Saleem Abdulrasool | b1b1911 | 2015-04-24 19:39:17 +0000 | [diff] [blame] | 1 | //===------------------ mach-o/compact_unwind_encoding.h ------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is dual licensed under the MIT and the University of Illinois Open |
| 6 | // Source Licenses. See LICENSE.TXT for details. |
| 7 | // |
| 8 | // |
| 9 | // Darwin's alternative to dwarf based unwind encodings. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | |
| 14 | #ifndef __COMPACT_UNWIND_ENCODING__ |
| 15 | #define __COMPACT_UNWIND_ENCODING__ |
| 16 | |
| 17 | #include <stdint.h> |
| 18 | |
| 19 | // |
| 20 | // Compilers can emit standard Dwarf FDEs in the __TEXT,__eh_frame section |
| 21 | // of object files. Or compilers can emit compact unwind information in |
| 22 | // the __LD,__compact_unwind section. |
| 23 | // |
| 24 | // When the linker creates a final linked image, it will create a |
| 25 | // __TEXT,__unwind_info section. This section is a small and fast way for the |
| 26 | // runtime to access unwind info for any given function. If the compiler |
| 27 | // emitted compact unwind info for the function, that compact unwind info will |
| 28 | // be encoded in the __TEXT,__unwind_info section. If the compiler emitted |
| 29 | // dwarf unwind info, the __TEXT,__unwind_info section will contain the offset |
| 30 | // of the FDE in the __TEXT,__eh_frame section in the final linked image. |
| 31 | // |
| 32 | // Note: Previously, the linker would transform some dwarf unwind infos into |
| 33 | // compact unwind info. But that is fragile and no longer done. |
| 34 | |
| 35 | |
| 36 | // |
| 37 | // The compact unwind endoding is a 32-bit value which encoded in an |
| 38 | // architecture specific way, which registers to restore from where, and how |
| 39 | // to unwind out of the function. |
| 40 | // |
| 41 | typedef uint32_t compact_unwind_encoding_t; |
| 42 | |
| 43 | |
| 44 | // architecture independent bits |
| 45 | enum { |
| 46 | UNWIND_IS_NOT_FUNCTION_START = 0x80000000, |
| 47 | UNWIND_HAS_LSDA = 0x40000000, |
| 48 | UNWIND_PERSONALITY_MASK = 0x30000000, |
| 49 | }; |
| 50 | |
| 51 | |
| 52 | |
| 53 | |
| 54 | // |
| 55 | // x86 |
| 56 | // |
| 57 | // 1-bit: start |
| 58 | // 1-bit: has lsda |
| 59 | // 2-bit: personality index |
| 60 | // |
| 61 | // 4-bits: 0=old, 1=ebp based, 2=stack-imm, 3=stack-ind, 4=dwarf |
| 62 | // ebp based: |
| 63 | // 15-bits (5*3-bits per reg) register permutation |
| 64 | // 8-bits for stack offset |
| 65 | // frameless: |
| 66 | // 8-bits stack size |
| 67 | // 3-bits stack adjust |
| 68 | // 3-bits register count |
| 69 | // 10-bits register permutation |
| 70 | // |
| 71 | enum { |
| 72 | UNWIND_X86_MODE_MASK = 0x0F000000, |
| 73 | UNWIND_X86_MODE_EBP_FRAME = 0x01000000, |
| 74 | UNWIND_X86_MODE_STACK_IMMD = 0x02000000, |
| 75 | UNWIND_X86_MODE_STACK_IND = 0x03000000, |
| 76 | UNWIND_X86_MODE_DWARF = 0x04000000, |
| 77 | |
| 78 | UNWIND_X86_EBP_FRAME_REGISTERS = 0x00007FFF, |
| 79 | UNWIND_X86_EBP_FRAME_OFFSET = 0x00FF0000, |
| 80 | |
| 81 | UNWIND_X86_FRAMELESS_STACK_SIZE = 0x00FF0000, |
| 82 | UNWIND_X86_FRAMELESS_STACK_ADJUST = 0x0000E000, |
| 83 | UNWIND_X86_FRAMELESS_STACK_REG_COUNT = 0x00001C00, |
| 84 | UNWIND_X86_FRAMELESS_STACK_REG_PERMUTATION = 0x000003FF, |
| 85 | |
| 86 | UNWIND_X86_DWARF_SECTION_OFFSET = 0x00FFFFFF, |
| 87 | }; |
| 88 | |
| 89 | enum { |
| 90 | UNWIND_X86_REG_NONE = 0, |
| 91 | UNWIND_X86_REG_EBX = 1, |
| 92 | UNWIND_X86_REG_ECX = 2, |
| 93 | UNWIND_X86_REG_EDX = 3, |
| 94 | UNWIND_X86_REG_EDI = 4, |
| 95 | UNWIND_X86_REG_ESI = 5, |
