blob: d3baeea2433875274b1cf1ace20b31f9b472fbff [file] [log] [blame]
Jingyue Wu13755602016-03-20 20:59:20 +00001//===-- NVPTXInferAddressSpace.cpp - ---------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// CUDA C/C++ includes memory space designation as variable type qualifers (such
11// as __global__ and __shared__). Knowing the space of a memory access allows
12// CUDA compilers to emit faster PTX loads and stores. For example, a load from
13// shared memory can be translated to `ld.shared` which is roughly 10% faster
14// than a generic `ld` on an NVIDIA Tesla K40c.
15//
16// Unfortunately, type qualifiers only apply to variable declarations, so CUDA
17// compilers must infer the memory space of an address expression from
18// type-qualified variables.
19//
20// LLVM IR uses non-zero (so-called) specific address spaces to represent memory
21// spaces (e.g. addrspace(3) means shared memory). The Clang frontend
22// places only type-qualified variables in specific address spaces, and then
23// conservatively `addrspacecast`s each type-qualified variable to addrspace(0)
24// (so-called the generic address space) for other instructions to use.
25//
26// For example, the Clang translates the following CUDA code
27// __shared__ float a[10];
28// float v = a[i];
29// to
30// %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]*
31// %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i
32// %v = load float, float* %1 ; emits ld.f32
33// @a is in addrspace(3) since it's type-qualified, but its use from %1 is
34// redirected to %0 (the generic version of @a).
35//
36// The optimization implemented in this file propagates specific address spaces
37// from type-qualified variable declarations to its users. For example, it
38// optimizes the above IR to
39// %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i
40// %v = load float addrspace(3)* %1 ; emits ld.shared.f32
41// propagating the addrspace(3) from @a to %1. As the result, the NVPTX
42// codegen is able to emit ld.shared.f32 for %v.
43//
44// Address space inference works in two steps. First, it uses a data-flow
45// analysis to infer as many generic pointers as possible to point to only one
46// specific address space. In the above example, it can prove that %1 only
47// points to addrspace(3). This algorithm was published in
48// CUDA: Compiling and optimizing for a GPU platform
49// Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang
50// ICCS 2012
51//
52// Then, address space inference replaces all refinable generic pointers with
53// equivalent specific pointers.
54//
55// The major challenge of implementing this optimization is handling PHINodes,
56// which may create loops in the data flow graph. This brings two complications.
57//
58// First, the data flow analysis in Step 1 needs to be circular. For example,
59// %generic.input = addrspacecast float addrspace(3)* %input to float*
60// loop:
61// %y = phi [ %generic.input, %y2 ]
62// %y2 = getelementptr %y, 1
63// %v = load %y2
64// br ..., label %loop, ...
65// proving %y specific requires proving both %generic.input and %y2 specific,
66// but proving %y2 specific circles back to %y. To address this complication,
67// the data flow analysis operates on a lattice:
68// uninitialized > specific address spaces > generic.
69// All address expressions (our implementation only considers phi, bitcast,
70// addrspacecast, and getelementptr) start with the uninitialized address space.
71// The monotone transfer function moves the address space of a pointer down a
72// lattice path from uninitialized to specific and then to generic. A join
73// operation of two different specific address spaces pushes the expression down
74// to the generic address space. The analysis completes once it reaches a fixed
75// point.
76//
77// Second, IR rewriting in Step 2 also needs to be circular. For example,
78// converting %y to addrspace(3) requires the compiler to know the converted
79// %y2, but converting %y2 needs the converted %y. To address this complication,
80// we break these cycles using "undef" placeholders. When converting an
81// instruction `I` to a new address space, if its operand `Op` is not converted
82// yet, we let `I` temporarily use `undef` and fix all the uses of undef later.
83// For instance, our algorithm first converts %y to
84// %y' = phi float addrspace(3)* [ %input, undef ]
85// Then, it converts %y2 to
86// %y2' = getelementptr %y', 1
87// Finally, it fixes the undef in %y' so that
88// %y' = phi float addrspace(3)* [ %input, %y2' ]
89//
Jingyue Wu13755602016-03-20 20:59:20 +000090//===----------------------------------------------------------------------===//
91
Matt Arsenault850657a2017-01-31 01:10:58 +000092#include "llvm/Transforms/Scalar.h"
Jingyue Wu13755602016-03-20 20:59:20 +000093#include "llvm/ADT/DenseSet.h"
94#include "llvm/ADT/Optional.h"
95#include "llvm/ADT/SetVector.h"
Matt Arsenault42b64782017-01-30 23:02:12 +000096#include "llvm/Analysis/TargetTransformInfo.h"
Jingyue Wu13755602016-03-20 20:59:20 +000097#include "llvm/IR/Function.h"
98#include "llvm/IR/InstIterator.h"
99#include "llvm/IR/Instructions.h"
100#include "llvm/IR/Operator.h"
Jingyue Wu13755602016-03-20 20:59:20 +0000101#include "llvm/Support/Debug.h"
102#include "llvm/Support/raw_ostream.h"
103#include "llvm/Transforms/Utils/Local.h"
104#include "llvm/Transforms/Utils/ValueMapper.h"
105
Matt Arsenault850657a2017-01-31 01:10:58 +0000106#define DEBUG_TYPE "infer-address-spaces"
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000107
Jingyue Wu13755602016-03-20 20:59:20 +0000108using namespace llvm;
109
110namespace {
Matt Arsenault973c4ae2017-01-31 02:17:41 +0000111static const unsigned UninitializedAddressSpace = ~0u;
Jingyue Wu13755602016-03-20 20:59:20 +0000112
113using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>;
114
Matt Arsenault850657a2017-01-31 01:10:58 +0000115/// \brief InferAddressSpaces
116class InferAddressSpaces: public FunctionPass {
Matt Arsenault42b64782017-01-30 23:02:12 +0000117 /// Target specific address space which uses of should be replaced if
118 /// possible.
