blob: 7da7bb5973cfaa4040e08f1e589f521a745b57f8 [file] [log] [blame]
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001//===--- RDFGraph.h -------------------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Target-independent, SSA-based data flow graph for register data flow (RDF)
11// for a non-SSA program representation (e.g. post-RA machine code).
12//
13//
14// *** Introduction
15//
16// The RDF graph is a collection of nodes, each of which denotes some element
17// of the program. There are two main types of such elements: code and refe-
18// rences. Conceptually, "code" is something that represents the structure
19// of the program, e.g. basic block or a statement, while "reference" is an
20// instance of accessing a register, e.g. a definition or a use. Nodes are
21// connected with each other based on the structure of the program (such as
22// blocks, instructions, etc.), and based on the data flow (e.g. reaching
23// definitions, reached uses, etc.). The single-reaching-definition principle
24// of SSA is generally observed, although, due to the non-SSA representation
25// of the program, there are some differences between the graph and a "pure"
26// SSA representation.
27//
28//
29// *** Implementation remarks
30//
31// Since the graph can contain a large number of nodes, memory consumption
32// was one of the major design considerations. As a result, there is a single
33// base class NodeBase which defines all members used by all possible derived
34// classes. The members are arranged in a union, and a derived class cannot
35// add any data members of its own. Each derived class only defines the
36// functional interface, i.e. member functions. NodeBase must be a POD,
37// which implies that all of its members must also be PODs.
38// Since nodes need to be connected with other nodes, pointers have been
39// replaced with 32-bit identifiers: each node has an id of type NodeId.
40// There are mapping functions in the graph that translate between actual
41// memory addresses and the corresponding identifiers.
42// A node id of 0 is equivalent to nullptr.
43//
44//
45// *** Structure of the graph
46//
47// A code node is always a collection of other nodes. For example, a code
48// node corresponding to a basic block will contain code nodes corresponding
49// to instructions. In turn, a code node corresponding to an instruction will
50// contain a list of reference nodes that correspond to the definitions and
51// uses of registers in that instruction. The members are arranged into a
52// circular list, which is yet another consequence of the effort to save
53// memory: for each member node it should be possible to obtain its owner,
54// and it should be possible to access all other members. There are other
55// ways to accomplish that, but the circular list seemed the most natural.
56//
57// +- CodeNode -+
58// | | <---------------------------------------------------+
59// +-+--------+-+ |
60// |FirstM |LastM |
61// | +-------------------------------------+ |
62// | | |
63// V V |
64// +----------+ Next +----------+ Next Next +----------+ Next |
65// | |----->| |-----> ... ----->| |----->-+
66// +- Member -+ +- Member -+ +- Member -+
67//
68// The order of members is such that related reference nodes (see below)
69// should be contiguous on the member list.
70//
71// A reference node is a node that encapsulates an access to a register,
72// in other words, data flowing into or out of a register. There are two
73// major kinds of reference nodes: defs and uses. A def node will contain
74// the id of the first reached use, and the id of the first reached def.
75// Each def and use will contain the id of the reaching def, and also the
76// id of the next reached def (for def nodes) or use (for use nodes).
77// The "next node sharing the same reaching def" is denoted as "sibling".
78// In summary:
79// - Def node contains: reaching def, sibling, first reached def, and first
80// reached use.
81// - Use node contains: reaching def and sibling.
82//
83// +-- DefNode --+
84// | R2 = ... | <---+--------------------+
85// ++---------+--+ | |
86// |Reached |Reached | |
87// |Def |Use | |
88// | | |Reaching |Reaching
89// | V |Def |Def
90// | +-- UseNode --+ Sib +-- UseNode --+ Sib Sib
91// | | ... = R2 |----->| ... = R2 |----> ... ----> 0
92// | +-------------+ +-------------+
93// V
94// +-- DefNode --+ Sib
95// | R2 = ... |----> ...
96// ++---------+--+
97// | |
98// | |
99// ... ...
100//
101// To get a full picture, the circular lists connecting blocks within a
102// function, instructions within a block, etc. should be superimposed with
103// the def-def, def-use links shown above.