| 96 | UNWIND_X86_REG_EBP = 6, |
| 97 | }; |
| 98 | |
| 99 | // |
| 100 | // For x86 there are four modes for the compact unwind encoding: |
| 101 | // UNWIND_X86_MODE_EBP_FRAME: |
| 102 | // EBP based frame where EBP is push on stack immediately after return address, |
| 103 | // then ESP is moved to EBP. Thus, to unwind ESP is restored with the current |
| 104 | // EPB value, then EBP is restored by popping off the stack, and the return |
| 105 | // is done by popping the stack once more into the pc. |
| 106 | // All non-volatile registers that need to be restored must have been saved |
| 107 | // in a small range in the stack that starts EBP-4 to EBP-1020. The offset/4 |
| 108 | // is encoded in the UNWIND_X86_EBP_FRAME_OFFSET bits. The registers saved |
| 109 | // are encoded in the UNWIND_X86_EBP_FRAME_REGISTERS bits as five 3-bit entries. |
| 110 | // Each entry contains which register to restore. |
| 111 | // UNWIND_X86_MODE_STACK_IMMD: |
| 112 | // A "frameless" (EBP not used as frame pointer) function with a small |
| 113 | // constant stack size. To return, a constant (encoded in the compact |
| 114 | // unwind encoding) is added to the ESP. Then the return is done by |
| 115 | // popping the stack into the pc. |
| 116 | // All non-volatile registers that need to be restored must have been saved |
| 117 | // on the stack immediately after the return address. The stack_size/4 is |
| 118 | // encoded in the UNWIND_X86_FRAMELESS_STACK_SIZE (max stack size is 1024). |
| 119 | // The number of registers saved is encoded in UNWIND_X86_FRAMELESS_STACK_REG_COUNT. |
| 120 | // UNWIND_X86_FRAMELESS_STACK_REG_PERMUTATION constains which registers were |
| 121 | // saved and their order. |
| 122 | // UNWIND_X86_MODE_STACK_IND: |
| 123 | // A "frameless" (EBP not used as frame pointer) function large constant |
| 124 | // stack size. This case is like the previous, except the stack size is too |
| 125 | // large to encode in the compact unwind encoding. Instead it requires that |
| 126 | // the function contains "subl $nnnnnnnn,ESP" in its prolog. The compact |
| 127 | // encoding contains the offset to the nnnnnnnn value in the function in |
| 128 | // UNWIND_X86_FRAMELESS_STACK_SIZE. |
| 129 | // UNWIND_X86_MODE_DWARF: |
| 130 | // No compact unwind encoding is available. Instead the low 24-bits of the |
| 131 | // compact encoding is the offset of the dwarf FDE in the __eh_frame section. |
| 132 | // This mode is never used in object files. It is only generated by the |
| 133 | // linker in final linked images which have only dwarf unwind info for a |
| 134 | // function. |
| 135 | // |
| 136 | // The permutation encoding is a Lehmer code sequence encoded into a |
| 137 | // single variable-base number so we can encode the ordering of up to |
| 138 | // six registers in a 10-bit space. |
| 139 | // |
| 140 | // The following is the algorithm used to create the permutation encoding used |
| 141 | // with frameless stacks. It is passed the number of registers to be saved and |
| 142 | // an array of the register numbers saved. |
| 143 | // |
| 144 | //uint32_t permute_encode(uint32_t registerCount, const uint32_t registers[6]) |
| 145 | //{ |
| 146 | // uint32_t renumregs[6]; |
| 147 | // for (int i=6-registerCount; i < 6; ++i) { |
| 148 | // int countless = 0; |
| 149 | // for (int j=6-registerCount; j < i; ++j) { |
| 150 | // if ( registers[j] < registers[i] ) |
| 151 | // ++countless; |
| 152 | // } |
| 153 | // renumregs[i] = registers[i] - countless -1; |
| 154 | // } |