119 unsigned FlatAddrSpace;
120
Jingyue Wu13755602016-03-20 20:59:20 +0000121public:
122 static char ID;
123
Matt Arsenault850657a2017-01-31 01:10:58 +0000124 InferAddressSpaces() : FunctionPass(ID) {}
Jingyue Wu13755602016-03-20 20:59:20 +0000125
Matt Arsenault32b96002017-01-27 17:30:39 +0000126 void getAnalysisUsage(AnalysisUsage &AU) const override {
127 AU.setPreservesCFG();
Matt Arsenault42b64782017-01-30 23:02:12 +0000128 AU.addRequired<TargetTransformInfoWrapperPass>();
Matt Arsenault32b96002017-01-27 17:30:39 +0000129 }
130
Jingyue Wu13755602016-03-20 20:59:20 +0000131 bool runOnFunction(Function &F) override;
132
133private:
134 // Returns the new address space of V if updated; otherwise, returns None.
135 Optional<unsigned>
136 updateAddressSpace(const Value &V,
Matt Arsenault42b64782017-01-30 23:02:12 +0000137 const ValueToAddrSpaceMapTy &InferredAddrSpace) const;
Jingyue Wu13755602016-03-20 20:59:20 +0000138
139 // Tries to infer the specific address space of each address expression in
140 // Postorder.
141 void inferAddressSpaces(const std::vector<Value *> &Postorder,
Matt Arsenault42b64782017-01-30 23:02:12 +0000142 ValueToAddrSpaceMapTy *InferredAddrSpace) const;
Jingyue Wu13755602016-03-20 20:59:20 +0000143
Matt Arsenault72f259b2017-01-31 02:17:32 +0000144 bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const;
145
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000146 // Changes the flat address expressions in function F to point to specific
Jingyue Wu13755602016-03-20 20:59:20 +0000147 // address spaces if InferredAddrSpace says so. Postorder is the postorder of
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000148 // all flat expressions in the use-def graph of function F.
Jingyue Wu13755602016-03-20 20:59:20 +0000149 bool
150 rewriteWithNewAddressSpaces(const std::vector<Value *> &Postorder,
151 const ValueToAddrSpaceMapTy &InferredAddrSpace,
Matt Arsenault42b64782017-01-30 23:02:12 +0000152 Function *F) const;
153
154 void appendsFlatAddressExpressionToPostorderStack(
155 Value *V, std::vector<std::pair<Value *, bool>> *PostorderStack,
156 DenseSet<Value *> *Visited) const;
157
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000158 bool rewriteIntrinsicOperands(IntrinsicInst *II,
159 Value *OldV, Value *NewV) const;
160 void collectRewritableIntrinsicOperands(
161 IntrinsicInst *II,
162 std::vector<std::pair<Value *, bool>> *PostorderStack,
163 DenseSet<Value *> *Visited) const;
164
Matt Arsenault42b64782017-01-30 23:02:12 +0000165 std::vector<Value *> collectFlatAddressExpressions(Function &F) const;
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000166
Matt Arsenault42b64782017-01-30 23:02:12 +0000167 Value *cloneValueWithNewAddressSpace(
168 Value *V, unsigned NewAddrSpace,
169 const ValueToValueMapTy &ValueWithNewAddrSpace,
170 SmallVectorImpl<const Use *> *UndefUsesToFix) const;
171 unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const;
Jingyue Wu13755602016-03-20 20:59:20 +0000172};
173} // end anonymous namespace
174
Matt Arsenault850657a2017-01-31 01:10:58 +0000175char InferAddressSpaces::ID = 0;
Jingyue Wu13755602016-03-20 20:59:20 +0000176
177namespace llvm {
Matt Arsenault850657a2017-01-31 01:10:58 +0000178void initializeInferAddressSpacesPass(PassRegistry &);
Jingyue Wu13755602016-03-20 20:59:20 +0000179}
Matt Arsenault850657a2017-01-31 01:10:58 +0000180
181INITIALIZE_PASS(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
Jingyue Wu13755602016-03-20 20:59:20 +0000182 false, false)
183
184// Returns true if V is an address expression.
185// TODO: Currently, we consider only phi, bitcast, addrspacecast, and
186// getelementptr operators.
187static bool isAddressExpression(const Value &V) {
188 if (!isa<Operator>(V))
189 return false;
190
191 switch (cast<Operator>(V).getOpcode()) {
192 case Instruction::PHI:
193 case Instruction::BitCast:
194 case Instruction::AddrSpaceCast:
195 case Instruction::GetElementPtr:
196 return true;
197 default:
198 return false;
199 }
200}
201
202// Returns the pointer operands of V.
