blob: 718b302a50327ea87bfd569c210040f462001c11 [file] [log] [blame]
Dean Michael Berris38daca62017-03-30 23:46:36 +00001===================
2Debugging with XRay
3===================
4
5This document shows an example of how you would go about analyzing applications
6built with XRay instrumentation. Here we will attempt to debug ``llc``
7compiling some sample LLVM IR generated by Clang.
8
9.. contents::
10 :local:
11
12Building with XRay
13------------------
14
15To debug an application with XRay instrumentation, we need to build it with a
Dean Michael Berrisbe658932017-04-06 04:26:26 +000016Clang that supports the ``-fxray-instrument`` option. See `XRay <XRay.html>`_
17for more technical details of how XRay works for background information.
Dean Michael Berris38daca62017-03-30 23:46:36 +000018
19In our example, we need to add ``-fxray-instrument`` to the list of flags
20passed to Clang when building a binary. Note that we need to link with Clang as
21well to get the XRay runtime linked in appropriately. For building ``llc`` with
22XRay, we do something similar below for our LLVM build:
23
24::
25
26 $ mkdir -p llvm-build && cd llvm-build
27 # Assume that the LLVM sources are at ../llvm
28 $ cmake -GNinja ../llvm -DCMAKE_BUILD_TYPE=Release \
29 -DCMAKE_C_FLAGS_RELEASE="-fxray-instrument" -DCMAKE_CXX_FLAGS="-fxray-instrument" \
30 # Once this finishes, we should build llc
31 $ ninja llc
32
33
34To verify that we have an XRay instrumented binary, we can use ``objdump`` to
35look for the ``xray_instr_map`` section.
36
37::
38
39 $ objdump -h -j xray_instr_map ./bin/llc
40 ./bin/llc: file format elf64-x86-64
41
42 Sections:
43 Idx Name Size VMA LMA File off Algn
44 14 xray_instr_map 00002fc0 00000000041516c6 00000000041516c6 03d516c6 2**0
45 CONTENTS, ALLOC, LOAD, READONLY, DATA
46
47Getting Traces
48--------------
49
50By default, XRay does not write out the trace files or patch the application
51before main starts. If we just run ``llc`` it should just work like a normally
52built binary. However, if we want to get a full trace of the application's
53operations (of the functions we do end up instrumenting with XRay) then we need
54to enable XRay at application start. To do this, XRay checks the
55``XRAY_OPTIONS`` environment variable.
56
57::
58
59 # The following doesn't create an XRay trace by default.
60 $ ./bin/llc input.ll
61
62 # We need to set the XRAY_OPTIONS to enable some features.
63 $ XRAY_OPTIONS="patch_premain=true" ./bin/llc input.ll
64 ==69819==XRay: Log file in 'xray-log.llc.m35qPB'
65
66At this point we now have an XRay trace we can start analysing.
67
68The ``llvm-xray`` Tool
69----------------------
70
71Having a trace then allows us to do basic accounting of the functions that were
72instrumented, and how much time we're spending in parts of the code. To make
73sense of this data, we use the ``llvm-xray`` tool which has a few subcommands
74to help us understand our trace.