| 155 | // uint32_t permutationEncoding = 0; |
| 156 | // switch ( registerCount ) { |
| 157 | // case 6: |
| 158 | // permutationEncoding |= (120*renumregs[0] + 24*renumregs[1] |
| 159 | // + 6*renumregs[2] + 2*renumregs[3] |
| 160 | // + renumregs[4]); |
| 161 | // break; |
| 162 | // case 5: |
| 163 | // permutationEncoding |= (120*renumregs[1] + 24*renumregs[2] |
| 164 | // + 6*renumregs[3] + 2*renumregs[4] |
| 165 | // + renumregs[5]); |
| 166 | // break; |
| 167 | // case 4: |
| 168 | // permutationEncoding |= (60*renumregs[2] + 12*renumregs[3] |
| 169 | // + 3*renumregs[4] + renumregs[5]); |
| 170 | // break; |
| 171 | // case 3: |
| 172 | // permutationEncoding |= (20*renumregs[3] + 4*renumregs[4] |
| 173 | // + renumregs[5]); |
| 174 | // break; |
| 175 | // case 2: |
| 176 | // permutationEncoding |= (5*renumregs[4] + renumregs[5]); |
| 177 | // break; |
| 178 | // case 1: |
| 179 | // permutationEncoding |= (renumregs[5]); |
| 180 | // break; |
| 181 | // } |
| 182 | // return permutationEncoding; |
| 183 | //} |
| 184 | // |
| 185 | |
| 186 | |
| 187 | |
| 188 | |
| 189 | // |
| 190 | // x86_64 |
| 191 | // |
| 192 | // 1-bit: start |
| 193 | // 1-bit: has lsda |
| 194 | // 2-bit: personality index |
| 195 | // |
| 196 | // 4-bits: 0=old, 1=rbp based, 2=stack-imm, 3=stack-ind, 4=dwarf |
| 197 | // rbp based: |
| 198 | // 15-bits (5*3-bits per reg) register permutation |
| 199 | // 8-bits for stack offset |
| 200 | // frameless: |
| 201 | // 8-bits stack size |
| 202 | // 3-bits stack adjust |
| 203 | // 3-bits register count |
| 204 | // 10-bits register permutation |
| 205 | // |
| 206 | enum { |
| 207 | UNWIND_X86_64_MODE_MASK = 0x0F000000, |
| 208 | UNWIND_X86_64_MODE_RBP_FRAME = 0x01000000, |
| 209 | UNWIND_X86_64_MODE_STACK_IMMD = 0x02000000, |
| 210 | UNWIND_X86_64_MODE_STACK_IND = 0x03000000, |
| 211 | UNWIND_X86_64_MODE_DWARF = 0x04000000, |
| 212 | |
| 213 | UNWIND_X86_64_RBP_FRAME_REGISTERS = 0x00007FFF, |
| 214 | UNWIND_X86_64_RBP_FRAME_OFFSET = 0x00FF0000, |
| 215 | |
| 216 | UNWIND_X86_64_FRAMELESS_STACK_SIZE = 0x00FF0000, |
| 217 | UNWIND_X86_64_FRAMELESS_STACK_ADJUST = 0x0000E000, |
| 218 | UNWIND_X86_64_FRAMELESS_STACK_REG_COUNT = 0x00001C00, |
| 219 | UNWIND_X86_64_FRAMELESS_STACK_REG_PERMUTATION = 0x000003FF, |
| 220 | |
| 221 | UNWIND_X86_64_DWARF_SECTION_OFFSET = 0x00FFFFFF, |
| 222 | }; |
| 223 | |
| 224 | enum { |
| 225 | UNWIND_X86_64_REG_NONE = 0, |
| 226 | UNWIND_X86_64_REG_RBX = 1, |
| 227 | UNWIND_X86_64_REG_R12 = 2, |
| 228 | UNWIND_X86_64_REG_R13 = 3, |
| 229 | UNWIND_X86_64_REG_R14 = 4, |
| 230 | UNWIND_X86_64_REG_R15 = 5, |
| 231 | UNWIND_X86_64_REG_RBP = 6, |
| 232 | }; |
| 233 | // |
| 234 | // For x86_64 there are four modes for the compact unwind encoding: |
| 235 | // UNWIND_X86_64_MODE_RBP_FRAME: |
| 236 | // RBP based frame where RBP is push on stack immediately after return address, |
| 237 | // then RSP is moved to RBP. Thus, to unwind RSP is restored with the current |
| 238 | // EPB value, then RBP is restored by popping off the stack, and the return |
| 239 | // is done by popping the stack once more into the pc. |
| 240 | // All non-volatile registers that need to be restored must have been saved |
| 241 | // in a small range in the stack that starts RBP-8 to RBP-2040. The offset/8 |
| 242 | // is encoded in the UNWIND_X86_64_RBP_FRAME_OFFSET bits. The registers saved |
| 243 | // are encoded in the UNWIND_X86_64_RBP_FRAME_REGISTERS bits as five 3-bit entries. |
| 244 | // Each entry contains which register to restore. |
| 245 | // UNWIND_X86_64_MODE_STACK_IMMD: |
