it can't be in loop!");
4517 // Proceed to the next level to examine the exit condition expression.
4518 return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
4519 BI->getSuccessor(1),
4520 /*IsSubExpr=*/false);
4521 }
4522
4523 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
4524 return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit,
4525 /*IsSubExpr=*/false);
4526
4527 return getCouldNotCompute();
Dan Gohman96212b62009-06-22 00:31:57 +00004528}
4529
Andrew Trick3ca3f982011-07-26 17:19:55 +00004530/// ComputeExitLimitFromCond - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00004531/// backedge of the specified loop will execute if its exit condition
4532/// were a conditional branch of ExitCond, TBB, and FBB.
Andrew Trick5b245a12013-05-31 06:43:25 +00004533///
4534/// @param IsSubExpr is true if ExitCond does not directly control the exit
4535/// branch. In this case, we cannot assume that the loop only exits when the
4536/// condition is true and cannot infer that failing to meet the condition prior
4537/// to integer wraparound results in undefined behavior.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004538ScalarEvolution::ExitLimit
4539ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4540 Value *ExitCond,
4541 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00004542 BasicBlock *FBB,
4543 bool IsSubExpr) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00004544 // Check if the controlling expression for this loop is an And or Or.
Dan Gohman96212b62009-06-22 00:31:57 +00004545 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4546 if (BO->getOpcode() == Instruction::And) {
4547 // Recurse on the operands of the and.
Andrew Trick5b245a12013-05-31 06:43:25 +00004548 bool EitherMayExit = L->contains(TBB);
4549 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
4550 IsSubExpr || EitherMayExit);
4551 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
4552 IsSubExpr || EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00004553 const SCEV *BECount = getCouldNotCompute();
4554 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004555 bool MustExit = false;
Andrew Trick5b245a12013-05-31 06:43:25 +00004556 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00004557 // Both conditions must be true for the loop to continue executing.
4558 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004559 if (EL0.Exact == getCouldNotCompute() ||
4560 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004561 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00004562 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004563 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4564 if (EL0.Max == getCouldNotCompute())
4565 MaxBECount = EL1.Max;
4566 else if (EL1.Max == getCouldNotCompute())
4567 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00004568 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004569 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004570 MustExit = EL0.MustExit || EL1.MustExit;
Dan Gohman96212b62009-06-22 00:31:57 +00004571 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00004572 // Both conditions must be true at the same time for the loop to exit.
4573 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00004574 assert(L->contains(FBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00004575 if (EL0.Max == EL1.Max)
4576 MaxBECount = EL0.Max;
4577 if (EL0.Exact == EL1.Exact)
4578 BECount = EL0.Exact;
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004579 MustExit = EL0.MustExit && EL1.MustExit;
Dan Gohman96212b62009-06-22 00:31:57 +00004580 }
4581
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004582 return ExitLimit(BECount, MaxBECount, MustExit);
Dan Gohman96212b62009-06-22 00:31:57 +00004583 }
4584 if (BO->getOpcode() == Instruction::Or) {
4585 // Recurse on the operands of the or.
Andrew Trick5b245a12013-05-31 06:43:25 +00004586 bool EitherMayExit = L->contains(FBB);
4587 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
4588 IsSubExpr || EitherMayExit);
4589 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
4590 IsSubExpr || EitherMayExit);
Dan Gohmanaf752342009-07-07 17:06:11 +00004591 const SCEV *BECount = getCouldNotCompute();
4592 const SCEV *MaxBECount = getCouldNotCompute();
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004593 bool MustExit = false;
Andrew Trick5b245a12013-05-31 06:43:25 +00004594 if (EitherMayExit) {
Dan Gohman96212b62009-06-22 00:31:57 +00004595 // Both conditions must be false for the loop to continue executing.
4596 // Choose the less conservative count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004597 if (EL0.Exact == getCouldNotCompute() ||
4598 EL1.Exact == getCouldNotCompute())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004599 BECount = getCouldNotCompute();
Dan Gohmaned627382009-06-22 15:09:28 +00004600 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004601 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4602 if (EL0.Max == getCouldNotCompute())
4603 MaxBECount = EL1.Max;
4604 else if (EL1.Max == getCouldNotCompute())
4605 MaxBECount = EL0.Max;
Dan Gohmaned627382009-06-22 15:09:28 +00004606 else
Andrew Trick3ca3f982011-07-26 17:19:55 +00004607 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004608 MustExit = EL0.MustExit || EL1.MustExit;
Dan Gohman96212b62009-06-22 00:31:57 +00004609 } else {
Dan Gohmanf7495f22010-08-11 00:12:36 +00004610 // Both conditions must be false at the same time for the loop to exit.
4611 // For now, be conservative.
Dan Gohman96212b62009-06-22 00:31:57 +00004612 assert(L->contains(TBB) && "Loop block has no successor in loop!");
Andrew Trick3ca3f982011-07-26 17:19:55 +00004613 if (EL0.Max == EL1.Max)
4614 MaxBECount = EL0.Max;
4615 if (EL0.Exact == EL1.Exact)
4616 BECount = EL0.Exact;
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004617 MustExit = EL0.MustExit && EL1.MustExit;
Dan Gohman96212b62009-06-22 00:31:57 +00004618 }
4619
Andrew Trickee5aa7f2014-01-15 06:42:11 +00004620 return ExitLimit(BECount, MaxBECount, MustExit);
Dan Gohman96212b62009-06-22 00:31:57 +00004621 }
4622 }
4623
4624 // With an icmp, it may be feasible to compute an exact backedge-taken count.
Dan Gohman8b0a4192010-03-01 17:49:51 +00004625 // Proceed to the next level to examine the icmp.
Dan Gohman96212b62009-06-22 00:31:57 +00004626 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
Andrew Trick5b245a12013-05-31 06:43:25 +00004627 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, IsSubExpr);
Reid Spencer266e42b2006-12-23 06:05:41 +00004628
Dan Gohman6b1e2a82010-02-19 18:12:07 +00004629 // Check for a constant condition. These are normally stripped out by
4630 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4631 // preserve the CFG and is temporarily leaving constant conditions
4632 // in place.
4633 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4634 if (L->contains(FBB) == !CI->getZExtValue())
4635 // The backedge is always taken.
4636 return getCouldNotCompute();
4637 else
4638 // The backedge is never taken.
Dan Gohman1d2ded72010-05-03 22:09:21 +00004639 return getConstant(CI->getType(), 0);
Dan Gohman6b1e2a82010-02-19 18:12:07 +00004640 }
4641
Eli Friedmanebf98b02009-05-09 12:32:42 +00004642 // If it's not an integer or pointer comparison then compute it the hard way.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004643 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Dan Gohman96212b62009-06-22 00:31:57 +00004644}
4645
Andrew Trick3ca3f982011-07-26 17:19:55 +00004646/// ComputeExitLimitFromICmp - Compute the number of times the
Dan Gohman96212b62009-06-22 00:31:57 +00004647/// backedge of the specified loop will execute if its exit condition
4648/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004649ScalarEvolution::ExitLimit
4650ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
4651 ICmpInst *ExitCond,
4652 BasicBlock *TBB,
Andrew Trick5b245a12013-05-31 06:43:25 +00004653 BasicBlock *FBB,
4654 bool IsSubExpr) {
Chris Lattnerd934c702004-04-02 20:23:17 +00004655
Reid Spencer266e42b2006-12-23 06:05:41 +00004656 // If the condition was exit on true, convert the condition to exit on false
4657 ICmpInst::Predicate Cond;
Dan Gohman96212b62009-06-22 00:31:57 +00004658 if (!L->contains(FBB))
Reid Spencer266e42b2006-12-23 06:05:41 +00004659 Cond = ExitCond->getPredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00004660 else
Reid Spencer266e42b2006-12-23 06:05:41 +00004661 Cond = ExitCond->getInversePredicate();
Chris Lattnerec901cc2004-10-12 01:49:27 +00004662
4663 // Handle common loops like: for (X = "string"; *X; ++X)
4664 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4665 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
Andrew Trick3ca3f982011-07-26 17:19:55 +00004666 ExitLimit ItCnt =
4667 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
Dan Gohmanba820342010-02-24 17:31:30 +00004668 if (ItCnt.hasAnyInfo())
4669 return ItCnt;
Chris Lattnerec901cc2004-10-12 01:49:27 +00004670 }
4671
Dan Gohmanaf752342009-07-07 17:06:11 +00004672 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4673 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
Chris Lattnerd934c702004-04-02 20:23:17 +00004674
4675 // Try to evaluate any dependencies out of the loop.
Dan Gohman8ca08852009-05-24 23:25:42 +00004676 LHS = getSCEVAtScope(LHS, L);
4677 RHS = getSCEVAtScope(RHS, L);
Chris Lattnerd934c702004-04-02 20:23:17 +00004678
Dan Gohmance973df2009-06-24 04:48:43 +00004679 // At this point, we would like to compute how many iterations of the
Reid Spencer266e42b2006-12-23 06:05:41 +00004680 // loop the predicate will return true for these inputs.
Dan Gohmanafd6db92010-11-17 21:23:15 +00004681 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
Dan Gohmandc5f5cb2008-09-16 18:52:57 +00004682 // If there is a loop-invariant, force it into the RHS.
Chris Lattnerd934c702004-04-02 20:23:17 +00004683 std::swap(LHS, RHS);
Reid Spencer266e42b2006-12-23 06:05:41 +00004684 Cond = ICmpInst::getSwappedPredicate(Cond);
Chris Lattnerd934c702004-04-02 20:23:17 +00004685 }
4686
Dan Gohman81585c12010-05-03 16:35:17 +00004687 // Simplify the operands before analyzing them.
4688 (void)SimplifyICmpOperands(Cond, LHS, RHS);
4689
Chris Lattnerd934c702004-04-02 20:23:17 +00004690 // If we have a comparison of a chrec against a constant, try to use value
4691 // ranges to answer this query.
Dan Gohmana30370b2009-05-04 22:02:23 +00004692 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4693 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
Chris Lattnerd934c702004-04-02 20:23:17 +00004694 if (AddRec->getLoop() == L) {
Eli Friedmanebf98b02009-05-09 12:32:42 +00004695 // Form the constant range.
4696 ConstantRange CompRange(
4697 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
Misha Brukman01808ca2005-04-21 21:13:18 +00004698
Dan Gohmanaf752342009-07-07 17:06:11 +00004699 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Eli Friedmanebf98b02009-05-09 12:32:42 +00004700 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
Chris Lattnerd934c702004-04-02 20:23:17 +00004701 }
Misha Brukman01808ca2005-04-21 21:13:18 +00004702
Chris Lattnerd934c702004-04-02 20:23:17 +00004703 switch (Cond) {
Reid Spencer266e42b2006-12-23 06:05:41 +00004704 case ICmpInst::ICMP_NE: { // while (X != Y)
Chris Lattnerd934c702004-04-02 20:23:17 +00004705 // Convert to: while (X-Y != 0)
Andrew Trick5b245a12013-05-31 06:43:25 +00004706 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, IsSubExpr);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004707 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00004708 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00004709 }
Dan Gohman8a8ad7d2009-08-20 16:42:55 +00004710 case ICmpInst::ICMP_EQ: { // while (X == Y)
4711 // Convert to: while (X-Y == 0)
Andrew Trick3ca3f982011-07-26 17:19:55 +00004712 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4713 if (EL.hasAnyInfo()) return EL;
Chris Lattnerd934c702004-04-02 20:23:17 +00004714 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00004715 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00004716 case ICmpInst::ICMP_SLT:
4717 case ICmpInst::ICMP_ULT: { // while (X < Y)
4718 bool IsSigned = Cond == ICmpInst::ICMP_SLT;
4719 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, IsSubExpr);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004720 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00004721 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00004722 }
Andrew Trick34e2f0c2013-11-06 02:08:26 +00004723 case ICmpInst::ICMP_SGT:
4724 case ICmpInst::ICMP_UGT: { // while (X > Y)
4725 bool IsSigned = Cond == ICmpInst::ICMP_SGT;
4726 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, IsSubExpr);
Andrew Trick3ca3f982011-07-26 17:19:55 +00004727 if (EL.hasAnyInfo()) return EL;
Chris Lattner587a75b2005-08-15 23:33:51 +00004728 break;
Reid Spencer266e42b2006-12-23 06:05:41 +00004729 }
Chris Lattnerd934c702004-04-02 20:23:17 +00004730 default:
Chris Lattner09169212004-04-02 20:26:46 +00004731#if 0
David Greenedf1c4972009-12-23 22:18:14 +00004732 dbgs() << "ComputeBackedgeTakenCount ";
Chris Lattnerd934c702004-04-02 20:23:17 +00004733 if (ExitCond->getOperand(0)->getType()->isUnsigned())
David Greenedf1c4972009-12-23 22:18:14 +00004734 dbgs() << "[unsigned] ";
4735 dbgs() << *LHS << " "
Dan Gohmance973df2009-06-24 04:48:43 +00004736 << Instruction::getOpcodeName(Instruction::ICmp)
Reid Spencer266e42b2006-12-23 06:05:41 +00004737 << " " << *RHS << "\n";
Chris Lattner09169212004-04-02 20:26:46 +00004738#endif
Chris Lattner0defaa12004-04-03 00:43:03 +00004739 break;
Chris Lattnerd934c702004-04-02 20:23:17 +00004740 }
Andrew Trick3ca3f982011-07-26 17:19:55 +00004741 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
Chris Lattner4021d1a2004-04-17 18:36:24 +00004742}
4743
Benjamin Kramer5a188542014-02-11 15:44:32 +00004744ScalarEvolution::ExitLimit
4745ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L,
4746 SwitchInst *Switch,
4747 BasicBlock *ExitingBlock,
4748 bool IsSubExpr) {
4749 assert(!L->contains(ExitingBlock) && "Not an exiting block!");
4750
4751 // Give up if the exit is the default dest of a switch.
4752 if (Switch->getDefaultDest() == ExitingBlock)
4753 return getCouldNotCompute();
4754
4755 assert(L->contains(Switch->getDefaultDest()) &&
4756 "Default case must not exit the loop!");
4757 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
4758 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
4759
4760 // while (X != Y) --> while (X-Y != 0)
4761 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, IsSubExpr);
4762 if (EL.hasAnyInfo())
4763 return EL;
4764
4765 return getCouldNotCompute();
4766}
4767
Chris Lattnerec901cc2004-10-12 01:49:27 +00004768static ConstantInt *
Dan Gohmana37eaf22007-10-22 18:31:58 +00004769EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4770 ScalarEvolution &SE) {
Dan Gohmanaf752342009-07-07 17:06:11 +00004771 const SCEV *InVal = SE.getConstant(C);
4772 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
Chris Lattnerec901cc2004-10-12 01:49:27 +00004773 assert(isa<SCEVConstant>(Val) &&
4774 "Evaluation of SCEV at constant didn't fold correctly?");
4775 return cast<SCEVConstant>(Val)->getValue();
4776}
4777
Andrew Trick3ca3f982011-07-26 17:19:55 +00004778/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
Dan Gohman0bddac12009-02-24 18:55:53 +00004779/// 'icmp op load X, cst', try to see if we can compute the backedge
4780/// execution count.
Andrew Trick3ca3f982011-07-26 17:19:55 +00004781ScalarEvolution::ExitLimit
4782ScalarEvolution::ComputeLoadConstantCompareExitLimit(
4783 LoadInst *LI,
4784 Constant *RHS,
4785 const Loop *L,
4786 ICmpInst::Predicate predicate) {
4787
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004788 if (LI->isVolatile()) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00004789
4790 // Check to see if the loaded pointer is a getelementptr of a global.
Dan Gohmanba820342010-02-24 17:31:30 +00004791 // TODO: Use SCEV instead of manually grubbing with GEPs.
Chris Lattnerec901cc2004-10-12 01:49:27 +00004792 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004793 if (!GEP) return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00004794
4795 // Make sure that it is really a constant global we are gepping, with an
4796 // initializer, and make sure the first IDX is really 0.
4797 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00004798 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00004799 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4800 !cast<Constant>(GEP->getOperand(1))->isNullValue())
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004801 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00004802
4803 // Okay, we allow one non-constant index into the GEP instruction.
4804 Value *VarIdx = 0;
Chris Lattnere166a852012-01-24 05:49:24 +00004805 std::vector<Constant*> Indexes;
Chris Lattnerec901cc2004-10-12 01:49:27 +00004806 unsigned VarIdxNum = 0;
4807 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4808 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4809 Indexes.push_back(CI);
4810 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004811 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
Chris Lattnerec901cc2004-10-12 01:49:27 +00004812 VarIdx = GEP->getOperand(i);
4813 VarIdxNum = i-2;
4814 Indexes.push_back(0);
4815 }
4816
Andrew Trick7004e4b2012-03-26 22:33:59 +00004817 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
4818 if (!VarIdx)
4819 return getCouldNotCompute();
4820
Chris Lattnerec901cc2004-10-12 01:49:27 +00004821 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4822 // Check to see if X is a loop variant variable value now.
Dan Gohmanaf752342009-07-07 17:06:11 +00004823 const SCEV *Idx = getSCEV(VarIdx);
Dan Gohman8ca08852009-05-24 23:25:42 +00004824 Idx = getSCEVAtScope(Idx, L);
Chris Lattnerec901cc2004-10-12 01:49:27 +00004825
4826 // We can only recognize very limited forms of loop index expressions, in
4827 // particular, only affine AddRec's like {C1,+,C2}.
Dan Gohman48f82222009-05-04 22:30:44 +00004828 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
Dan Gohmanafd6db92010-11-17 21:23:15 +00004829 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
Chris Lattnerec901cc2004-10-12 01:49:27 +00004830 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4831 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004832 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00004833
4834 unsigned MaxSteps = MaxBruteForceIterations;
4835 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
Owen Andersonedb4a702009-07-24 23:12:02 +00004836 ConstantInt *ItCst = ConstantInt::get(
Owen Andersonb6b25302009-07-14 23:09:55 +00004837 cast<IntegerType>(IdxExpr->getType()), IterationNum);
Dan Gohmanc8e23622009-04-21 23:15:49 +00004838 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Chris Lattnerec901cc2004-10-12 01:49:27 +00004839
4840 // Form the GEP offset.
4841 Indexes[VarIdxNum] = Val;
4842
Chris Lattnere166a852012-01-24 05:49:24 +00004843 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
4844 Indexes);
Chris Lattnerec901cc2004-10-12 01:49:27 +00004845 if (Result == 0) break; // Cannot compute!
4846
4847 // Evaluate the condition for this iteration.
Reid Spencer266e42b2006-12-23 06:05:41 +00004848 Result = ConstantExpr::getICmp(predicate, Result, RHS);
Zhou Sheng75b871f2007-01-11 12:24:14 +00004849 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
Reid Spencer983e3b32007-03-01 07:25:48 +00004850 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
Chris Lattnerec901cc2004-10-12 01:49:27 +00004851#if 0
David Greenedf1c4972009-12-23 22:18:14 +00004852 dbgs() << "\n***\n*** Computed loop count " << *ItCst
Dan Gohmane20f8242009-04-21 00:47:46 +00004853 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4854 << "***\n";
Chris Lattnerec901cc2004-10-12 01:49:27 +00004855#endif
4856 ++NumArrayLenItCounts;
Dan Gohmanc8e23622009-04-21 23:15:49 +00004857 return getConstant(ItCst); // Found terminating iteration!
Chris Lattnerec901cc2004-10-12 01:49:27 +00004858 }
4859 }
Dan Gohmanc5c85c02009-06-27 21:21:31 +00004860 return getCouldNotCompute();
Chris Lattnerec901cc2004-10-12 01:49:27 +00004861}
4862
4863
Chris Lattnerdd730472004-04-17 22:58:41 +00004864/// CanConstantFold - Return true if we can constant fold an instruction of the
4865/// specified type, assuming that all operands were constants.