75
76One of the simplest things we can do is to get an accounting of the functions
77that have been instrumented. We can see an example accounting with ``llvm-xray
78account``:
79
80::
81
82 $ llvm-xray account xray-log.llc.m35qPB -top=10 -sort=sum -sortorder=dsc -instr_map ./bin/llc
83 Functions with latencies: 29
84 funcid count [ min, med, 90p, 99p, max] sum function
85 187 360 [ 0.000000, 0.000001, 0.000014, 0.000032, 0.000075] 0.001596 LLLexer.cpp:446:0: llvm::LLLexer::LexIdentifier()
86 85 130 [ 0.000000, 0.000000, 0.000018, 0.000023, 0.000156] 0.000799 X86ISelDAGToDAG.cpp:1984:0: (anonymous namespace)::X86DAGToDAGISel::Select(llvm::SDNode*)
87 138 130 [ 0.000000, 0.000000, 0.000017, 0.000155, 0.000155] 0.000774 SelectionDAGISel.cpp:2963:0: llvm::SelectionDAGISel::SelectCodeCommon(llvm::SDNode*, unsigned char const*, unsigned int)
88 188 103 [ 0.000000, 0.000000, 0.000003, 0.000123, 0.000214] 0.000737 LLParser.cpp:2692:0: llvm::LLParser::ParseValID(llvm::ValID&, llvm::LLParser::PerFunctionState*)
89 88 1 [ 0.000562, 0.000562, 0.000562, 0.000562, 0.000562] 0.000562 X86ISelLowering.cpp:83:0: llvm::X86TargetLowering::X86TargetLowering(llvm::X86TargetMachine const&, llvm::X86Subtarget const&)
90 125 102 [ 0.000001, 0.000003, 0.000010, 0.000017, 0.000049] 0.000471 Verifier.cpp:3714:0: (anonymous namespace)::Verifier::visitInstruction(llvm::Instruction&)
91 90 8 [ 0.000023, 0.000035, 0.000106, 0.000106, 0.000106] 0.000342 X86ISelLowering.cpp:3363:0: llvm::X86TargetLowering::LowerCall(llvm::TargetLowering::CallLoweringInfo&, llvm::SmallVectorImpl<llvm::SDValue>&) const
92 124 32 [ 0.000003, 0.000007, 0.000016, 0.000041, 0.000041] 0.000310 Verifier.cpp:1967:0: (anonymous namespace)::Verifier::visitFunction(llvm::Function const&)
93 123 1 [ 0.000302, 0.000302, 0.000302, 0.000302, 0.000302] 0.000302 LLVMContextImpl.cpp:54:0: llvm::LLVMContextImpl::~LLVMContextImpl()
94 139 46 [ 0.000000, 0.000002, 0.000006, 0.000008, 0.000019] 0.000138 TargetLowering.cpp:506:0: llvm::TargetLowering::SimplifyDemandedBits(llvm::SDValue, llvm::APInt const&, llvm::APInt&, llvm::APInt&, llvm::TargetLowering::TargetLoweringOpt&, unsigned int, bool) const
95
96This shows us that for our input file, ``llc`` spent the most cumulative time
97in the lexer (a total of 1 millisecond). If we wanted for example to work with
98this data in a spreadsheet, we can output the results as CSV using the
99``-format=csv`` option to the command for further analysis.
100
101If we want to get a textual representation of the raw trace we can use the
102``llvm-xray convert`` tool to get YAML output. The first few lines of that
Sylvestre Ledru36554952017-08-12 15:08:11 +0000103output for an example trace would look like the following:
Dean Michael Berris38daca62017-03-30 23:46:36 +0000104
105::
106
107 $ llvm-xray convert -f yaml -symbolize -instr_map=./bin/llc xray-log.llc.m35qPB
108 ---
109 header:
110 version: 1
111 type: 0
112 constant-tsc: true
113 nonstop-tsc: true
114 cycle-frequency: 2601000000
115 records:
116 - { type: 0, func-id: 110, function: __cxx_global_var_init.8, cpu: 37, thread: 69819, kind: function-enter, tsc: 5434426023268520 }
117 - { type: 0, func-id: 110, function: __cxx_global_var_init.8, cpu: 37, thread: 69819, kind: function-exit, tsc: 5434426023523052 }
118 - { type: 0, func-id: 164, function: __cxx_global_var_init, cpu: 37, thread: 69819, kind: function-enter, tsc: 5434426029925386 }
