blob: c244d7545b826883cc20f74975b33e7dc40e0946 [file] [log] [blame]
Rui Ueyama21c0a9c2017-06-16 17:32:43 +00001//===- X86_64.cpp ---------------------------------------------------------===//
2//
3// The LLVM Linker
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "Error.h"
11#include "InputFiles.h"
Rui Ueyama21c0a9c2017-06-16 17:32:43 +000012#include "Symbols.h"
13#include "SyntheticSections.h"
14#include "Target.h"
15#include "llvm/Object/ELF.h"
16#include "llvm/Support/Endian.h"
17
18using namespace llvm;
19using namespace llvm::object;
20using namespace llvm::support::endian;
21using namespace llvm::ELF;
22using namespace lld;
23using namespace lld::elf;
24
25namespace {
26template <class ELFT> class X86_64 final : public TargetInfo {
27public:
28 X86_64();
Rui Ueyamabe855292017-10-12 03:14:06 +000029 RelExpr getRelExpr(RelType Type, const SymbolBody &S,
Rui Ueyama21c0a9c2017-06-16 17:32:43 +000030 const uint8_t *Loc) const override;
Rui Ueyama67533a22017-10-11 22:49:24 +000031 bool isPicRel(RelType Type) const override;
Rui Ueyama21c0a9c2017-06-16 17:32:43 +000032 void writeGotPltHeader(uint8_t *Buf) const override;
33 void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
34 void writePltHeader(uint8_t *Buf) const override;
35 void writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr, uint64_t PltEntryAddr,
36 int32_t Index, unsigned RelOff) const override;
Rui Ueyama67533a22017-10-11 22:49:24 +000037 void relocateOne(uint8_t *Loc, RelType Type, uint64_t Val) const override;
Rui Ueyama21c0a9c2017-06-16 17:32:43 +000038
Rui Ueyama67533a22017-10-11 22:49:24 +000039 RelExpr adjustRelaxExpr(RelType Type, const uint8_t *Data,
Rui Ueyama21c0a9c2017-06-16 17:32:43 +000040 RelExpr Expr) const override;
41 void relaxGot(uint8_t *Loc, uint64_t Val) const override;
Rui Ueyama67533a22017-10-11 22:49:24 +000042 void relaxTlsGdToIe(uint8_t *Loc, RelType Type, uint64_t Val) const override;
43 void relaxTlsGdToLe(uint8_t *Loc, RelType Type, uint64_t Val) const override;
44 void relaxTlsIeToLe(uint8_t *Loc, RelType Type, uint64_t Val) const override;
45 void relaxTlsLdToLe(uint8_t *Loc, RelType Type, uint64_t Val) const override;
Rui Ueyama21c0a9c2017-06-16 17:32:43 +000046
47private:
48 void relaxGotNoPic(uint8_t *Loc, uint64_t Val, uint8_t Op,
49 uint8_t ModRm) const;
50};
51} // namespace
52
53template <class ELFT> X86_64<ELFT>::X86_64() {
Peter Smith113a59e2017-06-26 10:22:17 +000054 GotBaseSymOff = -1;
Rui Ueyama21c0a9c2017-06-16 17:32:43 +000055 CopyRel = R_X86_64_COPY;
56 GotRel = R_X86_64_GLOB_DAT;
57 PltRel = R_X86_64_JUMP_SLOT;
58 RelativeRel = R_X86_64_RELATIVE;
59 IRelativeRel = R_X86_64_IRELATIVE;
60 TlsGotRel = R_X86_64_TPOFF64;
61 TlsModuleIndexRel = R_X86_64_DTPMOD64;
62 TlsOffsetRel = R_X86_64_DTPOFF64;
63 GotEntrySize = 8;
64 GotPltEntrySize = 8;
65 PltEntrySize = 16;
66 PltHeaderSize = 16;
67 TlsGdRelaxSkip = 2;
Rui Ueyama921d43f2017-06-26 19:45:53 +000068 TrapInstr = 0xcccccccc; // 0xcc = INT3
Rui Ueyama21c0a9c2017-06-16 17:32:43 +000069
70 // Align to the large page size (known as a superpage or huge page).
