Michael Kuperstein | 3e3652a | 2016-07-07 22:50:23 +0000 | [diff] [blame] | 1 | //===---- X86FixupSetCC.cpp - optimize usage of LEA instructions ----------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file defines a pass that fixes zero-extension of setcc patterns. |
| 11 | // X86 setcc instructions are modeled to have no input arguments, and a single |
| 12 | // GR8 output argument. This is consistent with other similar instructions |
| 13 | // (e.g. movb), but means it is impossible to directly generate a setcc into |
| 14 | // the lower GR8 of a specified GR32. |
| 15 | // This means that ISel must select (zext (setcc)) into something like |
| 16 | // seta %al; movzbl %al, %eax. |
| 17 | // Unfortunately, this can cause a stall due to the partial register write |
| 18 | // performed by the setcc. Instead, we can use: |
| 19 | // xor %eax, %eax; seta %al |
| 20 | // This both avoids the stall, and encodes shorter. |
| 21 | //===----------------------------------------------------------------------===// |
| 22 | |
| 23 | #include "X86.h" |
| 24 | #include "X86InstrInfo.h" |
| 25 | #include "X86Subtarget.h" |
| 26 | #include "llvm/ADT/Statistic.h" |
| 27 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 28 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 29 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 30 | |
| 31 | using namespace llvm; |
| 32 | |
| 33 | #define DEBUG_TYPE "x86-fixup-setcc" |
| 34 | |
| 35 | STATISTIC(NumSubstZexts, "Number of setcc + zext pairs substituted"); |
| 36 | |
| 37 | namespace { |
| 38 | class X86FixupSetCCPass : public MachineFunctionPass { |
| 39 | public: |
| 40 | X86FixupSetCCPass() : MachineFunctionPass(ID) {} |
| 41 | |
| 42 | const char *getPassName() const override { return "X86 Fixup SetCC"; } |
| 43 | |
| 44 | bool runOnMachineFunction(MachineFunction &MF) override; |
| 45 | |
| 46 | private: |
| 47 | // Find the preceding instruction that imp-defs eflags. |
| 48 | MachineInstr *findFlagsImpDef(MachineBasicBlock *MBB, |
| 49 | MachineBasicBlock::reverse_iterator MI); |
| 50 | |
| 51 | // Return true if MI imp-uses eflags. |
| 52 | bool impUsesFlags(MachineInstr *MI); |
| 53 | |
| 54 | // Return true if this is the opcode of a SetCC instruction with a register |
| 55 | // output. |
| 56 | bool isSetCCr(unsigned Opode); |
| 57 | |
| 58 | MachineRegisterInfo *MRI; |
| 59 | const X86InstrInfo *TII; |
| 60 | |
| 61 | enum { SearchBound = 16 }; |
| 62 | |
| 63 | static char ID; |
| 64 | }; |
| 65 | |
| 66 | char X86FixupSetCCPass::ID = 0; |
| 67 | } |
| 68 | |
| 69 | FunctionPass *llvm::createX86FixupSetCC() { return new X86FixupSetCCPass(); } |
| 70 | |
| 71 | bool X86FixupSetCCPass::isSetCCr(unsigned Opcode) { |
| 72 | switch (Opcode) { |
| 73 | default: |
| 74 | return false; |
| 75 | case X86::SETOr: |
| 76 | case X86::SETNOr: |
| 77 | case X86::SETBr: |
| 78 | case X86::SETAEr: |
| 79 | case X86::SETEr: |
| 80 | case X86::SETNEr: |
| 81 | case X86::SETBEr: |
| 82 | case X86::SETAr: |
| 83 | case X86::SETSr: |
| 84 | case X86::SETNSr: |
| 85 | case X86::SETPr: |
| 86 | case X86::SETNPr: |
| 87 | case X86::SETLr: |
| 88 | case X86::SETGEr: |
| 89 | case X86::SETLEr: |
| 90 | case X86::SETGr: |
| 91 | return true; |
| 92 | } |
| 93 | } |
| 94 | |
| 95 | // We expect the instruction *immediately* before the setcc to imp-def |
| 96 | // EFLAGS (because of scheduling glue). To make this less brittle w.r.t |
| 97 | // scheduling, look backwards until we hit the beginning of the |
| 98 | // basic-block, or a small bound (to avoid quadratic behavior). |
| 99 | MachineInstr * |
