blob: 85249b83033604a141e6ee52f6ce8f396163d43f [file] [log] [blame]
Dehao Chenb94c09ba2016-10-27 16:30:08 +00001//===-- LoopSink.cpp - Loop Sink Pass ------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass does the inverse transformation of what LICM does.
11// It traverses all of the instructions in the loop's preheader and sinks
12// them to the loop body where frequency is lower than the loop's preheader.
13// This pass is a reverse-transformation of LICM. It differs from the Sink
14// pass in the following ways:
15//
16// * It only handles sinking of instructions from the loop's preheader to the
17// loop's body
18// * It uses alias set tracker to get more accurate alias info
19// * It uses block frequency info to find the optimal sinking locations
20//
21// Overall algorithm:
22//
23// For I in Preheader:
24// InsertBBs = BBs that uses I
25// For BB in sorted(LoopBBs):
26// DomBBs = BBs in InsertBBs that are dominated by BB
27// if freq(DomBBs) > freq(BB)
28// InsertBBs = UseBBs - DomBBs + BB
29// For BB in InsertBBs:
30// Insert I at BB's beginning
31//===----------------------------------------------------------------------===//
32
33#include "llvm/ADT/Statistic.h"
34#include "llvm/Analysis/AliasAnalysis.h"
35#include "llvm/Analysis/AliasSetTracker.h"
36#include "llvm/Analysis/BasicAliasAnalysis.h"
37#include "llvm/Analysis/BlockFrequencyInfo.h"
38#include "llvm/Analysis/Loads.h"
39#include "llvm/Analysis/LoopInfo.h"
40#include "llvm/Analysis/LoopPass.h"
41#include "llvm/Analysis/LoopPassManager.h"
42#include "llvm/Analysis/ScalarEvolution.h"
43#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
44#include "llvm/IR/Dominators.h"
45#include "llvm/IR/Instructions.h"
46#include "llvm/IR/LLVMContext.h"
47#include "llvm/IR/Metadata.h"
48#include "llvm/Support/CommandLine.h"
49#include "llvm/Transforms/Scalar.h"
50#include "llvm/Transforms/Utils/Local.h"
51#include "llvm/Transforms/Utils/LoopUtils.h"
52using namespace llvm;
53
54#define DEBUG_TYPE "loopsink"
55
56STATISTIC(NumLoopSunk, "Number of instructions sunk into loop");
57STATISTIC(NumLoopSunkCloned, "Number of cloned instructions sunk into loop");
58
59static cl::opt<unsigned> SinkFrequencyPercentThreshold(
60 "sink-freq-percent-threshold", cl::Hidden, cl::init(90),
61 cl::desc("Do not sink instructions that require cloning unless they "
62 "execute less than this percent of the time."));
63
64static cl::opt<unsigned> MaxNumberOfUseBBsForSinking(
65 "max-uses-for-sinking", cl::Hidden, cl::init(30),
66 cl::desc("Do not sink instructions that have too many uses."));
67
68/// Return adjusted total frequency of \p BBs.
69///
70/// * If there is only one BB, sinking instruction will not introduce code
71/// size increase. Thus there is no need to adjust the frequency.
72/// * If there are more than one BB, sinking would lead to code size increase.
73/// In this case, we add some "tax" to the total frequency to make it harder
74/// to sink. E.g.
75/// Freq(Preheader) = 100
76/// Freq(BBs) = sum(50, 49) = 99
77/// Even if Freq(BBs) < Freq(Preheader), we will not sink from Preheade to
78/// BBs as the difference is too small to justify the code size increase.
79/// To model this, The adjusted Freq(BBs) will be:
80/// AdjustedFreq(BBs) = 99 / SinkFrequencyPercentThreshold%
81static BlockFrequency adjustedSumFreq(SmallPtrSetImpl<BasicBlock *> &BBs,
82 BlockFrequencyInfo &BFI) {
83 BlockFrequency T = 0;
84 for (BasicBlock *B : BBs)
85 T += BFI.getBlockFreq(B);
86 if (BBs.size() > 1)
87 T /= BranchProbability(SinkFrequencyPercentThreshold, 100);
88 return T;
89}
90
91/// Return a set of basic blocks to insert sinked instructions.
92///
93/// The returned set of basic blocks (BBsToSinkInto) should satisfy:
94///
95/// * Inside the loop \p L
96/// * For each UseBB in \p UseBBs, there is at least one BB in BBsToSinkInto
97/// that domintates the UseBB
98/// * Has minimum total frequency that is no greater than preheader frequency
99///
100/// The purpose of the function is to find the optimal sinking points to
101/// minimize execution cost, which is defined as "sum of frequency of
102/// BBsToSinkInto".
103/// As a result, the returned BBsToSinkInto needs to have minimum total
104/// frequency.
105/// Additionally, if the total frequency of BBsToSinkInto exceeds preheader
106/// frequency, the optimal solution is not sinking (return empty set).
107///
108/// \p ColdLoopBBs is used to help find the optimal sinking locations.
