blob: 488c2a42b2d41a816cd9ed9b012b03402f4d37c5 [file] [log] [blame]
Chandler Carruth664e3542013-01-07 01:37:14 +00001//===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file implements a TargetTransformInfo analysis pass specific to the
11/// X86 target machine. It uses the target's detailed information to provide
12/// more precise answers to certain TTI queries, while letting the target
13/// independent and default TTI implementations handle the rest.
14///
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "x86tti"
18#include "X86.h"
19#include "X86TargetMachine.h"
Chandler Carruthd3e73552013-01-07 03:08:10 +000020#include "llvm/Analysis/TargetTransformInfo.h"
Chandler Carruth664e3542013-01-07 01:37:14 +000021#include "llvm/Support/Debug.h"
22#include "llvm/Target/TargetLowering.h"
Renato Golind4c392e2013-01-24 23:01:00 +000023#include "llvm/Target/CostTable.h"
Chandler Carruth664e3542013-01-07 01:37:14 +000024using namespace llvm;
25
26// Declare the pass initialization routine locally as target-specific passes
27// don't havve a target-wide initialization entry point, and so we rely on the
28// pass constructor initialization.
29namespace llvm {
30void initializeX86TTIPass(PassRegistry &);
31}
32
33namespace {
34
35class X86TTI : public ImmutablePass, public TargetTransformInfo {
36 const X86TargetMachine *TM;
37 const X86Subtarget *ST;
38 const X86TargetLowering *TLI;
39
40 /// Estimate the overhead of scalarizing an instruction. Insert and Extract
41 /// are set if the result needs to be inserted and/or extracted from vectors.
42 unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
43
44public:
45 X86TTI() : ImmutablePass(ID), TM(0), ST(0), TLI(0) {
46 llvm_unreachable("This pass cannot be directly constructed");
47 }
48
49 X86TTI(const X86TargetMachine *TM)
50 : ImmutablePass(ID), TM(TM), ST(TM->getSubtargetImpl()),
51 TLI(TM->getTargetLowering()) {
52 initializeX86TTIPass(*PassRegistry::getPassRegistry());
53 }
54
55 virtual void initializePass() {
56 pushTTIStack(this);
57 }
58
59 virtual void finalizePass() {
60 popTTIStack();
61 }
62
63 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
64 TargetTransformInfo::getAnalysisUsage(AU);
65 }
66
67 /// Pass identification.
68 static char ID;
69
70 /// Provide necessary pointer adjustments for the two base classes.
71 virtual void *getAdjustedAnalysisPointer(const void *ID) {
72 if (ID == &TargetTransformInfo::ID)
73 return (TargetTransformInfo*)this;
74 return this;
75 }
76
77 /// \name Scalar TTI Implementations
78 /// @{
Chandler Carruth50a36cd2013-01-07 03:16:03 +000079 virtual PopcntSupportKind getPopcntSupport(unsigned TyWidth) const;
Chandler Carruth664e3542013-01-07 01:37:14 +000080
81 /// @}
82
83 /// \name Vector TTI Implementations
84 /// @{
85
86 virtual unsigned getNumberOfRegisters(bool Vector) const;
Nadav Rotemb1791a72013-01-09 22:29:00 +000087 virtual unsigned getRegisterBitWidth(bool Vector) const;
Nadav Rotemb696c362013-01-09 01:15:42 +000088 virtual unsigned getMaximumUnrollFactor() const;
Arnold Schwaighoferb9773872013-04-04 23:26:21 +000089 virtual unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty,
90 OperandValueKind,
91 OperandValueKind) const;
Chandler Carruth664e3542013-01-07 01:37:14 +000092 virtual unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
93 int Index, Type *SubTp) const;
94 virtual unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
95 Type *Src) const;
96 virtual unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
97 Type *CondTy) const;
98 virtual unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
99 unsigned Index) const;
100 virtual unsigned getMemoryOpCost(unsigned Opcode, Type *Src,
101 unsigned Alignment,
102 unsigned AddressSpace) const;
103
104 /// @}
105};
106
107} // end anonymous namespace
108
109INITIALIZE_AG_PASS(X86TTI, TargetTransformInfo, "x86tti",
110 "X86 Target Transform Info", true, true, false)
111char X86TTI::ID = 0;
112
113ImmutablePass *
114llvm::createX86TargetTransformInfoPass(const X86TargetMachine *TM) {
115 return new X86TTI(TM);
116}
117
118
119//===----------------------------------------------------------------------===//
120//
121// X86 cost model.