104// To illustrate this, consider a small example in a pseudo-assembly:
105// foo:
106// add r2, r0, r1 ; r2 = r0+r1
107// addi r0, r2, 1 ; r0 = r2+1
108// ret r0 ; return value in r0
109//
110// The graph (in a format used by the debugging functions) would look like:
111//
112// DFG dump:[
113// f1: Function foo
114// b2: === BB#0 === preds(0), succs(0):
115// p3: phi [d4<r0>(,d12,u9):]
116// p5: phi [d6<r1>(,,u10):]
117// s7: add [d8<r2>(,,u13):, u9<r0>(d4):, u10<r1>(d6):]
118// s11: addi [d12<r0>(d4,,u15):, u13<r2>(d8):]
119// s14: ret [u15<r0>(d12):]
120// ]
121//
122// The f1, b2, p3, etc. are node ids. The letter is prepended to indicate the
123// kind of the node (i.e. f - function, b - basic block, p - phi, s - state-
124// ment, d - def, u - use).
125// The format of a def node is:
126// dN<R>(rd,d,u):sib,
127// where
128// N - numeric node id,
129// R - register being defined
130// rd - reaching def,
131// d - reached def,
132// u - reached use,
133// sib - sibling.
134// The format of a use node is:
135// uN<R>[!](rd):sib,
136// where
137// N - numeric node id,
138// R - register being used,
139// rd - reaching def,
140// sib - sibling.
141// Possible annotations (usually preceding the node id):
142// + - preserving def,
143// ~ - clobbering def,
144// " - shadow ref (follows the node id),
145// ! - fixed register (appears after register name).
146//
147// The circular lists are not explicit in the dump.
148//
149//
150// *** Node attributes
151//
152// NodeBase has a member "Attrs", which is the primary way of determining
153// the node's characteristics. The fields in this member decide whether
154// the node is a code node or a reference node (i.e. node's "type"), then
155// within each type, the "kind" determines what specifically this node
156// represents. The remaining bits, "flags", contain additional information
157// that is even more detailed than the "kind".
158// CodeNode's kinds are:
159// - Phi: Phi node, members are reference nodes.
160// - Stmt: Statement, members are reference nodes.
161// - Block: Basic block, members are instruction nodes (i.e. Phi or Stmt).
162// - Func: The whole function. The members are basic block nodes.
163// RefNode's kinds are:
164// - Use.
165// - Def.
166//
167// Meaning of flags:
168// - Preserving: applies only to defs. A preserving def is one that can
169// preserve some of the original bits among those that are included in
170// the register associated with that def. For example, if R0 is a 32-bit
171// register, but a def can only change the lower 16 bits, then it will
172// be marked as preserving.
173// - Shadow: a reference that has duplicates holding additional reaching
174// defs (see more below).
175// - Clobbering: applied only to defs, indicates that the value generated
176// by this def is unspecified. A typical example would be volatile registers
177// after function calls.
178//
179//
180// *** Shadow references
181//
182// It may happen that a super-register can have two (or more) non-overlapping
183// sub-registers. When both of these sub-registers are defined and followed
184// by a use of the super-register, the use of the super-register will not
185// have a unique reaching def: both defs of the sub-registers need to be
186// accounted for. In such cases, a duplicate use of the super-register is
187// added and it points to the extra reaching def. Both uses are marked with
188// a flag "shadow". Example:
189// Assume t0 is a super-register of r0 and r1, r0 and r1 do not overlap:
190// set r0, 1 ; r0 = 1
191// set r1, 1 ; r1 = 1
192// addi t1, t0, 1 ; t1 = t0+1
193//
194// The DFG:
195// s1: set [d2<r0>(,,u9):]
196// s3: set [d4<r1>(,,u10):]
197// s5: addi [d6<t1>(,,):, u7"<t0>(d2):, u8"<t0>(d4):]
198//
199// The statement s5 has two use nodes for t0: u7" and u9". The quotation
200// mark " indicates that the node is a shadow.