119 - { type: 0, func-id: 164, function: __cxx_global_var_init, cpu: 37, thread: 69819, kind: function-exit, tsc: 5434426030031128 }
120 - { type: 0, func-id: 142, function: '(anonymous namespace)::CommandLineParser::ParseCommandLineOptions(int, char const* const*, llvm::StringRef, llvm::raw_ostream*)', cpu: 37, thread: 69819, kind: function-enter, tsc: 5434426046951388 }
121 - { type: 0, func-id: 142, function: '(anonymous namespace)::CommandLineParser::ParseCommandLineOptions(int, char const* const*, llvm::StringRef, llvm::raw_ostream*)', cpu: 37, thread: 69819, kind: function-exit, tsc: 5434426047282020 }
122 - { type: 0, func-id: 187, function: 'llvm::LLLexer::LexIdentifier()', cpu: 37, thread: 69819, kind: function-enter, tsc: 5434426047857332 }
123 - { type: 0, func-id: 187, function: 'llvm::LLLexer::LexIdentifier()', cpu: 37, thread: 69819, kind: function-exit, tsc: 5434426047984152 }
124 - { type: 0, func-id: 187, function: 'llvm::LLLexer::LexIdentifier()', cpu: 37, thread: 69819, kind: function-enter, tsc: 5434426048036584 }
125 - { type: 0, func-id: 187, function: 'llvm::LLLexer::LexIdentifier()', cpu: 37, thread: 69819, kind: function-exit, tsc: 5434426048042292 }
126 - { type: 0, func-id: 187, function: 'llvm::LLLexer::LexIdentifier()', cpu: 37, thread: 69819, kind: function-enter, tsc: 5434426048055056 }
127 - { type: 0, func-id: 187, function: 'llvm::LLLexer::LexIdentifier()', cpu: 37, thread: 69819, kind: function-exit, tsc: 5434426048067316 }
128
129Controlling Fidelity
130--------------------
131
132So far in our examples, we haven't been getting full coverage of the functions
133we have in the binary. To get that, we need to modify the compiler flags so
134that we can instrument more (if not all) the functions we have in the binary.
135We have two options for doing that, and we explore both of these below.
136
137Instruction Threshold
138`````````````````````
139
140The first "blunt" way of doing this is by setting the minimum threshold for
141function bodies to 1. We can do that with the
142``-fxray-instruction-threshold=N`` flag when building our binary. We rebuild
143``llc`` with this option and observe the results:
144
145::
146
147 $ rm CMakeCache.txt
148 $ cmake -GNinja ../llvm -DCMAKE_BUILD_TYPE=Release \
149 -DCMAKE_C_FLAGS_RELEASE="-fxray-instrument -fxray-instruction-threshold=1" \
150 -DCMAKE_CXX_FLAGS="-fxray-instrument -fxray-instruction-threshold=1"
151 $ ninja llc
152 $ XRAY_OPTIONS="patch_premain=true" ./bin/llc input.ll
153 ==69819==XRay: Log file in 'xray-log.llc.5rqxkU'
154
155 $ llvm-xray account xray-log.llc.5rqxkU -top=10 -sort=sum -sortorder=dsc -instr_map ./bin/llc
156 Functions with latencies: 36652
157 funcid count [ min, med, 90p, 99p, max] sum function
158 75 1 [ 0.672368, 0.672368, 0.672368, 0.672368, 0.672368] 0.672368 llc.cpp:271:0: main
159 78 1 [ 0.626455, 0.626455, 0.626455, 0.626455, 0.626455] 0.626455 llc.cpp:381:0: compileModule(char**, llvm::LLVMContext&)
160 139617 1 [ 0.472618, 0.472618, 0.472618, 0.472618, 0.472618] 0.472618 LegacyPassManager.cpp:1723:0: llvm::legacy::PassManager::run(llvm::Module&)
161 139610 1 [ 0.472618, 0.472618, 0.472618, 0.472618, 0.472618] 0.472618 LegacyPassManager.cpp:1681:0: llvm::legacy::PassManagerImpl::run(llvm::Module&)