122//
123//===----------------------------------------------------------------------===//
124
Chandler Carruth50a36cd2013-01-07 03:16:03 +0000125X86TTI::PopcntSupportKind X86TTI::getPopcntSupport(unsigned TyWidth) const {
Chandler Carruth664e3542013-01-07 01:37:14 +0000126 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
127 // TODO: Currently the __builtin_popcount() implementation using SSE3
128 // instructions is inefficient. Once the problem is fixed, we should
129 // call ST->hasSSE3() instead of ST->hasSSE4().
Chandler Carruth50a36cd2013-01-07 03:16:03 +0000130 return ST->hasSSE41() ? PSK_FastHardware : PSK_Software;
Chandler Carruth664e3542013-01-07 01:37:14 +0000131}
132
133unsigned X86TTI::getNumberOfRegisters(bool Vector) const {
Nadav Rotemb1791a72013-01-09 22:29:00 +0000134 if (Vector && !ST->hasSSE1())
135 return 0;
136
Chandler Carruth664e3542013-01-07 01:37:14 +0000137 if (ST->is64Bit())
138 return 16;
139 return 8;
140}
141
Nadav Rotemb1791a72013-01-09 22:29:00 +0000142unsigned X86TTI::getRegisterBitWidth(bool Vector) const {
143 if (Vector) {
144 if (ST->hasAVX()) return 256;
145 if (ST->hasSSE1()) return 128;
146 return 0;
147 }
148
149 if (ST->is64Bit())
150 return 64;
151 return 32;
152
153}
154
Nadav Rotemb696c362013-01-09 01:15:42 +0000155unsigned X86TTI::getMaximumUnrollFactor() const {
156 if (ST->isAtom())
157 return 1;
158
159 // Sandybridge and Haswell have multiple execution ports and pipelined
160 // vector units.
161 if (ST->hasAVX())
162 return 4;
163
164 return 2;
165}
166
Arnold Schwaighoferb9773872013-04-04 23:26:21 +0000167unsigned X86TTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
168 OperandValueKind Op1Info,
169 OperandValueKind Op2Info) const {
Chandler Carruth664e3542013-01-07 01:37:14 +0000170 // Legalize the type.
171 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
172
173 int ISD = TLI->InstructionOpcodeToISD(Opcode);
174 assert(ISD && "Invalid opcode");
175
Michael Liao70dd7f92013-03-20 22:01:10 +0000176 static const CostTblEntry<MVT> AVX2CostTable[] = {
177 // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
178 // customize them to detect the cases where shift amount is a scalar one.
179 { ISD::SHL, MVT::v4i32, 1 },
180 { ISD::SRL, MVT::v4i32, 1 },
181 { ISD::SRA, MVT::v4i32, 1 },
182 { ISD::SHL, MVT::v8i32, 1 },
183 { ISD::SRL, MVT::v8i32, 1 },
184 { ISD::SRA, MVT::v8i32, 1 },
185 { ISD::SHL, MVT::v2i64, 1 },
186 { ISD::SRL, MVT::v2i64, 1 },
187 { ISD::SHL, MVT::v4i64, 1 },
188 { ISD::SRL, MVT::v4i64, 1 },
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000189
190 { ISD::SHL, MVT::v32i8, 42 }, // cmpeqb sequence.
191 { ISD::SHL, MVT::v16i16, 16*10 }, // Scalarized.