| 100 | X86FixupSetCCPass::findFlagsImpDef(MachineBasicBlock *MBB, |
| 101 | MachineBasicBlock::reverse_iterator MI) { |
Duncan P. N. Exon Smith | 5c001c3 | 2016-08-30 00:13:12 +0000 | [diff] [blame] | 102 | // FIXME: Should this be instr_rend(), and MI be reverse_instr_iterator? |
| 103 | auto MBBStart = MBB->rend(); |
Michael Kuperstein | 3e3652a | 2016-07-07 22:50:23 +0000 | [diff] [blame] | 104 | for (int i = 0; (i < SearchBound) && (MI != MBBStart); ++i, ++MI) |
| 105 | for (auto &Op : MI->implicit_operands()) |
| 106 | if ((Op.getReg() == X86::EFLAGS) && (Op.isDef())) |
| 107 | return &*MI; |
| 108 | |
| 109 | return nullptr; |
| 110 | } |
| 111 | |
| 112 | bool X86FixupSetCCPass::impUsesFlags(MachineInstr *MI) { |
| 113 | for (auto &Op : MI->implicit_operands()) |
| 114 | if ((Op.getReg() == X86::EFLAGS) && (Op.isUse())) |
| 115 | return true; |
| 116 | |
| 117 | return false; |
| 118 | } |
| 119 | |
| 120 | bool X86FixupSetCCPass::runOnMachineFunction(MachineFunction &MF) { |
| 121 | bool Changed = false; |
| 122 | MRI = &MF.getRegInfo(); |
| 123 | TII = MF.getSubtarget<X86Subtarget>().getInstrInfo(); |
| 124 | |
| 125 | SmallVector<MachineInstr*, 4> ToErase; |
| 126 | |
| 127 | for (auto &MBB : MF) { |
| 128 | for (auto &MI : MBB) { |
| 129 | // Find a setcc that is used by a zext. |
| 130 | // This doesn't have to be the only use, the transformation is safe |
| 131 | // regardless. |
| 132 | if (!isSetCCr(MI.getOpcode())) |
| 133 | continue; |
| 134 | |
| 135 | MachineInstr *ZExt = nullptr; |
| 136 | for (auto &Use : MRI->use_instructions(MI.getOperand(0).getReg())) |
| 137 | if (Use.getOpcode() == X86::MOVZX32rr8) |
| 138 | ZExt = &Use; |
| 139 | |
| 140 | if (!ZExt) |
| 141 | continue; |
| 142 | |
| 143 | // Find the preceding instruction that imp-defs eflags. |
| 144 | MachineInstr *FlagsDefMI = findFlagsImpDef( |
| 145 | MI.getParent(), MachineBasicBlock::reverse_iterator(&MI)); |
| 146 | if (!FlagsDefMI) |
| 147 | continue; |
| 148 | |
| 149 | // We'd like to put something that clobbers eflags directly before |
| 150 | // FlagsDefMI. This can't hurt anything after FlagsDefMI, because |
| 151 | // it, itself, by definition, clobbers eflags. But it may happen that |
| 152 | // FlagsDefMI also *uses* eflags, in which case the transformation is |
| 153 | // invalid. |
| 154 | if (impUsesFlags(FlagsDefMI)) |
| 155 | continue; |
| 156 | |
| 157 | ++NumSubstZexts; |
| 158 | Changed = true; |
| 159 | |
| 160 | // On 32-bit, we need to be careful to force an ABCD register. |
| 161 | const TargetRegisterClass *RC = MF.getSubtarget<X86Subtarget>().is64Bit() |
| 162 | ? &X86::GR32RegClass |
| 163 | : &X86::GR32_ABCDRegClass; |
| 164 | unsigned ZeroReg = MRI->createVirtualRegister(RC); |
| 165 | unsigned InsertReg = MRI->createVirtualRegister(RC); |
| 166 | |
| 167 | // Initialize a register with 0. This must go before the eflags def |
| 168 | BuildMI(MBB, FlagsDefMI, MI.getDebugLoc(), TII->get(X86::MOV32r0), |
| 169 | ZeroReg); |
| 170 | |
| 171 | // X86 setcc only takes an output GR8, so fake a GR32 input by inserting |
| 172 | // the setcc result into the low byte of the zeroed register. |
| 173 | BuildMI(*ZExt->getParent(), ZExt, ZExt->getDebugLoc(), |
| 174 | TII->get(X86::INSERT_SUBREG), InsertReg) |
| 175 | .addReg(ZeroReg) |
| 176 | .addReg(MI.getOperand(0).getReg()) |
| 177 | .addImm(X86::sub_8bit); |
| 178 | MRI->replaceRegWith(ZExt->getOperand(0).getReg(), InsertReg); |
| 179 | ToErase.push_back(ZExt); |
| 180 | } |
| 181 | } |
| 182 | |
| 183 | for (auto &I : ToErase) |
| 184 | I->eraseFromParent(); |
| 185 | |
| 186 | return Changed; |
| 187 | } |