203//
204// Precondition: V is an address expression.
205static SmallVector<Value *, 2> getPointerOperands(const Value &V) {
206 assert(isAddressExpression(V));
207 const Operator& Op = cast<Operator>(V);
208 switch (Op.getOpcode()) {
209 case Instruction::PHI: {
210 auto IncomingValues = cast<PHINode>(Op).incoming_values();
211 return SmallVector<Value *, 2>(IncomingValues.begin(),
212 IncomingValues.end());
213 }
214 case Instruction::BitCast:
215 case Instruction::AddrSpaceCast:
216 case Instruction::GetElementPtr:
217 return {Op.getOperand(0)};
218 default:
219 llvm_unreachable("Unexpected instruction type.");
220 }
221}
222
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000223// TODO: Move logic to TTI?
224bool InferAddressSpaces::rewriteIntrinsicOperands(IntrinsicInst *II,
225 Value *OldV,
226 Value *NewV) const {
227 Module *M = II->getParent()->getParent()->getParent();
228
229 switch (II->getIntrinsicID()) {
230 case Intrinsic::objectsize:
231 case Intrinsic::amdgcn_atomic_inc:
232 case Intrinsic::amdgcn_atomic_dec: {
233 Type *DestTy = II->getType();
234 Type *SrcTy = NewV->getType();
235 Function *NewDecl
236 = Intrinsic::getDeclaration(M, II->getIntrinsicID(), { DestTy, SrcTy });
237 II->setArgOperand(0, NewV);
238 II->setCalledFunction(NewDecl);
239 return true;
240 }
241 default:
242 return false;
243 }
244}
245
246// TODO: Move logic to TTI?
247void InferAddressSpaces::collectRewritableIntrinsicOperands(
248 IntrinsicInst *II,
249 std::vector<std::pair<Value *, bool>> *PostorderStack,
250 DenseSet<Value *> *Visited) const {
251 switch (II->getIntrinsicID()) {
252 case Intrinsic::objectsize:
253 case Intrinsic::amdgcn_atomic_inc:
254 case Intrinsic::amdgcn_atomic_dec:
255 appendsFlatAddressExpressionToPostorderStack(
256 II->getArgOperand(0), PostorderStack, Visited);
257 break;
258 default:
259 break;
260 }
261}
262
263// Returns all flat address expressions in function F. The elements are
Matt Arsenault42b64782017-01-30 23:02:12 +0000264// If V is an unvisited flat address expression, appends V to PostorderStack
Jingyue Wu13755602016-03-20 20:59:20 +0000265// and marks it as visited.
Matt Arsenault850657a2017-01-31 01:10:58 +0000266void InferAddressSpaces::appendsFlatAddressExpressionToPostorderStack(
267 Value *V, std::vector<std::pair<Value *, bool>> *PostorderStack,
268 DenseSet<Value *> *Visited) const {
Jingyue Wu13755602016-03-20 20:59:20 +0000269 assert(V->getType()->isPointerTy());
270 if (isAddressExpression(*V) &&
Matt Arsenault42b64782017-01-30 23:02:12 +0000271 V->getType()->getPointerAddressSpace() == FlatAddrSpace) {
Jingyue Wu13755602016-03-20 20:59:20 +0000272 if (Visited->insert(V).second)
273 PostorderStack->push_back(std::make_pair(V, false));
274 }
275}
276
Matt Arsenault42b64782017-01-30 23:02:12 +0000277// Returns all flat address expressions in function F. The elements are ordered
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000278// ordered in postorder.
Matt Arsenault42b64782017-01-30 23:02:12 +0000279std::vector<Value *>
Matt Arsenault850657a2017-01-31 01:10:58 +0000280InferAddressSpaces::collectFlatAddressExpressions(Function &F) const {
Jingyue Wu13755602016-03-20 20:59:20 +0000281 // This function implements a non-recursive postorder traversal of a partial
282 // use-def graph of function F.
283 std::vector<std::pair<Value*, bool>> PostorderStack;
284 // The set of visited expressions.
285 DenseSet<Value*> Visited;
Matt Arsenault6c907a92017-01-31 01:40:38 +0000286
287 auto PushPtrOperand = [&](Value *Ptr) {
288 appendsFlatAddressExpressionToPostorderStack(
289 Ptr, &PostorderStack, &Visited);
290 };
291
Jingyue Wu13755602016-03-20 20:59:20 +0000292 // We only explore address expressions that are reachable from loads and
293 // stores for now because we aim at generating faster loads and stores.
294 for (Instruction &I : instructions(F)) {
Matt Arsenault6c907a92017-01-31 01:40:38 +0000295 if (auto *LI = dyn_cast<LoadInst>(&I))
296 PushPtrOperand(LI->getPointerOperand());
297 else if (auto *SI = dyn_cast<StoreInst>(&I))
298 PushPtrOperand(SI->getPointerOperand());
299 else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I))
300 PushPtrOperand(RMW->getPointerOperand());
301 else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I))
302 PushPtrOperand(CmpX->getPointerOperand());
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000303 else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) {
304 // For memset/memcpy/memmove, any pointer operand can be replaced.