192
193 { ISD::SRL, MVT::v32i8, 32*10 }, // Scalarized.
194 { ISD::SRL, MVT::v16i16, 8*10 }, // Scalarized.
195
196 { ISD::SRA, MVT::v32i8, 32*10 }, // Scalarized.
197 { ISD::SRA, MVT::v16i16, 16*10 }, // Scalarized.
198 { ISD::SRA, MVT::v4i64, 4*10 }, // Scalarized.
Michael Liao70dd7f92013-03-20 22:01:10 +0000199 };
200
201 // Look for AVX2 lowering tricks.
202 if (ST->hasAVX2()) {
203 int Idx = CostTableLookup<MVT>(AVX2CostTable, array_lengthof(AVX2CostTable),
204 ISD, LT.second);
205 if (Idx != -1)
206 return LT.first * AVX2CostTable[Idx].Cost;
207 }
208
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000209 static const CostTblEntry<MVT> SSE2UniformConstCostTable[] = {
210 // We don't correctly identify costs of casts because they are marked as
211 // custom.
212 // Constant splats are cheaper for the following instructions.
213 { ISD::SHL, MVT::v16i8, 1 }, // psllw.
214 { ISD::SHL, MVT::v8i16, 1 }, // psllw.
215 { ISD::SHL, MVT::v4i32, 1 }, // pslld
216 { ISD::SHL, MVT::v2i64, 1 }, // psllq.
217
218 { ISD::SRL, MVT::v16i8, 1 }, // psrlw.
219 { ISD::SRL, MVT::v8i16, 1 }, // psrlw.
220 { ISD::SRL, MVT::v4i32, 1 }, // psrld.
221 { ISD::SRL, MVT::v2i64, 1 }, // psrlq.
222
223 { ISD::SRA, MVT::v16i8, 4 }, // psrlw, pand, pxor, psubb.
224 { ISD::SRA, MVT::v8i16, 1 }, // psraw.
225 { ISD::SRA, MVT::v4i32, 1 }, // psrad.
226 };
227
228 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
229 ST->hasSSE2()) {
230 int Idx = CostTableLookup<MVT>(SSE2UniformConstCostTable,
231 array_lengthof(SSE2UniformConstCostTable),
232 ISD, LT.second);
233 if (Idx != -1)
234 return LT.first * SSE2UniformConstCostTable[Idx].Cost;
235 }
236
237
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000238 static const CostTblEntry<MVT> SSE2CostTable[] = {
239 // We don't correctly identify costs of casts because they are marked as
240 // custom.
241 // For some cases, where the shift amount is a scalar we would be able
242 // to generate better code. Unfortunately, when this is the case the value
243 // (the splat) will get hoisted out of the loop, thereby making it invisible
244 // to ISel. The cost model must return worst case assumptions because it is
245 // used for vectorization and we don't want to make vectorized code worse
246 // than scalar code.
247 { ISD::SHL, MVT::v16i8, 30 }, // cmpeqb sequence.
248 { ISD::SHL, MVT::v8i16, 8*10 }, // Scalarized.
249 { ISD::SHL, MVT::v4i32, 2*5 }, // We optimized this using mul.
250 { ISD::SHL, MVT::v2i64, 2*10 }, // Scalarized.
251
252 { ISD::SRL, MVT::v16i8, 16*10 }, // Scalarized.
253 { ISD::SRL, MVT::v8i16, 8*10 }, // Scalarized.
254 { ISD::SRL, MVT::v4i32, 4*10 }, // Scalarized.
255 { ISD::SRL, MVT::v2i64, 2*10 }, // Scalarized.
256
257 { ISD::SRA, MVT::v16i8, 16*10 }, // Scalarized.
258 { ISD::SRA, MVT::v8i16, 8*10 }, // Scalarized.
259 { ISD::SRA, MVT::v4i32, 4*10 }, // Scalarized.