71 // FreeBSD automatically promotes large, superpage-aligned allocations.
72 DefaultImageBase = 0x200000;
Rui Ueyama21c0a9c2017-06-16 17:32:43 +000073}
74
75template <class ELFT>
Rui Ueyama67533a22017-10-11 22:49:24 +000076RelExpr X86_64<ELFT>::getRelExpr(RelType Type, const SymbolBody &S,
Rui Ueyama21c0a9c2017-06-16 17:32:43 +000077 const uint8_t *Loc) const {
78 switch (Type) {
79 case R_X86_64_8:
80 case R_X86_64_16:
81 case R_X86_64_32:
82 case R_X86_64_32S:
83 case R_X86_64_64:
84 case R_X86_64_DTPOFF32:
85 case R_X86_64_DTPOFF64:
86 return R_ABS;
87 case R_X86_64_TPOFF32:
88 return R_TLS;
89 case R_X86_64_TLSLD:
90 return R_TLSLD_PC;
91 case R_X86_64_TLSGD:
92 return R_TLSGD_PC;
93 case R_X86_64_SIZE32:
94 case R_X86_64_SIZE64:
95 return R_SIZE;
96 case R_X86_64_PLT32:
97 return R_PLT_PC;
98 case R_X86_64_PC32:
99 case R_X86_64_PC64:
100 return R_PC;
101 case R_X86_64_GOT32:
102 case R_X86_64_GOT64:
103 return R_GOT_FROM_END;
104 case R_X86_64_GOTPCREL:
105 case R_X86_64_GOTPCRELX:
106 case R_X86_64_REX_GOTPCRELX:
107 case R_X86_64_GOTTPOFF:
108 return R_GOT_PC;
109 case R_X86_64_NONE:
110 return R_NONE;
111 default:
Rui Ueyamabe855292017-10-12 03:14:06 +0000112 return R_INVALID;
Rui Ueyama21c0a9c2017-06-16 17:32:43 +0000113 }
114}
115
116template <class ELFT> void X86_64<ELFT>::writeGotPltHeader(uint8_t *Buf) const {
117 // The first entry holds the value of _DYNAMIC. It is not clear why that is
118 // required, but it is documented in the psabi and the glibc dynamic linker
119 // seems to use it (note that this is relevant for linking ld.so, not any
120 // other program).
121 write64le(Buf, InX::Dynamic->getVA());
122}
123
124template <class ELFT>
125void X86_64<ELFT>::writeGotPlt(uint8_t *Buf, const SymbolBody &S) const {
George Rimarb2051f12017-08-31 10:14:10 +0000126 // See comments in X86::writeGotPlt.
Rui Ueyama21c0a9c2017-06-16 17:32:43 +0000127 write32le(Buf, S.getPltVA() + 6);
128}
129
130template <class ELFT> void X86_64<ELFT>::writePltHeader(uint8_t *Buf) const {
131 const uint8_t PltData[] = {
132 0xff, 0x35, 0x00, 0x00, 0x00, 0x00, // pushq GOTPLT+8(%rip)
133 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmp *GOTPLT+16(%rip)
134 0x0f, 0x1f, 0x40, 0x00 // nop
135 };
136 memcpy(Buf, PltData, sizeof(PltData));
137 uint64_t GotPlt = InX::GotPlt->getVA();
138 uint64_t Plt = InX::Plt->getVA();
139 write32le(Buf + 2, GotPlt - Plt + 2); // GOTPLT+8
140 write32le(Buf + 8, GotPlt - Plt + 4); // GOTPLT+16
141}
142
143template <class ELFT>
144void X86_64<ELFT>::writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr,
145 uint64_t PltEntryAddr, int32_t Index,
146 unsigned RelOff) const {
147 const uint8_t Inst[] = {
148 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmpq *got(%rip)