201//
202#ifndef RDF_GRAPH_H
203#define RDF_GRAPH_H
204
205#include "llvm/ADT/BitVector.h"
206#include "llvm/Support/Allocator.h"
207#include "llvm/Support/Debug.h"
208#include "llvm/Support/raw_ostream.h"
209#include "llvm/Support/Timer.h"
210
211#include <functional>
212#include <map>
213#include <set>
214#include <vector>
215
216using namespace llvm;
217
218namespace llvm {
219 class MachineBasicBlock;
220 class MachineFunction;
221 class MachineInstr;
222 class MachineOperand;
223 class MachineDominanceFrontier;
224 class MachineDominatorTree;
225 class TargetInstrInfo;
226 class TargetRegisterInfo;
227}
228
229namespace rdf {
230 typedef uint32_t NodeId;
231
232 struct NodeAttrs {
233 enum : uint16_t {
234 None = 0x0000, // Nothing
235
236 // Types: 2 bits
237 TypeMask = 0x0003,
238 Code = 0x0001, // 01, Container
239 Ref = 0x0002, // 10, Reference
240
241 // Kind: 3 bits
242 KindMask = 0x0007 << 2,
243 Def = 0x0001 << 2, // 001
244 Use = 0x0002 << 2, // 010
245 Phi = 0x0003 << 2, // 011
246 Stmt = 0x0004 << 2, // 100
247 Block = 0x0005 << 2, // 101
248 Func = 0x0006 << 2, // 110
249
250 // Flags: 5 bits for now
251 FlagMask = 0x001F << 5,
252 Shadow = 0x0001 << 5, // 00001, Has extra reaching defs.
253 Clobbering = 0x0002 << 5, // 00010, Produces unspecified values.
254 PhiRef = 0x0004 << 5, // 00100, Member of PhiNode.
255 Preserving = 0x0008 << 5, // 01000, Def can keep original bits.
256 Fixed = 0x0010 << 5, // 10000, Fixed register.
257 };
258
259 static uint16_t type(uint16_t T) { return T & TypeMask; }
260 static uint16_t kind(uint16_t T) { return T & KindMask; }
261 static uint16_t flags(uint16_t T) { return T & FlagMask; }
262
263 static uint16_t set_type(uint16_t A, uint16_t T) {
264 return (A & ~TypeMask) | T;
265 }
266 static uint16_t set_kind(uint16_t A, uint16_t K) {
267 return (A & ~KindMask) | K;
268 }
269 static uint16_t set_flags(uint16_t A, uint16_t F) {
270 return (A & ~FlagMask) | F;
271 }
272
273 // Test if A contains B.
274 static bool contains(uint16_t A, uint16_t B) {
275 if (type(A) != Code)
276 return false;
277 uint16_t KB = kind(B);
278 switch (kind(A)) {
279 case Func:
280 return KB == Block;
281 case Block:
282 return KB == Phi || KB == Stmt;
283 case Phi:
284 case Stmt:
285 return type(B) == Ref;
286 }
287 return false;
288 }
289 };
290
291 template <typename T> struct NodeAddr {
292 NodeAddr() : Addr(nullptr), Id(0) {}
293 NodeAddr(T A, NodeId I) : Addr(A), Id(I) {}
294 NodeAddr(const NodeAddr&) = default;
295 NodeAddr &operator= (const NodeAddr&) = default;
296
297 bool operator== (const NodeAddr<T> &NA) const {
298 assert((Addr == NA.Addr) == (Id == NA.Id));
299 return Addr == NA.Addr;
300 }
301 bool operator!= (const NodeAddr<T> &NA) const {
302 return !operator==(NA);
303 }
304 // Type cast (casting constructor). The reason for having this class
305 // instead of std::pair.
306 template <typename S> NodeAddr(const NodeAddr<S> &NA)
307 : Addr(static_cast<T>(NA.Addr)), Id(NA.Id) {}
308
309 T Addr;
310 NodeId Id;
311 };
312
313 struct NodeBase;
314
315 // Fast memory allocation and translation between node id and node address.
316 // This is really the same idea as the one underlying the "bump pointer
317 // allocator", the difference being in the translation. A node id is
318 // composed of two components: the index of the block in which it was
319 // allocated, and the index within the block. With the default settings,
320 // where the number of nodes per block is 4096, the node id (minus 1) is:
321 //
322 // bit position: 11 0
323 // +----------------------------+--------------+
324 // | Index of the block |Index in block|
325 // +----------------------------+--------------+
326 //
327 // The actual node id is the above plus 1, to avoid creating a node id of 0.
328 //
329 // This method significantly improved the build time, compared to using maps
330 // (std::unordered_map or DenseMap) to translate between pointers and ids.