260 { ISD::SRA, MVT::v2i64, 2*10 }, // Scalarized.
261 };
262
263 if (ST->hasSSE2()) {
264 int Idx = CostTableLookup<MVT>(SSE2CostTable, array_lengthof(SSE2CostTable),
265 ISD, LT.second);
266 if (Idx != -1)
267 return LT.first * SSE2CostTable[Idx].Cost;
268 }
269
Renato Golind4c392e2013-01-24 23:01:00 +0000270 static const CostTblEntry<MVT> AVX1CostTable[] = {
Renato Goline1fb0592013-01-20 20:57:20 +0000271 // We don't have to scalarize unsupported ops. We can issue two half-sized
272 // operations and we only need to extract the upper YMM half.
273 // Two ops + 1 extract + 1 insert = 4.
274 { ISD::MUL, MVT::v8i32, 4 },
275 { ISD::SUB, MVT::v8i32, 4 },
276 { ISD::ADD, MVT::v8i32, 4 },
Renato Goline1fb0592013-01-20 20:57:20 +0000277 { ISD::SUB, MVT::v4i64, 4 },
278 { ISD::ADD, MVT::v4i64, 4 },
Arnold Schwaighofer20ef54f2013-03-02 04:02:52 +0000279 // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
280 // are lowered as a series of long multiplies(3), shifts(4) and adds(2)
281 // Because we believe v4i64 to be a legal type, we must also include the
282 // split factor of two in the cost table. Therefore, the cost here is 18
283 // instead of 9.
284 { ISD::MUL, MVT::v4i64, 18 },
285 };
Chandler Carruth664e3542013-01-07 01:37:14 +0000286
287 // Look for AVX1 lowering tricks.
Arnold Schwaighofer20ef54f2013-03-02 04:02:52 +0000288 if (ST->hasAVX() && !ST->hasAVX2()) {
289 int Idx = CostTableLookup<MVT>(AVX1CostTable, array_lengthof(AVX1CostTable),
290 ISD, LT.second);
Renato Goline1fb0592013-01-20 20:57:20 +0000291 if (Idx != -1)
292 return LT.first * AVX1CostTable[Idx].Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +0000293 }
Arnold Schwaighofer20ef54f2013-03-02 04:02:52 +0000294
295 // Custom lowering of vectors.
296 static const CostTblEntry<MVT> CustomLowered[] = {
297 // A v2i64/v4i64 and multiply is custom lowered as a series of long
298 // multiplies(3), shifts(4) and adds(2).
299 { ISD::MUL, MVT::v2i64, 9 },
300 { ISD::MUL, MVT::v4i64, 9 },
301 };
302 int Idx = CostTableLookup<MVT>(CustomLowered, array_lengthof(CustomLowered),
303 ISD, LT.second);
304 if (Idx != -1)
305 return LT.first * CustomLowered[Idx].Cost;
306
307 // Special lowering of v4i32 mul on sse2, sse3: Lower v4i32 mul as 2x shuffle,
308 // 2x pmuludq, 2x shuffle.
309 if (ISD == ISD::MUL && LT.second == MVT::v4i32 && ST->hasSSE2() &&
310 !ST->hasSSE41())
311 return 6;
312
Chandler Carruth664e3542013-01-07 01:37:14 +0000313 // Fallback to the default implementation.
Arnold Schwaighoferb9773872013-04-04 23:26:21 +0000314 return TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty, Op1Info,
315 Op2Info);
Chandler Carruth664e3542013-01-07 01:37:14 +0000316}
317
318unsigned X86TTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
319 Type *SubTp) const {
320 // We only estimate the cost of reverse shuffles.
Chandler Carruth2109f472013-01-07 03:20:02 +0000321 if (Kind != SK_Reverse)
Chandler Carruth664e3542013-01-07 01:37:14 +0000322 return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
323
324 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp);
325 unsigned Cost = 1;
326 if (LT.second.getSizeInBits() > 128)
327 Cost = 3; // Extract + insert + copy.
328
329 // Multiple by the number of parts.