149 0x68, 0x00, 0x00, 0x00, 0x00, // pushq <relocation index>
150 0xe9, 0x00, 0x00, 0x00, 0x00 // jmpq plt[0]
151 };
152 memcpy(Buf, Inst, sizeof(Inst));
153
154 write32le(Buf + 2, GotPltEntryAddr - PltEntryAddr - 6);
155 write32le(Buf + 7, Index);
156 write32le(Buf + 12, -Index * PltEntrySize - PltHeaderSize - 16);
157}
158
Rui Ueyama67533a22017-10-11 22:49:24 +0000159template <class ELFT> bool X86_64<ELFT>::isPicRel(RelType Type) const {
Rui Ueyama21c0a9c2017-06-16 17:32:43 +0000160 return Type != R_X86_64_PC32 && Type != R_X86_64_32 &&
161 Type != R_X86_64_TPOFF32;
162}
163
164template <class ELFT>
Rui Ueyama67533a22017-10-11 22:49:24 +0000165void X86_64<ELFT>::relaxTlsGdToLe(uint8_t *Loc, RelType Type,
Rui Ueyama21c0a9c2017-06-16 17:32:43 +0000166 uint64_t Val) const {
167 // Convert
168 // .byte 0x66
169 // leaq x@tlsgd(%rip), %rdi
170 // .word 0x6666
171 // rex64
172 // call __tls_get_addr@plt
173 // to
174 // mov %fs:0x0,%rax
175 // lea x@tpoff,%rax
176 const uint8_t Inst[] = {
177 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0x0,%rax
178 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff,%rax
179 };
180 memcpy(Loc - 4, Inst, sizeof(Inst));
181
182 // The original code used a pc relative relocation and so we have to
183 // compensate for the -4 in had in the addend.
184 write32le(Loc + 8, Val + 4);
185}
186
187template <class ELFT>
Rui Ueyama67533a22017-10-11 22:49:24 +0000188void X86_64<ELFT>::relaxTlsGdToIe(uint8_t *Loc, RelType Type,
Rui Ueyama21c0a9c2017-06-16 17:32:43 +0000189 uint64_t Val) const {
190 // Convert
191 // .byte 0x66
192 // leaq x@tlsgd(%rip), %rdi
193 // .word 0x6666
194 // rex64
195 // call __tls_get_addr@plt
196 // to
197 // mov %fs:0x0,%rax
198 // addq x@tpoff,%rax
199 const uint8_t Inst[] = {
200 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0x0,%rax
201 0x48, 0x03, 0x05, 0x00, 0x00, 0x00, 0x00 // addq x@tpoff,%rax
202 };
203 memcpy(Loc - 4, Inst, sizeof(Inst));
204
205 // Both code sequences are PC relatives, but since we are moving the constant
206 // forward by 8 bytes we have to subtract the value by 8.
207 write32le(Loc + 8, Val - 8);
208}
209
210// In some conditions, R_X86_64_GOTTPOFF relocation can be optimized to
211// R_X86_64_TPOFF32 so that it does not use GOT.
212template <class ELFT>
Rui Ueyama67533a22017-10-11 22:49:24 +0000213void X86_64<ELFT>::relaxTlsIeToLe(uint8_t *Loc, RelType Type,
Rui Ueyama21c0a9c2017-06-16 17:32:43 +0000214 uint64_t Val) const {
215 uint8_t *Inst = Loc - 3;
216 uint8_t Reg = Loc[-1] >> 3;
217 uint8_t *RegSlot = Loc - 1;
218
219 // Note that ADD with RSP or R12 is converted to ADD instead of LEA
220 // because LEA with these registers needs 4 bytes to encode and thus
221 // wouldn't fit the space.