331 struct NodeAllocator {
332 // Amount of storage for a single node.
333 enum { NodeMemSize = 32 };
334 NodeAllocator(uint32_t NPB = 4096)
335 : NodesPerBlock(NPB), BitsPerIndex(Log2_32(NPB)),
336 IndexMask((1 << BitsPerIndex)-1), ActiveEnd(nullptr) {
337 assert(isPowerOf2_32(NPB));
338 }
339 NodeBase *ptr(NodeId N) const {
340 uint32_t N1 = N-1;
341 uint32_t BlockN = N1 >> BitsPerIndex;
342 uint32_t Offset = (N1 & IndexMask) * NodeMemSize;
343 return reinterpret_cast<NodeBase*>(Blocks[BlockN]+Offset);
344 }
345 NodeId id(const NodeBase *P) const;
346 NodeAddr<NodeBase*> New();
347 void clear();
348
349 private:
350 void startNewBlock();
351 bool needNewBlock();
352 uint32_t makeId(uint32_t Block, uint32_t Index) const {
353 // Add 1 to the id, to avoid the id of 0, which is treated as "null".
354 return ((Block << BitsPerIndex) | Index) + 1;
355 }
356
357 const uint32_t NodesPerBlock;
358 const uint32_t BitsPerIndex;
359 const uint32_t IndexMask;
360 char *ActiveEnd;
361 std::vector<char*> Blocks;
362 typedef BumpPtrAllocatorImpl<MallocAllocator, 65536> AllocatorTy;
363 AllocatorTy MemPool;
364 };
365
366 struct RegisterRef {
367 unsigned Reg, Sub;
368
369 // No non-trivial constructors, since this will be a member of a union.
370 RegisterRef() = default;
371 RegisterRef(const RegisterRef &RR) = default;
372 RegisterRef &operator= (const RegisterRef &RR) = default;
373 bool operator== (const RegisterRef &RR) const {
374 return Reg == RR.Reg && Sub == RR.Sub;
375 }
376 bool operator!= (const RegisterRef &RR) const {
377 return !operator==(RR);
378 }
379 bool operator< (const RegisterRef &RR) const {
380 return Reg < RR.Reg || (Reg == RR.Reg && Sub < RR.Sub);
381 }
382 };
383 typedef std::set<RegisterRef> RegisterSet;
384
385 struct RegisterAliasInfo {
386 RegisterAliasInfo(const TargetRegisterInfo &tri) : TRI(tri) {}
387 virtual ~RegisterAliasInfo() {}
388
389 virtual std::vector<RegisterRef> getAliasSet(RegisterRef RR) const;
390 virtual bool alias(RegisterRef RA, RegisterRef RB) const;
391 virtual bool covers(RegisterRef RA, RegisterRef RB) const;
392 virtual bool covers(const RegisterSet &RRs, RegisterRef RR) const;
393
394 const TargetRegisterInfo &TRI;
395 };
396
397 struct TargetOperandInfo {
398 TargetOperandInfo(const TargetInstrInfo &tii) : TII(tii) {}
399 virtual ~TargetOperandInfo() {}
400 virtual bool isPreserving(const MachineInstr &In, unsigned OpNum) const;
401 virtual bool isClobbering(const MachineInstr &In, unsigned OpNum) const;
402 virtual bool isFixedReg(const MachineInstr &In, unsigned OpNum) const;
403
404 const TargetInstrInfo &TII;
405 };
406
407
408 struct DataFlowGraph;
409
410 struct NodeBase {
411 public:
412 // Make sure this is a POD.
413 NodeBase() = default;
414 uint16_t getType() const { return NodeAttrs::type(Attrs); }
415 uint16_t getKind() const { return NodeAttrs::kind(Attrs); }
416 uint16_t getFlags() const { return NodeAttrs::flags(Attrs); }
417 NodeId getNext() const { return Next; }
418
419 uint16_t getAttrs() const { return Attrs; }
420 void setAttrs(uint16_t A) { Attrs = A; }
421 void setFlags(uint16_t F) { setAttrs(NodeAttrs::set_flags(getAttrs(), F)); }
422
423 // Insert node NA after "this" in the circular chain.