109/// It stores a list of BBs that is:
110///
111/// * Inside the loop \p L
112/// * Has a frequency no larger than the loop's preheader
113/// * Sorted by BB frequency
114///
115/// The complexity of the function is O(UseBBs.size() * ColdLoopBBs.size()).
116/// To avoid expensive computation, we cap the maximum UseBBs.size() in its
117/// caller.
118static SmallPtrSet<BasicBlock *, 2>
119findBBsToSinkInto(const Loop &L, const SmallPtrSetImpl<BasicBlock *> &UseBBs,
120 const SmallVectorImpl<BasicBlock *> &ColdLoopBBs,
121 DominatorTree &DT, BlockFrequencyInfo &BFI) {
122 SmallPtrSet<BasicBlock *, 2> BBsToSinkInto;
123 if (UseBBs.size() == 0)
124 return BBsToSinkInto;
125
126 BBsToSinkInto.insert(UseBBs.begin(), UseBBs.end());
127 SmallPtrSet<BasicBlock *, 2> BBsDominatedByColdestBB;
128
129 // For every iteration:
130 // * Pick the ColdestBB from ColdLoopBBs
131 // * Find the set BBsDominatedByColdestBB that satisfy:
132 // - BBsDominatedByColdestBB is a subset of BBsToSinkInto
133 // - Every BB in BBsDominatedByColdestBB is dominated by ColdestBB
134 // * If Freq(ColdestBB) < Freq(BBsDominatedByColdestBB), remove
135 // BBsDominatedByColdestBB from BBsToSinkInto, add ColdestBB to
136 // BBsToSinkInto
137 for (BasicBlock *ColdestBB : ColdLoopBBs) {
138 BBsDominatedByColdestBB.clear();
139 for (BasicBlock *SinkedBB : BBsToSinkInto)
140 if (DT.dominates(ColdestBB, SinkedBB))
141 BBsDominatedByColdestBB.insert(SinkedBB);
142 if (BBsDominatedByColdestBB.size() == 0)
143 continue;
144 if (adjustedSumFreq(BBsDominatedByColdestBB, BFI) >
145 BFI.getBlockFreq(ColdestBB)) {
146 for (BasicBlock *DominatedBB : BBsDominatedByColdestBB) {
147 BBsToSinkInto.erase(DominatedBB);
148 }
149 BBsToSinkInto.insert(ColdestBB);
150 }
151 }
152
153 // If the total frequency of BBsToSinkInto is larger than preheader frequency,
154 // do not sink.
155 if (adjustedSumFreq(BBsToSinkInto, BFI) >
156 BFI.getBlockFreq(L.getLoopPreheader()))
157 BBsToSinkInto.clear();
158 return BBsToSinkInto;
159}
160
161// Sinks \p I from the loop \p L's preheader to its uses. Returns true if
162// sinking is successful.
163// \p LoopBlockNumber is used to sort the insertion blocks to ensure
164// determinism.
165static bool sinkInstruction(Loop &L, Instruction &I,
166 const SmallVectorImpl<BasicBlock *> &ColdLoopBBs,
167 const SmallDenseMap<BasicBlock *, int, 16> &LoopBlockNumber,
168 LoopInfo &LI, DominatorTree &DT,
169 BlockFrequencyInfo &BFI) {
170 // Compute the set of blocks in loop L which contain a use of I.
171 SmallPtrSet<BasicBlock *, 2> BBs;
172 for (auto &U : I.uses()) {
173 Instruction *UI = cast<Instruction>(U.getUser());
174 // We cannot sink I to PHI-uses.
175 if (dyn_cast<PHINode>(UI))
176 return false;
177 // We cannot sink I if it has uses outside of the loop.
178 if (!L.contains(LI.getLoopFor(UI->getParent())))
179 return false;
180 BBs.insert(UI->getParent());
181 }
182
183 // findBBsToSinkInto is O(BBs.size() * ColdLoopBBs.size()). We cap the max
184 // BBs.size() to avoid expensive computation.
185 // FIXME: Handle code size growth for min_size and opt_size.
186 if (BBs.size() > MaxNumberOfUseBBsForSinking)
187 return false;
188
189 // Find the set of BBs that we should insert a copy of I.
190 SmallPtrSet<BasicBlock *, 2> BBsToSinkInto =
191 findBBsToSinkInto(L, BBs, ColdLoopBBs, DT, BFI);
192 if (BBsToSinkInto.empty())
193 return false;
194
195 // Copy the final BBs into a vector and sort them using the total ordering
196 // of the loop block numbers as iterating the set doesn't give a useful
197 // order. No need to stable sort as the block numbers are a total ordering.
198 SmallVector<BasicBlock *, 2> SortedBBsToSinkInto;
199 SortedBBsToSinkInto.insert(SortedBBsToSinkInto.begin(), BBsToSinkInto.begin(),
200 BBsToSinkInto.end());
201 std::sort(SortedBBsToSinkInto.begin(), SortedBBsToSinkInto.end(),
202 [&](BasicBlock *A, BasicBlock *B) {
203 return *LoopBlockNumber.find(A) < *LoopBlockNumber.find(B);
204 });
205
206 BasicBlock *MoveBB = *SortedBBsToSinkInto.begin();
207 // FIXME: Optimize the efficiency for cloned value replacement. The current
208 // implementation is O(SortedBBsToSinkInto.size() * I.num_uses()).