305 PushPtrOperand(MI->getRawDest());
Matt Arsenault6c907a92017-01-31 01:40:38 +0000306
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000307 // Handle 2nd operand for memcpy/memmove.
308 if (auto *MTI = dyn_cast<MemTransferInst>(MI))
309 PushPtrOperand(MTI->getRawSource());
310 } else if (auto *II = dyn_cast<IntrinsicInst>(&I))
311 collectRewritableIntrinsicOperands(II, &PostorderStack, &Visited);
Matt Arsenault72f259b2017-01-31 02:17:32 +0000312 else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) {
313 // FIXME: Handle vectors of pointers
314 if (Cmp->getOperand(0)->getType()->isPointerTy()) {
315 PushPtrOperand(Cmp->getOperand(0));
316 PushPtrOperand(Cmp->getOperand(1));
317 }
318 }
Jingyue Wu13755602016-03-20 20:59:20 +0000319 }
320
321 std::vector<Value *> Postorder; // The resultant postorder.
322 while (!PostorderStack.empty()) {
323 // If the operands of the expression on the top are already explored,
324 // adds that expression to the resultant postorder.
325 if (PostorderStack.back().second) {
326 Postorder.push_back(PostorderStack.back().first);
327 PostorderStack.pop_back();
328 continue;
329 }
330 // Otherwise, adds its operands to the stack and explores them.
331 PostorderStack.back().second = true;
332 for (Value *PtrOperand : getPointerOperands(*PostorderStack.back().first)) {
Matt Arsenault42b64782017-01-30 23:02:12 +0000333 appendsFlatAddressExpressionToPostorderStack(
Matt Arsenault850657a2017-01-31 01:10:58 +0000334 PtrOperand, &PostorderStack, &Visited);
Jingyue Wu13755602016-03-20 20:59:20 +0000335 }
336 }
337 return Postorder;
338}
339
340// A helper function for cloneInstructionWithNewAddressSpace. Returns the clone
341// of OperandUse.get() in the new address space. If the clone is not ready yet,
342// returns an undef in the new address space as a placeholder.
343static Value *operandWithNewAddressSpaceOrCreateUndef(
Matt Arsenault850657a2017-01-31 01:10:58 +0000344 const Use &OperandUse, unsigned NewAddrSpace,
345 const ValueToValueMapTy &ValueWithNewAddrSpace,
346 SmallVectorImpl<const Use *> *UndefUsesToFix) {
Jingyue Wu13755602016-03-20 20:59:20 +0000347 Value *Operand = OperandUse.get();
348 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand))
349 return NewOperand;
350
351 UndefUsesToFix->push_back(&OperandUse);
352 return UndefValue::get(
Matt Arsenault850657a2017-01-31 01:10:58 +0000353 Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace));
Jingyue Wu13755602016-03-20 20:59:20 +0000354}
355
356// Returns a clone of `I` with its operands converted to those specified in
357// ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an
358// operand whose address space needs to be modified might not exist in
359// ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and
360// adds that operand use to UndefUsesToFix so that caller can fix them later.
361//
362// Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast
363// from a pointer whose type already matches. Therefore, this function returns a
364// Value* instead of an Instruction*.
365static Value *cloneInstructionWithNewAddressSpace(
Matt Arsenault850657a2017-01-31 01:10:58 +0000366 Instruction *I, unsigned NewAddrSpace,
367 const ValueToValueMapTy &ValueWithNewAddrSpace,
368 SmallVectorImpl<const Use *> *UndefUsesToFix) {
Jingyue Wu13755602016-03-20 20:59:20 +0000369 Type *NewPtrType =
Matt Arsenault850657a2017-01-31 01:10:58 +0000370 I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
Jingyue Wu13755602016-03-20 20:59:20 +0000371
372 if (I->getOpcode() == Instruction::AddrSpaceCast) {
373 Value *Src = I->getOperand(0);
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000374 // Because `I` is flat, the source address space must be specific.
Jingyue Wu13755602016-03-20 20:59:20 +0000375 // Therefore, the inferred address space must be the source space, according
376 // to our algorithm.
377 assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
378 if (Src->getType() != NewPtrType)
379 return new BitCastInst(Src, NewPtrType);
380 return Src;
381 }
382
383 // Computes the converted pointer operands.
384 SmallVector<Value *, 4> NewPointerOperands;
385 for (const Use &OperandUse : I->operands()) {
386 if (!OperandUse.get()->getType()->isPointerTy())
387 NewPointerOperands.push_back(nullptr);
388 else
389 NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef(
Matt Arsenault850657a2017-01-31 01:10:58 +0000390 OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix));
Jingyue Wu13755602016-03-20 20:59:20 +0000391 }
392
393 switch (I->getOpcode()) {
394 case Instruction::BitCast:
395 return new BitCastInst(NewPointerOperands[0], NewPtrType);
396 case Instruction::PHI: {
397 assert(I->getType()->isPointerTy());
398 PHINode *PHI = cast<PHINode>(I);
399 PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues());
400 for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) {
401 unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index);
402 NewPHI->addIncoming(NewPointerOperands[OperandNo],
403 PHI->getIncomingBlock(Index));
404 }
405 return NewPHI;
406 }
407 case Instruction::GetElementPtr: {
408 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
409 GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
Matt Arsenault850657a2017-01-31 01:10:58 +0000410 GEP->getSourceElementType(), NewPointerOperands[0],
411 SmallVector<Value *, 4>(GEP->idx_begin(), GEP->idx_end()));
Jingyue Wu13755602016-03-20 20:59:20 +0000412 NewGEP->setIsInBounds(GEP->isInBounds());
413 return NewGEP;
414 }
415 default:
416 llvm_unreachable("Unexpected opcode");
417 }
418}
419
420// Similar to cloneInstructionWithNewAddressSpace, returns a clone of the
421// constant expression `CE` with its operands replaced as specified in
422// ValueWithNewAddrSpace.