424 void append(NodeAddr<NodeBase*> NA);
425 // Initialize all members to 0.
426 void init() { memset(this, 0, sizeof *this); }
427 void setNext(NodeId N) { Next = N; }
428
429 protected:
430 uint16_t Attrs;
431 uint16_t Reserved;
432 NodeId Next; // Id of the next node in the circular chain.
433 // Definitions of nested types. Using anonymous nested structs would make
434 // this class definition clearer, but unnamed structs are not a part of
435 // the standard.
436 struct Def_struct {
437 NodeId DD, DU; // Ids of the first reached def and use.
438 };
439 struct PhiU_struct {
440 NodeId PredB; // Id of the predecessor block for a phi use.
441 };
442 struct Code_struct {
443 void *CP; // Pointer to the actual code.
444 NodeId FirstM, LastM; // Id of the first member and last.
445 };
446 struct Ref_struct {
447 NodeId RD, Sib; // Ids of the reaching def and the sibling.
448 union {
449 Def_struct Def;
450 PhiU_struct PhiU;
451 };
452 union {
453 MachineOperand *Op; // Non-phi refs point to a machine operand.
454 RegisterRef RR; // Phi refs store register info directly.
455 };
456 };
457
458 // The actual payload.
459 union {
460 Ref_struct Ref;
461 Code_struct Code;
462 };
463 };
464 // The allocator allocates chunks of 32 bytes for each node. The fact that
465 // each node takes 32 bytes in memory is used for fast translation between
466 // the node id and the node address.
467 static_assert(sizeof(NodeBase) <= NodeAllocator::NodeMemSize,
468 "NodeBase must be at most NodeAllocator::NodeMemSize bytes");
469
470 typedef std::vector<NodeAddr<NodeBase*>> NodeList;
471 typedef std::set<NodeId> NodeSet;
472
473 struct RefNode : public NodeBase {
474 RefNode() = default;
475 RegisterRef getRegRef() const;
476 MachineOperand &getOp() {
477 assert(!(getFlags() & NodeAttrs::PhiRef));
478 return *Ref.Op;
479 }
480 void setRegRef(RegisterRef RR);
481 void setRegRef(MachineOperand *Op);
482 NodeId getReachingDef() const {
483 return Ref.RD;
484 }
485 void setReachingDef(NodeId RD) {
486 Ref.RD = RD;
487 }
488 NodeId getSibling() const {
489 return Ref.Sib;
490 }
491 void setSibling(NodeId Sib) {
492 Ref.Sib = Sib;
493 }
494 bool isUse() const {
495 assert(getType() == NodeAttrs::Ref);
496 return getKind() == NodeAttrs::Use;
497 }
498 bool isDef() const {
499 assert(getType() == NodeAttrs::Ref);
500 return getKind() == NodeAttrs::Def;
501 }
502
503 template <typename Predicate>
504 NodeAddr<RefNode*> getNextRef(RegisterRef RR, Predicate P, bool NextOnly,
505 const DataFlowGraph &G);
506 NodeAddr<NodeBase*> getOwner(const DataFlowGraph &G);
507 };
508
509 struct DefNode : public RefNode {
510 NodeId getReachedDef() const {
511 return Ref.Def.DD;
512 }
513 void setReachedDef(NodeId D) {
514 Ref.Def.DD = D;
515 }
516 NodeId getReachedUse() const {
517 return Ref.Def.DU;
518 }
519 void setReachedUse(NodeId U) {
520 Ref.Def.DU = U;
521 }
522
523 void linkToDef(NodeId Self, NodeAddr<DefNode*> DA);
524 };
525
526 struct UseNode : public RefNode {
527 void linkToDef(NodeId Self, NodeAddr<DefNode*> DA);
528 };
529
530 struct PhiUseNode : public UseNode {
531 NodeId getPredecessor() const {
532 assert(getFlags() & NodeAttrs::PhiRef);
533 return Ref.PhiU.PredB;
534 }
535 void setPredecessor(NodeId B) {
536 assert(getFlags() & NodeAttrs::PhiRef);
537 Ref.PhiU.PredB = B;
538 }
539 };
540
541 struct CodeNode : public NodeBase {
542 template <typename T> T getCode() const {