209 for (BasicBlock *N : SortedBBsToSinkInto) {
210 if (N == MoveBB)
211 continue;
212 // Clone I and replace its uses.
213 Instruction *IC = I.clone();
214 IC->setName(I.getName());
215 IC->insertBefore(&*N->getFirstInsertionPt());
216 // Replaces uses of I with IC in N
217 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE;) {
218 Use &U = *UI++;
219 auto *I = cast<Instruction>(U.getUser());
220 if (I->getParent() == N)
221 U.set(IC);
222 }
223 // Replaces uses of I with IC in blocks dominated by N
224 replaceDominatedUsesWith(&I, IC, DT, N);
225 DEBUG(dbgs() << "Sinking a clone of " << I << " To: " << N->getName()
226 << '\n');
227 NumLoopSunkCloned++;
228 }
229 DEBUG(dbgs() << "Sinking " << I << " To: " << MoveBB->getName() << '\n');
230 NumLoopSunk++;
231 I.moveBefore(&*MoveBB->getFirstInsertionPt());
232
233 return true;
234}
235
236/// Sinks instructions from loop's preheader to the loop body if the
237/// sum frequency of inserted copy is smaller than preheader's frequency.
238static bool sinkLoopInvariantInstructions(Loop &L, AAResults &AA, LoopInfo &LI,
239 DominatorTree &DT,
240 BlockFrequencyInfo &BFI,
241 ScalarEvolution *SE) {
242 BasicBlock *Preheader = L.getLoopPreheader();
243 if (!Preheader)
244 return false;
245
246 const BlockFrequency PreheaderFreq = BFI.getBlockFreq(Preheader);
247 // If there are no basic blocks with lower frequency than the preheader then
248 // we can avoid the detailed analysis as we will never find profitable sinking
249 // opportunities.
250 if (all_of(L.blocks(), [&](const BasicBlock *BB) {
251 return BFI.getBlockFreq(BB) > PreheaderFreq;
252 }))
253 return false;
254
255 bool Changed = false;
256 AliasSetTracker CurAST(AA);
257
258 // Compute alias set.
259 for (BasicBlock *BB : L.blocks())
260 CurAST.add(*BB);
261
262 // Sort loop's basic blocks by frequency
263 SmallVector<BasicBlock *, 10> ColdLoopBBs;
264 SmallDenseMap<BasicBlock *, int, 16> LoopBlockNumber;
265 int i = 0;
266 for (BasicBlock *B : L.blocks())
267 if (BFI.getBlockFreq(B) < BFI.getBlockFreq(L.getLoopPreheader())) {
268 ColdLoopBBs.push_back(B);
269 LoopBlockNumber[B] = ++i;
270 }
271 std::stable_sort(ColdLoopBBs.begin(), ColdLoopBBs.end(),
272 [&](BasicBlock *A, BasicBlock *B) {
273 return BFI.getBlockFreq(A) < BFI.getBlockFreq(B);
274 });
275
276 // Traverse preheader's instructions in reverse order becaue if A depends
277 // on B (A appears after B), A needs to be sinked first before B can be
278 // sinked.
279 for (auto II = Preheader->rbegin(), E = Preheader->rend(); II != E;) {
280 Instruction *I = &*II++;
281 if (!L.hasLoopInvariantOperands(I) ||
282 !canSinkOrHoistInst(*I, &AA, &DT, &L, &CurAST, nullptr))
283 continue;
284 if (sinkInstruction(L, *I, ColdLoopBBs, LoopBlockNumber, LI, DT, BFI))
285 Changed = true;
286 }
287
288 if (Changed && SE)
289 SE->forgetLoopDispositions(&L);
290 return Changed;
291}
292
293namespace {
294struct LegacyLoopSinkPass : public LoopPass {
295 static char ID;
296 LegacyLoopSinkPass() : LoopPass(ID) {
297 initializeLegacyLoopSinkPassPass(*PassRegistry::getPassRegistry());
298 }
299
300 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
301 if (skipLoop(L))
302 return false;
303
304 auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
305 return sinkLoopInvariantInstructions(
306 *L, getAnalysis<AAResultsWrapperPass>().getAAResults(),
307 getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
308 getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
309 getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(),
310 SE ? &SE->getSE() : nullptr);
311 }
312
313 void getAnalysisUsage(AnalysisUsage &AU) const override {
314 AU.setPreservesCFG();
315 AU.addRequired<BlockFrequencyInfoWrapperPass>();
316 getLoopAnalysisUsage(AU);
317 }
318};
319}
320
321char LegacyLoopSinkPass::ID = 0;
322INITIALIZE_PASS_BEGIN(LegacyLoopSinkPass, "loop-sink", "Loop Sink", false,
323 false)
324INITIALIZE_PASS_DEPENDENCY(LoopPass)
325INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
326INITIALIZE_PASS_END(LegacyLoopSinkPass, "loop-sink", "Loop Sink", false, false)
327
328Pass *llvm::createLoopSinkPass() { return new LegacyLoopSinkPass(); }