4866static bool CanConstantFold(const Instruction *I) {
Reid Spencer2341c222007-02-02 02:16:23 +00004867 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
Nick Lewyckya6674c72011-10-22 19:58:20 +00004868 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
4869 isa<LoadInst>(I))
Chris Lattnerdd730472004-04-17 22:58:41 +00004870 return true;
Misha Brukman01808ca2005-04-21 21:13:18 +00004871
Chris Lattnerdd730472004-04-17 22:58:41 +00004872 if (const CallInst *CI = dyn_cast<CallInst>(I))
4873 if (const Function *F = CI->getCalledFunction())
Dan Gohmana65951f2008-01-31 01:05:10 +00004874 return canConstantFoldCallTo(F);
Chris Lattnerdd730472004-04-17 22:58:41 +00004875 return false;
Chris Lattner4021d1a2004-04-17 18:36:24 +00004876}
4877
Andrew Trick3a86ba72011-10-05 03:25:31 +00004878/// Determine whether this instruction can constant evolve within this loop
4879/// assuming its operands can all constant evolve.
4880static bool canConstantEvolve(Instruction *I, const Loop *L) {
4881 // An instruction outside of the loop can't be derived from a loop PHI.
4882 if (!L->contains(I)) return false;
4883
4884 if (isa<PHINode>(I)) {
4885 if (L->getHeader() == I->getParent())
4886 return true;
4887 else
4888 // We don't currently keep track of the control flow needed to evaluate
4889 // PHIs, so we cannot handle PHIs inside of loops.
4890 return false;
4891 }
4892
4893 // If we won't be able to constant fold this expression even if the operands
4894 // are constants, bail early.
4895 return CanConstantFold(I);
4896}
4897
4898/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
4899/// recursing through each instruction operand until reaching a loop header phi.
4900static PHINode *
4901getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
Andrew Tricke9162f12011-10-05 05:58:49 +00004902 DenseMap<Instruction *, PHINode *> &PHIMap) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00004903
4904 // Otherwise, we can evaluate this instruction if all of its operands are
4905 // constant or derived from a PHI node themselves.
4906 PHINode *PHI = 0;
4907 for (Instruction::op_iterator OpI = UseInst->op_begin(),
4908 OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
4909
4910 if (isa<Constant>(*OpI)) continue;
4911
4912 Instruction *OpInst = dyn_cast<Instruction>(*OpI);
4913 if (!OpInst || !canConstantEvolve(OpInst, L)) return 0;
4914
4915 PHINode *P = dyn_cast<PHINode>(OpInst);
Andrew Trick3e8a5762011-10-05 22:06:53 +00004916 if (!P)
4917 // If this operand is already visited, reuse the prior result.
4918 // We may have P != PHI if this is the deepest point at which the
4919 // inconsistent paths meet.
4920 P = PHIMap.lookup(OpInst);
4921 if (!P) {
4922 // Recurse and memoize the results, whether a phi is found or not.
4923 // This recursive call invalidates pointers into PHIMap.
4924 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
4925 PHIMap[OpInst] = P;
Andrew Tricke9162f12011-10-05 05:58:49 +00004926 }
Andrew Tricke9162f12011-10-05 05:58:49 +00004927 if (P == 0) return 0; // Not evolving from PHI
4928 if (PHI && PHI != P) return 0; // Evolving from multiple different PHIs.
4929 PHI = P;
Andrew Trick3a86ba72011-10-05 03:25:31 +00004930 }
4931 // This is a expression evolving from a constant PHI!
4932 return PHI;
4933}
4934
Chris Lattnerdd730472004-04-17 22:58:41 +00004935/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4936/// in the loop that V is derived from. We allow arbitrary operations along the
4937/// way, but the operands of an operation must either be constants or a value
4938/// derived from a constant PHI. If this expression does not fit with these
4939/// constraints, return null.
4940static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00004941 Instruction *I = dyn_cast<Instruction>(V);
Andrew Trick3a86ba72011-10-05 03:25:31 +00004942 if (I == 0 || !canConstantEvolve(I, L)) return 0;
Chris Lattnerdd730472004-04-17 22:58:41 +00004943
Anton Korobeynikov579f0712008-02-20 11:08:44 +00004944 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Andrew Trick3a86ba72011-10-05 03:25:31 +00004945 return PN;
Anton Korobeynikov579f0712008-02-20 11:08:44 +00004946 }
Chris Lattnerdd730472004-04-17 22:58:41 +00004947
Andrew Trick3a86ba72011-10-05 03:25:31 +00004948 // Record non-constant instructions contained by the loop.
Andrew Tricke9162f12011-10-05 05:58:49 +00004949 DenseMap<Instruction *, PHINode *> PHIMap;
4950 return getConstantEvolvingPHIOperands(I, L, PHIMap);
Chris Lattnerdd730472004-04-17 22:58:41 +00004951}
4952
4953/// EvaluateExpression - Given an expression that passes the
4954/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4955/// in the loop has the value PHIVal. If we can't fold this expression for some
4956/// reason, return null.
Andrew Trick3a86ba72011-10-05 03:25:31 +00004957static Constant *EvaluateExpression(Value *V, const Loop *L,
4958 DenseMap<Instruction *, Constant *> &Vals,
Rafael Espindola7c68beb2014-02-18 15:33:12 +00004959 const DataLayout *DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00004960 const TargetLibraryInfo *TLI) {
Andrew Tricke9162f12011-10-05 05:58:49 +00004961 // Convenient constant check, but redundant for recursive calls.
Reid Spencer30d69a52004-07-18 00:18:30 +00004962 if (Constant *C = dyn_cast<Constant>(V)) return C;
Nick Lewyckya6674c72011-10-22 19:58:20 +00004963 Instruction *I = dyn_cast<Instruction>(V);
4964 if (!I) return 0;
Andrew Trick3a86ba72011-10-05 03:25:31 +00004965
Andrew Trick3a86ba72011-10-05 03:25:31 +00004966 if (Constant *C = Vals.lookup(I)) return C;
4967
Nick Lewyckya6674c72011-10-22 19:58:20 +00004968 // An instruction inside the loop depends on a value outside the loop that we
4969 // weren't given a mapping for, or a value such as a call inside the loop.
4970 if (!canConstantEvolve(I, L)) return 0;
4971
4972 // An unmapped PHI can be due to a branch or another loop inside this loop,
4973 // or due to this not being the initial iteration through a loop where we
4974 // couldn't compute the evolution of this particular PHI last time.
4975 if (isa<PHINode>(I)) return 0;
Chris Lattnerdd730472004-04-17 22:58:41 +00004976
Dan Gohmanf820bd32010-06-22 13:15:46 +00004977 std::vector<Constant*> Operands(I->getNumOperands());
Chris Lattnerdd730472004-04-17 22:58:41 +00004978
4979 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
Andrew Tricke9162f12011-10-05 05:58:49 +00004980 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
4981 if (!Operand) {
Nick Lewyckya447e0f32011-10-14 09:38:46 +00004982 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
4983 if (!Operands[i]) return 0;
Andrew Tricke9162f12011-10-05 05:58:49 +00004984 continue;
4985 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00004986 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
Andrew Tricke9162f12011-10-05 05:58:49 +00004987 Vals[Operand] = C;
4988 if (!C) return 0;
4989 Operands[i] = C;
Chris Lattnerdd730472004-04-17 22:58:41 +00004990 }
4991
Nick Lewyckya6674c72011-10-22 19:58:20 +00004992 if (CmpInst *CI = dyn_cast<CmpInst>(I))
Chris Lattnercdfb80d2009-11-09 23:06:58 +00004993 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
Rafael Espindola7c68beb2014-02-18 15:33:12 +00004994 Operands[1], DL, TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00004995 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
4996 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00004997 return ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00004998 }
Rafael Espindola7c68beb2014-02-18 15:33:12 +00004999 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005000 TLI);
Chris Lattnerdd730472004-04-17 22:58:41 +00005001}
5002
5003/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
5004/// in the header of its containing loop, we know the loop executes a
5005/// constant number of times, and the PHI node is just a recurrence
5006/// involving constants, fold it.
Dan Gohmance973df2009-06-24 04:48:43 +00005007Constant *
5008ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
Dan Gohmancb0efec2009-12-18 01:14:11 +00005009 const APInt &BEs,
Dan Gohmance973df2009-06-24 04:48:43 +00005010 const Loop *L) {
Dan Gohman0daf6872011-05-09 18:44:09 +00005011 DenseMap<PHINode*, Constant*>::const_iterator I =
Chris Lattnerdd730472004-04-17 22:58:41 +00005012 ConstantEvolutionLoopExitValue.find(PN);
5013 if (I != ConstantEvolutionLoopExitValue.end())
5014 return I->second;
5015
Dan Gohman4ce1fb12010-04-08 23:03:40 +00005016 if (BEs.ugt(MaxBruteForceIterations))
Chris Lattnerdd730472004-04-17 22:58:41 +00005017 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
5018
5019 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
5020
Andrew Trick3a86ba72011-10-05 03:25:31 +00005021 DenseMap<Instruction *, Constant *> CurrentIterVals;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005022 BasicBlock *Header = L->getHeader();
5023 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
Andrew Trick3a86ba72011-10-05 03:25:31 +00005024
Chris Lattnerdd730472004-04-17 22:58:41 +00005025 // Since the loop is canonicalized, the PHI node must have two entries. One
5026 // entry must be a constant (coming in from outside of the loop), and the
5027 // second must be derived from the same PHI.
5028 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Nick Lewyckya6674c72011-10-22 19:58:20 +00005029 PHINode *PHI = 0;
5030 for (BasicBlock::iterator I = Header->begin();
5031 (PHI = dyn_cast<PHINode>(I)); ++I) {
5032 Constant *StartCST =
5033 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
5034 if (StartCST == 0) continue;
5035 CurrentIterVals[PHI] = StartCST;
5036 }
5037 if (!CurrentIterVals.count(PN))
5038 return RetVal = 0;
Chris Lattnerdd730472004-04-17 22:58:41 +00005039
5040 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
Chris Lattnerdd730472004-04-17 22:58:41 +00005041
5042 // Execute the loop symbolically to determine the exit value.
Dan Gohman0bddac12009-02-24 18:55:53 +00005043 if (BEs.getActiveBits() >= 32)
Reid Spencer983e3b32007-03-01 07:25:48 +00005044 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
Chris Lattnerdd730472004-04-17 22:58:41 +00005045
Dan Gohman0bddac12009-02-24 18:55:53 +00005046 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Reid Spencer983e3b32007-03-01 07:25:48 +00005047 unsigned IterationNum = 0;
Andrew Trick3a86ba72011-10-05 03:25:31 +00005048 for (; ; ++IterationNum) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005049 if (IterationNum == NumIterations)
Andrew Trick3a86ba72011-10-05 03:25:31 +00005050 return RetVal = CurrentIterVals[PN]; // Got exit value!
Chris Lattnerdd730472004-04-17 22:58:41 +00005051
Nick Lewyckya6674c72011-10-22 19:58:20 +00005052 // Compute the value of the PHIs for the next iteration.
Andrew Trick3a86ba72011-10-05 03:25:31 +00005053 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
Nick Lewyckya6674c72011-10-22 19:58:20 +00005054 DenseMap<Instruction *, Constant *> NextIterVals;
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005055 Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL,
Chad Rosiere6de63d2011-12-01 21:29:16 +00005056 TLI);
Chris Lattnerdd730472004-04-17 22:58:41 +00005057 if (NextPHI == 0)
5058 return 0; // Couldn't evaluate!
Andrew Trick3a86ba72011-10-05 03:25:31 +00005059 NextIterVals[PN] = NextPHI;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005060
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005061 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
5062
Nick Lewyckya6674c72011-10-22 19:58:20 +00005063 // Also evaluate the other PHI nodes. However, we don't get to stop if we
5064 // cease to be able to evaluate one of them or if they stop evolving,
5065 // because that doesn't necessarily prevent us from computing PN.
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005066 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005067 for (DenseMap<Instruction *, Constant *>::const_iterator
5068 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5069 PHINode *PHI = dyn_cast<PHINode>(I->first);
Nick Lewycky8e904de2011-10-24 05:51:01 +00005070 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005071 PHIsToCompute.push_back(std::make_pair(PHI, I->second));
5072 }
5073 // We use two distinct loops because EvaluateExpression may invalidate any
5074 // iterators into CurrentIterVals.
5075 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
5076 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
5077 PHINode *PHI = I->first;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005078 Constant *&NextPHI = NextIterVals[PHI];
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005079 if (!NextPHI) { // Not already computed.
5080 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005081 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005082 }
5083 if (NextPHI != I->second)
5084 StoppedEvolving = false;
Nick Lewyckya6674c72011-10-22 19:58:20 +00005085 }
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005086
5087 // If all entries in CurrentIterVals == NextIterVals then we can stop
5088 // iterating, the loop can't continue to change.
5089 if (StoppedEvolving)
5090 return RetVal = CurrentIterVals[PN];
5091
Andrew Trick3a86ba72011-10-05 03:25:31 +00005092 CurrentIterVals.swap(NextIterVals);
Chris Lattnerdd730472004-04-17 22:58:41 +00005093 }
5094}
5095
Andrew Trick3ca3f982011-07-26 17:19:55 +00005096/// ComputeExitCountExhaustively - If the loop is known to execute a
Chris Lattner4021d1a2004-04-17 18:36:24 +00005097/// constant number of times (the condition evolves only from constants),
5098/// try to evaluate a few iterations of the loop until we get the exit
5099/// condition gets a value of ExitWhen (true or false). If we cannot
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005100/// evaluate the trip count of the loop, return getCouldNotCompute().
Nick Lewyckya6674c72011-10-22 19:58:20 +00005101const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
5102 Value *Cond,
5103 bool ExitWhen) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00005104 PHINode *PN = getConstantEvolvingPHI(Cond, L);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005105 if (PN == 0) return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00005106
Dan Gohman866971e2010-06-19 14:17:24 +00005107 // If the loop is canonicalized, the PHI will have exactly two entries.
5108 // That's the only form we support here.
5109 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
5110
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005111 DenseMap<Instruction *, Constant *> CurrentIterVals;
5112 BasicBlock *Header = L->getHeader();
5113 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
5114
Dan Gohman866971e2010-06-19 14:17:24 +00005115 // One entry must be a constant (coming in from outside of the loop), and the
Chris Lattner4021d1a2004-04-17 18:36:24 +00005116 // second must be derived from the same PHI.
5117 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005118 PHINode *PHI = 0;
5119 for (BasicBlock::iterator I = Header->begin();
5120 (PHI = dyn_cast<PHINode>(I)); ++I) {
5121 Constant *StartCST =
5122 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
5123 if (StartCST == 0) continue;
5124 CurrentIterVals[PHI] = StartCST;
5125 }
5126 if (!CurrentIterVals.count(PN))
5127 return getCouldNotCompute();
Chris Lattner4021d1a2004-04-17 18:36:24 +00005128
5129 // Okay, we find a PHI node that defines the trip count of this loop. Execute
5130 // the loop symbolically to determine when the condition gets a value of
5131 // "ExitWhen".
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005132
Andrew Trick90c7a102011-11-16 00:52:40 +00005133 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005134 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
Zhou Sheng75b871f2007-01-11 12:24:14 +00005135 ConstantInt *CondVal =
Chad Rosiere6de63d2011-12-01 21:29:16 +00005136 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals,
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005137 DL, TLI));
Chris Lattnerdd730472004-04-17 22:58:41 +00005138
Zhou Sheng75b871f2007-01-11 12:24:14 +00005139 // Couldn't symbolically evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005140 if (!CondVal) return getCouldNotCompute();
Zhou Sheng75b871f2007-01-11 12:24:14 +00005141
Reid Spencer983e3b32007-03-01 07:25:48 +00005142 if (CondVal->getValue() == uint64_t(ExitWhen)) {
Chris Lattner4021d1a2004-04-17 18:36:24 +00005143 ++NumBruteForceTripCountsComputed;
Owen Anderson55f1c092009-08-13 21:58:54 +00005144 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
Chris Lattner4021d1a2004-04-17 18:36:24 +00005145 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005146
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005147 // Update all the PHI nodes for the next iteration.
5148 DenseMap<Instruction *, Constant *> NextIterVals;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005149
5150 // Create a list of which PHIs we need to compute. We want to do this before
5151 // calling EvaluateExpression on them because that may invalidate iterators
5152 // into CurrentIterVals.
5153 SmallVector<PHINode *, 8> PHIsToCompute;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005154 for (DenseMap<Instruction *, Constant *>::const_iterator
5155 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
5156 PHINode *PHI = dyn_cast<PHINode>(I->first);
5157 if (!PHI || PHI->getParent() != Header) continue;
Nick Lewyckyd48ab842011-11-12 03:09:12 +00005158 PHIsToCompute.push_back(PHI);
5159 }
5160 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
5161 E = PHIsToCompute.end(); I != E; ++I) {
5162 PHINode *PHI = *I;
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005163 Constant *&NextPHI = NextIterVals[PHI];
5164 if (NextPHI) continue; // Already computed!
5165
5166 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005167 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, TLI);
Duncan Sandsa370f3e2011-10-25 12:28:52 +00005168 }
5169 CurrentIterVals.swap(NextIterVals);
Chris Lattner4021d1a2004-04-17 18:36:24 +00005170 }
5171
5172 // Too many iterations were needed to evaluate.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005173 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005174}
5175
Dan Gohman237d9e52009-09-03 15:00:26 +00005176/// getSCEVAtScope - Return a SCEV expression for the specified value
Dan Gohmanb81f47d2009-05-08 20:38:54 +00005177/// at the specified scope in the program. The L value specifies a loop
5178/// nest to evaluate the expression at, where null is the top-level or a
5179/// specified loop is immediately inside of the loop.
5180///
5181/// This method can be used to compute the exit value for a variable defined
5182/// in a loop by querying what the value will hold in the parent loop.
5183///
Dan Gohman8ca08852009-05-24 23:25:42 +00005184/// In the case that a relevant loop exit value cannot be computed, the
5185/// original value V is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00005186const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005187 // Check to see if we've folded this expression at this loop before.
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00005188 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V];
5189 for (unsigned u = 0; u < Values.size(); u++) {
5190 if (Values[u].first == L)
5191 return Values[u].second ? Values[u].second : V;
5192 }
5193 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(0)));
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005194 // Otherwise compute it.
5195 const SCEV *C = computeSCEVAtScope(V, L);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00005196 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V];
5197 for (unsigned u = Values2.size(); u > 0; u--) {
5198 if (Values2[u - 1].first == L) {
5199 Values2[u - 1].second = C;
5200 break;
5201 }
5202 }
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005203 return C;
5204}
5205
Nick Lewyckya6674c72011-10-22 19:58:20 +00005206/// This builds up a Constant using the ConstantExpr interface. That way, we
5207/// will return Constants for objects which aren't represented by a
5208/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
5209/// Returns NULL if the SCEV isn't representable as a Constant.
5210static Constant *BuildConstantFromSCEV(const SCEV *V) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00005211 switch (static_cast<SCEVTypes>(V->getSCEVType())) {
Nick Lewyckya6674c72011-10-22 19:58:20 +00005212 case scCouldNotCompute:
5213 case scAddRecExpr:
5214 break;
5215 case scConstant:
5216 return cast<SCEVConstant>(V)->getValue();
5217 case scUnknown:
5218 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5219 case scSignExtend: {
5220 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5221 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5222 return ConstantExpr::getSExt(CastOp, SS->getType());
5223 break;
5224 }
5225 case scZeroExtend: {
5226 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5227 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5228 return ConstantExpr::getZExt(CastOp, SZ->getType());
5229 break;
5230 }
5231 case scTruncate: {
5232 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5233 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5234 return ConstantExpr::getTrunc(CastOp, ST->getType());
5235 break;
5236 }
5237 case scAddExpr: {
5238 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5239 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005240 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5241 unsigned AS = PTy->getAddressSpace();
5242 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
5243 C = ConstantExpr::getBitCast(C, DestPtrTy);
5244 }
Nick Lewyckya6674c72011-10-22 19:58:20 +00005245 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5246 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
5247 if (!C2) return 0;
5248
5249 // First pointer!