543 return static_cast<T>(Code.CP);
544 }
545 void setCode(void *C) {
546 Code.CP = C;
547 }
548
549 NodeAddr<NodeBase*> getFirstMember(const DataFlowGraph &G) const;
550 NodeAddr<NodeBase*> getLastMember(const DataFlowGraph &G) const;
551 void addMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G);
552 void addMemberAfter(NodeAddr<NodeBase*> MA, NodeAddr<NodeBase*> NA,
553 const DataFlowGraph &G);
554 void removeMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G);
555
556 NodeList members(const DataFlowGraph &G) const;
557 template <typename Predicate>
558 NodeList members_if(Predicate P, const DataFlowGraph &G) const;
559 };
560
561 struct InstrNode : public CodeNode {
562 NodeAddr<NodeBase*> getOwner(const DataFlowGraph &G);
563 };
564
565 struct PhiNode : public InstrNode {
566 MachineInstr *getCode() const {
567 return nullptr;
568 }
569 };
570
571 struct StmtNode : public InstrNode {
572 MachineInstr *getCode() const {
573 return CodeNode::getCode<MachineInstr*>();
574 }
575 };
576
577 struct BlockNode : public CodeNode {
578 MachineBasicBlock *getCode() const {
579 return CodeNode::getCode<MachineBasicBlock*>();
580 }
581 void addPhi(NodeAddr<PhiNode*> PA, const DataFlowGraph &G);
582 };
583
584 struct FuncNode : public CodeNode {
585 MachineFunction *getCode() const {
586 return CodeNode::getCode<MachineFunction*>();
587 }
588 NodeAddr<BlockNode*> findBlock(const MachineBasicBlock *BB,
589 const DataFlowGraph &G) const;
590 NodeAddr<BlockNode*> getEntryBlock(const DataFlowGraph &G);
591 };
592
593 struct DataFlowGraph {
594 DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii,
595 const TargetRegisterInfo &tri, const MachineDominatorTree &mdt,
596 const MachineDominanceFrontier &mdf, const RegisterAliasInfo &rai,
597 const TargetOperandInfo &toi);
598
599 NodeBase *ptr(NodeId N) const;
600 template <typename T> T ptr(NodeId N) const {
601 return static_cast<T>(ptr(N));
602 }
603 NodeId id(const NodeBase *P) const;
604
605 template <typename T> NodeAddr<T> addr(NodeId N) const {
606 return { ptr<T>(N), N };
607 }
608
609 NodeAddr<FuncNode*> getFunc() const {
610 return Func;
611 }
612 MachineFunction &getMF() const {
613 return MF;
614 }
615 const TargetInstrInfo &getTII() const {
616 return TII;
617 }
618 const TargetRegisterInfo &getTRI() const {
619 return TRI;
620 }
621 const MachineDominatorTree &getDT() const {
622 return MDT;
623 }
624 const MachineDominanceFrontier &getDF() const {
625 return MDF;
626 }
627 const RegisterAliasInfo &getRAI() const {
628 return RAI;
629 }
630
631 struct DefStack {
632 DefStack() = default;
633 bool empty() const { return Stack.empty() || top() == bottom(); }
634 private:
635 typedef NodeAddr<DefNode*> value_type;
636 struct Iterator {
637 typedef DefStack::value_type value_type;
638 Iterator &up() { Pos = DS.nextUp(Pos); return *this; }
639 Iterator &down() { Pos = DS.nextDown(Pos); return *this; }
640 value_type operator*() const {
641 assert(Pos >= 1);
642 return DS.Stack[Pos-1];
643 }
644 const value_type *operator->() const {
645 assert(Pos >= 1);
646 return &DS.Stack[Pos-1];
647 }
648 bool operator==(const Iterator &It) const { return Pos == It.Pos; }
649 bool operator!=(const Iterator &It) const { return Pos != It.Pos; }
650 private:
651 Iterator(const DefStack &S, bool Top);
652 // Pos-1 is the index in the StorageType object that corresponds to
653 // the top of the DefStack.