423static Value *cloneConstantExprWithNewAddressSpace(
Matt Arsenault850657a2017-01-31 01:10:58 +0000424 ConstantExpr *CE, unsigned NewAddrSpace,
425 const ValueToValueMapTy &ValueWithNewAddrSpace) {
Jingyue Wu13755602016-03-20 20:59:20 +0000426 Type *TargetType =
Matt Arsenault850657a2017-01-31 01:10:58 +0000427 CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
Jingyue Wu13755602016-03-20 20:59:20 +0000428
429 if (CE->getOpcode() == Instruction::AddrSpaceCast) {
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000430 // Because CE is flat, the source address space must be specific.
Jingyue Wu13755602016-03-20 20:59:20 +0000431 // Therefore, the inferred address space must be the source space according
432 // to our algorithm.
433 assert(CE->getOperand(0)->getType()->getPointerAddressSpace() ==
434 NewAddrSpace);
435 return ConstantExpr::getBitCast(CE->getOperand(0), TargetType);
436 }
437
438 // Computes the operands of the new constant expression.
439 SmallVector<Constant *, 4> NewOperands;
440 for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) {
441 Constant *Operand = CE->getOperand(Index);
442 // If the address space of `Operand` needs to be modified, the new operand
443 // with the new address space should already be in ValueWithNewAddrSpace
444 // because (1) the constant expressions we consider (i.e. addrspacecast,
445 // bitcast, and getelementptr) do not incur cycles in the data flow graph
446 // and (2) this function is called on constant expressions in postorder.
447 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) {
448 NewOperands.push_back(cast<Constant>(NewOperand));
449 } else {
450 // Otherwise, reuses the old operand.
451 NewOperands.push_back(Operand);
452 }
453 }
454
455 if (CE->getOpcode() == Instruction::GetElementPtr) {
456 // Needs to specify the source type while constructing a getelementptr
457 // constant expression.
458 return CE->getWithOperands(
Matt Arsenault850657a2017-01-31 01:10:58 +0000459 NewOperands, TargetType, /*OnlyIfReduced=*/false,
460 NewOperands[0]->getType()->getPointerElementType());
Jingyue Wu13755602016-03-20 20:59:20 +0000461 }
462
463 return CE->getWithOperands(NewOperands, TargetType);
464}
465
466// Returns a clone of the value `V`, with its operands replaced as specified in
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000467// ValueWithNewAddrSpace. This function is called on every flat address
Jingyue Wu13755602016-03-20 20:59:20 +0000468// expression whose address space needs to be modified, in postorder.
469//
470// See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix.
Matt Arsenault850657a2017-01-31 01:10:58 +0000471Value *InferAddressSpaces::cloneValueWithNewAddressSpace(
Matt Arsenault42b64782017-01-30 23:02:12 +0000472 Value *V, unsigned NewAddrSpace,
473 const ValueToValueMapTy &ValueWithNewAddrSpace,
474 SmallVectorImpl<const Use *> *UndefUsesToFix) const {
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000475 // All values in Postorder are flat address expressions.
Jingyue Wu13755602016-03-20 20:59:20 +0000476 assert(isAddressExpression(*V) &&
Matt Arsenault42b64782017-01-30 23:02:12 +0000477 V->getType()->getPointerAddressSpace() == FlatAddrSpace);
Jingyue Wu13755602016-03-20 20:59:20 +0000478
479 if (Instruction *I = dyn_cast<Instruction>(V)) {
480 Value *NewV = cloneInstructionWithNewAddressSpace(
Matt Arsenault850657a2017-01-31 01:10:58 +0000481 I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix);
Jingyue Wu13755602016-03-20 20:59:20 +0000482 if (Instruction *NewI = dyn_cast<Instruction>(NewV)) {
483 if (NewI->getParent() == nullptr) {
484 NewI->insertBefore(I);
485 NewI->takeName(I);
486 }
487 }
488 return NewV;
489 }
490
491 return cloneConstantExprWithNewAddressSpace(
Matt Arsenault850657a2017-01-31 01:10:58 +0000492 cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace);
Jingyue Wu13755602016-03-20 20:59:20 +0000493}
494
495// Defines the join operation on the address space lattice (see the file header
496// comments).