5250 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005251 unsigned AS = C2->getType()->getPointerAddressSpace();
Nick Lewyckya6674c72011-10-22 19:58:20 +00005252 std::swap(C, C2);
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005253 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005254 // The offsets have been converted to bytes. We can add bytes to an
5255 // i8* by GEP with the byte count in the first index.
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005256 C = ConstantExpr::getBitCast(C, DestPtrTy);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005257 }
5258
5259 // Don't bother trying to sum two pointers. We probably can't
5260 // statically compute a load that results from it anyway.
5261 if (C2->getType()->isPointerTy())
5262 return 0;
5263
Matt Arsenaultbe18b8a2013-10-21 18:41:10 +00005264 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
5265 if (PTy->getElementType()->isStructTy())
Nick Lewyckya6674c72011-10-22 19:58:20 +00005266 C2 = ConstantExpr::getIntegerCast(
5267 C2, Type::getInt32Ty(C->getContext()), true);
5268 C = ConstantExpr::getGetElementPtr(C, C2);
5269 } else
5270 C = ConstantExpr::getAdd(C, C2);
5271 }
5272 return C;
5273 }
5274 break;
5275 }
5276 case scMulExpr: {
5277 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5278 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5279 // Don't bother with pointers at all.
5280 if (C->getType()->isPointerTy()) return 0;
5281 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5282 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
5283 if (!C2 || C2->getType()->isPointerTy()) return 0;
5284 C = ConstantExpr::getMul(C, C2);
5285 }
5286 return C;
5287 }
5288 break;
5289 }
5290 case scUDivExpr: {
5291 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5292 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5293 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5294 if (LHS->getType() == RHS->getType())
5295 return ConstantExpr::getUDiv(LHS, RHS);
5296 break;
5297 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00005298 case scSMaxExpr:
5299 case scUMaxExpr:
5300 break; // TODO: smax, umax.
Nick Lewyckya6674c72011-10-22 19:58:20 +00005301 }
5302 return 0;
5303}
5304
Dan Gohmancc2f1eb2009-08-31 21:15:23 +00005305const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005306 if (isa<SCEVConstant>(V)) return V;
Misha Brukman01808ca2005-04-21 21:13:18 +00005307
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00005308 // If this instruction is evolved from a constant-evolving PHI, compute the
Chris Lattnerdd730472004-04-17 22:58:41 +00005309 // exit value from the loop without using SCEVs.
Dan Gohmana30370b2009-05-04 22:02:23 +00005310 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005311 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00005312 const Loop *LI = (*this->LI)[I->getParent()];
Chris Lattnerdd730472004-04-17 22:58:41 +00005313 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
5314 if (PHINode *PN = dyn_cast<PHINode>(I))
5315 if (PN->getParent() == LI->getHeader()) {
5316 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman0bddac12009-02-24 18:55:53 +00005317 // to see if the loop that contains it has a known backedge-taken
5318 // count. If so, we may be able to force computation of the exit
5319 // value.
Dan Gohmanaf752342009-07-07 17:06:11 +00005320 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
Dan Gohmana30370b2009-05-04 22:02:23 +00005321 if (const SCEVConstant *BTCC =
Dan Gohman0bddac12009-02-24 18:55:53 +00005322 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Chris Lattnerdd730472004-04-17 22:58:41 +00005323 // Okay, we know how many times the containing loop executes. If
5324 // this is a constant evolving PHI node, get the final value at
5325 // the specified iteration number.
5326 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman0bddac12009-02-24 18:55:53 +00005327 BTCC->getValue()->getValue(),
Chris Lattnerdd730472004-04-17 22:58:41 +00005328 LI);
Dan Gohman9d203c62009-06-29 21:31:18 +00005329 if (RV) return getSCEV(RV);
Chris Lattnerdd730472004-04-17 22:58:41 +00005330 }
5331 }
5332
Reid Spencere6328ca2006-12-04 21:33:23 +00005333 // Okay, this is an expression that we cannot symbolically evaluate
Chris Lattnerdd730472004-04-17 22:58:41 +00005334 // into a SCEV. Check to see if it's possible to symbolically evaluate
Reid Spencere6328ca2006-12-04 21:33:23 +00005335 // the arguments into constants, and if so, try to constant propagate the
Chris Lattnerdd730472004-04-17 22:58:41 +00005336 // result. This is particularly useful for computing loop exit values.
5337 if (CanConstantFold(I)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005338 SmallVector<Constant *, 4> Operands;
5339 bool MadeImprovement = false;
Chris Lattnerdd730472004-04-17 22:58:41 +00005340 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5341 Value *Op = I->getOperand(i);
5342 if (Constant *C = dyn_cast<Constant>(Op)) {
5343 Operands.push_back(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005344 continue;
Chris Lattnerdd730472004-04-17 22:58:41 +00005345 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005346
5347 // If any of the operands is non-constant and if they are
5348 // non-integer and non-pointer, don't even try to analyze them
5349 // with scev techniques.
5350 if (!isSCEVable(Op->getType()))
5351 return V;
5352
5353 const SCEV *OrigV = getSCEV(Op);
5354 const SCEV *OpV = getSCEVAtScope(OrigV, L);
5355 MadeImprovement |= OrigV != OpV;
5356
Nick Lewyckya6674c72011-10-22 19:58:20 +00005357 Constant *C = BuildConstantFromSCEV(OpV);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005358 if (!C) return V;
5359 if (C->getType() != Op->getType())
5360 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5361 Op->getType(),
5362 false),
5363 C, Op->getType());
5364 Operands.push_back(C);
Chris Lattnerdd730472004-04-17 22:58:41 +00005365 }
Dan Gohmance973df2009-06-24 04:48:43 +00005366
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005367 // Check to see if getSCEVAtScope actually made an improvement.
5368 if (MadeImprovement) {
5369 Constant *C = 0;
5370 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
5371 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005372 Operands[0], Operands[1], DL,
Chad Rosier43a33062011-12-02 01:26:24 +00005373 TLI);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005374 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5375 if (!LI->isVolatile())
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005376 C = ConstantFoldLoadFromConstPtr(Operands[0], DL);
Nick Lewyckya6674c72011-10-22 19:58:20 +00005377 } else
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005378 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
Rafael Espindola7c68beb2014-02-18 15:33:12 +00005379 Operands, DL, TLI);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005380 if (!C) return V;
Dan Gohman4aad7502010-02-24 19:31:47 +00005381 return getSCEV(C);
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005382 }
Chris Lattnerdd730472004-04-17 22:58:41 +00005383 }
5384 }
5385
5386 // This is some other type of SCEVUnknown, just return it.
5387 return V;
5388 }
5389
Dan Gohmana30370b2009-05-04 22:02:23 +00005390 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005391 // Avoid performing the look-up in the common case where the specified
5392 // expression has no loop-variant portions.
5393 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005394 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005395 if (OpAtScope != Comm->getOperand(i)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005396 // Okay, at least one of these operands is loop variant but might be
5397 // foldable. Build a new instance of the folded commutative expression.
Dan Gohmance973df2009-06-24 04:48:43 +00005398 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5399 Comm->op_begin()+i);
Chris Lattnerd934c702004-04-02 20:23:17 +00005400 NewOps.push_back(OpAtScope);
5401
5402 for (++i; i != e; ++i) {
5403 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
Chris Lattnerd934c702004-04-02 20:23:17 +00005404 NewOps.push_back(OpAtScope);
5405 }
5406 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005407 return getAddExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00005408 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005409 return getMulExpr(NewOps);
Nick Lewyckycdb7e542007-11-25 22:41:31 +00005410 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005411 return getSMaxExpr(NewOps);
Nick Lewycky1c44ebc2008-02-20 06:48:22 +00005412 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanc8e23622009-04-21 23:15:49 +00005413 return getUMaxExpr(NewOps);
Torok Edwinfbcc6632009-07-14 16:55:14 +00005414 llvm_unreachable("Unknown commutative SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00005415 }
5416 }
5417 // If we got here, all operands are loop invariant.
5418 return Comm;
5419 }
5420
Dan Gohmana30370b2009-05-04 22:02:23 +00005421 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005422 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5423 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
Nick Lewycky52348302009-01-13 09:18:58 +00005424 if (LHS == Div->getLHS() && RHS == Div->getRHS())
5425 return Div; // must be loop invariant
Dan Gohmanc8e23622009-04-21 23:15:49 +00005426 return getUDivExpr(LHS, RHS);
Chris Lattnerd934c702004-04-02 20:23:17 +00005427 }
5428
5429 // If this is a loop recurrence for a loop that does not contain L, then we
5430 // are dealing with the final value computed by the loop.
Dan Gohmana30370b2009-05-04 22:02:23 +00005431 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005432 // First, attempt to evaluate each operand.
5433 // Avoid performing the look-up in the common case where the specified
5434 // expression has no loop-variant portions.
5435 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5436 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5437 if (OpAtScope == AddRec->getOperand(i))
5438 continue;
5439
5440 // Okay, at least one of these operands is loop variant but might be
5441 // foldable. Build a new instance of the folded commutative expression.
5442 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
5443 AddRec->op_begin()+i);
5444 NewOps.push_back(OpAtScope);
5445 for (++i; i != e; ++i)
5446 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
5447
Andrew Trick759ba082011-04-27 01:21:25 +00005448 const SCEV *FoldedRec =
Andrew Trick8b55b732011-03-14 16:50:06 +00005449 getAddRecExpr(NewOps, AddRec->getLoop(),
Andrew Trick759ba082011-04-27 01:21:25 +00005450 AddRec->getNoWrapFlags(SCEV::FlagNW));
5451 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
Andrew Trick01eff822011-04-27 05:42:17 +00005452 // The addrec may be folded to a nonrecurrence, for example, if the
5453 // induction variable is multiplied by zero after constant folding. Go
5454 // ahead and return the folded value.
Andrew Trick759ba082011-04-27 01:21:25 +00005455 if (!AddRec)
5456 return FoldedRec;
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005457 break;
5458 }
5459
5460 // If the scope is outside the addrec's loop, evaluate it by using the
5461 // loop exit value of the addrec.
5462 if (!AddRec->getLoop()->contains(L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005463 // To evaluate this recurrence, we need to know how many times the AddRec
5464 // loop iterates. Compute this now.
Dan Gohmanaf752342009-07-07 17:06:11 +00005465 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005466 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
Misha Brukman01808ca2005-04-21 21:13:18 +00005467
Eli Friedman61f67622008-08-04 23:49:06 +00005468 // Then, evaluate the AddRec.
Dan Gohmanc8e23622009-04-21 23:15:49 +00005469 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Chris Lattnerd934c702004-04-02 20:23:17 +00005470 }
Dan Gohmanae36b1e2010-06-29 23:43:06 +00005471
Dan Gohman8ca08852009-05-24 23:25:42 +00005472 return AddRec;
Chris Lattnerd934c702004-04-02 20:23:17 +00005473 }
5474
Dan Gohmana30370b2009-05-04 22:02:23 +00005475 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005476 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00005477 if (Op == Cast->getOperand())
5478 return Cast; // must be loop invariant
5479 return getZeroExtendExpr(Op, Cast->getType());
5480 }
5481
Dan Gohmana30370b2009-05-04 22:02:23 +00005482 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005483 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00005484 if (Op == Cast->getOperand())
5485 return Cast; // must be loop invariant
5486 return getSignExtendExpr(Op, Cast->getType());
5487 }
5488
Dan Gohmana30370b2009-05-04 22:02:23 +00005489 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
Dan Gohmanaf752342009-07-07 17:06:11 +00005490 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
Dan Gohman0098d012009-04-29 22:29:01 +00005491 if (Op == Cast->getOperand())
5492 return Cast; // must be loop invariant
5493 return getTruncateExpr(Op, Cast->getType());
5494 }
5495
Torok Edwinfbcc6632009-07-14 16:55:14 +00005496 llvm_unreachable("Unknown SCEV type!");
Chris Lattnerd934c702004-04-02 20:23:17 +00005497}
5498
Dan Gohmanb81f47d2009-05-08 20:38:54 +00005499/// getSCEVAtScope - This is a convenience function which does
5500/// getSCEVAtScope(getSCEV(V), L).
Dan Gohmanaf752342009-07-07 17:06:11 +00005501const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00005502 return getSCEVAtScope(getSCEV(V), L);
5503}
5504
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005505/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5506/// following equation:
5507///
5508/// A * X = B (mod N)
5509///
5510/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5511/// A and B isn't important.
5512///
5513/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00005514static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005515 ScalarEvolution &SE) {
5516 uint32_t BW = A.getBitWidth();
5517 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5518 assert(A != 0 && "A must be non-zero.");
5519
5520 // 1. D = gcd(A, N)
5521 //
5522 // The gcd of A and N may have only one prime factor: 2. The number of
5523 // trailing zeros in A is its multiplicity
5524 uint32_t Mult2 = A.countTrailingZeros();
5525 // D = 2^Mult2
5526
5527 // 2. Check if B is divisible by D.
5528 //
5529 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5530 // is not less than multiplicity of this prime factor for D.
5531 if (B.countTrailingZeros() < Mult2)
Dan Gohman31efa302009-04-18 17:58:19 +00005532 return SE.getCouldNotCompute();
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005533
5534 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5535 // modulo (N / D).
5536 //
5537 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
5538 // bit width during computations.
5539 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
5540 APInt Mod(BW + 1, 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00005541 Mod.setBit(BW - Mult2); // Mod = N / D
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00005542 APInt I = AD.multiplicativeInverse(Mod);
5543
5544 // 4. Compute the minimum unsigned root of the equation:
5545 // I * (B / D) mod (N / D)
5546 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5547
5548 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5549 // bits.
5550 return SE.getConstant(Result.trunc(BW));
5551}
Chris Lattnerd934c702004-04-02 20:23:17 +00005552
5553/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5554/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
5555/// might be the same) or two SCEVCouldNotCompute objects.
5556///
Dan Gohmanaf752342009-07-07 17:06:11 +00005557static std::pair<const SCEV *,const SCEV *>
Dan Gohmana37eaf22007-10-22 18:31:58 +00005558SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005559 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
Dan Gohman48f82222009-05-04 22:30:44 +00005560 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5561 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5562 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
Misha Brukman01808ca2005-04-21 21:13:18 +00005563
Chris Lattnerd934c702004-04-02 20:23:17 +00005564 // We currently can only solve this if the coefficients are constants.
Reid Spencer983e3b32007-03-01 07:25:48 +00005565 if (!LC || !MC || !NC) {
Dan Gohman48f82222009-05-04 22:30:44 +00005566 const SCEV *CNC = SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005567 return std::make_pair(CNC, CNC);
5568 }
5569
Reid Spencer983e3b32007-03-01 07:25:48 +00005570 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
Chris Lattnercad61e82007-04-15 19:52:49 +00005571 const APInt &L = LC->getValue()->getValue();
5572 const APInt &M = MC->getValue()->getValue();
5573 const APInt &N = NC->getValue()->getValue();
Reid Spencer983e3b32007-03-01 07:25:48 +00005574 APInt Two(BitWidth, 2);
5575 APInt Four(BitWidth, 4);
Misha Brukman01808ca2005-04-21 21:13:18 +00005576
Dan Gohmance973df2009-06-24 04:48:43 +00005577 {
Reid Spencer983e3b32007-03-01 07:25:48 +00005578 using namespace APIntOps;
Zhou Sheng2852d992007-04-07 17:48:27 +00005579 const APInt& C = L;
Reid Spencer983e3b32007-03-01 07:25:48 +00005580 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
5581 // The B coefficient is M-N/2
5582 APInt B(M);
5583 B -= sdiv(N,Two);
Misha Brukman01808ca2005-04-21 21:13:18 +00005584
Reid Spencer983e3b32007-03-01 07:25:48 +00005585 // The A coefficient is N/2
Zhou Sheng2852d992007-04-07 17:48:27 +00005586 APInt A(N.sdiv(Two));
Chris Lattnerd934c702004-04-02 20:23:17 +00005587
Reid Spencer983e3b32007-03-01 07:25:48 +00005588 // Compute the B^2-4ac term.
5589 APInt SqrtTerm(B);
5590 SqrtTerm *= B;
5591 SqrtTerm -= Four * (A * C);
Chris Lattnerd934c702004-04-02 20:23:17 +00005592
Nick Lewyckyfb780832012-08-01 09:14:36 +00005593 if (SqrtTerm.isNegative()) {
5594 // The loop is provably infinite.
5595 const SCEV *CNC = SE.getCouldNotCompute();
5596 return std::make_pair(CNC, CNC);
5597 }
5598
Reid Spencer983e3b32007-03-01 07:25:48 +00005599 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
5600 // integer value or else APInt::sqrt() will assert.
5601 APInt SqrtVal(SqrtTerm.sqrt());
Misha Brukman01808ca2005-04-21 21:13:18 +00005602
Dan Gohmance973df2009-06-24 04:48:43 +00005603 // Compute the two solutions for the quadratic formula.
Reid Spencer983e3b32007-03-01 07:25:48 +00005604 // The divisions must be performed as signed divisions.
5605 APInt NegB(-B);
Nick Lewycky31555522011-10-03 07:10:45 +00005606 APInt TwoA(A << 1);
Nick Lewycky7b14e202008-11-03 02:43:49 +00005607 if (TwoA.isMinValue()) {
Dan Gohman48f82222009-05-04 22:30:44 +00005608 const SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky7b14e202008-11-03 02:43:49 +00005609 return std::make_pair(CNC, CNC);
5610 }
5611
Owen Anderson47db9412009-07-22 00:24:57 +00005612 LLVMContext &Context = SE.getContext();
Owen Andersonf1f17432009-07-06 22:37:39 +00005613
5614 ConstantInt *Solution1 =
Owen Andersonedb4a702009-07-24 23:12:02 +00005615 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
Owen Andersonf1f17432009-07-06 22:37:39 +00005616 ConstantInt *Solution2 =
Owen Andersonedb4a702009-07-24 23:12:02 +00005617 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
Misha Brukman01808ca2005-04-21 21:13:18 +00005618
Dan Gohmance973df2009-06-24 04:48:43 +00005619 return std::make_pair(SE.getConstant(Solution1),
Dan Gohmana37eaf22007-10-22 18:31:58 +00005620 SE.getConstant(Solution2));
Nick Lewycky31555522011-10-03 07:10:45 +00005621 } // end APIntOps namespace
Chris Lattnerd934c702004-04-02 20:23:17 +00005622}
5623
5624/// HowFarToZero - Return the number of times a backedge comparing the specified
Dan Gohman4c720c02009-06-06 14:37:11 +00005625/// value to zero will execute. If not computable, return CouldNotCompute.
Andrew Trick8b55b732011-03-14 16:50:06 +00005626///
5627/// This is only used for loops with a "x != y" exit test. The exit condition is
5628/// now expressed as a single expression, V = x-y. So the exit test is
5629/// effectively V != 0. We know and take advantage of the fact that this
5630/// expression only being used in a comparison by zero context.
Andrew Trick3ca3f982011-07-26 17:19:55 +00005631ScalarEvolution::ExitLimit
Andrew Trick5b245a12013-05-31 06:43:25 +00005632ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005633 // If the value is a constant
Dan Gohmana30370b2009-05-04 22:02:23 +00005634 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005635 // If the value is already zero, the branch will execute zero times.
Reid Spencer2e54a152007-03-02 00:28:52 +00005636 if (C->getValue()->isZero()) return C;
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005637 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00005638 }
5639
Dan Gohman48f82222009-05-04 22:30:44 +00005640 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
Chris Lattnerd934c702004-04-02 20:23:17 +00005641 if (!AddRec || AddRec->getLoop() != L)
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005642 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005643
Chris Lattnerdff679f2011-01-09 22:39:48 +00005644 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
5645 // the quadratic equation to solve it.