162 139612 1 [ 0.470948, 0.470948, 0.470948, 0.470948, 0.470948] 0.470948 LegacyPassManager.cpp:1564:0: (anonymous namespace)::MPPassManager::runOnModule(llvm::Module&)
163 139607 2 [ 0.147345, 0.315994, 0.315994, 0.315994, 0.315994] 0.463340 LegacyPassManager.cpp:1530:0: llvm::FPPassManager::runOnModule(llvm::Module&)
164 139605 21 [ 0.000002, 0.000002, 0.102593, 0.213336, 0.213336] 0.463331 LegacyPassManager.cpp:1491:0: llvm::FPPassManager::runOnFunction(llvm::Function&)
165 139563 26096 [ 0.000002, 0.000002, 0.000037, 0.000063, 0.000215] 0.225708 LegacyPassManager.cpp:1083:0: llvm::PMDataManager::findAnalysisPass(void const*, bool)
166 108055 188 [ 0.000002, 0.000120, 0.001375, 0.004523, 0.062624] 0.159279 MachineFunctionPass.cpp:38:0: llvm::MachineFunctionPass::runOnFunction(llvm::Function&)
167 62635 22 [ 0.000041, 0.000046, 0.000050, 0.126744, 0.126744] 0.127715 X86TargetMachine.cpp:242:0: llvm::X86TargetMachine::getSubtargetImpl(llvm::Function const&) const
168
169
170Instrumentation Attributes
171``````````````````````````
172
173The other way is to use configuration files for selecting which functions
174should always be instrumented by the compiler. This gives us a way of ensuring
175that certain functions are either always or never instrumented by not having to
176add the attribute to the source.
177
178To use this feature, you can define one file for the functions to always
179instrument, and another for functions to never instrument. The format of these
180files are exactly the same as the SanitizerLists files that control similar
181things for the sanitizer implementations. For example, we can have two
182different files like below:
183
184::
185
186 # always-instrument.txt
187 # always instrument functions that match the following filters:
188 fun:main
189
190 # never-instrument.txt
191 # never instrument functions that match the following filters:
192 fun:__cxx_*
193
194Given the above two files we can re-build by providing those two files as
195arguments to clang as ``-fxray-always-instrument=always-instrument.txt`` or
196``-fxray-never-instrument=never-instrument.txt``.
197
Keith Wyssb2f894f2017-10-19 22:35:09 +0000198The XRay stack tool
199-------------------
200
201Given a trace, and optionally an instrumentation map, the ``llvm-xray stack``
202command can be used to analyze a call stack graph constructed from the function
203call timeline.
204
205The simplest way to use the command is simply to output the top stacks by call
206count and time spent.
207
208::
209
210 $ llvm-xray stack xray-log.llc.5rqxkU -instr_map ./bin/llc
211
212 Unique Stacks: 3069
213 Top 10 Stacks by leaf sum:
214
215 Sum: 9633790
216 lvl function count sum
217 #0 main 1 58421550
218 #1 compileModule(char**, llvm::LLVMContext&) 1 51440360
219 #2 llvm::legacy::PassManagerImpl::run(llvm::Module&) 1 40535375
220 #3 llvm::FPPassManager::runOnModule(llvm::Module&) 2 39337525
221 #4 llvm::FPPassManager::runOnFunction(llvm::Function&) 6 39331465
222 #5 llvm::PMDataManager::verifyPreservedAnalysis(llvm::Pass*) 399 16628590
223 #6 llvm::PMTopLevelManager::findAnalysisPass(void const*) 4584 15155600
224 #7 llvm::PMDataManager::findAnalysisPass(void const*, bool) 32088 9633790
225
226 ..etc..
227
228In the default mode, identical stacks on different threads are independently
229aggregated. In a multithreaded program, you may end up having identical call
230stacks fill your list of top calls.