222
223 if (memcmp(Inst, "\x48\x03\x25", 3) == 0) {
224 // "addq foo@gottpoff(%rip),%rsp" -> "addq $foo,%rsp"
225 memcpy(Inst, "\x48\x81\xc4", 3);
226 } else if (memcmp(Inst, "\x4c\x03\x25", 3) == 0) {
227 // "addq foo@gottpoff(%rip),%r12" -> "addq $foo,%r12"
228 memcpy(Inst, "\x49\x81\xc4", 3);
229 } else if (memcmp(Inst, "\x4c\x03", 2) == 0) {
230 // "addq foo@gottpoff(%rip),%r[8-15]" -> "leaq foo(%r[8-15]),%r[8-15]"
231 memcpy(Inst, "\x4d\x8d", 2);
232 *RegSlot = 0x80 | (Reg << 3) | Reg;
233 } else if (memcmp(Inst, "\x48\x03", 2) == 0) {
234 // "addq foo@gottpoff(%rip),%reg -> "leaq foo(%reg),%reg"
235 memcpy(Inst, "\x48\x8d", 2);
236 *RegSlot = 0x80 | (Reg << 3) | Reg;
237 } else if (memcmp(Inst, "\x4c\x8b", 2) == 0) {
238 // "movq foo@gottpoff(%rip),%r[8-15]" -> "movq $foo,%r[8-15]"
239 memcpy(Inst, "\x49\xc7", 2);
240 *RegSlot = 0xc0 | Reg;
241 } else if (memcmp(Inst, "\x48\x8b", 2) == 0) {
242 // "movq foo@gottpoff(%rip),%reg" -> "movq $foo,%reg"
243 memcpy(Inst, "\x48\xc7", 2);
244 *RegSlot = 0xc0 | Reg;
245 } else {
246 error(getErrorLocation(Loc - 3) +
247 "R_X86_64_GOTTPOFF must be used in MOVQ or ADDQ instructions only");
248 }
249
250 // The original code used a PC relative relocation.
251 // Need to compensate for the -4 it had in the addend.
252 write32le(Loc, Val + 4);
253}
254
255template <class ELFT>
Rui Ueyama67533a22017-10-11 22:49:24 +0000256void X86_64<ELFT>::relaxTlsLdToLe(uint8_t *Loc, RelType Type,
Rui Ueyama21c0a9c2017-06-16 17:32:43 +0000257 uint64_t Val) const {
258 // Convert
259 // leaq bar@tlsld(%rip), %rdi
260 // callq __tls_get_addr@PLT
261 // leaq bar@dtpoff(%rax), %rcx
262 // to
263 // .word 0x6666
264 // .byte 0x66
265 // mov %fs:0,%rax
266 // leaq bar@tpoff(%rax), %rcx
267 if (Type == R_X86_64_DTPOFF64) {
268 write64le(Loc, Val);
269 return;
270 }
271 if (Type == R_X86_64_DTPOFF32) {
272 write32le(Loc, Val);
273 return;
274 }
275
276 const uint8_t Inst[] = {
277 0x66, 0x66, // .word 0x6666
278 0x66, // .byte 0x66
279 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00 // mov %fs:0,%rax
280 };
281 memcpy(Loc - 3, Inst, sizeof(Inst));
282}
283
284template <class ELFT>
Rui Ueyama67533a22017-10-11 22:49:24 +0000285void X86_64<ELFT>::relocateOne(uint8_t *Loc, RelType Type, uint64_t Val) const {
Rui Ueyama21c0a9c2017-06-16 17:32:43 +0000286 switch (Type) {
287 case R_X86_64_8:
288 checkUInt<8>(Loc, Val, Type);
289 *Loc = Val;
290 break;
291 case R_X86_64_16:
292 checkUInt<16>(Loc, Val, Type);
293 write16le(Loc, Val);
294 break;
295 case R_X86_64_32:
296 checkUInt<32>(Loc, Val, Type);
297 write32le(Loc, Val);
298 break;
299 case R_X86_64_32S:
300 case R_X86_64_TPOFF32:
301 case R_X86_64_GOT32:
302 case R_X86_64_GOTPCREL:
303 case R_X86_64_GOTPCRELX:
304 case R_X86_64_REX_GOTPCRELX:
305 case R_X86_64_PC32:
306 case R_X86_64_GOTTPOFF:
307 case R_X86_64_PLT32:
308 case R_X86_64_TLSGD:
309 case R_X86_64_TLSLD:
310 case R_X86_64_DTPOFF32:
311 case R_X86_64_SIZE32:
312 checkInt<32>(Loc, Val, Type);
313 write32le(Loc, Val);
314 break;
315 case R_X86_64_64:
316 case R_X86_64_DTPOFF64:
317 case R_X86_64_GLOB_DAT:
318 case R_X86_64_PC64:
319 case R_X86_64_SIZE64:
320 case R_X86_64_GOT64:
321 write64le(Loc, Val);
322 break;
323 default:
Rui Ueyamabe855292017-10-12 03:14:06 +0000324 error(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type));
Rui Ueyama21c0a9c2017-06-16 17:32:43 +0000325 }
326}
327
328template <class ELFT>
Rui Ueyama67533a22017-10-11 22:49:24 +0000329RelExpr X86_64<ELFT>::adjustRelaxExpr(RelType Type, const uint8_t *Data,
Rui Ueyama21c0a9c2017-06-16 17:32:43 +0000330 RelExpr RelExpr) const {
331 if (Type != R_X86_64_GOTPCRELX && Type != R_X86_64_REX_GOTPCRELX)
332 return RelExpr;
333 const uint8_t Op = Data[-2];
334 const uint8_t ModRm = Data[-1];
335
336 // FIXME: When PIC is disabled and foo is defined locally in the
337 // lower 32 bit address space, memory operand in mov can be converted into
338 // immediate operand. Otherwise, mov must be changed to lea. We support only
339 // latter relaxation at this moment.
340 if (Op == 0x8b)
341 return R_RELAX_GOT_PC;
342
343 // Relax call and jmp.
344 if (Op == 0xff && (ModRm == 0x15 || ModRm == 0x25))
345 return R_RELAX_GOT_PC;
346
347 // Relaxation of test, adc, add, and, cmp, or, sbb, sub, xor.
348 // If PIC then no relaxation is available.
349 // We also don't relax test/binop instructions without REX byte,
350 // they are 32bit operations and not common to have.
351 assert(Type == R_X86_64_REX_GOTPCRELX);
352 return Config->Pic ? RelExpr : R_RELAX_GOT_PC_NOPIC;
353}
354
355// A subset of relaxations can only be applied for no-PIC. This method
356// handles such relaxations. Instructions encoding information was taken from:
357// "Intel 64 and IA-32 Architectures Software Developer's Manual V2"
358// (http://www.intel.com/content/dam/www/public/us/en/documents/manuals/
359// 64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf)
360template <class ELFT>
361void X86_64<ELFT>::relaxGotNoPic(uint8_t *Loc, uint64_t Val, uint8_t Op,
362 uint8_t ModRm) const {
363 const uint8_t Rex = Loc[-3];
364 // Convert "test %reg, foo@GOTPCREL(%rip)" to "test $foo, %reg".
365 if (Op == 0x85) {
366 // See "TEST-Logical Compare" (4-428 Vol. 2B),
367 // TEST r/m64, r64 uses "full" ModR / M byte (no opcode extension).
368
369 // ModR/M byte has form XX YYY ZZZ, where
370 // YYY is MODRM.reg(register 2), ZZZ is MODRM.rm(register 1).
371 // XX has different meanings:
372 // 00: The operand's memory address is in reg1.
373 // 01: The operand's memory address is reg1 + a byte-sized displacement.
374 // 10: The operand's memory address is reg1 + a word-sized displacement.
375 // 11: The operand is reg1 itself.
376 // If an instruction requires only one operand, the unused reg2 field
377 // holds extra opcode bits rather than a register code
378 // 0xC0 == 11 000 000 binary.
379 // 0x38 == 00 111 000 binary.
380 // We transfer reg2 to reg1 here as operand.
381 // See "2.1.3 ModR/M and SIB Bytes" (Vol. 2A 2-3).
382 Loc[-1] = 0xc0 | (ModRm & 0x38) >> 3; // ModR/M byte.
383
384 // Change opcode from TEST r/m64, r64 to TEST r/m64, imm32
385 // See "TEST-Logical Compare" (4-428 Vol. 2B).