5646 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
5647 std::pair<const SCEV *,const SCEV *> Roots =
5648 SolveQuadraticEquation(AddRec, *this);
Dan Gohman48f82222009-05-04 22:30:44 +00005649 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5650 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerdff679f2011-01-09 22:39:48 +00005651 if (R1 && R2) {
Chris Lattner09169212004-04-02 20:26:46 +00005652#if 0
David Greenedf1c4972009-12-23 22:18:14 +00005653 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
Dan Gohmane20f8242009-04-21 00:47:46 +00005654 << " sol#2: " << *R2 << "\n";
Chris Lattner09169212004-04-02 20:26:46 +00005655#endif
Chris Lattnerd934c702004-04-02 20:23:17 +00005656 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00005657 if (ConstantInt *CB =
Chris Lattner28f140a2011-01-09 22:58:47 +00005658 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
5659 R1->getValue(),
5660 R2->getValue()))) {
Reid Spencercddc9df2007-01-12 04:24:46 +00005661 if (CB->getZExtValue() == false)
Chris Lattnerd934c702004-04-02 20:23:17 +00005662 std::swap(R1, R2); // R1 is the minimum root now.
Andrew Trick2a3b7162011-03-09 17:23:39 +00005663
Chris Lattnerd934c702004-04-02 20:23:17 +00005664 // We can only use this value if the chrec ends up with an exact zero
5665 // value at this index. When solving for "X*X != 5", for example, we
5666 // should not accept a root of 2.
Dan Gohmanaf752342009-07-07 17:06:11 +00005667 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohmanbe928e32008-06-18 16:23:07 +00005668 if (Val->isZero())
5669 return R1; // We found a quadratic root!
Chris Lattnerd934c702004-04-02 20:23:17 +00005670 }
5671 }
Chris Lattnerdff679f2011-01-09 22:39:48 +00005672 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005673 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005674
Chris Lattnerdff679f2011-01-09 22:39:48 +00005675 // Otherwise we can only handle this if it is affine.
5676 if (!AddRec->isAffine())
5677 return getCouldNotCompute();
5678
5679 // If this is an affine expression, the execution count of this branch is
5680 // the minimum unsigned root of the following equation:
5681 //
5682 // Start + Step*N = 0 (mod 2^BW)
5683 //
5684 // equivalent to:
5685 //
5686 // Step*N = -Start (mod 2^BW)
5687 //
5688 // where BW is the common bit width of Start and Step.
5689
5690 // Get the initial value for the loop.
5691 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
5692 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
5693
5694 // For now we handle only constant steps.
Andrew Trick8b55b732011-03-14 16:50:06 +00005695 //
5696 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
5697 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
5698 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
5699 // We have not yet seen any such cases.
Chris Lattnerdff679f2011-01-09 22:39:48 +00005700 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
Nick Lewycky474112d2012-06-28 23:44:57 +00005701 if (StepC == 0 || StepC->getValue()->equalsInt(0))
Chris Lattnerdff679f2011-01-09 22:39:48 +00005702 return getCouldNotCompute();
5703
Andrew Trick8b55b732011-03-14 16:50:06 +00005704 // For positive steps (counting up until unsigned overflow):
5705 // N = -Start/Step (as unsigned)
5706 // For negative steps (counting down to zero):
5707 // N = Start/-Step
5708 // First compute the unsigned distance from zero in the direction of Step.
Andrew Trickf1781db2011-03-14 17:28:02 +00005709 bool CountDown = StepC->getValue()->getValue().isNegative();
5710 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
Andrew Trick8b55b732011-03-14 16:50:06 +00005711
5712 // Handle unitary steps, which cannot wraparound.
Andrew Trickf1781db2011-03-14 17:28:02 +00005713 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
5714 // N = Distance (as unsigned)
Nick Lewycky31555522011-10-03 07:10:45 +00005715 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
5716 ConstantRange CR = getUnsignedRange(Start);
5717 const SCEV *MaxBECount;
5718 if (!CountDown && CR.getUnsignedMin().isMinValue())
5719 // When counting up, the worst starting value is 1, not 0.
5720 MaxBECount = CR.getUnsignedMax().isMinValue()
5721 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
5722 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
5723 else
5724 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
5725 : -CR.getUnsignedMin());
Andrew Trickee5aa7f2014-01-15 06:42:11 +00005726 return ExitLimit(Distance, MaxBECount, /*MustExit=*/true);
Nick Lewycky31555522011-10-03 07:10:45 +00005727 }
Andrew Trick2a3b7162011-03-09 17:23:39 +00005728
Andrew Trickf1781db2011-03-14 17:28:02 +00005729 // If the recurrence is known not to wraparound, unsigned divide computes the
Andrew Trick5b245a12013-05-31 06:43:25 +00005730 // back edge count. (Ideally we would have an "isexact" bit for udiv). We know
5731 // that the value will either become zero (and thus the loop terminates), that
5732 // the loop will terminate through some other exit condition first, or that
5733 // the loop has undefined behavior. This means we can't "miss" the exit
Andrew Trickee5aa7f2014-01-15 06:42:11 +00005734 // value, even with nonunit stride, and exit later via the same branch. Note
5735 // that we can skip this exit if loop later exits via a different
5736 // branch. Hence MustExit=false.
Andrew Trickf1781db2011-03-14 17:28:02 +00005737 //
Andrew Trick5b245a12013-05-31 06:43:25 +00005738 // This is only valid for expressions that directly compute the loop exit. It
5739 // is invalid for subexpressions in which the loop may exit through this
5740 // branch even if this subexpression is false. In that case, the trip count
5741 // computed by this udiv could be smaller than the number of well-defined
5742 // iterations.
Andrew Trickee5aa7f2014-01-15 06:42:11 +00005743 if (!IsSubExpr && AddRec->getNoWrapFlags(SCEV::FlagNW)) {
5744 const SCEV *Exact =
5745 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
5746 return ExitLimit(Exact, Exact, /*MustExit=*/false);
5747 }
Chris Lattnerdff679f2011-01-09 22:39:48 +00005748 // Then, try to solve the above equation provided that Start is constant.
5749 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
5750 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
5751 -StartC->getValue()->getValue(),
5752 *this);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005753 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005754}
5755
5756/// HowFarToNonZero - Return the number of times a backedge checking the
5757/// specified value for nonzero will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00005758/// CouldNotCompute
Andrew Trick3ca3f982011-07-26 17:19:55 +00005759ScalarEvolution::ExitLimit
Dan Gohmanba820342010-02-24 17:31:30 +00005760ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
Chris Lattnerd934c702004-04-02 20:23:17 +00005761 // Loops that look like: while (X == 0) are very strange indeed. We don't
5762 // handle them yet except for the trivial case. This could be expanded in the
5763 // future as needed.
Misha Brukman01808ca2005-04-21 21:13:18 +00005764
Chris Lattnerd934c702004-04-02 20:23:17 +00005765 // If the value is a constant, check to see if it is known to be non-zero
5766 // already. If so, the backedge will execute zero times.
Dan Gohmana30370b2009-05-04 22:02:23 +00005767 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewycky5a3db142008-02-21 09:14:53 +00005768 if (!C->getValue()->isNullValue())
Dan Gohman1d2ded72010-05-03 22:09:21 +00005769 return getConstant(C->getType(), 0);
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005770 return getCouldNotCompute(); // Otherwise it will loop infinitely.
Chris Lattnerd934c702004-04-02 20:23:17 +00005771 }
Misha Brukman01808ca2005-04-21 21:13:18 +00005772
Chris Lattnerd934c702004-04-02 20:23:17 +00005773 // We could implement others, but I really doubt anyone writes loops like
5774 // this, and if they did, they would already be constant folded.
Dan Gohmanc5c85c02009-06-27 21:21:31 +00005775 return getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00005776}
5777
Dan Gohmanf9081a22008-09-15 22:18:04 +00005778/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
5779/// (which may not be an immediate predecessor) which has exactly one
5780/// successor from which BB is reachable, or null if no such block is
5781/// found.
5782///
Dan Gohman4e3c1132010-04-15 16:19:08 +00005783std::pair<BasicBlock *, BasicBlock *>
Dan Gohmanc8e23622009-04-21 23:15:49 +00005784ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohmanfa066ef2009-04-30 20:48:53 +00005785 // If the block has a unique predecessor, then there is no path from the
5786 // predecessor to the block that does not go through the direct edge
5787 // from the predecessor to the block.
Dan Gohmanf9081a22008-09-15 22:18:04 +00005788 if (BasicBlock *Pred = BB->getSinglePredecessor())
Dan Gohman4e3c1132010-04-15 16:19:08 +00005789 return std::make_pair(Pred, BB);
Dan Gohmanf9081a22008-09-15 22:18:04 +00005790
5791 // A loop's header is defined to be a block that dominates the loop.
Dan Gohman8c77f1a2009-05-18 15:36:09 +00005792 // If the header has a unique predecessor outside the loop, it must be
5793 // a block that has exactly one successor that can reach the loop.
Dan Gohmanc8e23622009-04-21 23:15:49 +00005794 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman75c6b0b2010-06-22 23:43:28 +00005795 return std::make_pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohmanf9081a22008-09-15 22:18:04 +00005796
Dan Gohman4e3c1132010-04-15 16:19:08 +00005797 return std::pair<BasicBlock *, BasicBlock *>();
Dan Gohmanf9081a22008-09-15 22:18:04 +00005798}
5799
Dan Gohman450f4e02009-06-20 00:35:32 +00005800/// HasSameValue - SCEV structural equivalence is usually sufficient for
5801/// testing whether two expressions are equal, however for the purposes of
5802/// looking for a condition guarding a loop, it can be useful to be a little
5803/// more general, since a front-end may have replicated the controlling
5804/// expression.
5805///
Dan Gohmanaf752342009-07-07 17:06:11 +00005806static bool HasSameValue(const SCEV *A, const SCEV *B) {
Dan Gohman450f4e02009-06-20 00:35:32 +00005807 // Quick check to see if they are the same SCEV.
5808 if (A == B) return true;
5809
5810 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
5811 // two different instructions with the same value. Check for this case.
5812 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
5813 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
5814 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
5815 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
Dan Gohman2d085562009-08-25 17:56:57 +00005816 if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
Dan Gohman450f4e02009-06-20 00:35:32 +00005817 return true;
5818
5819 // Otherwise assume they may have a different value.
5820 return false;
5821}
5822
Dan Gohman48ff3cf2010-04-24 01:28:42 +00005823/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +00005824/// predicate Pred. Return true iff any changes were made.
Dan Gohman48ff3cf2010-04-24 01:28:42 +00005825///
5826bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00005827 const SCEV *&LHS, const SCEV *&RHS,
5828 unsigned Depth) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00005829 bool Changed = false;
5830
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00005831 // If we hit the max recursion limit bail out.
5832 if (Depth >= 3)
5833 return false;
5834
Dan Gohman48ff3cf2010-04-24 01:28:42 +00005835 // Canonicalize a constant to the right side.
5836 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
5837 // Check for both operands constant.
5838 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
5839 if (ConstantExpr::getICmp(Pred,
5840 LHSC->getValue(),
5841 RHSC->getValue())->isNullValue())
5842 goto trivially_false;
5843 else
5844 goto trivially_true;
5845 }
5846 // Otherwise swap the operands to put the constant on the right.
5847 std::swap(LHS, RHS);
5848 Pred = ICmpInst::getSwappedPredicate(Pred);
5849 Changed = true;
5850 }
5851
5852 // If we're comparing an addrec with a value which is loop-invariant in the
Dan Gohmandf564ca2010-05-03 17:00:11 +00005853 // addrec's loop, put the addrec on the left. Also make a dominance check,
5854 // as both operands could be addrecs loop-invariant in each other's loop.
5855 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5856 const Loop *L = AR->getLoop();
Dan Gohman20d9ce22010-11-17 21:41:58 +00005857 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
Dan Gohman48ff3cf2010-04-24 01:28:42 +00005858 std::swap(LHS, RHS);
5859 Pred = ICmpInst::getSwappedPredicate(Pred);
5860 Changed = true;
5861 }
Dan Gohmandf564ca2010-05-03 17:00:11 +00005862 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00005863
5864 // If there's a constant operand, canonicalize comparisons with boundary
5865 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5866 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5867 const APInt &RA = RC->getValue()->getValue();
5868 switch (Pred) {
5869 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5870 case ICmpInst::ICMP_EQ:
5871 case ICmpInst::ICMP_NE:
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00005872 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
5873 if (!RA)
5874 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
5875 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
Benjamin Kramer406a2db2012-05-30 18:42:43 +00005876 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
5877 ME->getOperand(0)->isAllOnesValue()) {
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00005878 RHS = AE->getOperand(1);
5879 LHS = ME->getOperand(1);
5880 Changed = true;
5881 }
Dan Gohman48ff3cf2010-04-24 01:28:42 +00005882 break;
5883 case ICmpInst::ICMP_UGE:
5884 if ((RA - 1).isMinValue()) {
5885 Pred = ICmpInst::ICMP_NE;
5886 RHS = getConstant(RA - 1);
5887 Changed = true;
5888 break;
5889 }
5890 if (RA.isMaxValue()) {
5891 Pred = ICmpInst::ICMP_EQ;
5892 Changed = true;
5893 break;
5894 }
5895 if (RA.isMinValue()) goto trivially_true;
5896
5897 Pred = ICmpInst::ICMP_UGT;
5898 RHS = getConstant(RA - 1);
5899 Changed = true;
5900 break;
5901 case ICmpInst::ICMP_ULE:
5902 if ((RA + 1).isMaxValue()) {
5903 Pred = ICmpInst::ICMP_NE;
5904 RHS = getConstant(RA + 1);
5905 Changed = true;
5906 break;
5907 }
5908 if (RA.isMinValue()) {
5909 Pred = ICmpInst::ICMP_EQ;
5910 Changed = true;
5911 break;
5912 }
5913 if (RA.isMaxValue()) goto trivially_true;
5914
5915 Pred = ICmpInst::ICMP_ULT;
5916 RHS = getConstant(RA + 1);
5917 Changed = true;
5918 break;
5919 case ICmpInst::ICMP_SGE:
5920 if ((RA - 1).isMinSignedValue()) {
5921 Pred = ICmpInst::ICMP_NE;
5922 RHS = getConstant(RA - 1);
5923 Changed = true;
5924 break;
5925 }
5926 if (RA.isMaxSignedValue()) {
5927 Pred = ICmpInst::ICMP_EQ;
5928 Changed = true;
5929 break;
5930 }
5931 if (RA.isMinSignedValue()) goto trivially_true;
5932
5933 Pred = ICmpInst::ICMP_SGT;
5934 RHS = getConstant(RA - 1);
5935 Changed = true;
5936 break;
5937 case ICmpInst::ICMP_SLE:
5938 if ((RA + 1).isMaxSignedValue()) {
5939 Pred = ICmpInst::ICMP_NE;
5940 RHS = getConstant(RA + 1);
5941 Changed = true;
5942 break;
5943 }
5944 if (RA.isMinSignedValue()) {
5945 Pred = ICmpInst::ICMP_EQ;
5946 Changed = true;
5947 break;
5948 }
5949 if (RA.isMaxSignedValue()) goto trivially_true;
5950
5951 Pred = ICmpInst::ICMP_SLT;
5952 RHS = getConstant(RA + 1);
5953 Changed = true;
5954 break;
5955 case ICmpInst::ICMP_UGT:
5956 if (RA.isMinValue()) {
5957 Pred = ICmpInst::ICMP_NE;
5958 Changed = true;
5959 break;
5960 }
5961 if ((RA + 1).isMaxValue()) {
5962 Pred = ICmpInst::ICMP_EQ;
5963 RHS = getConstant(RA + 1);
5964 Changed = true;
5965 break;
5966 }
5967 if (RA.isMaxValue()) goto trivially_false;
5968 break;
5969 case ICmpInst::ICMP_ULT:
5970 if (RA.isMaxValue()) {
5971 Pred = ICmpInst::ICMP_NE;
5972 Changed = true;
5973 break;
5974 }
5975 if ((RA - 1).isMinValue()) {
5976 Pred = ICmpInst::ICMP_EQ;
5977 RHS = getConstant(RA - 1);
5978 Changed = true;
5979 break;
5980 }
5981 if (RA.isMinValue()) goto trivially_false;
5982 break;
5983 case ICmpInst::ICMP_SGT:
5984 if (RA.isMinSignedValue()) {
5985 Pred = ICmpInst::ICMP_NE;
5986 Changed = true;
5987 break;
5988 }
5989 if ((RA + 1).isMaxSignedValue()) {
5990 Pred = ICmpInst::ICMP_EQ;
5991 RHS = getConstant(RA + 1);
5992 Changed = true;
5993 break;
5994 }
5995 if (RA.isMaxSignedValue()) goto trivially_false;
5996 break;
5997 case ICmpInst::ICMP_SLT:
5998 if (RA.isMaxSignedValue()) {
5999 Pred = ICmpInst::ICMP_NE;
6000 Changed = true;
6001 break;
6002 }
6003 if ((RA - 1).isMinSignedValue()) {
6004 Pred = ICmpInst::ICMP_EQ;
6005 RHS = getConstant(RA - 1);
6006 Changed = true;
6007 break;
6008 }
6009 if (RA.isMinSignedValue()) goto trivially_false;
6010 break;
6011 }
6012 }
6013
6014 // Check for obvious equality.
6015 if (HasSameValue(LHS, RHS)) {
6016 if (ICmpInst::isTrueWhenEqual(Pred))
6017 goto trivially_true;
6018 if (ICmpInst::isFalseWhenEqual(Pred))
6019 goto trivially_false;
6020 }
6021
Dan Gohman81585c12010-05-03 16:35:17 +00006022 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
6023 // adding or subtracting 1 from one of the operands.
6024 switch (Pred) {
6025 case ICmpInst::ICMP_SLE:
6026 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
6027 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006028 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006029 Pred = ICmpInst::ICMP_SLT;
6030 Changed = true;
6031 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006032 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006033 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006034 Pred = ICmpInst::ICMP_SLT;
6035 Changed = true;
6036 }
6037 break;
6038 case ICmpInst::ICMP_SGE:
6039 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006040 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006041 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006042 Pred = ICmpInst::ICMP_SGT;
6043 Changed = true;
6044 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
6045 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006046 SCEV::FlagNSW);
Dan Gohman81585c12010-05-03 16:35:17 +00006047 Pred = ICmpInst::ICMP_SGT;
6048 Changed = true;
6049 }
6050 break;
6051 case ICmpInst::ICMP_ULE:
6052 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006053 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006054 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006055 Pred = ICmpInst::ICMP_ULT;
6056 Changed = true;
6057 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006058 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006059 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006060 Pred = ICmpInst::ICMP_ULT;
6061 Changed = true;
6062 }
6063 break;
6064 case ICmpInst::ICMP_UGE:
6065 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006066 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006067 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006068 Pred = ICmpInst::ICMP_UGT;
6069 Changed = true;
6070 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
Dan Gohman267700c2010-05-03 20:23:47 +00006071 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
Andrew Trick8b55b732011-03-14 16:50:06 +00006072 SCEV::FlagNUW);
Dan Gohman81585c12010-05-03 16:35:17 +00006073 Pred = ICmpInst::ICMP_UGT;
6074 Changed = true;
6075 }
6076 break;
6077 default:
6078 break;
6079 }
6080
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006081 // TODO: More simplifications are possible here.
6082
Benjamin Kramer50b26eb2012-05-30 18:32:23 +00006083 // Recursively simplify until we either hit a recursion limit or nothing
6084 // changes.
6085 if (Changed)
6086 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
6087
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006088 return Changed;
6089
6090trivially_true:
6091 // Return 0 == 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00006092 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006093 Pred = ICmpInst::ICMP_EQ;
6094 return true;
6095
6096trivially_false:
6097 // Return 0 != 0.