Matt Arsenault850657a2017-01-31 01:10:58 +0000497unsigned InferAddressSpaces::joinAddressSpaces(unsigned AS1,
498 unsigned AS2) const {
Matt Arsenault42b64782017-01-30 23:02:12 +0000499 if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace)
500 return FlatAddrSpace;
Jingyue Wu13755602016-03-20 20:59:20 +0000501
Matt Arsenault973c4ae2017-01-31 02:17:41 +0000502 if (AS1 == UninitializedAddressSpace)
Jingyue Wu13755602016-03-20 20:59:20 +0000503 return AS2;
Matt Arsenault973c4ae2017-01-31 02:17:41 +0000504 if (AS2 == UninitializedAddressSpace)
Jingyue Wu13755602016-03-20 20:59:20 +0000505 return AS1;
506
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000507 // The join of two different specific address spaces is flat.
Matt Arsenault42b64782017-01-30 23:02:12 +0000508 return (AS1 == AS2) ? AS1 : FlatAddrSpace;
Jingyue Wu13755602016-03-20 20:59:20 +0000509}
510
Matt Arsenault850657a2017-01-31 01:10:58 +0000511bool InferAddressSpaces::runOnFunction(Function &F) {
Andrew Kaylor87b10dd2016-04-26 23:44:31 +0000512 if (skipFunction(F))
513 return false;
514
Matt Arsenault42b64782017-01-30 23:02:12 +0000515 const TargetTransformInfo &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
516 FlatAddrSpace = TTI.getFlatAddressSpace();
Matt Arsenault973c4ae2017-01-31 02:17:41 +0000517 if (FlatAddrSpace == UninitializedAddressSpace)
Matt Arsenault42b64782017-01-30 23:02:12 +0000518 return false;
519
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000520 // Collects all flat address expressions in postorder.
Matt Arsenault42b64782017-01-30 23:02:12 +0000521 std::vector<Value *> Postorder = collectFlatAddressExpressions(F);
Jingyue Wu13755602016-03-20 20:59:20 +0000522
523 // Runs a data-flow analysis to refine the address spaces of every expression
524 // in Postorder.
525 ValueToAddrSpaceMapTy InferredAddrSpace;
526 inferAddressSpaces(Postorder, &InferredAddrSpace);
527
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000528 // Changes the address spaces of the flat address expressions who are inferred
529 // to point to a specific address space.
Jingyue Wu13755602016-03-20 20:59:20 +0000530 return rewriteWithNewAddressSpaces(Postorder, InferredAddrSpace, &F);
531}
532
Matt Arsenault850657a2017-01-31 01:10:58 +0000533void InferAddressSpaces::inferAddressSpaces(
534 const std::vector<Value *> &Postorder,
535 ValueToAddrSpaceMapTy *InferredAddrSpace) const {
Jingyue Wu13755602016-03-20 20:59:20 +0000536 SetVector<Value *> Worklist(Postorder.begin(), Postorder.end());
537 // Initially, all expressions are in the uninitialized address space.
538 for (Value *V : Postorder)
Matt Arsenault973c4ae2017-01-31 02:17:41 +0000539 (*InferredAddrSpace)[V] = UninitializedAddressSpace;
Jingyue Wu13755602016-03-20 20:59:20 +0000540
541 while (!Worklist.empty()) {
542 Value* V = Worklist.pop_back_val();
543
544 // Tries to update the address space of the stack top according to the
545 // address spaces of its operands.
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000546 DEBUG(dbgs() << "Updating the address space of\n " << *V << '\n');
Jingyue Wu13755602016-03-20 20:59:20 +0000547 Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace);
548 if (!NewAS.hasValue())
549 continue;
550 // If any updates are made, grabs its users to the worklist because
551 // their address spaces can also be possibly updated.
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000552 DEBUG(dbgs() << " to " << NewAS.getValue() << '\n');
Jingyue Wu13755602016-03-20 20:59:20 +0000553 (*InferredAddrSpace)[V] = NewAS.getValue();
554
555 for (Value *User : V->users()) {
556 // Skip if User is already in the worklist.
557 if (Worklist.count(User))
558 continue;
559
560 auto Pos = InferredAddrSpace->find(User);
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000561 // Our algorithm only updates the address spaces of flat address
Jingyue Wu13755602016-03-20 20:59:20 +0000562 // expressions, which are those in InferredAddrSpace.
563 if (Pos == InferredAddrSpace->end())
564 continue;
565
566 // Function updateAddressSpace moves the address space down a lattice
Matt Arsenault850657a2017-01-31 01:10:58 +0000567 // path. Therefore, nothing to do if User is already inferred as flat (the
568 // bottom element in the lattice).
Matt Arsenault42b64782017-01-30 23:02:12 +0000569 if (Pos->second == FlatAddrSpace)
Jingyue Wu13755602016-03-20 20:59:20 +0000570 continue;
571
572 Worklist.insert(User);
573 }
574 }
575}
576
Matt Arsenault850657a2017-01-31 01:10:58 +0000577Optional<unsigned> InferAddressSpaces::updateAddressSpace(
578 const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) const {
Jingyue Wu13755602016-03-20 20:59:20 +0000579 assert(InferredAddrSpace.count(&V));
580
581 // The new inferred address space equals the join of the address spaces
582 // of all its pointer operands.
Matt Arsenault973c4ae2017-01-31 02:17:41 +0000583 unsigned NewAS = UninitializedAddressSpace;
Jingyue Wu13755602016-03-20 20:59:20 +0000584 for (Value *PtrOperand : getPointerOperands(V)) {
Matt Arsenault517a2902017-01-31 23:48:44 +0000585 auto I = InferredAddrSpace.find(PtrOperand);
586 unsigned OperandAS = I != InferredAddrSpace.end() ?