330 return Cost * LT.first;
331}
332
333unsigned X86TTI::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const {
334 int ISD = TLI->InstructionOpcodeToISD(Opcode);
335 assert(ISD && "Invalid opcode");
336
Arnold Schwaighoferf47d2d72013-04-08 18:05:48 +0000337 std::pair<unsigned, MVT> LTSrc = TLI->getTypeLegalizationCost(Src);
338 std::pair<unsigned, MVT> LTDest = TLI->getTypeLegalizationCost(Dst);
339
340 static const TypeConversionCostTblEntry<MVT> SSE2ConvTbl[] = {
341 // These are somewhat magic numbers justified by looking at the output of
342 // Intel's IACA, running some kernels and making sure when we take
343 // legalization into account the throughput will be overestimated.
344 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
345 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
346 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
347 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
348 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
349 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
350 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
351 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
352 // There are faster sequences for float conversions.
353 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
354 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 15 },
355 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
356 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
357 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
358 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 15 },
359 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
360 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
361 };
362
363 if (ST->hasSSE2() && !ST->hasAVX()) {
364 int Idx = ConvertCostTableLookup<MVT>(SSE2ConvTbl,
365 array_lengthof(SSE2ConvTbl),
366 ISD, LTDest.second, LTSrc.second);
367 if (Idx != -1)
368 return LTSrc.first * SSE2ConvTbl[Idx].Cost;
369 }
370
Chandler Carruth664e3542013-01-07 01:37:14 +0000371 EVT SrcTy = TLI->getValueType(Src);
372 EVT DstTy = TLI->getValueType(Dst);
373
Renato Golind4c392e2013-01-24 23:01:00 +0000374 static const TypeConversionCostTblEntry<MVT> AVXConversionTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +0000375 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
376 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
377 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
378 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
379 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 1 },
380 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 1 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +0000381
382 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i1, 8 },
383 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 8 },
384 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
385 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
386 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
387 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
388 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 3 },
389 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
390 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i1, 3 },
391 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i8, 3 },
392 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i16, 3 },
393 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
394
395 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i1, 6 },
396 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 5 },
397 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
398 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 9 },
399 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 7 },
400 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 2 },
401 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
402 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 6 },
403 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i1, 7 },
404 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 },
405 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 },
406 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 6 },
407
Renato Goline1fb0592013-01-20 20:57:20 +0000408 { ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f32, 1 },
409 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 1 },
410 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 6 },
411 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 9 },
Elena Demikhovsky0ccdd132013-02-20 12:42:54 +0000412 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 8 },
Nadav Rotem0f1bc602013-03-19 18:38:27 +0000413 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 6 },
414 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 6 },
Renato Goline1fb0592013-01-20 20:57:20 +0000415 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 3 },
Chandler Carruth664e3542013-01-07 01:37:14 +0000416 };
417
418 if (ST->hasAVX()) {
Renato Golind4c392e2013-01-24 23:01:00 +0000419 int Idx = ConvertCostTableLookup<MVT>(AVXConversionTbl,
Renato Goline1fb0592013-01-20 20:57:20 +0000420 array_lengthof(AVXConversionTbl),
421 ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT());
422 if (Idx != -1)
423 return AVXConversionTbl[Idx].Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +0000424 }
425
426 return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
427}
428
429unsigned X86TTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
430 Type *CondTy) const {
431 // Legalize the type.