Benjamin Kramerddd1b7b2010-11-20 18:43:35 +00006098 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
Dan Gohman48ff3cf2010-04-24 01:28:42 +00006099 Pred = ICmpInst::ICMP_NE;
6100 return true;
6101}
6102
Dan Gohmane65c9172009-07-13 21:35:55 +00006103bool ScalarEvolution::isKnownNegative(const SCEV *S) {
6104 return getSignedRange(S).getSignedMax().isNegative();
6105}
6106
6107bool ScalarEvolution::isKnownPositive(const SCEV *S) {
6108 return getSignedRange(S).getSignedMin().isStrictlyPositive();
6109}
6110
6111bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
6112 return !getSignedRange(S).getSignedMin().isNegative();
6113}
6114
6115bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
6116 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
6117}
6118
6119bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
6120 return isKnownNegative(S) || isKnownPositive(S);
6121}
6122
6123bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
6124 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman36cce7e2010-04-24 01:38:36 +00006125 // Canonicalize the inputs first.
6126 (void)SimplifyICmpOperands(Pred, LHS, RHS);
6127
Dan Gohman07591692010-04-11 22:16:48 +00006128 // If LHS or RHS is an addrec, check to see if the condition is true in
6129 // every iteration of the loop.
6130 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
6131 if (isLoopEntryGuardedByCond(
6132 AR->getLoop(), Pred, AR->getStart(), RHS) &&
6133 isLoopBackedgeGuardedByCond(
Dan Gohman70a3b122010-05-04 01:12:27 +00006134 AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
Dan Gohman07591692010-04-11 22:16:48 +00006135 return true;
6136 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
6137 if (isLoopEntryGuardedByCond(
6138 AR->getLoop(), Pred, LHS, AR->getStart()) &&
6139 isLoopBackedgeGuardedByCond(
Dan Gohman70a3b122010-05-04 01:12:27 +00006140 AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
Dan Gohman07591692010-04-11 22:16:48 +00006141 return true;
Dan Gohmane65c9172009-07-13 21:35:55 +00006142
Dan Gohman07591692010-04-11 22:16:48 +00006143 // Otherwise see what can be done with known constant ranges.
6144 return isKnownPredicateWithRanges(Pred, LHS, RHS);
6145}
6146
6147bool
6148ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
6149 const SCEV *LHS, const SCEV *RHS) {
Dan Gohmane65c9172009-07-13 21:35:55 +00006150 if (HasSameValue(LHS, RHS))
6151 return ICmpInst::isTrueWhenEqual(Pred);
6152
Dan Gohman07591692010-04-11 22:16:48 +00006153 // This code is split out from isKnownPredicate because it is called from
6154 // within isLoopEntryGuardedByCond.
Dan Gohmane65c9172009-07-13 21:35:55 +00006155 switch (Pred) {
6156 default:
Dan Gohman8c129d72009-07-16 17:34:36 +00006157 llvm_unreachable("Unexpected ICmpInst::Predicate value!");
Dan Gohmane65c9172009-07-13 21:35:55 +00006158 case ICmpInst::ICMP_SGT:
6159 Pred = ICmpInst::ICMP_SLT;
6160 std::swap(LHS, RHS);
6161 case ICmpInst::ICMP_SLT: {
6162 ConstantRange LHSRange = getSignedRange(LHS);
6163 ConstantRange RHSRange = getSignedRange(RHS);
6164 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
6165 return true;
6166 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
6167 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006168 break;
6169 }
6170 case ICmpInst::ICMP_SGE:
6171 Pred = ICmpInst::ICMP_SLE;
6172 std::swap(LHS, RHS);
6173 case ICmpInst::ICMP_SLE: {
6174 ConstantRange LHSRange = getSignedRange(LHS);
6175 ConstantRange RHSRange = getSignedRange(RHS);
6176 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
6177 return true;
6178 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
6179 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006180 break;
6181 }
6182 case ICmpInst::ICMP_UGT:
6183 Pred = ICmpInst::ICMP_ULT;
6184 std::swap(LHS, RHS);
6185 case ICmpInst::ICMP_ULT: {
6186 ConstantRange LHSRange = getUnsignedRange(LHS);
6187 ConstantRange RHSRange = getUnsignedRange(RHS);
6188 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
6189 return true;
6190 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
6191 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006192 break;
6193 }
6194 case ICmpInst::ICMP_UGE:
6195 Pred = ICmpInst::ICMP_ULE;
6196 std::swap(LHS, RHS);
6197 case ICmpInst::ICMP_ULE: {
6198 ConstantRange LHSRange = getUnsignedRange(LHS);
6199 ConstantRange RHSRange = getUnsignedRange(RHS);
6200 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
6201 return true;
6202 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
6203 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006204 break;
6205 }
6206 case ICmpInst::ICMP_NE: {
6207 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
6208 return true;
6209 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
6210 return true;
6211
6212 const SCEV *Diff = getMinusSCEV(LHS, RHS);
6213 if (isKnownNonZero(Diff))
6214 return true;
6215 break;
6216 }
6217 case ICmpInst::ICMP_EQ:
Dan Gohman34392622009-07-20 23:54:43 +00006218 // The check at the top of the function catches the case where
6219 // the values are known to be equal.
Dan Gohmane65c9172009-07-13 21:35:55 +00006220 break;
6221 }
6222 return false;
6223}
6224
6225/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
6226/// protected by a conditional between LHS and RHS. This is used to
6227/// to eliminate casts.
6228bool
6229ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
6230 ICmpInst::Predicate Pred,
6231 const SCEV *LHS, const SCEV *RHS) {
6232 // Interpret a null as meaning no loop, where there is obviously no guard
6233 // (interprocedural conditions notwithstanding).
6234 if (!L) return true;
6235
6236 BasicBlock *Latch = L->getLoopLatch();
6237 if (!Latch)
6238 return false;
6239
6240 BranchInst *LoopContinuePredicate =
6241 dyn_cast<BranchInst>(Latch->getTerminator());
6242 if (!LoopContinuePredicate ||
6243 LoopContinuePredicate->isUnconditional())
6244 return false;
6245
Dan Gohmane18c2d62010-08-10 23:46:30 +00006246 return isImpliedCond(Pred, LHS, RHS,
6247 LoopContinuePredicate->getCondition(),
Dan Gohman430f0cc2009-07-21 23:03:19 +00006248 LoopContinuePredicate->getSuccessor(0) != L->getHeader());
Dan Gohmane65c9172009-07-13 21:35:55 +00006249}
6250
Dan Gohmanb50349a2010-04-11 19:27:13 +00006251/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
Dan Gohmane65c9172009-07-13 21:35:55 +00006252/// by a conditional between LHS and RHS. This is used to help avoid max
6253/// expressions in loop trip counts, and to eliminate casts.
6254bool
Dan Gohmanb50349a2010-04-11 19:27:13 +00006255ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
6256 ICmpInst::Predicate Pred,
6257 const SCEV *LHS, const SCEV *RHS) {
Dan Gohman9cf09f82009-05-18 16:03:58 +00006258 // Interpret a null as meaning no loop, where there is obviously no guard
6259 // (interprocedural conditions notwithstanding).
6260 if (!L) return false;
6261
Dan Gohman8c77f1a2009-05-18 15:36:09 +00006262 // Starting at the loop predecessor, climb up the predecessor chain, as long
6263 // as there are predecessors that can be found that have unique successors
Dan Gohmanf9081a22008-09-15 22:18:04 +00006264 // leading to the original header.
Dan Gohman4e3c1132010-04-15 16:19:08 +00006265 for (std::pair<BasicBlock *, BasicBlock *>
Dan Gohman75c6b0b2010-06-22 23:43:28 +00006266 Pair(L->getLoopPredecessor(), L->getHeader());
Dan Gohman4e3c1132010-04-15 16:19:08 +00006267 Pair.first;
6268 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
Dan Gohman2a62fd92008-08-12 20:17:31 +00006269
6270 BranchInst *LoopEntryPredicate =
Dan Gohman4e3c1132010-04-15 16:19:08 +00006271 dyn_cast<BranchInst>(Pair.first->getTerminator());
Dan Gohman2a62fd92008-08-12 20:17:31 +00006272 if (!LoopEntryPredicate ||
6273 LoopEntryPredicate->isUnconditional())
6274 continue;
6275
Dan Gohmane18c2d62010-08-10 23:46:30 +00006276 if (isImpliedCond(Pred, LHS, RHS,
6277 LoopEntryPredicate->getCondition(),
Dan Gohman4e3c1132010-04-15 16:19:08 +00006278 LoopEntryPredicate->getSuccessor(0) != Pair.second))
Dan Gohman2a62fd92008-08-12 20:17:31 +00006279 return true;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00006280 }
6281
Dan Gohman2a62fd92008-08-12 20:17:31 +00006282 return false;
Nick Lewyckyb5688cc2008-07-12 07:41:32 +00006283}
6284
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00006285/// RAII wrapper to prevent recursive application of isImpliedCond.
6286/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
6287/// currently evaluating isImpliedCond.
6288struct MarkPendingLoopPredicate {
6289 Value *Cond;
6290 DenseSet<Value*> &LoopPreds;
6291 bool Pending;
6292
6293 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
6294 : Cond(C), LoopPreds(LP) {
6295 Pending = !LoopPreds.insert(Cond).second;
6296 }
6297 ~MarkPendingLoopPredicate() {
6298 if (!Pending)
6299 LoopPreds.erase(Cond);
6300 }
6301};
6302
Dan Gohman430f0cc2009-07-21 23:03:19 +00006303/// isImpliedCond - Test whether the condition described by Pred, LHS,
6304/// and RHS is true whenever the given Cond value evaluates to true.
Dan Gohmane18c2d62010-08-10 23:46:30 +00006305bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006306 const SCEV *LHS, const SCEV *RHS,
Dan Gohmane18c2d62010-08-10 23:46:30 +00006307 Value *FoundCondValue,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006308 bool Inverse) {
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00006309 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
6310 if (Mark.Pending)
6311 return false;
6312
Dan Gohman8b0a4192010-03-01 17:49:51 +00006313 // Recursively handle And and Or conditions.
Dan Gohmane18c2d62010-08-10 23:46:30 +00006314 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006315 if (BO->getOpcode() == Instruction::And) {
6316 if (!Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00006317 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6318 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006319 } else if (BO->getOpcode() == Instruction::Or) {
6320 if (Inverse)
Dan Gohmane18c2d62010-08-10 23:46:30 +00006321 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6322 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006323 }
6324 }
6325
Dan Gohmane18c2d62010-08-10 23:46:30 +00006326 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006327 if (!ICI) return false;
6328
Dan Gohmane65c9172009-07-13 21:35:55 +00006329 // Bail if the ICmp's operands' types are wider than the needed type
6330 // before attempting to call getSCEV on them. This avoids infinite
6331 // recursion, since the analysis of widening casts can require loop
6332 // exit condition information for overflow checking, which would
6333 // lead back here.
6334 if (getTypeSizeInBits(LHS->getType()) <
Dan Gohman430f0cc2009-07-21 23:03:19 +00006335 getTypeSizeInBits(ICI->getOperand(0)->getType()))
Dan Gohmane65c9172009-07-13 21:35:55 +00006336 return false;
6337
Andrew Trickfa594032012-11-29 18:35:13 +00006338 // Now that we found a conditional branch that dominates the loop or controls
6339 // the loop latch. Check to see if it is the comparison we are looking for.
Dan Gohman430f0cc2009-07-21 23:03:19 +00006340 ICmpInst::Predicate FoundPred;
6341 if (Inverse)
6342 FoundPred = ICI->getInversePredicate();
6343 else
6344 FoundPred = ICI->getPredicate();
6345
6346 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
6347 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
Dan Gohmane65c9172009-07-13 21:35:55 +00006348
6349 // Balance the types. The case where FoundLHS' type is wider than
6350 // LHS' type is checked for above.
6351 if (getTypeSizeInBits(LHS->getType()) >
6352 getTypeSizeInBits(FoundLHS->getType())) {
Stepan Dyatkovskiy431993b2014-01-09 12:26:12 +00006353 if (CmpInst::isSigned(FoundPred)) {
Dan Gohmane65c9172009-07-13 21:35:55 +00006354 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
6355 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
6356 } else {
6357 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
6358 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
6359 }
6360 }
6361
Dan Gohman430f0cc2009-07-21 23:03:19 +00006362 // Canonicalize the query to match the way instcombine will have
6363 // canonicalized the comparison.
Dan Gohman3673aa12010-04-24 01:34:53 +00006364 if (SimplifyICmpOperands(Pred, LHS, RHS))
6365 if (LHS == RHS)
Dan Gohmanb5025c72010-05-03 18:00:24 +00006366 return CmpInst::isTrueWhenEqual(Pred);
Benjamin Kramerba11a982012-11-29 19:07:57 +00006367 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
6368 if (FoundLHS == FoundRHS)
6369 return CmpInst::isFalseWhenEqual(FoundPred);
Dan Gohman430f0cc2009-07-21 23:03:19 +00006370
6371 // Check to see if we can make the LHS or RHS match.
6372 if (LHS == FoundRHS || RHS == FoundLHS) {
6373 if (isa<SCEVConstant>(RHS)) {
6374 std::swap(FoundLHS, FoundRHS);
6375 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
6376 } else {
6377 std::swap(LHS, RHS);
6378 Pred = ICmpInst::getSwappedPredicate(Pred);
6379 }
6380 }
6381
6382 // Check whether the found predicate is the same as the desired predicate.
6383 if (FoundPred == Pred)
6384 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
6385
6386 // Check whether swapping the found predicate makes it the same as the
6387 // desired predicate.
6388 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
6389 if (isa<SCEVConstant>(RHS))
6390 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
6391 else
6392 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
6393 RHS, LHS, FoundLHS, FoundRHS);
6394 }
6395
6396 // Check whether the actual condition is beyond sufficient.
6397 if (FoundPred == ICmpInst::ICMP_EQ)
6398 if (ICmpInst::isTrueWhenEqual(Pred))
6399 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
6400 return true;
6401 if (Pred == ICmpInst::ICMP_NE)
6402 if (!ICmpInst::isTrueWhenEqual(FoundPred))
6403 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
6404 return true;
6405
6406 // Otherwise assume the worst.
6407 return false;
Dan Gohmane65c9172009-07-13 21:35:55 +00006408}
6409
Dan Gohman430f0cc2009-07-21 23:03:19 +00006410/// isImpliedCondOperands - Test whether the condition described by Pred,
Dan Gohman8b0a4192010-03-01 17:49:51 +00006411/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006412/// and FoundRHS is true.
6413bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
6414 const SCEV *LHS, const SCEV *RHS,
6415 const SCEV *FoundLHS,
6416 const SCEV *FoundRHS) {
6417 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
6418 FoundLHS, FoundRHS) ||
6419 // ~x < ~y --> x > y
6420 isImpliedCondOperandsHelper(Pred, LHS, RHS,
6421 getNotSCEV(FoundRHS),
6422 getNotSCEV(FoundLHS));
6423}
6424
6425/// isImpliedCondOperandsHelper - Test whether the condition described by
Dan Gohman8b0a4192010-03-01 17:49:51 +00006426/// Pred, LHS, and RHS is true whenever the condition described by Pred,
Dan Gohman430f0cc2009-07-21 23:03:19 +00006427/// FoundLHS, and FoundRHS is true.
Dan Gohmane65c9172009-07-13 21:35:55 +00006428bool
Dan Gohman430f0cc2009-07-21 23:03:19 +00006429ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
6430 const SCEV *LHS, const SCEV *RHS,
6431 const SCEV *FoundLHS,
6432 const SCEV *FoundRHS) {
Dan Gohmane65c9172009-07-13 21:35:55 +00006433 switch (Pred) {
Dan Gohman8c129d72009-07-16 17:34:36 +00006434 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6435 case ICmpInst::ICMP_EQ:
6436 case ICmpInst::ICMP_NE:
6437 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
6438 return true;
6439 break;
Dan Gohmane65c9172009-07-13 21:35:55 +00006440 case ICmpInst::ICMP_SLT:
Dan Gohman8c129d72009-07-16 17:34:36 +00006441 case ICmpInst::ICMP_SLE:
Dan Gohman07591692010-04-11 22:16:48 +00006442 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
6443 isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00006444 return true;
6445 break;
6446 case ICmpInst::ICMP_SGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00006447 case ICmpInst::ICMP_SGE:
Dan Gohman07591692010-04-11 22:16:48 +00006448 if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
6449 isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00006450 return true;
6451 break;
6452 case ICmpInst::ICMP_ULT:
Dan Gohman8c129d72009-07-16 17:34:36 +00006453 case ICmpInst::ICMP_ULE:
Dan Gohman07591692010-04-11 22:16:48 +00006454 if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
6455 isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00006456 return true;
6457 break;
6458 case ICmpInst::ICMP_UGT:
Dan Gohman8c129d72009-07-16 17:34:36 +00006459 case ICmpInst::ICMP_UGE:
Dan Gohman07591692010-04-11 22:16:48 +00006460 if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
6461 isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
Dan Gohmane65c9172009-07-13 21:35:55 +00006462 return true;
6463 break;
6464 }
6465
6466 return false;
Dan Gohmanf19aeec2009-06-24 01:18:18 +00006467}
6468
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006469// Verify if an linear IV with positive stride can overflow when in a
6470// less-than comparison, knowing the invariant term of the comparison, the
6471// stride and the knowledge of NSW/NUW flags on the recurrence.
6472bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
6473 bool IsSigned, bool NoWrap) {
6474 if (NoWrap) return false;
Dan Gohman51aaf022010-01-26 04:40:18 +00006475
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006476 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
6477 const SCEV *One = getConstant(Stride->getType(), 1);
Andrew Trick2afa3252011-03-09 17:29:58 +00006478
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006479 if (IsSigned) {
6480 APInt MaxRHS = getSignedRange(RHS).getSignedMax();
6481 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
6482 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
6483 .getSignedMax();
Andrew Trick2afa3252011-03-09 17:29:58 +00006484
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006485 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
6486 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
Dan Gohman36bad002009-09-17 18:05:20 +00006487 }
Dan Gohman01048422009-06-21 23:46:38 +00006488
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006489 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
6490 APInt MaxValue = APInt::getMaxValue(BitWidth);
6491 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
6492 .getUnsignedMax();
6493
6494 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
6495 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
6496}
6497
6498// Verify if an linear IV with negative stride can overflow when in a
6499// greater-than comparison, knowing the invariant term of the comparison,
6500// the stride and the knowledge of NSW/NUW flags on the recurrence.
6501bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
6502 bool IsSigned, bool NoWrap) {
6503 if (NoWrap) return false;
6504
6505 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
6506 const SCEV *One = getConstant(Stride->getType(), 1);
6507
6508 if (IsSigned) {
6509 APInt MinRHS = getSignedRange(RHS).getSignedMin();
6510 APInt MinValue = APInt::getSignedMinValue(BitWidth);
6511 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
6512 .getSignedMax();
6513
6514 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
6515 return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
6516 }
6517
6518 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
6519 APInt MinValue = APInt::getMinValue(BitWidth);
6520 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
6521 .getUnsignedMax();
6522
6523 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
6524 return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
6525}
6526
6527// Compute the backedge taken count knowing the interval difference, the
6528// stride and presence of the equality in the comparison.
6529const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
6530 bool Equality) {
6531 const SCEV *One = getConstant(Step->getType(), 1);
6532 Delta = Equality ? getAddExpr(Delta, Step)
6533 : getAddExpr(Delta, getMinusSCEV(Step, One));
6534 return getUDivExpr(Delta, Step);
Dan Gohman01048422009-06-21 23:46:38 +00006535}
6536
Chris Lattner587a75b2005-08-15 23:33:51 +00006537/// HowManyLessThans - Return the number of times a backedge containing the
6538/// specified less-than comparison will execute. If not computable, return
Dan Gohman4c720c02009-06-06 14:37:11 +00006539/// CouldNotCompute.
Andrew Trick5b245a12013-05-31 06:43:25 +00006540///
6541/// @param IsSubExpr is true when the LHS < RHS condition does not directly
6542/// control the branch. In this case, we can only compute an iteration count for
6543/// a subexpression that cannot overflow before evaluating true.