587 I->second : PtrOperand->getType()->getPointerAddressSpace();
Matt Arsenault850657a2017-01-31 01:10:58 +0000588
589 // join(flat, *) = flat. So we can break if NewAS is already flat.
Matt Arsenault517a2902017-01-31 23:48:44 +0000590 NewAS = joinAddressSpaces(NewAS, OperandAS);
Matt Arsenault42b64782017-01-30 23:02:12 +0000591 if (NewAS == FlatAddrSpace)
Jingyue Wu13755602016-03-20 20:59:20 +0000592 break;
593 }
594
595 unsigned OldAS = InferredAddrSpace.lookup(&V);
Matt Arsenault42b64782017-01-30 23:02:12 +0000596 assert(OldAS != FlatAddrSpace);
Jingyue Wu13755602016-03-20 20:59:20 +0000597 if (OldAS == NewAS)
598 return None;
599 return NewAS;
600}
601
Matt Arsenault6c907a92017-01-31 01:40:38 +0000602/// \p returns true if \p U is the pointer operand of a memory instruction with
603/// a single pointer operand that can have its address space changed by simply
604/// mutating the use to a new value.
605static bool isSimplePointerUseValidToReplace(Use &U) {
606 User *Inst = U.getUser();
607 unsigned OpNo = U.getOperandNo();
608
609 if (auto *LI = dyn_cast<LoadInst>(Inst))
610 return OpNo == LoadInst::getPointerOperandIndex() && !LI->isVolatile();
611
612 if (auto *SI = dyn_cast<StoreInst>(Inst))
613 return OpNo == StoreInst::getPointerOperandIndex() && !SI->isVolatile();
614
615 if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst))
616 return OpNo == AtomicRMWInst::getPointerOperandIndex() && !RMW->isVolatile();
617
618 if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
619 return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() &&
620 !CmpX->isVolatile();
621 }
622
623 return false;
624}
625
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000626/// Update memory intrinsic uses that require more complex processing than
627/// simple memory instructions. Thse require re-mangling and may have multiple
628/// pointer operands.
629static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI,
630 Value *OldV, Value *NewV) {
631 IRBuilder<> B(MI);
632 MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa);
633 MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope);
634 MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias);
635
636 if (auto *MSI = dyn_cast<MemSetInst>(MI)) {
637 B.CreateMemSet(NewV, MSI->getValue(),
638 MSI->getLength(), MSI->getAlignment(),
639 false, // isVolatile
640 TBAA, ScopeMD, NoAliasMD);
641 } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) {
642 Value *Src = MTI->getRawSource();
643 Value *Dest = MTI->getRawDest();
644
645 // Be careful in case this is a self-to-self copy.
646 if (Src == OldV)
647 Src = NewV;
648
649 if (Dest == OldV)
650 Dest = NewV;
651
652 if (isa<MemCpyInst>(MTI)) {
653 MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
654 B.CreateMemCpy(Dest, Src, MTI->getLength(),
655 MTI->getAlignment(),
656 false, // isVolatile
657 TBAA, TBAAStruct, ScopeMD, NoAliasMD);
658 } else {
659 assert(isa<MemMoveInst>(MTI));
660 B.CreateMemMove(Dest, Src, MTI->getLength(),
661 MTI->getAlignment(),
662 false, // isVolatile
663 TBAA, ScopeMD, NoAliasMD);
664 }
665 } else
666 llvm_unreachable("unhandled MemIntrinsic");
667
668 MI->eraseFromParent();
669 return true;
670}
671
Matt Arsenault72f259b2017-01-31 02:17:32 +0000672// \p returns true if it is OK to change the address space of constant \p C with
673// a ConstantExpr addrspacecast.
674bool InferAddressSpaces::isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const {
Matt Arsenault2a46d812017-01-31 23:48:40 +0000675 unsigned SrcAS = C->getType()->getPointerAddressSpace();
676 if (SrcAS == NewAS || isa<UndefValue>(C))
Matt Arsenault72f259b2017-01-31 02:17:32 +0000677 return true;
678
Matt Arsenault2a46d812017-01-31 23:48:40 +0000679 // Prevent illegal casts between different non-flat address spaces.
680 if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace)
681 return false;
682
683 if (isa<ConstantPointerNull>(C))
Matt Arsenault72f259b2017-01-31 02:17:32 +0000684 return true;
685
686 if (auto *Op = dyn_cast<Operator>(C)) {
687 // If we already have a constant addrspacecast, it should be safe to cast it
688 // off.
689 if (Op->getOpcode() == Instruction::AddrSpaceCast)
690 return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS);
691
692 if (Op->getOpcode() == Instruction::IntToPtr &&
693 Op->getType()->getPointerAddressSpace() == FlatAddrSpace)
694 return true;
695 }
696
697 return false;
698}
699
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000700static Value::use_iterator skipToNextUser(Value::use_iterator I,
701 Value::use_iterator End) {
702 User *CurUser = I->getUser();
703 ++I;
704
705 while (I != End && I->getUser() == CurUser)
706 ++I;
707
708 return I;
709}
710
Matt Arsenault850657a2017-01-31 01:10:58 +0000711bool InferAddressSpaces::rewriteWithNewAddressSpaces(
712 const std::vector<Value *> &Postorder,
713 const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const {
Jingyue Wu13755602016-03-20 20:59:20 +0000714 // For each address expression to be modified, creates a clone of it with its
715 // pointer operands converted to the new address space. Since the pointer
716 // operands are converted, the clone is naturally in the new address space by
717 // construction.