231
232To address this, you may specify the ``-aggregate-threads`` or
233``-per-thread-stacks`` flags. ``-per-thread-stacks`` treats the thread id as an
234implicit root in each call stack tree, while ``-aggregate-threads`` combines
235identical stacks from all threads.
236
237Flame Graph Generation
238----------------------
239
240The ``llvm-xray stack`` tool may also be used to generate flamegraphs for
241visualizing your instrumented invocations. The tool does not generate the graphs
242themselves, but instead generates a format that can be used with Brendan Gregg's
243FlameGraph tool, currently available on `github
244<https://github.com/brendangregg/FlameGraph>`_.
245
246To generate output for a flamegraph, a few more options are necessary.
247
248- ``-all-stacks`` - Emits all of the stacks instead of just the top stacks.
249- ``-stack-format`` - Choose the flamegraph output format 'flame'.
250- ``-aggregation-type`` - Choose the metric to graph.
251
252You may pipe the command output directly to the flamegraph tool to obtain an
253svg file.
254
255::
256
257 $llvm-xray stack xray-log.llc.5rqxkU -instr_map ./bin/llc -stack-format=flame -aggregation-type=time -all-stacks | \
258 /path/to/FlameGraph/flamegraph.pl > flamegraph.svg
259
260If you open the svg in a browser, mouse events allow exploring the call stacks.
261
Dean Michael Berris38daca62017-03-30 23:46:36 +0000262Further Exploration
263-------------------
264
265The ``llvm-xray`` tool has a few other subcommands that are in various stages
266of being developed. One interesting subcommand that can highlight a few
267interesting things is the ``graph`` subcommand. Given for example the following
268toy program that we build with XRay instrumentation, we can see how the
269generated graph may be a helpful indicator of where time is being spent for the
270application.
271
272.. code-block:: c++
273
274 // sample.cc
275 #include <iostream>
276 #include <thread>
277
278 [[clang::xray_always_intrument]] void f() {
279 std::cerr << '.';
280 }
281
282 [[clang::xray_always_intrument]] void g() {
283 for (int i = 0; i < 1 << 10; ++i) {
284 std::cerr << '-';
285 }
286 }
287
288 int main(int argc, char* argv[]) {
289 std::thread t1([] {
290 for (int i = 0; i < 1 << 10; ++i)
291 f();
292 });
293 std::thread t2([] {
294 g();
295 });
296 t1.join();
297 t2.join();
298 std::cerr << '\n';
299 }
300
301We then build the above with XRay instrumentation:
302
303::
304
305 $ clang++ -o sample -O3 sample.cc -std=c++11 -fxray-instrument -fxray-instruction-threshold=1
306 $ XRAY_OPTIONS="patch_premain=true" ./sample
307
308We can then explore the graph rendering of the trace generated by this sample
309application. We assume you have the graphviz toosl available in your system,
310including both ``unflatten`` and ``dot``. If you prefer rendering or exploring
311the graph using another tool, then that should be feasible as well. ``llvm-xray
312graph`` will create DOT format graphs which should be usable in most graph
313rendering applications. One example invocation of the ``llvm-xray graph``
314command should yield some interesting insights to the workings of C++
315applications:
316
317::
318
319 $ llvm-xray graph xray-log.sample.* -m sample -color-edges=sum -edge-label=sum \
320 | unflatten -f -l10 | dot -Tsvg -o sample.svg
321
322Next Steps
323----------
324
325If you have some interesting analyses you'd like to implement as part of the
326llvm-xray tool, please feel free to propose them on the llvm-dev@ mailing list.
327The following are some ideas to inspire you in getting involved and potentially
328making things better.
329
330 - Implement a query/filtering library that allows for finding patterns in the
331 XRay traces.
332 - A conversion from the XRay trace onto something that can be visualised
333 better by other tools (like the Chrome trace viewer for example).
334 - Collecting function call stacks and how often they're encountered in the
335 XRay trace.
336
337