Andrew Trick3ca3f982011-07-26 17:19:55 +00006544ScalarEvolution::ExitLimit
Dan Gohmance973df2009-06-24 04:48:43 +00006545ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006546 const Loop *L, bool IsSigned,
Andrew Trick5b245a12013-05-31 06:43:25 +00006547 bool IsSubExpr) {
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006548 // We handle only IV < Invariant
6549 if (!isLoopInvariant(RHS, L))
Dan Gohmanc5c85c02009-06-27 21:21:31 +00006550 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00006551
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006552 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
Dan Gohman2b8da352009-04-30 20:47:05 +00006553
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006554 // Avoid weird loops
6555 if (!IV || IV->getLoop() != L || !IV->isAffine())
6556 return getCouldNotCompute();
Chris Lattner587a75b2005-08-15 23:33:51 +00006557
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006558 bool NoWrap = !IsSubExpr &&
6559 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00006560
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006561 const SCEV *Stride = IV->getStepRecurrence(*this);
Wojciech Matyjewicz35545fd2008-02-13 11:51:34 +00006562
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006563 // Avoid negative or zero stride values
6564 if (!isKnownPositive(Stride))
6565 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00006566
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006567 // Avoid proven overflow cases: this will ensure that the backedge taken count
6568 // will not generate any unsigned overflow. Relaxed no-overflow conditions
6569 // exploit NoWrapFlags, allowing to optimize in presence of undefined
6570 // behaviors like the case of C language.
6571 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
6572 return getCouldNotCompute();
Dan Gohman2b8da352009-04-30 20:47:05 +00006573
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006574 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
6575 : ICmpInst::ICMP_ULT;
6576 const SCEV *Start = IV->getStart();
6577 const SCEV *End = RHS;
6578 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
6579 End = IsSigned ? getSMaxExpr(RHS, Start)
6580 : getUMaxExpr(RHS, Start);
Dan Gohman51aaf022010-01-26 04:40:18 +00006581
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006582 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
Dan Gohman2b8da352009-04-30 20:47:05 +00006583
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006584 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
6585 : getUnsignedRange(Start).getUnsignedMin();
Andrew Trick2afa3252011-03-09 17:29:58 +00006586
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006587 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
6588 : getUnsignedRange(Stride).getUnsignedMin();
Dan Gohman2b8da352009-04-30 20:47:05 +00006589
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006590 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
6591 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
6592 : APInt::getMaxValue(BitWidth) - (MinStride - 1);
Chris Lattner587a75b2005-08-15 23:33:51 +00006593
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006594 // Although End can be a MAX expression we estimate MaxEnd considering only
6595 // the case End = RHS. This is safe because in the other case (End - Start)
6596 // is zero, leading to a zero maximum backedge taken count.
6597 APInt MaxEnd =
6598 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
6599 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
6600
6601 const SCEV *MaxBECount = getCouldNotCompute();
6602 if (isa<SCEVConstant>(BECount))
6603 MaxBECount = BECount;
6604 else
6605 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
6606 getConstant(MinStride), false);
6607
6608 if (isa<SCEVCouldNotCompute>(MaxBECount))
6609 MaxBECount = BECount;
6610
Andrew Trickee5aa7f2014-01-15 06:42:11 +00006611 return ExitLimit(BECount, MaxBECount, /*MustExit=*/true);
Andrew Trick34e2f0c2013-11-06 02:08:26 +00006612}
6613
6614ScalarEvolution::ExitLimit
6615ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
6616 const Loop *L, bool IsSigned,
6617 bool IsSubExpr) {
6618 // We handle only IV > Invariant
6619 if (!isLoopInvariant(RHS, L))
6620 return getCouldNotCompute();
6621
6622 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
6623
6624 // Avoid weird loops
6625 if (!IV || IV->getLoop() != L || !IV->isAffine())
6626 return getCouldNotCompute();
6627
6628 bool NoWrap = !IsSubExpr &&
6629 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
6630
6631 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
6632
6633 // Avoid negative or zero stride values
6634 if (!isKnownPositive(Stride))
6635 return getCouldNotCompute();
6636
6637 // Avoid proven overflow cases: this will ensure that the backedge taken count
6638 // will not generate any unsigned overflow. Relaxed no-overflow conditions
6639 // exploit NoWrapFlags, allowing to optimize in presence of undefined
6640 // behaviors like the case of C language.
6641 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
6642 return getCouldNotCompute();
6643
6644 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
6645 : ICmpInst::ICMP_UGT;
6646
6647 const SCEV *Start = IV->getStart();
6648 const SCEV *End = RHS;
6649 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS))
6650 End = IsSigned ? getSMinExpr(RHS, Start)
6651 : getUMinExpr(RHS, Start);
6652
6653 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
6654
6655 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
6656 : getUnsignedRange(Start).getUnsignedMax();
6657
6658 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
6659 : getUnsignedRange(Stride).getUnsignedMin();
6660
6661 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
6662 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
6663 : APInt::getMinValue(BitWidth) + (MinStride - 1);
6664
6665 // Although End can be a MIN expression we estimate MinEnd considering only
6666 // the case End = RHS. This is safe because in the other case (Start - End)
6667 // is zero, leading to a zero maximum backedge taken count.
6668 APInt MinEnd =
6669 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
6670 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
6671
6672
6673 const SCEV *MaxBECount = getCouldNotCompute();
6674 if (isa<SCEVConstant>(BECount))
6675 MaxBECount = BECount;
6676 else
6677 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
6678 getConstant(MinStride), false);
6679
6680 if (isa<SCEVCouldNotCompute>(MaxBECount))
6681 MaxBECount = BECount;
6682
Andrew Trickee5aa7f2014-01-15 06:42:11 +00006683 return ExitLimit(BECount, MaxBECount, /*MustExit=*/true);
Chris Lattner587a75b2005-08-15 23:33:51 +00006684}
6685
Chris Lattnerd934c702004-04-02 20:23:17 +00006686/// getNumIterationsInRange - Return the number of iterations of this loop that
6687/// produce values in the specified constant range. Another way of looking at
6688/// this is that it returns the first iteration number where the value is not in
6689/// the condition, thus computing the exit count. If the iteration count can't
6690/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohmanaf752342009-07-07 17:06:11 +00006691const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
Dan Gohmance973df2009-06-24 04:48:43 +00006692 ScalarEvolution &SE) const {
Chris Lattnerd934c702004-04-02 20:23:17 +00006693 if (Range.isFullSet()) // Infinite loop.
Dan Gohman31efa302009-04-18 17:58:19 +00006694 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006695
6696 // If the start is a non-zero constant, shift the range to simplify things.
Dan Gohmana30370b2009-05-04 22:02:23 +00006697 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
Reid Spencer2e54a152007-03-02 00:28:52 +00006698 if (!SC->getValue()->isZero()) {
Dan Gohmanaf752342009-07-07 17:06:11 +00006699 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
Dan Gohman1d2ded72010-05-03 22:09:21 +00006700 Operands[0] = SE.getConstant(SC->getType(), 0);
Andrew Trick8b55b732011-03-14 16:50:06 +00006701 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
Andrew Trickf6b01ff2011-03-15 00:37:00 +00006702 getNoWrapFlags(FlagNW));
Dan Gohmana30370b2009-05-04 22:02:23 +00006703 if (const SCEVAddRecExpr *ShiftedAddRec =
6704 dyn_cast<SCEVAddRecExpr>(Shifted))
Chris Lattnerd934c702004-04-02 20:23:17 +00006705 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohmana37eaf22007-10-22 18:31:58 +00006706 Range.subtract(SC->getValue()->getValue()), SE);
Chris Lattnerd934c702004-04-02 20:23:17 +00006707 // This is strange and shouldn't happen.
Dan Gohman31efa302009-04-18 17:58:19 +00006708 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006709 }
6710
6711 // The only time we can solve this is when we have all constant indices.
6712 // Otherwise, we cannot determine the overflow conditions.
6713 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
6714 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohman31efa302009-04-18 17:58:19 +00006715 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006716
6717
6718 // Okay at this point we know that all elements of the chrec are constants and
6719 // that the start element is zero.
6720
6721 // First check to see if the range contains zero. If not, the first
6722 // iteration exits.
Dan Gohmanb397e1a2009-04-21 01:07:12 +00006723 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman0a40ad92009-04-16 03:18:22 +00006724 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohman1d2ded72010-05-03 22:09:21 +00006725 return SE.getConstant(getType(), 0);
Misha Brukman01808ca2005-04-21 21:13:18 +00006726
Chris Lattnerd934c702004-04-02 20:23:17 +00006727 if (isAffine()) {
6728 // If this is an affine expression then we have this situation:
6729 // Solve {0,+,A} in Range === Ax in Range
6730
Nick Lewycky52460262007-07-16 02:08:00 +00006731 // We know that zero is in the range. If A is positive then we know that
6732 // the upper value of the range must be the first possible exit value.
6733 // If A is negative then the lower of the range is the last possible loop
6734 // value. Also note that we already checked for a full range.
Dan Gohman0a40ad92009-04-16 03:18:22 +00006735 APInt One(BitWidth,1);
Nick Lewycky52460262007-07-16 02:08:00 +00006736 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
6737 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
Chris Lattnerd934c702004-04-02 20:23:17 +00006738
Nick Lewycky52460262007-07-16 02:08:00 +00006739 // The exit value should be (End+A)/A.
Nick Lewycky39349612007-09-27 14:12:54 +00006740 APInt ExitVal = (End + A).udiv(A);
Owen Andersonedb4a702009-07-24 23:12:02 +00006741 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
Chris Lattnerd934c702004-04-02 20:23:17 +00006742
6743 // Evaluate at the exit value. If we really did fall out of the valid
6744 // range, then we computed our trip count, otherwise wrap around or other
6745 // things must have happened.
Dan Gohmana37eaf22007-10-22 18:31:58 +00006746 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00006747 if (Range.contains(Val->getValue()))
Dan Gohman31efa302009-04-18 17:58:19 +00006748 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00006749
6750 // Ensure that the previous value is in the range. This is a sanity check.
Reid Spencer3a7e9d82007-02-28 19:57:34 +00006751 assert(Range.contains(
Dan Gohmance973df2009-06-24 04:48:43 +00006752 EvaluateConstantChrecAtConstant(this,
Owen Andersonedb4a702009-07-24 23:12:02 +00006753 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
Chris Lattnerd934c702004-04-02 20:23:17 +00006754 "Linear scev computation is off in a bad way!");
Dan Gohmana37eaf22007-10-22 18:31:58 +00006755 return SE.getConstant(ExitValue);
Chris Lattnerd934c702004-04-02 20:23:17 +00006756 } else if (isQuadratic()) {
6757 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
6758 // quadratic equation to solve it. To do this, we must frame our problem in
6759 // terms of figuring out when zero is crossed, instead of when
6760 // Range.getUpper() is crossed.
Dan Gohmanaf752342009-07-07 17:06:11 +00006761 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
Dan Gohmana37eaf22007-10-22 18:31:58 +00006762 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
Andrew Trick8b55b732011-03-14 16:50:06 +00006763 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
6764 // getNoWrapFlags(FlagNW)
6765 FlagAnyWrap);
Chris Lattnerd934c702004-04-02 20:23:17 +00006766
6767 // Next, solve the constructed addrec
Dan Gohmanaf752342009-07-07 17:06:11 +00006768 std::pair<const SCEV *,const SCEV *> Roots =
Dan Gohmana37eaf22007-10-22 18:31:58 +00006769 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohman48f82222009-05-04 22:30:44 +00006770 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6771 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
Chris Lattnerd934c702004-04-02 20:23:17 +00006772 if (R1) {
6773 // Pick the smallest positive root value.
Zhou Sheng75b871f2007-01-11 12:24:14 +00006774 if (ConstantInt *CB =
Owen Anderson487375e2009-07-29 18:55:55 +00006775 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
Owen Andersonf1f17432009-07-06 22:37:39 +00006776 R1->getValue(), R2->getValue()))) {
Reid Spencercddc9df2007-01-12 04:24:46 +00006777 if (CB->getZExtValue() == false)
Chris Lattnerd934c702004-04-02 20:23:17 +00006778 std::swap(R1, R2); // R1 is the minimum root now.
Misha Brukman01808ca2005-04-21 21:13:18 +00006779
Chris Lattnerd934c702004-04-02 20:23:17 +00006780 // Make sure the root is not off by one. The returned iteration should
6781 // not be in the range, but the previous one should be. When solving
6782 // for "X*X < 5", for example, we should not return a root of 2.
6783 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohmana37eaf22007-10-22 18:31:58 +00006784 R1->getValue(),
6785 SE);
Reid Spencer6a440332007-03-01 07:54:15 +00006786 if (Range.contains(R1Val->getValue())) {
Chris Lattnerd934c702004-04-02 20:23:17 +00006787 // The next iteration must be out of the range...
Owen Andersonf1f17432009-07-06 22:37:39 +00006788 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00006789 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
Misha Brukman01808ca2005-04-21 21:13:18 +00006790
Dan Gohmana37eaf22007-10-22 18:31:58 +00006791 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00006792 if (!Range.contains(R1Val->getValue()))
Dan Gohmana37eaf22007-10-22 18:31:58 +00006793 return SE.getConstant(NextVal);
Dan Gohman31efa302009-04-18 17:58:19 +00006794 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00006795 }
Misha Brukman01808ca2005-04-21 21:13:18 +00006796
Chris Lattnerd934c702004-04-02 20:23:17 +00006797 // If R1 was not in the range, then it is a good return value. Make
6798 // sure that R1-1 WAS in the range though, just in case.
Owen Andersonf1f17432009-07-06 22:37:39 +00006799 ConstantInt *NextVal =
Owen Andersonedb4a702009-07-24 23:12:02 +00006800 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
Dan Gohmana37eaf22007-10-22 18:31:58 +00006801 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Reid Spencer6a440332007-03-01 07:54:15 +00006802 if (Range.contains(R1Val->getValue()))
Chris Lattnerd934c702004-04-02 20:23:17 +00006803 return R1;
Dan Gohman31efa302009-04-18 17:58:19 +00006804 return SE.getCouldNotCompute(); // Something strange happened
Chris Lattnerd934c702004-04-02 20:23:17 +00006805 }
6806 }
6807 }
6808
Dan Gohman31efa302009-04-18 17:58:19 +00006809 return SE.getCouldNotCompute();
Chris Lattnerd934c702004-04-02 20:23:17 +00006810}
6811
Sebastian Popc62c6792013-11-12 22:47:20 +00006812static const APInt srem(const SCEVConstant *C1, const SCEVConstant *C2) {
6813 APInt A = C1->getValue()->getValue();
6814 APInt B = C2->getValue()->getValue();
6815 uint32_t ABW = A.getBitWidth();
6816 uint32_t BBW = B.getBitWidth();
6817
6818 if (ABW > BBW)
Benjamin Kramer5f2768c2013-11-16 16:25:41 +00006819 B = B.sext(ABW);
Sebastian Popc62c6792013-11-12 22:47:20 +00006820 else if (ABW < BBW)
Benjamin Kramer5f2768c2013-11-16 16:25:41 +00006821 A = A.sext(BBW);
Sebastian Popc62c6792013-11-12 22:47:20 +00006822
6823 return APIntOps::srem(A, B);
6824}
6825
6826static const APInt sdiv(const SCEVConstant *C1, const SCEVConstant *C2) {
6827 APInt A = C1->getValue()->getValue();
6828 APInt B = C2->getValue()->getValue();
6829 uint32_t ABW = A.getBitWidth();
6830 uint32_t BBW = B.getBitWidth();
6831
6832 if (ABW > BBW)
Benjamin Kramer5f2768c2013-11-16 16:25:41 +00006833 B = B.sext(ABW);
Sebastian Popc62c6792013-11-12 22:47:20 +00006834 else if (ABW < BBW)
Benjamin Kramer5f2768c2013-11-16 16:25:41 +00006835 A = A.sext(BBW);
Sebastian Popc62c6792013-11-12 22:47:20 +00006836
6837 return APIntOps::sdiv(A, B);
6838}
6839
6840namespace {
6841struct SCEVGCD : public SCEVVisitor<SCEVGCD, const SCEV *> {
6842public:
6843 // Pattern match Step into Start. When Step is a multiply expression, find
6844 // the largest subexpression of Step that appears in Start. When Start is an
6845 // add expression, try to match Step in the subexpressions of Start, non
6846 // matching subexpressions are returned under Remainder.
6847 static const SCEV *findGCD(ScalarEvolution &SE, const SCEV *Start,
6848 const SCEV *Step, const SCEV **Remainder) {
6849 assert(Remainder && "Remainder should not be NULL");
6850 SCEVGCD R(SE, Step, SE.getConstant(Step->getType(), 0));
6851 const SCEV *Res = R.visit(Start);
6852 *Remainder = R.Remainder;
6853 return Res;
6854 }
6855
6856 SCEVGCD(ScalarEvolution &S, const SCEV *G, const SCEV *R)
6857 : SE(S), GCD(G), Remainder(R) {
6858 Zero = SE.getConstant(GCD->getType(), 0);
6859 One = SE.getConstant(GCD->getType(), 1);
6860 }
6861
6862 const SCEV *visitConstant(const SCEVConstant *Constant) {
6863 if (GCD == Constant || Constant == Zero)
6864 return GCD;
6865
6866 if (const SCEVConstant *CGCD = dyn_cast<SCEVConstant>(GCD)) {
6867 const SCEV *Res = SE.getConstant(gcd(Constant, CGCD));
6868 if (Res != One)
6869 return Res;
6870
6871 Remainder = SE.getConstant(srem(Constant, CGCD));
6872 Constant = cast<SCEVConstant>(SE.getMinusSCEV(Constant, Remainder));
6873 Res = SE.getConstant(gcd(Constant, CGCD));
6874 return Res;
6875 }
6876
6877 // When GCD is not a constant, it could be that the GCD is an Add, Mul,
6878 // AddRec, etc., in which case we want to find out how many times the
6879 // Constant divides the GCD: we then return that as the new GCD.
6880 const SCEV *Rem = Zero;
6881 const SCEV *Res = findGCD(SE, GCD, Constant, &Rem);
6882
6883 if (Res == One || Rem != Zero) {
6884 Remainder = Constant;
6885 return One;
6886 }
6887
6888 assert(isa<SCEVConstant>(Res) && "Res should be a constant");
6889 Remainder = SE.getConstant(srem(Constant, cast<SCEVConstant>(Res)));
6890 return Res;
6891 }
6892
6893 const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) {
6894 if (GCD != Expr)
6895 Remainder = Expr;
6896 return GCD;
6897 }
6898
6899 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
6900 if (GCD != Expr)
6901 Remainder = Expr;
6902 return GCD;
6903 }
6904
6905 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
6906 if (GCD != Expr)
6907 Remainder = Expr;
6908 return GCD;
6909 }
6910
6911 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
6912 if (GCD == Expr)
6913 return GCD;
6914
6915 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
6916 const SCEV *Rem = Zero;
6917 const SCEV *Res = findGCD(SE, Expr->getOperand(e - 1 - i), GCD, &Rem);
6918
6919 // FIXME: There may be ambiguous situations: for instance,
6920 // GCD(-4 + (3 * %m), 2 * %m) where 2 divides -4 and %m divides (3 * %m).
6921 // The order in which the AddExpr is traversed computes a different GCD
6922 // and Remainder.
6923 if (Res != One)
6924 GCD = Res;
6925 if (Rem != Zero)
6926 Remainder = SE.getAddExpr(Remainder, Rem);
6927 }
6928
6929 return GCD;
6930 }
6931
6932 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
6933 if (GCD == Expr)
6934 return GCD;
6935
6936 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
6937 if (Expr->getOperand(i) == GCD)
6938 return GCD;
6939 }
6940
6941 // If we have not returned yet, it means that GCD is not part of Expr.