386 Loc[-2] = 0xf7;
387
388 // Move R bit to the B bit in REX byte.
389 // REX byte is encoded as 0100WRXB, where
390 // 0100 is 4bit fixed pattern.
391 // REX.W When 1, a 64-bit operand size is used. Otherwise, when 0, the
392 // default operand size is used (which is 32-bit for most but not all
393 // instructions).
394 // REX.R This 1-bit value is an extension to the MODRM.reg field.
395 // REX.X This 1-bit value is an extension to the SIB.index field.
396 // REX.B This 1-bit value is an extension to the MODRM.rm field or the
397 // SIB.base field.
398 // See "2.2.1.2 More on REX Prefix Fields " (2-8 Vol. 2A).
399 Loc[-3] = (Rex & ~0x4) | (Rex & 0x4) >> 2;
400 write32le(Loc, Val);
401 return;
402 }
403
404 // If we are here then we need to relax the adc, add, and, cmp, or, sbb, sub
405 // or xor operations.
406
407 // Convert "binop foo@GOTPCREL(%rip), %reg" to "binop $foo, %reg".
408 // Logic is close to one for test instruction above, but we also
409 // write opcode extension here, see below for details.
410 Loc[-1] = 0xc0 | (ModRm & 0x38) >> 3 | (Op & 0x3c); // ModR/M byte.
411
412 // Primary opcode is 0x81, opcode extension is one of:
413 // 000b = ADD, 001b is OR, 010b is ADC, 011b is SBB,
414 // 100b is AND, 101b is SUB, 110b is XOR, 111b is CMP.
415 // This value was wrote to MODRM.reg in a line above.
416 // See "3.2 INSTRUCTIONS (A-M)" (Vol. 2A 3-15),
417 // "INSTRUCTION SET REFERENCE, N-Z" (Vol. 2B 4-1) for
418 // descriptions about each operation.
419 Loc[-2] = 0x81;
420 Loc[-3] = (Rex & ~0x4) | (Rex & 0x4) >> 2;
421 write32le(Loc, Val);
422}
423
424template <class ELFT>
425void X86_64<ELFT>::relaxGot(uint8_t *Loc, uint64_t Val) const {
426 const uint8_t Op = Loc[-2];
427 const uint8_t ModRm = Loc[-1];
428
429 // Convert "mov foo@GOTPCREL(%rip),%reg" to "lea foo(%rip),%reg".
430 if (Op == 0x8b) {
431 Loc[-2] = 0x8d;
432 write32le(Loc, Val);
433 return;
434 }
435
436 if (Op != 0xff) {
437 // We are relaxing a rip relative to an absolute, so compensate
438 // for the old -4 addend.
439 assert(!Config->Pic);
440 relaxGotNoPic(Loc, Val + 4, Op, ModRm);
441 return;
442 }
443
444 // Convert call/jmp instructions.
445 if (ModRm == 0x15) {
446 // ABI says we can convert "call *foo@GOTPCREL(%rip)" to "nop; call foo".
447 // Instead we convert to "addr32 call foo" where addr32 is an instruction
448 // prefix. That makes result expression to be a single instruction.
449 Loc[-2] = 0x67; // addr32 prefix
450 Loc[-1] = 0xe8; // call
451 write32le(Loc, Val);
452 return;
453 }
454
455 // Convert "jmp *foo@GOTPCREL(%rip)" to "jmp foo; nop".
456 // jmp doesn't return, so it is fine to use nop here, it is just a stub.
457 assert(ModRm == 0x25);
458 Loc[-2] = 0xe9; // jmp
459 Loc[3] = 0x90; // nop
460 write32le(Loc - 1, Val + 1);
461}
462
Rui Ueyamae145bc22017-06-16 20:15:03 +0000463TargetInfo *elf::getX32TargetInfo() {
464 static X86_64<ELF32LE> Target;
465 return &Target;
466}
467
468TargetInfo *elf::getX86_64TargetInfo() {
469 static X86_64<ELF64LE> Target;
470 return &Target;
471}