| 246 | // A "frameless" (RBP not used as frame pointer) function with a small |
| 247 | // constant stack size. To return, a constant (encoded in the compact |
| 248 | // unwind encoding) is added to the RSP. Then the return is done by |
| 249 | // popping the stack into the pc. |
| 250 | // All non-volatile registers that need to be restored must have been saved |
| 251 | // on the stack immediately after the return address. The stack_size/8 is |
| 252 | // encoded in the UNWIND_X86_64_FRAMELESS_STACK_SIZE (max stack size is 2048). |
| 253 | // The number of registers saved is encoded in UNWIND_X86_64_FRAMELESS_STACK_REG_COUNT. |
| 254 | // UNWIND_X86_64_FRAMELESS_STACK_REG_PERMUTATION constains which registers were |
| 255 | // saved and their order. |
| 256 | // UNWIND_X86_64_MODE_STACK_IND: |
| 257 | // A "frameless" (RBP not used as frame pointer) function large constant |
| 258 | // stack size. This case is like the previous, except the stack size is too |
| 259 | // large to encode in the compact unwind encoding. Instead it requires that |
| 260 | // the function contains "subq $nnnnnnnn,RSP" in its prolog. The compact |
| 261 | // encoding contains the offset to the nnnnnnnn value in the function in |
| 262 | // UNWIND_X86_64_FRAMELESS_STACK_SIZE. |
| 263 | // UNWIND_X86_64_MODE_DWARF: |
| 264 | // No compact unwind encoding is available. Instead the low 24-bits of the |
| 265 | // compact encoding is the offset of the dwarf FDE in the __eh_frame section. |
| 266 | // This mode is never used in object files. It is only generated by the |
| 267 | // linker in final linked images which have only dwarf unwind info for a |
| 268 | // function. |
| 269 | // |
| 270 | |
| 271 | |
| 272 | // ARM64 |
| 273 | // |
| 274 | // 1-bit: start |
| 275 | // 1-bit: has lsda |
| 276 | // 2-bit: personality index |
| 277 | // |
| 278 | // 4-bits: 4=frame-based, 3=dwarf, 2=frameless |
| 279 | // frameless: |
| 280 | // 12-bits of stack size |
| 281 | // frame-based: |
| 282 | // 4-bits D reg pairs saved |
| 283 | // 5-bits X reg pairs saved |
| 284 | // dwarf: |
| 285 | // 24-bits offset of dwarf FDE in __eh_frame section |
| 286 | // |
| 287 | enum { |
| 288 | UNWIND_ARM64_MODE_MASK = 0x0F000000, |
| 289 | UNWIND_ARM64_MODE_FRAMELESS = 0x02000000, |
| 290 | UNWIND_ARM64_MODE_DWARF = 0x03000000, |
| 291 | UNWIND_ARM64_MODE_FRAME = 0x04000000, |
| 292 | |
| 293 | UNWIND_ARM64_FRAME_X19_X20_PAIR = 0x00000001, |
| 294 | UNWIND_ARM64_FRAME_X21_X22_PAIR = 0x00000002, |
| 295 | UNWIND_ARM64_FRAME_X23_X24_PAIR = 0x00000004, |
| 296 | UNWIND_ARM64_FRAME_X25_X26_PAIR = 0x00000008, |
| 297 | UNWIND_ARM64_FRAME_X27_X28_PAIR = 0x00000010, |
| 298 | UNWIND_ARM64_FRAME_D8_D9_PAIR = 0x00000100, |
| 299 | UNWIND_ARM64_FRAME_D10_D11_PAIR = 0x00000200, |
| 300 | UNWIND_ARM64_FRAME_D12_D13_PAIR = 0x00000400, |
| 301 | UNWIND_ARM64_FRAME_D14_D15_PAIR = 0x00000800, |
| 302 | |
| 303 | UNWIND_ARM64_FRAMELESS_STACK_SIZE_MASK = 0x00FFF000, |
| 304 | UNWIND_ARM64_DWARF_SECTION_OFFSET = 0x00FFFFFF, |
| 305 | }; |
| 306 | // For arm64 there are three modes for the compact unwind encoding: |
| 307 | // UNWIND_ARM64_MODE_FRAME: |
| 308 | // This is a standard arm64 prolog where FP/LR are immediately pushed on the |
| 309 | // stack, then SP is copied to FP. If there are any non-volatile registers |
| 310 | // saved, then are copied into the stack frame in pairs in a contiguous |
| 311 | // range right below the saved FP/LR pair. Any subset of the five X pairs |
| 312 | // and four D pairs can be saved, but the memory layout must be in register |