6942 const SCEV *PartialGCD = One;
6943 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
6944 const SCEV *Rem = Zero;
6945 const SCEV *Res = findGCD(SE, Expr->getOperand(i), GCD, &Rem);
6946 if (Rem != Zero)
6947 // GCD does not divide Expr->getOperand(i).
6948 continue;
6949
6950 if (Res == GCD)
6951 return GCD;
6952 PartialGCD = SE.getMulExpr(PartialGCD, Res);
6953 if (PartialGCD == GCD)
6954 return GCD;
6955 }
6956
6957 if (PartialGCD != One)
6958 return PartialGCD;
6959
6960 Remainder = Expr;
6961 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(GCD);
6962 if (!Mul)
6963 return PartialGCD;
6964
6965 // When the GCD is a multiply expression, try to decompose it:
6966 // this occurs when Step does not divide the Start expression
6967 // as in: {(-4 + (3 * %m)),+,(2 * %m)}
6968 for (int i = 0, e = Mul->getNumOperands(); i < e; ++i) {
6969 const SCEV *Rem = Zero;
6970 const SCEV *Res = findGCD(SE, Expr, Mul->getOperand(i), &Rem);
6971 if (Rem == Zero) {
6972 Remainder = Rem;
6973 return Res;
6974 }
6975 }
6976
6977 return PartialGCD;
6978 }
6979
6980 const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) {
6981 if (GCD != Expr)
6982 Remainder = Expr;
6983 return GCD;
6984 }
6985
6986 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
6987 if (GCD == Expr)
6988 return GCD;
6989
6990 if (!Expr->isAffine()) {
6991 Remainder = Expr;
6992 return GCD;
6993 }
6994
6995 const SCEV *Rem = Zero;
6996 const SCEV *Res = findGCD(SE, Expr->getOperand(0), GCD, &Rem);
6997 if (Rem != Zero)
6998 Remainder = SE.getAddExpr(Remainder, Rem);
6999
7000 Rem = Zero;
7001 Res = findGCD(SE, Expr->getOperand(1), Res, &Rem);
7002 if (Rem != Zero) {
7003 Remainder = Expr;
7004 return GCD;
7005 }
7006
7007 return Res;
7008 }
7009
7010 const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
7011 if (GCD != Expr)
7012 Remainder = Expr;
7013 return GCD;
7014 }
7015
7016 const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) {
7017 if (GCD != Expr)
7018 Remainder = Expr;
7019 return GCD;
7020 }
7021
7022 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
7023 if (GCD != Expr)
7024 Remainder = Expr;
7025 return GCD;
7026 }
7027
7028 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
7029 return One;
7030 }
7031
7032private:
7033 ScalarEvolution &SE;
7034 const SCEV *GCD, *Remainder, *Zero, *One;
7035};
7036
7037struct SCEVDivision : public SCEVVisitor<SCEVDivision, const SCEV *> {
7038public:
7039 // Remove from Start all multiples of Step.
7040 static const SCEV *divide(ScalarEvolution &SE, const SCEV *Start,
7041 const SCEV *Step) {
7042 SCEVDivision D(SE, Step);
7043 const SCEV *Rem = D.Zero;
7044 (void)Rem;
7045 // The division is guaranteed to succeed: Step should divide Start with no
7046 // remainder.
7047 assert(Step == SCEVGCD::findGCD(SE, Start, Step, &Rem) && Rem == D.Zero &&
7048 "Step should divide Start with no remainder.");
7049 return D.visit(Start);
7050 }
7051
7052 SCEVDivision(ScalarEvolution &S, const SCEV *G) : SE(S), GCD(G) {
7053 Zero = SE.getConstant(GCD->getType(), 0);
7054 One = SE.getConstant(GCD->getType(), 1);
7055 }
7056
7057 const SCEV *visitConstant(const SCEVConstant *Constant) {
7058 if (GCD == Constant)
7059 return One;
7060
7061 if (const SCEVConstant *CGCD = dyn_cast<SCEVConstant>(GCD))
7062 return SE.getConstant(sdiv(Constant, CGCD));
7063 return Constant;
7064 }
7065
7066 const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) {
7067 if (GCD == Expr)
7068 return One;
7069 return Expr;
7070 }
7071
7072 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
7073 if (GCD == Expr)
7074 return One;
7075 return Expr;
7076 }
7077
7078 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
7079 if (GCD == Expr)
7080 return One;
7081 return Expr;
7082 }
7083
7084 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
7085 if (GCD == Expr)
7086 return One;
7087
7088 SmallVector<const SCEV *, 2> Operands;
7089 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
7090 Operands.push_back(divide(SE, Expr->getOperand(i), GCD));
7091
7092 if (Operands.size() == 1)
7093 return Operands[0];
7094 return SE.getAddExpr(Operands);
7095 }
7096
7097 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
7098 if (GCD == Expr)
7099 return One;
7100
7101 bool FoundGCDTerm = false;
7102 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i)
7103 if (Expr->getOperand(i) == GCD)
7104 FoundGCDTerm = true;
7105
7106 SmallVector<const SCEV *, 2> Operands;
7107 if (FoundGCDTerm) {
7108 FoundGCDTerm = false;
7109 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
7110 if (FoundGCDTerm)
7111 Operands.push_back(Expr->getOperand(i));
7112 else if (Expr->getOperand(i) == GCD)
7113 FoundGCDTerm = true;
7114 else
7115 Operands.push_back(Expr->getOperand(i));
7116 }
7117 } else {
7118 FoundGCDTerm = false;
7119 const SCEV *PartialGCD = One;
7120 for (int i = 0, e = Expr->getNumOperands(); i < e; ++i) {
7121 if (PartialGCD == GCD) {
7122 Operands.push_back(Expr->getOperand(i));
7123 continue;
7124 }
7125
7126 const SCEV *Rem = Zero;
7127 const SCEV *Res = SCEVGCD::findGCD(SE, Expr->getOperand(i), GCD, &Rem);
7128 if (Rem == Zero) {
7129 PartialGCD = SE.getMulExpr(PartialGCD, Res);
7130 Operands.push_back(divide(SE, Expr->getOperand(i), GCD));
7131 } else {
7132 Operands.push_back(Expr->getOperand(i));
7133 }
7134 }
7135 }
7136
7137 if (Operands.size() == 1)
7138 return Operands[0];
7139 return SE.getMulExpr(Operands);
7140 }
7141
7142 const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) {
7143 if (GCD == Expr)
7144 return One;
7145 return Expr;
7146 }
7147
7148 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
7149 if (GCD == Expr)
7150 return One;
7151
7152 assert(Expr->isAffine() && "Expr should be affine");
7153
7154 const SCEV *Start = divide(SE, Expr->getStart(), GCD);
7155 const SCEV *Step = divide(SE, Expr->getStepRecurrence(SE), GCD);
7156
7157 return SE.getAddRecExpr(Start, Step, Expr->getLoop(),
7158 Expr->getNoWrapFlags());
7159 }
7160
7161 const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
7162 if (GCD == Expr)
7163 return One;
7164 return Expr;
7165 }
7166
7167 const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) {
7168 if (GCD == Expr)
7169 return One;
7170 return Expr;
7171 }
7172
7173 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
7174 if (GCD == Expr)
7175 return One;
7176 return Expr;
7177 }
7178
7179 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
7180 return Expr;
7181 }
7182
7183private:
7184 ScalarEvolution &SE;
7185 const SCEV *GCD, *Zero, *One;
7186};
7187}
7188
7189/// Splits the SCEV into two vectors of SCEVs representing the subscripts and
7190/// sizes of an array access. Returns the remainder of the delinearization that
Sebastian Pop7ee14722013-11-13 22:37:58 +00007191/// is the offset start of the array. The SCEV->delinearize algorithm computes
7192/// the multiples of SCEV coefficients: that is a pattern matching of sub
7193/// expressions in the stride and base of a SCEV corresponding to the
7194/// computation of a GCD (greatest common divisor) of base and stride. When
7195/// SCEV->delinearize fails, it returns the SCEV unchanged.
7196///
7197/// For example: when analyzing the memory access A[i][j][k] in this loop nest
7198///
7199/// void foo(long n, long m, long o, double A[n][m][o]) {
7200///
7201/// for (long i = 0; i < n; i++)
7202/// for (long j = 0; j < m; j++)
7203/// for (long k = 0; k < o; k++)
7204/// A[i][j][k] = 1.0;
7205/// }
7206///
7207/// the delinearization input is the following AddRec SCEV:
7208///
7209/// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
7210///
7211/// From this SCEV, we are able to say that the base offset of the access is %A
7212/// because it appears as an offset that does not divide any of the strides in
7213/// the loops:
7214///
7215/// CHECK: Base offset: %A
7216///
7217/// and then SCEV->delinearize determines the size of some of the dimensions of
7218/// the array as these are the multiples by which the strides are happening:
7219///
7220/// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
7221///
7222/// Note that the outermost dimension remains of UnknownSize because there are
7223/// no strides that would help identifying the size of the last dimension: when
7224/// the array has been statically allocated, one could compute the size of that
7225/// dimension by dividing the overall size of the array by the size of the known
7226/// dimensions: %m * %o * 8.
7227///
7228/// Finally delinearize provides the access functions for the array reference
7229/// that does correspond to A[i][j][k] of the above C testcase:
7230///
7231/// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
7232///
7233/// The testcases are checking the output of a function pass:
7234/// DelinearizationPass that walks through all loads and stores of a function
7235/// asking for the SCEV of the memory access with respect to all enclosing
7236/// loops, calling SCEV->delinearize on that and printing the results.
7237
Sebastian Popc62c6792013-11-12 22:47:20 +00007238const SCEV *
7239SCEVAddRecExpr::delinearize(ScalarEvolution &SE,
7240 SmallVectorImpl<const SCEV *> &Subscripts,
7241 SmallVectorImpl<const SCEV *> &Sizes) const {
Sebastian Pop7ee14722013-11-13 22:37:58 +00007242 // Early exit in case this SCEV is not an affine multivariate function.
Sebastian Popc62c6792013-11-12 22:47:20 +00007243 if (!this->isAffine())
7244 return this;
7245
7246 const SCEV *Start = this->getStart();
7247 const SCEV *Step = this->getStepRecurrence(SE);
Sebastian Pop7ee14722013-11-13 22:37:58 +00007248
Alp Tokercb402912014-01-24 17:20:08 +00007249 // Build the SCEV representation of the canonical induction variable in the
Sebastian Pop7ee14722013-11-13 22:37:58 +00007250 // loop of this SCEV.
Sebastian Popc62c6792013-11-12 22:47:20 +00007251 const SCEV *Zero = SE.getConstant(this->getType(), 0);
7252 const SCEV *One = SE.getConstant(this->getType(), 1);
7253 const SCEV *IV =
7254 SE.getAddRecExpr(Zero, One, this->getLoop(), this->getNoWrapFlags());
7255
7256 DEBUG(dbgs() << "(delinearize: " << *this << "\n");
7257
Sebastian Pop64f12d52014-02-21 18:15:15 +00007258 // When the stride of this SCEV is 1, do not compute the GCD: the size of this
7259 // subscript is 1, and this same SCEV for the access function.
7260 const SCEV *Remainder = Zero;
7261 const SCEV *GCD = One;
Sebastian Popc62c6792013-11-12 22:47:20 +00007262
Sebastian Pop7ee14722013-11-13 22:37:58 +00007263 // Find the GCD and Remainder of the Start and Step coefficients of this SCEV.
Sebastian Pop64f12d52014-02-21 18:15:15 +00007264 if (Step != One && !Step->isAllOnesValue())
7265 GCD = SCEVGCD::findGCD(SE, Start, Step, &Remainder);
Sebastian Popc62c6792013-11-12 22:47:20 +00007266
7267 DEBUG(dbgs() << "GCD: " << *GCD << "\n");
7268 DEBUG(dbgs() << "Remainder: " << *Remainder << "\n");
7269
Sebastian Pop64f12d52014-02-21 18:15:15 +00007270 const SCEV *Quotient = Start;
7271 if (GCD != One && !GCD->isAllOnesValue())
7272 // As findGCD computed Remainder, GCD divides "Start - Remainder." The
7273 // Quotient is then this SCEV without Remainder, scaled down by the GCD. The
7274 // Quotient is what will be used in the next subscript delinearization.
7275 Quotient = SCEVDivision::divide(SE, SE.getMinusSCEV(Start, Remainder), GCD);
Sebastian Popc62c6792013-11-12 22:47:20 +00007276
Sebastian Popc62c6792013-11-12 22:47:20 +00007277 DEBUG(dbgs() << "Quotient: " << *Quotient << "\n");
7278
Sebastian Pop64f12d52014-02-21 18:15:15 +00007279 const SCEV *Rem = Quotient;
Sebastian Popc62c6792013-11-12 22:47:20 +00007280 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Quotient))
Sebastian Pop7ee14722013-11-13 22:37:58 +00007281 // Recursively call delinearize on the Quotient until there are no more
7282 // multiples that can be recognized.
Sebastian Popc62c6792013-11-12 22:47:20 +00007283 Rem = AR->delinearize(SE, Subscripts, Sizes);
Sebastian Popc62c6792013-11-12 22:47:20 +00007284
Alp Tokercb402912014-01-24 17:20:08 +00007285 // Scale up the canonical induction variable IV by whatever remains from the
Sebastian Pop7ee14722013-11-13 22:37:58 +00007286 // Step after division by the GCD: the GCD is the size of all the sub-array.
Sebastian Pop64f12d52014-02-21 18:15:15 +00007287 if (Step != One && !Step->isAllOnesValue() && GCD != One &&
7288 !GCD->isAllOnesValue() && Step != GCD) {
Sebastian Popc62c6792013-11-12 22:47:20 +00007289 Step = SCEVDivision::divide(SE, Step, GCD);
7290 IV = SE.getMulExpr(IV, Step);
7291 }
Alp Tokercb402912014-01-24 17:20:08 +00007292 // The access function in the current subscript is computed as the canonical
Sebastian Pop7ee14722013-11-13 22:37:58 +00007293 // induction variable IV (potentially scaled up by the step) and offset by
7294 // Rem, the offset of delinearization in the sub-array.
Sebastian Popc62c6792013-11-12 22:47:20 +00007295 const SCEV *Index = SE.getAddExpr(IV, Rem);
7296
Sebastian Pop7ee14722013-11-13 22:37:58 +00007297 // Record the access function and the size of the current subscript.
Sebastian Popc62c6792013-11-12 22:47:20 +00007298 Subscripts.push_back(Index);
7299 Sizes.push_back(GCD);
7300
7301#ifndef NDEBUG
7302 int Size = Sizes.size();
7303 DEBUG(dbgs() << "succeeded to delinearize " << *this << "\n");
7304 DEBUG(dbgs() << "ArrayDecl[UnknownSize]");
7305 for (int i = 0; i < Size - 1; i++)
7306 DEBUG(dbgs() << "[" << *Sizes[i] << "]");
7307 DEBUG(dbgs() << " with elements of " << *Sizes[Size - 1] << " bytes.\n");
7308
7309 DEBUG(dbgs() << "ArrayRef");
7310 for (int i = 0; i < Size; i++)
7311 DEBUG(dbgs() << "[" << *Subscripts[i] << "]");
7312 DEBUG(dbgs() << "\n)\n");
7313#endif
7314
7315 return Remainder;
7316}
Chris Lattnerd934c702004-04-02 20:23:17 +00007317
7318//===----------------------------------------------------------------------===//
Dan Gohman48f82222009-05-04 22:30:44 +00007319// SCEVCallbackVH Class Implementation
7320//===----------------------------------------------------------------------===//
7321
Dan Gohmand33a0902009-05-19 19:22:47 +00007322void ScalarEvolution::SCEVCallbackVH::deleted() {
Dan Gohmandd707af2009-07-13 22:20:53 +00007323 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Dan Gohman48f82222009-05-04 22:30:44 +00007324 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
7325 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007326 SE->ValueExprMap.erase(getValPtr());
Dan Gohman48f82222009-05-04 22:30:44 +00007327 // this now dangles!
7328}
7329
Dan Gohman7a066722010-07-28 01:09:07 +00007330void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
Dan Gohmandd707af2009-07-13 22:20:53 +00007331 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
Eric Christopheref6d5932010-07-29 01:25:38 +00007332
Dan Gohman48f82222009-05-04 22:30:44 +00007333 // Forget all the expressions associated with users of the old value,
7334 // so that future queries will recompute the expressions using the new
7335 // value.
Dan Gohman7cac9572010-08-02 23:49:30 +00007336 Value *Old = getValPtr();
Dan Gohman48f82222009-05-04 22:30:44 +00007337 SmallVector<User *, 16> Worklist;
Dan Gohmanf34f8632009-07-14 14:34:04 +00007338 SmallPtrSet<User *, 8> Visited;
Dan Gohman48f82222009-05-04 22:30:44 +00007339 for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
7340 UI != UE; ++UI)
7341 Worklist.push_back(*UI);
7342 while (!Worklist.empty()) {
7343 User *U = Worklist.pop_back_val();
7344 // Deleting the Old value will cause this to dangle. Postpone
7345 // that until everything else is done.
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00007346 if (U == Old)
Dan Gohman48f82222009-05-04 22:30:44 +00007347 continue;
Dan Gohmanf34f8632009-07-14 14:34:04 +00007348 if (!Visited.insert(U))
7349 continue;
Dan Gohman48f82222009-05-04 22:30:44 +00007350 if (PHINode *PN = dyn_cast<PHINode>(U))
7351 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007352 SE->ValueExprMap.erase(U);
Dan Gohmanf34f8632009-07-14 14:34:04 +00007353 for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
7354 UI != UE; ++UI)
7355 Worklist.push_back(*UI);
Dan Gohman48f82222009-05-04 22:30:44 +00007356 }
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00007357 // Delete the Old value.
7358 if (PHINode *PN = dyn_cast<PHINode>(Old))
7359 SE->ConstantEvolutionLoopExitValue.erase(PN);
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007360 SE->ValueExprMap.erase(Old);
Dan Gohman8aeb0fb2010-07-28 00:28:25 +00007361 // this now dangles!
Dan Gohman48f82222009-05-04 22:30:44 +00007362}
7363
Dan Gohmand33a0902009-05-19 19:22:47 +00007364ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
Dan Gohman48f82222009-05-04 22:30:44 +00007365 : CallbackVH(V), SE(se) {}
7366
7367//===----------------------------------------------------------------------===//
Chris Lattnerd934c702004-04-02 20:23:17 +00007368// ScalarEvolution Class Implementation
7369//===----------------------------------------------------------------------===//
7370
Dan Gohmanc8e23622009-04-21 23:15:49 +00007371ScalarEvolution::ScalarEvolution()
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00007372 : FunctionPass(ID), ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64), FirstUnknown(0) {
Owen Anderson6c18d1a2010-10-19 17:21:58 +00007373 initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
Dan Gohmanc8e23622009-04-21 23:15:49 +00007374}
7375
Chris Lattnerd934c702004-04-02 20:23:17 +00007376bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanc8e23622009-04-21 23:15:49 +00007377 this->F = &F;
7378 LI = &getAnalysis<LoopInfo>();
Rafael Espindola93512512014-02-25 17:30:31 +00007379 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
7380 DL = DLP ? &DLP->getDataLayout() : 0;
Chad Rosierc24b86f2011-12-01 03:08:23 +00007381 TLI = &getAnalysis<TargetLibraryInfo>();
Chandler Carruth73523022014-01-13 13:07:17 +00007382 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
Chris Lattnerd934c702004-04-02 20:23:17 +00007383 return false;
7384}
7385
7386void ScalarEvolution::releaseMemory() {
Dan Gohman7cac9572010-08-02 23:49:30 +00007387 // Iterate through all the SCEVUnknown instances and call their
7388 // destructors, so that they release their references to their values.
7389 for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
7390 U->~SCEVUnknown();
7391 FirstUnknown = 0;
7392
Dan Gohman9bad2fb2010-08-27 18:55:03 +00007393 ValueExprMap.clear();
Andrew Trick3ca3f982011-07-26 17:19:55 +00007394
7395 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
7396 // that a loop had multiple computable exits.