718 ValueToValueMapTy ValueWithNewAddrSpace;
719 SmallVector<const Use *, 32> UndefUsesToFix;
720 for (Value* V : Postorder) {
721 unsigned NewAddrSpace = InferredAddrSpace.lookup(V);
722 if (V->getType()->getPointerAddressSpace() != NewAddrSpace) {
723 ValueWithNewAddrSpace[V] = cloneValueWithNewAddressSpace(
Matt Arsenault850657a2017-01-31 01:10:58 +0000724 V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix);
Jingyue Wu13755602016-03-20 20:59:20 +0000725 }
726 }
727
728 if (ValueWithNewAddrSpace.empty())
729 return false;
730
731 // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace.
732 for (const Use* UndefUse : UndefUsesToFix) {
733 User *V = UndefUse->getUser();
734 User *NewV = cast<User>(ValueWithNewAddrSpace.lookup(V));
735 unsigned OperandNo = UndefUse->getOperandNo();
736 assert(isa<UndefValue>(NewV->getOperand(OperandNo)));
737 NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get()));
738 }
739
740 // Replaces the uses of the old address expressions with the new ones.
741 for (Value *V : Postorder) {
742 Value *NewV = ValueWithNewAddrSpace.lookup(V);
743 if (NewV == nullptr)
744 continue;
745
Matt Arsenault9f432ec2017-01-30 23:27:11 +0000746 DEBUG(dbgs() << "Replacing the uses of " << *V
747 << "\n with\n " << *NewV << '\n');
748
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000749 Value::use_iterator I, E, Next;
750 for (I = V->use_begin(), E = V->use_end(); I != E; ) {
751 Use &U = *I;
752
753 // Some users may see the same pointer operand in multiple operands. Skip
754 // to the next instruction.
755 I = skipToNextUser(I, E);
756
757 if (isSimplePointerUseValidToReplace(U)) {
Matt Arsenault6c907a92017-01-31 01:40:38 +0000758 // If V is used as the pointer operand of a compatible memory operation,
759 // sets the pointer operand to NewV. This replacement does not change
760 // the element type, so the resultant load/store is still valid.
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000761 U.set(NewV);
762 continue;
763 }
764
765 User *CurUser = U.getUser();
766 // Handle more complex cases like intrinsic that need to be remangled.
767 if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) {
768 if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV))
769 continue;
770 }
771
772 if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) {
773 if (rewriteIntrinsicOperands(II, V, NewV))
774 continue;
775 }
776
777 if (isa<Instruction>(CurUser)) {
Matt Arsenault72f259b2017-01-31 02:17:32 +0000778 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) {
779 // If we can infer that both pointers are in the same addrspace,
780 // transform e.g.
781 // %cmp = icmp eq float* %p, %q
782 // into
783 // %cmp = icmp eq float addrspace(3)* %new_p, %new_q
784
785 unsigned NewAS = NewV->getType()->getPointerAddressSpace();
786 int SrcIdx = U.getOperandNo();
787 int OtherIdx = (SrcIdx == 0) ? 1 : 0;
788 Value *OtherSrc = Cmp->getOperand(OtherIdx);
789
790 if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) {
791 if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) {
792 Cmp->setOperand(OtherIdx, OtherNewV);
793 Cmp->setOperand(SrcIdx, NewV);
794 continue;
795 }
796 }
797
798 // Even if the type mismatches, we can cast the constant.
799 if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) {
800 if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) {
801 Cmp->setOperand(SrcIdx, NewV);
802 Cmp->setOperand(OtherIdx,
803 ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType()));
804 continue;
805 }
806 }
807 }
808
Matt Arsenault850657a2017-01-31 01:10:58 +0000809 // Otherwise, replaces the use with flat(NewV).
Jingyue Wu13755602016-03-20 20:59:20 +0000810 if (Instruction *I = dyn_cast<Instruction>(V)) {
811 BasicBlock::iterator InsertPos = std::next(I->getIterator());
812 while (isa<PHINode>(InsertPos))
813 ++InsertPos;
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000814 U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos));
Jingyue Wu13755602016-03-20 20:59:20 +0000815 } else {
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000816 U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
817 V->getType()));
Jingyue Wu13755602016-03-20 20:59:20 +0000818 }
819 }
820 }
Matt Arsenault6d5a8d42017-01-31 01:56:57 +0000821
Jingyue Wu13755602016-03-20 20:59:20 +0000822 if (V->use_empty())
823 RecursivelyDeleteTriviallyDeadInstructions(V);
824 }
825
826 return true;
827}
828
Matt Arsenault850657a2017-01-31 01:10:58 +0000829FunctionPass *llvm::createInferAddressSpacesPass() {
830 return new InferAddressSpaces();
Jingyue Wu13755602016-03-20 20:59:20 +0000831}