| 313 | // number order. |
| 314 | // UNWIND_ARM64_MODE_FRAMELESS: |
| 315 | // A "frameless" leaf function, where FP/LR are not saved. The return address |
| 316 | // remains in LR throughout the function. If any non-volatile registers |
| 317 | // are saved, they must be pushed onto the stack before any stack space is |
| 318 | // allocated for local variables. The stack sized (including any saved |
| 319 | // non-volatile registers) divided by 16 is encoded in the bits |
| 320 | // UNWIND_ARM64_FRAMELESS_STACK_SIZE_MASK. |
| 321 | // UNWIND_ARM64_MODE_DWARF: |
| 322 | // No compact unwind encoding is available. Instead the low 24-bits of the |
| 323 | // compact encoding is the offset of the dwarf FDE in the __eh_frame section. |
| 324 | // This mode is never used in object files. It is only generated by the |
| 325 | // linker in final linked images which have only dwarf unwind info for a |
| 326 | // function. |
| 327 | // |
| 328 | |
| 329 | |
| 330 | |
| 331 | |
| 332 | |
| 333 | //////////////////////////////////////////////////////////////////////////////// |
| 334 | // |
| 335 | // Relocatable Object Files: __LD,__compact_unwind |
| 336 | // |
| 337 | //////////////////////////////////////////////////////////////////////////////// |
| 338 | |
| 339 | // |
| 340 | // A compiler can generated compact unwind information for a function by adding |
| 341 | // a "row" to the __LD,__compact_unwind section. This section has the |
| 342 | // S_ATTR_DEBUG bit set, so the section will be ignored by older linkers. |
| 343 | // It is removed by the new linker, so never ends up in final executables. |
| 344 | // This section is a table, initially with one row per function (that needs |
| 345 | // unwind info). The table columns and some conceptual entries are: |
| 346 | // |
| 347 | // range-start pointer to start of function/range |
| 348 | // range-length |
| 349 | // compact-unwind-encoding 32-bit encoding |
| 350 | // personality-function or zero if no personality function |
| 351 | // lsda or zero if no LSDA data |
| 352 | // |
| 353 | // The length and encoding fields are 32-bits. The other are all pointer sized. |
| 354 | // |
| 355 | // In x86_64 assembly, these entry would look like: |
| 356 | // |
| 357 | // .section __LD,__compact_unwind,regular,debug |
| 358 | // |
| 359 | // #compact unwind for _foo |
| 360 | // .quad _foo |
| 361 | // .set L1,LfooEnd-_foo |
| 362 | // .long L1 |
| 363 | // .long 0x01010001 |
| 364 | // .quad 0 |
| 365 | // .quad 0 |
| 366 | // |
| 367 | // #compact unwind for _bar |
| 368 | // .quad _bar |
| 369 | // .set L2,LbarEnd-_bar |
| 370 | // .long L2 |
| 371 | // .long 0x01020011 |
| 372 | // .quad __gxx_personality |
| 373 | // .quad except_tab1 |
| 374 | // |
| 375 | // |
| 376 | // Notes: There is no need for any labels in the the __compact_unwind section. |
| 377 | // The use of the .set directive is to force the evaluation of the |
| 378 | // range-length at assembly time, instead of generating relocations. |
| 379 | // |
| 380 | // To support future compiler optimizations where which non-volatile registers |
| 381 | // are saved changes within a function (e.g. delay saving non-volatiles until |
| 382 | // necessary), there can by multiple lines in the __compact_unwind table for one |
| 383 | // function, each with a different (non-overlapping) range and each with |
| 384 | // different compact unwind encodings that correspond to the non-volatiles |
| 385 | // saved at that range of the function. |
| 386 | // |
| 387 | // If a particular function is so wacky that there is no compact unwind way |