7397 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
7398 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
7399 I != E; ++I) {
7400 I->second.clear();
7401 }
7402
Andrew Trick7fa4e0f2012-05-19 00:48:25 +00007403 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
7404
Dan Gohmanc8e23622009-04-21 23:15:49 +00007405 BackedgeTakenCounts.clear();
7406 ConstantEvolutionLoopExitValue.clear();
Dan Gohman5122d612009-05-08 20:47:27 +00007407 ValuesAtScopes.clear();
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007408 LoopDispositions.clear();
Dan Gohman8ea83d82010-11-18 00:34:22 +00007409 BlockDispositions.clear();
Dan Gohman761065e2010-11-17 02:44:44 +00007410 UnsignedRanges.clear();
7411 SignedRanges.clear();
Dan Gohmanc5c85c02009-06-27 21:21:31 +00007412 UniqueSCEVs.clear();
7413 SCEVAllocator.Reset();
Chris Lattnerd934c702004-04-02 20:23:17 +00007414}
7415
7416void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
7417 AU.setPreservesAll();
Chris Lattnerd934c702004-04-02 20:23:17 +00007418 AU.addRequiredTransitive<LoopInfo>();
Chandler Carruth73523022014-01-13 13:07:17 +00007419 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
Chad Rosierc24b86f2011-12-01 03:08:23 +00007420 AU.addRequired<TargetLibraryInfo>();
Dan Gohman0a40ad92009-04-16 03:18:22 +00007421}
7422
Dan Gohmanc8e23622009-04-21 23:15:49 +00007423bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman0bddac12009-02-24 18:55:53 +00007424 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Chris Lattnerd934c702004-04-02 20:23:17 +00007425}
7426
Dan Gohmanc8e23622009-04-21 23:15:49 +00007427static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Chris Lattnerd934c702004-04-02 20:23:17 +00007428 const Loop *L) {
7429 // Print all inner loops first
7430 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
7431 PrintLoopInfo(OS, SE, *I);
Misha Brukman01808ca2005-04-21 21:13:18 +00007432
Dan Gohmanbc694912010-01-09 18:17:45 +00007433 OS << "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007434 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007435 OS << ": ";
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00007436
Dan Gohmancb0efec2009-12-18 01:14:11 +00007437 SmallVector<BasicBlock *, 8> ExitBlocks;
Chris Lattnerd72c3eb2004-04-18 22:14:10 +00007438 L->getExitBlocks(ExitBlocks);
7439 if (ExitBlocks.size() != 1)
Nick Lewyckyd1200b02008-01-02 02:49:20 +00007440 OS << "<multiple exits> ";
Chris Lattnerd934c702004-04-02 20:23:17 +00007441
Dan Gohman0bddac12009-02-24 18:55:53 +00007442 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
7443 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Chris Lattnerd934c702004-04-02 20:23:17 +00007444 } else {
Dan Gohman0bddac12009-02-24 18:55:53 +00007445 OS << "Unpredictable backedge-taken count. ";
Chris Lattnerd934c702004-04-02 20:23:17 +00007446 }
7447
Dan Gohmanbc694912010-01-09 18:17:45 +00007448 OS << "\n"
7449 "Loop ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007450 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007451 OS << ": ";
Dan Gohman69942932009-06-24 00:33:16 +00007452
7453 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
7454 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
7455 } else {
7456 OS << "Unpredictable max backedge-taken count. ";
7457 }
7458
7459 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00007460}
7461
Dan Gohmancb0efec2009-12-18 01:14:11 +00007462void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
Dan Gohman8b0a4192010-03-01 17:49:51 +00007463 // ScalarEvolution's implementation of the print method is to print
Dan Gohmanc8e23622009-04-21 23:15:49 +00007464 // out SCEV values of all instructions that are interesting. Doing
7465 // this potentially causes it to create new SCEV objects though,
7466 // which technically conflicts with the const qualifier. This isn't
Dan Gohman028e6152009-07-10 20:25:29 +00007467 // observable from outside the class though, so casting away the
7468 // const isn't dangerous.
Dan Gohmancb0efec2009-12-18 01:14:11 +00007469 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
Chris Lattnerd934c702004-04-02 20:23:17 +00007470
Dan Gohmanbc694912010-01-09 18:17:45 +00007471 OS << "Classifying expressions for: ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007472 F->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007473 OS << "\n";
Chris Lattnerd934c702004-04-02 20:23:17 +00007474 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Dan Gohmand18dc2c2010-05-03 17:03:23 +00007475 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
Dan Gohmanfda3c4a2009-07-13 23:03:05 +00007476 OS << *I << '\n';
Dan Gohman81313fd2008-09-14 17:21:12 +00007477 OS << " --> ";
Dan Gohmanaf752342009-07-07 17:06:11 +00007478 const SCEV *SV = SE.getSCEV(&*I);
Chris Lattnerd934c702004-04-02 20:23:17 +00007479 SV->print(OS);
Misha Brukman01808ca2005-04-21 21:13:18 +00007480
Dan Gohmanb9063a82009-06-19 17:49:54 +00007481 const Loop *L = LI->getLoopFor((*I).getParent());
7482
Dan Gohmanaf752342009-07-07 17:06:11 +00007483 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
Dan Gohmanb9063a82009-06-19 17:49:54 +00007484 if (AtUse != SV) {
7485 OS << " --> ";
7486 AtUse->print(OS);
7487 }
7488
7489 if (L) {
Dan Gohman94c468f2009-06-18 00:37:45 +00007490 OS << "\t\t" "Exits: ";
Dan Gohmanaf752342009-07-07 17:06:11 +00007491 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
Dan Gohmanafd6db92010-11-17 21:23:15 +00007492 if (!SE.isLoopInvariant(ExitValue, L)) {
Chris Lattnerd934c702004-04-02 20:23:17 +00007493 OS << "<<Unknown>>";
7494 } else {
7495 OS << *ExitValue;
7496 }
7497 }
7498
Chris Lattnerd934c702004-04-02 20:23:17 +00007499 OS << "\n";
7500 }
7501
Dan Gohmanbc694912010-01-09 18:17:45 +00007502 OS << "Determining loop execution counts for: ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +00007503 F->printAsOperand(OS, /*PrintType=*/false);
Dan Gohmanbc694912010-01-09 18:17:45 +00007504 OS << "\n";
Dan Gohmanc8e23622009-04-21 23:15:49 +00007505 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
7506 PrintLoopInfo(OS, &SE, *I);
Chris Lattnerd934c702004-04-02 20:23:17 +00007507}
Dan Gohmane20f8242009-04-21 00:47:46 +00007508
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007509ScalarEvolution::LoopDisposition
7510ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00007511 SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values = LoopDispositions[S];
7512 for (unsigned u = 0; u < Values.size(); u++) {
7513 if (Values[u].first == L)
7514 return Values[u].second;
7515 }
7516 Values.push_back(std::make_pair(L, LoopVariant));
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007517 LoopDisposition D = computeLoopDisposition(S, L);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00007518 SmallVector<std::pair<const Loop *, LoopDisposition>, 2> &Values2 = LoopDispositions[S];
7519 for (unsigned u = Values2.size(); u > 0; u--) {
7520 if (Values2[u - 1].first == L) {
7521 Values2[u - 1].second = D;
7522 break;
7523 }
7524 }
7525 return D;
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007526}
7527
7528ScalarEvolution::LoopDisposition
7529ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00007530 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohmanafd6db92010-11-17 21:23:15 +00007531 case scConstant:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007532 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007533 case scTruncate:
7534 case scZeroExtend:
7535 case scSignExtend:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007536 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
Dan Gohmanafd6db92010-11-17 21:23:15 +00007537 case scAddRecExpr: {
7538 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
7539
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007540 // If L is the addrec's loop, it's computable.
7541 if (AR->getLoop() == L)
7542 return LoopComputable;
7543
Dan Gohmanafd6db92010-11-17 21:23:15 +00007544 // Add recurrences are never invariant in the function-body (null loop).
7545 if (!L)
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007546 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007547
7548 // This recurrence is variant w.r.t. L if L contains AR's loop.
7549 if (L->contains(AR->getLoop()))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007550 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007551
7552 // This recurrence is invariant w.r.t. L if AR's loop contains L.
7553 if (AR->getLoop()->contains(L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007554 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007555
7556 // This recurrence is variant w.r.t. L if any of its operands
7557 // are variant.
7558 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
7559 I != E; ++I)
7560 if (!isLoopInvariant(*I, L))
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007561 return LoopVariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007562
7563 // Otherwise it's loop-invariant.
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007564 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007565 }
7566 case scAddExpr:
7567 case scMulExpr:
7568 case scUMaxExpr:
7569 case scSMaxExpr: {
7570 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohmanafd6db92010-11-17 21:23:15 +00007571 bool HasVarying = false;
7572 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
7573 I != E; ++I) {
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007574 LoopDisposition D = getLoopDisposition(*I, L);
7575 if (D == LoopVariant)
7576 return LoopVariant;
7577 if (D == LoopComputable)
7578 HasVarying = true;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007579 }
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007580 return HasVarying ? LoopComputable : LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007581 }
7582 case scUDivExpr: {
7583 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007584 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
7585 if (LD == LoopVariant)
7586 return LoopVariant;
7587 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
7588 if (RD == LoopVariant)
7589 return LoopVariant;
7590 return (LD == LoopInvariant && RD == LoopInvariant) ?
7591 LoopInvariant : LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007592 }
7593 case scUnknown:
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007594 // All non-instruction values are loop invariant. All instructions are loop
7595 // invariant if they are not contained in the specified loop.
7596 // Instructions are never considered invariant in the function body
7597 // (null loop) because they are defined within the "loop".
7598 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
7599 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
7600 return LoopInvariant;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007601 case scCouldNotCompute:
7602 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohmanafd6db92010-11-17 21:23:15 +00007603 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00007604 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman7ee1bbb2010-11-17 23:21:44 +00007605}
7606
7607bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
7608 return getLoopDisposition(S, L) == LoopInvariant;
7609}
7610
7611bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
7612 return getLoopDisposition(S, L) == LoopComputable;
Dan Gohmanafd6db92010-11-17 21:23:15 +00007613}
Dan Gohman20d9ce22010-11-17 21:41:58 +00007614
Dan Gohman8ea83d82010-11-18 00:34:22 +00007615ScalarEvolution::BlockDisposition
7616ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00007617 SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values = BlockDispositions[S];
7618 for (unsigned u = 0; u < Values.size(); u++) {
7619 if (Values[u].first == BB)
7620 return Values[u].second;
7621 }
7622 Values.push_back(std::make_pair(BB, DoesNotDominateBlock));
Dan Gohman8ea83d82010-11-18 00:34:22 +00007623 BlockDisposition D = computeBlockDisposition(S, BB);
Wan Xiaofeib2c8cdc2013-11-12 09:40:41 +00007624 SmallVector<std::pair<const BasicBlock *, BlockDisposition>, 2> &Values2 = BlockDispositions[S];
7625 for (unsigned u = Values2.size(); u > 0; u--) {
7626 if (Values2[u - 1].first == BB) {
7627 Values2[u - 1].second = D;
7628 break;
7629 }
7630 }
7631 return D;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007632}
7633
Dan Gohman8ea83d82010-11-18 00:34:22 +00007634ScalarEvolution::BlockDisposition
7635ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
Benjamin Kramer987b8502014-02-11 19:02:55 +00007636 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
Dan Gohman20d9ce22010-11-17 21:41:58 +00007637 case scConstant:
Dan Gohman8ea83d82010-11-18 00:34:22 +00007638 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007639 case scTruncate:
7640 case scZeroExtend:
7641 case scSignExtend:
Dan Gohman8ea83d82010-11-18 00:34:22 +00007642 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
Dan Gohman20d9ce22010-11-17 21:41:58 +00007643 case scAddRecExpr: {
7644 // This uses a "dominates" query instead of "properly dominates" query
Dan Gohman8ea83d82010-11-18 00:34:22 +00007645 // to test for proper dominance too, because the instruction which
7646 // produces the addrec's value is a PHI, and a PHI effectively properly
7647 // dominates its entire containing block.
Dan Gohman20d9ce22010-11-17 21:41:58 +00007648 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
7649 if (!DT->dominates(AR->getLoop()->getHeader(), BB))
Dan Gohman8ea83d82010-11-18 00:34:22 +00007650 return DoesNotDominateBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007651 }
7652 // FALL THROUGH into SCEVNAryExpr handling.
7653 case scAddExpr:
7654 case scMulExpr:
7655 case scUMaxExpr:
7656 case scSMaxExpr: {
7657 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00007658 bool Proper = true;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007659 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
Dan Gohman8ea83d82010-11-18 00:34:22 +00007660 I != E; ++I) {
7661 BlockDisposition D = getBlockDisposition(*I, BB);
7662 if (D == DoesNotDominateBlock)
7663 return DoesNotDominateBlock;
7664 if (D == DominatesBlock)
7665 Proper = false;
7666 }
7667 return Proper ? ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007668 }
7669 case scUDivExpr: {
7670 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00007671 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
7672 BlockDisposition LD = getBlockDisposition(LHS, BB);
7673 if (LD == DoesNotDominateBlock)
7674 return DoesNotDominateBlock;
7675 BlockDisposition RD = getBlockDisposition(RHS, BB);
7676 if (RD == DoesNotDominateBlock)
7677 return DoesNotDominateBlock;
7678 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
7679 ProperlyDominatesBlock : DominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007680 }
7681 case scUnknown:
7682 if (Instruction *I =
Dan Gohman8ea83d82010-11-18 00:34:22 +00007683 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
7684 if (I->getParent() == BB)
7685 return DominatesBlock;
7686 if (DT->properlyDominates(I->getParent(), BB))
7687 return ProperlyDominatesBlock;
7688 return DoesNotDominateBlock;
7689 }
7690 return ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007691 case scCouldNotCompute:
7692 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
Dan Gohman20d9ce22010-11-17 21:41:58 +00007693 }
Benjamin Kramer987b8502014-02-11 19:02:55 +00007694 llvm_unreachable("Unknown SCEV kind!");
Dan Gohman8ea83d82010-11-18 00:34:22 +00007695}
7696
7697bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
7698 return getBlockDisposition(S, BB) >= DominatesBlock;
7699}
7700
7701bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
7702 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
Dan Gohman20d9ce22010-11-17 21:41:58 +00007703}
Dan Gohman534749b2010-11-17 22:27:42 +00007704
Andrew Trick365e31c2012-07-13 23:33:03 +00007705namespace {
7706// Search for a SCEV expression node within an expression tree.
7707// Implements SCEVTraversal::Visitor.
7708struct SCEVSearch {
7709 const SCEV *Node;
7710 bool IsFound;
7711
7712 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
7713
7714 bool follow(const SCEV *S) {
7715 IsFound |= (S == Node);
7716 return !IsFound;
7717 }
7718 bool isDone() const { return IsFound; }
7719};
7720}
7721
Dan Gohman534749b2010-11-17 22:27:42 +00007722bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
Andrew Trick365e31c2012-07-13 23:33:03 +00007723 SCEVSearch Search(Op);
7724 visitAll(S, Search);
7725 return Search.IsFound;
Dan Gohman534749b2010-11-17 22:27:42 +00007726}
Dan Gohman7e6b3932010-11-17 23:28:48 +00007727
7728void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
7729 ValuesAtScopes.erase(S);
7730 LoopDispositions.erase(S);
Dan Gohman8ea83d82010-11-18 00:34:22 +00007731 BlockDispositions.erase(S);
Dan Gohman7e6b3932010-11-17 23:28:48 +00007732 UnsignedRanges.erase(S);
7733 SignedRanges.erase(S);
Andrew Trick9093e152013-03-26 03:14:53 +00007734
7735 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
7736 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
7737 BackedgeTakenInfo &BEInfo = I->second;
7738 if (BEInfo.hasOperand(S, this)) {
7739 BEInfo.clear();
7740 BackedgeTakenCounts.erase(I++);
7741 }
7742 else
7743 ++I;
7744 }
Dan Gohman7e6b3932010-11-17 23:28:48 +00007745}
Benjamin Kramer214935e2012-10-26 17:31:32 +00007746
7747typedef DenseMap<const Loop *, std::string> VerifyMap;
Benjamin Kramer24d270d2012-10-27 10:45:01 +00007748
Alp Tokercb402912014-01-24 17:20:08 +00007749/// replaceSubString - Replaces all occurrences of From in Str with To.
Benjamin Kramer24d270d2012-10-27 10:45:01 +00007750static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
7751 size_t Pos = 0;
7752 while ((Pos = Str.find(From, Pos)) != std::string::npos) {
7753 Str.replace(Pos, From.size(), To.data(), To.size());
7754 Pos += To.size();
7755 }
7756}
7757
Benjamin Kramer214935e2012-10-26 17:31:32 +00007758/// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
7759static void
7760getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
7761 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) {
7762 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse.
7763
7764 std::string &S = Map[L];
7765 if (S.empty()) {
7766 raw_string_ostream OS(S);
7767 SE.getBackedgeTakenCount(L)->print(OS);
Benjamin Kramer24d270d2012-10-27 10:45:01 +00007768
7769 // false and 0 are semantically equivalent. This can happen in dead loops.
7770 replaceSubString(OS.str(), "false", "0");
7771 // Remove wrap flags, their use in SCEV is highly fragile.
7772 // FIXME: Remove this when SCEV gets smarter about them.
7773 replaceSubString(OS.str(), "<nw>", "");
7774 replaceSubString(OS.str(), "<nsw>", "");
7775 replaceSubString(OS.str(), "<nuw>", "");
Benjamin Kramer214935e2012-10-26 17:31:32 +00007776 }
7777 }
7778}
7779
7780void ScalarEvolution::verifyAnalysis() const {
7781 if (!VerifySCEV)
7782 return;
7783
7784 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
7785
7786 // Gather stringified backedge taken counts for all loops using SCEV's caches.
7787 // FIXME: It would be much better to store actual values instead of strings,
7788 // but SCEV pointers will change if we drop the caches.
7789 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
7790 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
7791 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
7792
7793 // Gather stringified backedge taken counts for all loops without using
7794 // SCEV's caches.
7795 SE.releaseMemory();
7796 for (LoopInfo::reverse_iterator I = LI->rbegin(), E = LI->rend(); I != E; ++I)
7797 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE);
7798
7799 // Now compare whether they're the same with and without caches. This allows
7800 // verifying that no pass changed the cache.
7801 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
7802 "New loops suddenly appeared!");
7803
7804 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
7805 OldE = BackedgeDumpsOld.end(),
7806 NewI = BackedgeDumpsNew.begin();
7807 OldI != OldE; ++OldI, ++NewI) {
7808 assert(OldI->first == NewI->first && "Loop order changed!");
7809
7810 // Compare the stringified SCEVs. We don't care if undef backedgetaken count
7811 // changes.
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00007812 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
Benjamin Kramer214935e2012-10-26 17:31:32 +00007813 // means that a pass is buggy or SCEV has to learn a new pattern but is
7814 // usually not harmful.
7815 if (OldI->second != NewI->second &&
7816 OldI->second.find("undef") == std::string::npos &&
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00007817 NewI->second.find("undef") == std::string::npos &&
7818 OldI->second != "***COULDNOTCOMPUTE***" &&
Benjamin Kramer214935e2012-10-26 17:31:32 +00007819 NewI->second != "***COULDNOTCOMPUTE***") {
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00007820 dbgs() << "SCEVValidator: SCEV for loop '"
Benjamin Kramer214935e2012-10-26 17:31:32 +00007821 << OldI->first->getHeader()->getName()
Benjamin Kramer5bc077a2012-10-27 11:36:07 +00007822 << "' changed from '" << OldI->second
7823 << "' to '" << NewI->second << "'!\n";
Benjamin Kramer214935e2012-10-26 17:31:32 +00007824 std::abort();
7825 }
7826 }
7827
7828 // TODO: Verify more things.
7829}