654 const DefStack &DS;
655 unsigned Pos;
656 friend struct DefStack;
657 };
658 public:
659 typedef Iterator iterator;
660 iterator top() const { return Iterator(*this, true); }
661 iterator bottom() const { return Iterator(*this, false); }
662 unsigned size() const;
663
664 void push(NodeAddr<DefNode*> DA) { Stack.push_back(DA); }
665 void pop();
666 void start_block(NodeId N);
667 void clear_block(NodeId N);
668 private:
669 friend struct Iterator;
670 typedef std::vector<value_type> StorageType;
671 bool isDelimiter(const StorageType::value_type &P, NodeId N = 0) const {
672 return (P.Addr == nullptr) && (N == 0 || P.Id == N);
673 }
674 unsigned nextUp(unsigned P) const;
675 unsigned nextDown(unsigned P) const;
676 StorageType Stack;
677 };
678
679 typedef std::map<RegisterRef,DefStack> DefStackMap;
680
681 void build();
682 void pushDefs(NodeAddr<InstrNode*> IA, DefStackMap &DM);
683 void markBlock(NodeId B, DefStackMap &DefM);
684 void releaseBlock(NodeId B, DefStackMap &DefM);
685
686 NodeAddr<RefNode*> getNextRelated(NodeAddr<InstrNode*> IA,
687 NodeAddr<RefNode*> RA) const;
688 NodeAddr<RefNode*> getNextImp(NodeAddr<InstrNode*> IA,
689 NodeAddr<RefNode*> RA, bool Create);
690 NodeAddr<RefNode*> getNextImp(NodeAddr<InstrNode*> IA,
691 NodeAddr<RefNode*> RA) const;
692 NodeAddr<RefNode*> getNextShadow(NodeAddr<InstrNode*> IA,
693 NodeAddr<RefNode*> RA, bool Create);
694 NodeAddr<RefNode*> getNextShadow(NodeAddr<InstrNode*> IA,
695 NodeAddr<RefNode*> RA) const;
696
697 NodeList getRelatedRefs(NodeAddr<InstrNode*> IA,
698 NodeAddr<RefNode*> RA) const;
699
700 void unlinkUse(NodeAddr<UseNode*> UA);
701 void unlinkDef(NodeAddr<DefNode*> DA);
702
703 // Some useful filters.
704 template <uint16_t Kind>
705 static bool IsRef(const NodeAddr<NodeBase*> BA) {
706 return BA.Addr->getType() == NodeAttrs::Ref &&
707 BA.Addr->getKind() == Kind;
708 }
709 template <uint16_t Kind>
710 static bool IsCode(const NodeAddr<NodeBase*> BA) {
711 return BA.Addr->getType() == NodeAttrs::Code &&
712 BA.Addr->getKind() == Kind;
713 }
714 static bool IsDef(const NodeAddr<NodeBase*> BA) {
715 return BA.Addr->getType() == NodeAttrs::Ref &&
716 BA.Addr->getKind() == NodeAttrs::Def;
717 }
718 static bool IsUse(const NodeAddr<NodeBase*> BA) {
719 return BA.Addr->getType() == NodeAttrs::Ref &&
720 BA.Addr->getKind() == NodeAttrs::Use;
721 }
722 static bool IsPhi(const NodeAddr<NodeBase*> BA) {
723 return BA.Addr->getType() == NodeAttrs::Code &&
724 BA.Addr->getKind() == NodeAttrs::Phi;
725 }
726
727 private:
728 void reset();
729
730 NodeAddr<NodeBase*> newNode(uint16_t Attrs);
731 NodeAddr<NodeBase*> cloneNode(const NodeAddr<NodeBase*> B);
732 NodeAddr<UseNode*> newUse(NodeAddr<InstrNode*> Owner,
733 MachineOperand &Op, uint16_t Flags = NodeAttrs::None);
734 NodeAddr<PhiUseNode*> newPhiUse(NodeAddr<PhiNode*> Owner,
735 RegisterRef RR, NodeAddr<BlockNode*> PredB,
736 uint16_t Flags = NodeAttrs::PhiRef);
737 NodeAddr<DefNode*> newDef(NodeAddr<InstrNode*> Owner,
738 MachineOperand &Op, uint16_t Flags = NodeAttrs::None);
739 NodeAddr<DefNode*> newDef(NodeAddr<InstrNode*> Owner,
740 RegisterRef RR, uint16_t Flags = NodeAttrs::PhiRef);