| 388 | // to encode it, then the compiler can emit traditional dwarf unwind info. |
| 389 | // The runtime will use which ever is available. |
| 390 | // |
| 391 | // Runtime support for compact unwind encodings are only available on 10.6 |
| 392 | // and later. So, the compiler should not generate it when targeting pre-10.6. |
| 393 | |
| 394 | |
| 395 | |
| 396 | |
| 397 | //////////////////////////////////////////////////////////////////////////////// |
| 398 | // |
| 399 | // Final Linked Images: __TEXT,__unwind_info |
| 400 | // |
| 401 | //////////////////////////////////////////////////////////////////////////////// |
| 402 | |
| 403 | // |
| 404 | // The __TEXT,__unwind_info section is laid out for an efficient two level lookup. |
| 405 | // The header of the section contains a coarse index that maps function address |
| 406 | // to the page (4096 byte block) containing the unwind info for that function. |
| 407 | // |
| 408 | |
| 409 | #define UNWIND_SECTION_VERSION 1 |
| 410 | struct unwind_info_section_header |
| 411 | { |
| 412 | uint32_t version; // UNWIND_SECTION_VERSION |
| 413 | uint32_t commonEncodingsArraySectionOffset; |
| 414 | uint32_t commonEncodingsArrayCount; |
| 415 | uint32_t personalityArraySectionOffset; |
| 416 | uint32_t personalityArrayCount; |
| 417 | uint32_t indexSectionOffset; |
| 418 | uint32_t indexCount; |
| 419 | // compact_unwind_encoding_t[] |
| 420 | // uint32_t personalities[] |
| 421 | // unwind_info_section_header_index_entry[] |
| 422 | // unwind_info_section_header_lsda_index_entry[] |
| 423 | }; |
| 424 | |
| 425 | struct unwind_info_section_header_index_entry |
| 426 | { |
| 427 | uint32_t functionOffset; |
| 428 | uint32_t secondLevelPagesSectionOffset; // section offset to start of regular or compress page |
| 429 | uint32_t lsdaIndexArraySectionOffset; // section offset to start of lsda_index array for this range |
| 430 | }; |
| 431 | |
| 432 | struct unwind_info_section_header_lsda_index_entry |
| 433 | { |
| 434 | uint32_t functionOffset; |
| 435 | uint32_t lsdaOffset; |
| 436 | }; |
| 437 | |
| 438 | // |
| 439 | // There are two kinds of second level index pages: regular and compressed. |
| 440 | // A compressed page can hold up to 1021 entries, but it cannot be used |
| 441 | // if too many different encoding types are used. The regular page holds |
| 442 | // 511 entries. |
| 443 | // |
| 444 | |
| 445 | struct unwind_info_regular_second_level_entry |
| 446 | { |
| 447 | uint32_t functionOffset; |
| 448 | compact_unwind_encoding_t encoding; |
| 449 | }; |
| 450 | |
| 451 | #define UNWIND_SECOND_LEVEL_REGULAR 2 |
| 452 | struct unwind_info_regular_second_level_page_header |
| 453 | { |
| 454 | uint32_t kind; // UNWIND_SECOND_LEVEL_REGULAR |
| 455 | uint16_t entryPageOffset; |
| 456 | uint16_t entryCount; |
| 457 | // entry array |
| 458 | }; |
| 459 | |
| 460 | #define UNWIND_SECOND_LEVEL_COMPRESSED 3 |
| 461 | struct unwind_info_compressed_second_level_page_header |
| 462 | { |
| 463 | uint32_t kind; // UNWIND_SECOND_LEVEL_COMPRESSED |
| 464 | uint16_t entryPageOffset; |
| 465 | uint16_t entryCount; |
| 466 | uint16_t encodingsPageOffset; |
| 467 | uint16_t encodingsCount; |
| 468 | // 32-bit entry array |
| 469 | // encodings array |
| 470 | }; |
| 471 | |
| 472 | #define UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET(entry) (entry & 0x00FFFFFF) |
| 473 | #define UNWIND_INFO_COMPRESSED_ENTRY_ENCODING_INDEX(entry) ((entry >> 24) & 0xFF) |
| 474 | |
| 475 | |
| 476 | |
| 477 | #endif |
| 478 | |