432 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
433
434 MVT MTy = LT.second;
435
436 int ISD = TLI->InstructionOpcodeToISD(Opcode);
437 assert(ISD && "Invalid opcode");
438
Renato Golind4c392e2013-01-24 23:01:00 +0000439 static const CostTblEntry<MVT> SSE42CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +0000440 { ISD::SETCC, MVT::v2f64, 1 },
441 { ISD::SETCC, MVT::v4f32, 1 },
442 { ISD::SETCC, MVT::v2i64, 1 },
443 { ISD::SETCC, MVT::v4i32, 1 },
444 { ISD::SETCC, MVT::v8i16, 1 },
445 { ISD::SETCC, MVT::v16i8, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +0000446 };
447
Renato Golind4c392e2013-01-24 23:01:00 +0000448 static const CostTblEntry<MVT> AVX1CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +0000449 { ISD::SETCC, MVT::v4f64, 1 },
450 { ISD::SETCC, MVT::v8f32, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +0000451 // AVX1 does not support 8-wide integer compare.
Renato Goline1fb0592013-01-20 20:57:20 +0000452 { ISD::SETCC, MVT::v4i64, 4 },
453 { ISD::SETCC, MVT::v8i32, 4 },
454 { ISD::SETCC, MVT::v16i16, 4 },
455 { ISD::SETCC, MVT::v32i8, 4 },
Chandler Carruth664e3542013-01-07 01:37:14 +0000456 };
457
Renato Golind4c392e2013-01-24 23:01:00 +0000458 static const CostTblEntry<MVT> AVX2CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +0000459 { ISD::SETCC, MVT::v4i64, 1 },
460 { ISD::SETCC, MVT::v8i32, 1 },
461 { ISD::SETCC, MVT::v16i16, 1 },
462 { ISD::SETCC, MVT::v32i8, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +0000463 };
464
465 if (ST->hasAVX2()) {
Renato Golind4c392e2013-01-24 23:01:00 +0000466 int Idx = CostTableLookup<MVT>(AVX2CostTbl, array_lengthof(AVX2CostTbl), ISD, MTy);
Renato Goline1fb0592013-01-20 20:57:20 +0000467 if (Idx != -1)
468 return LT.first * AVX2CostTbl[Idx].Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +0000469 }
470
471 if (ST->hasAVX()) {
Renato Golind4c392e2013-01-24 23:01:00 +0000472 int Idx = CostTableLookup<MVT>(AVX1CostTbl, array_lengthof(AVX1CostTbl), ISD, MTy);
Renato Goline1fb0592013-01-20 20:57:20 +0000473 if (Idx != -1)
474 return LT.first * AVX1CostTbl[Idx].Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +0000475 }
476
477 if (ST->hasSSE42()) {
Renato Golind4c392e2013-01-24 23:01:00 +0000478 int Idx = CostTableLookup<MVT>(SSE42CostTbl, array_lengthof(SSE42CostTbl), ISD, MTy);
Renato Goline1fb0592013-01-20 20:57:20 +0000479 if (Idx != -1)
480 return LT.first * SSE42CostTbl[Idx].Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +0000481 }
482
483 return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy);
484}
485
486unsigned X86TTI::getVectorInstrCost(unsigned Opcode, Type *Val,
487 unsigned Index) const {
488 assert(Val->isVectorTy() && "This must be a vector type");
489
490 if (Index != -1U) {
491 // Legalize the type.
492 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Val);
493
494 // This type is legalized to a scalar type.
495 if (!LT.second.isVector())
496 return 0;
497
498 // The type may be split. Normalize the index to the new type.
499 unsigned Width = LT.second.getVectorNumElements();
500 Index = Index % Width;
501
502 // Floating point scalars are already located in index #0.
503 if (Val->getScalarType()->isFloatingPointTy() && Index == 0)
504 return 0;
505 }
506
507 return TargetTransformInfo::getVectorInstrCost(Opcode, Val, Index);
508}
509
510unsigned X86TTI::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
511 unsigned AddressSpace) const {
512 // Legalize the type.
513 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
514 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
515 "Invalid Opcode");
516
517 // Each load/store unit costs 1.
518 unsigned Cost = LT.first * 1;
519
520 // On Sandybridge 256bit load/stores are double pumped
521 // (but not on Haswell).
522 if (LT.second.getSizeInBits() > 128 && !ST->hasAVX2())
523 Cost*=2;
524
525 return Cost;
526}