741 NodeAddr<PhiNode*> newPhi(NodeAddr<BlockNode*> Owner);
742 NodeAddr<StmtNode*> newStmt(NodeAddr<BlockNode*> Owner,
743 MachineInstr *MI);
744 NodeAddr<BlockNode*> newBlock(NodeAddr<FuncNode*> Owner,
745 MachineBasicBlock *BB);
746 NodeAddr<FuncNode*> newFunc(MachineFunction *MF);
747
748 template <typename Predicate>
749 std::pair<NodeAddr<RefNode*>,NodeAddr<RefNode*>>
750 locateNextRef(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA,
751 Predicate P) const;
752
753 typedef std::map<NodeId,RegisterSet> BlockRefsMap;
754
755 void buildStmt(NodeAddr<BlockNode*> BA, MachineInstr &In);
756 void buildBlockRefs(NodeAddr<BlockNode*> BA, BlockRefsMap &RefM);
757 void recordDefsForDF(BlockRefsMap &PhiM, BlockRefsMap &RefM,
758 NodeAddr<BlockNode*> BA);
759 void buildPhis(BlockRefsMap &PhiM, BlockRefsMap &RefM,
760 NodeAddr<BlockNode*> BA);
761 void removeUnusedPhis();
762
763 template <typename T> void linkRefUp(NodeAddr<InstrNode*> IA,
764 NodeAddr<T> TA, DefStack &DS);
765 void linkStmtRefs(DefStackMap &DefM, NodeAddr<StmtNode*> SA);
766 void linkBlockRefs(DefStackMap &DefM, NodeAddr<BlockNode*> BA);
767
768 TimerGroup TimeG;
769 NodeAddr<FuncNode*> Func;
770 NodeAllocator Memory;
771
772 MachineFunction &MF;
773 const TargetInstrInfo &TII;
774 const TargetRegisterInfo &TRI;
775 const MachineDominatorTree &MDT;
776 const MachineDominanceFrontier &MDF;
777 const RegisterAliasInfo &RAI;
778 const TargetOperandInfo &TOI;
779 }; // struct DataFlowGraph
780
781 template <typename Predicate>
782 NodeAddr<RefNode*> RefNode::getNextRef(RegisterRef RR, Predicate P,
783 bool NextOnly, const DataFlowGraph &G) {
784 // Get the "Next" reference in the circular list that references RR and
785 // satisfies predicate "Pred".
786 auto NA = G.addr<NodeBase*>(getNext());
787
788 while (NA.Addr != this) {
789 if (NA.Addr->getType() == NodeAttrs::Ref) {
790 NodeAddr<RefNode*> RA = NA;
791 if (RA.Addr->getRegRef() == RR && P(NA))
792 return NA;
793 if (NextOnly)
794 break;
795 NA = G.addr<NodeBase*>(NA.Addr->getNext());
796 } else {
797 // We've hit the beginning of the chain.
798 assert(NA.Addr->getType() == NodeAttrs::Code);
799 NodeAddr<CodeNode*> CA = NA;
800 NA = CA.Addr->getFirstMember(G);
801 }
802 }
803 // Return the equivalent of "nullptr" if such a node was not found.
804 return NodeAddr<RefNode*>();
805 }
806
807 template <typename Predicate>
808 NodeList CodeNode::members_if(Predicate P, const DataFlowGraph &G) const {
809 NodeList MM;
810 auto M = getFirstMember(G);
811 if (M.Id == 0)
812 return MM;
813
814 while (M.Addr != this) {
815 if (P(M))
816 MM.push_back(M);
817 M = G.addr<NodeBase*>(M.Addr->getNext());
818 }
819 return MM;
820 }
821
822
823 template <typename T> struct Print;
824 template <typename T>
825 raw_ostream &operator<< (raw_ostream &OS, const Print<T> &P);
826
827 template <typename T>
828 struct Print {
829 Print(const T &x, const DataFlowGraph &g) : Obj(x), G(g) {}
830 const T &Obj;
831 const DataFlowGraph &G;
832 };
833
834 template <typename T>
835 struct PrintNode : Print<NodeAddr<T>> {
836 PrintNode(const NodeAddr<T> &x, const DataFlowGraph &g)
837 : Print<NodeAddr<T>>(x, g) {}
838 };
839} // namespace rdf
840
841#endif // RDF_GRAPH_H