blob: 4756a77a7ec5026ceaee086c03efedd334a635b0 [file] [log] [blame]
Neil Henning66416572018-10-08 15:49:19 +00001//===-- AMDGPUAtomicOptimizer.cpp -----------------------------------------===//
2//
Chandler Carruth2946cd72019-01-19 08:50:56 +00003// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
Neil Henning66416572018-10-08 15:49:19 +00006//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// This pass optimizes atomic operations by using a single lane of a wavefront
11/// to perform the atomic operation, thus reducing contention on that memory
12/// location.
13//
14//===----------------------------------------------------------------------===//
15
16#include "AMDGPU.h"
17#include "AMDGPUSubtarget.h"
18#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
19#include "llvm/CodeGen/TargetPassConfig.h"
20#include "llvm/IR/IRBuilder.h"
21#include "llvm/IR/InstVisitor.h"
22#include "llvm/Transforms/Utils/BasicBlockUtils.h"
23
24#define DEBUG_TYPE "amdgpu-atomic-optimizer"
25
26using namespace llvm;
27
28namespace {
29
30enum DPP_CTRL {
31 DPP_ROW_SR1 = 0x111,
32 DPP_ROW_SR2 = 0x112,
Neil Henning8c10fa12019-02-11 14:44:14 +000033 DPP_ROW_SR3 = 0x113,
Neil Henning66416572018-10-08 15:49:19 +000034 DPP_ROW_SR4 = 0x114,
35 DPP_ROW_SR8 = 0x118,
36 DPP_WF_SR1 = 0x138,
37 DPP_ROW_BCAST15 = 0x142,
38 DPP_ROW_BCAST31 = 0x143
39};
40
41struct ReplacementInfo {
42 Instruction *I;
43 Instruction::BinaryOps Op;
44 unsigned ValIdx;
45 bool ValDivergent;
46};
47
48class AMDGPUAtomicOptimizer : public FunctionPass,
49 public InstVisitor<AMDGPUAtomicOptimizer> {
50private:
51 SmallVector<ReplacementInfo, 8> ToReplace;
52 const LegacyDivergenceAnalysis *DA;
53 const DataLayout *DL;
54 DominatorTree *DT;
55 bool HasDPP;
Neil Henning233a02d2018-11-05 12:04:48 +000056 bool IsPixelShader;
Neil Henning66416572018-10-08 15:49:19 +000057
58 void optimizeAtomic(Instruction &I, Instruction::BinaryOps Op,
59 unsigned ValIdx, bool ValDivergent) const;
60
Neil Henning66416572018-10-08 15:49:19 +000061public:
62 static char ID;
63
64 AMDGPUAtomicOptimizer() : FunctionPass(ID) {}
65
66 bool runOnFunction(Function &F) override;
67
68 void getAnalysisUsage(AnalysisUsage &AU) const override {
69 AU.addPreserved<DominatorTreeWrapperPass>();
70 AU.addRequired<LegacyDivergenceAnalysis>();
71 AU.addRequired<TargetPassConfig>();
72 }
73
74 void visitAtomicRMWInst(AtomicRMWInst &I);
75 void visitIntrinsicInst(IntrinsicInst &I);
76};
77
78} // namespace
79
80char AMDGPUAtomicOptimizer::ID = 0;
81
82char &llvm::AMDGPUAtomicOptimizerID = AMDGPUAtomicOptimizer::ID;
83
84bool AMDGPUAtomicOptimizer::runOnFunction(Function &F) {
85 if (skipFunction(F)) {
86 return false;
87 }
88
89 DA = &getAnalysis<LegacyDivergenceAnalysis>();
90 DL = &F.getParent()->getDataLayout();
91 DominatorTreeWrapperPass *const DTW =
92 getAnalysisIfAvailable<DominatorTreeWrapperPass>();
93 DT = DTW ? &DTW->getDomTree() : nullptr;
94 const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>();
95 const TargetMachine &TM = TPC.getTM<TargetMachine>();
96 const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F);
97 HasDPP = ST.hasDPP();
Neil Henning233a02d2018-11-05 12:04:48 +000098 IsPixelShader = F.getCallingConv() == CallingConv::AMDGPU_PS;
Neil Henning66416572018-10-08 15:49:19 +000099
100 visit(F);
101
102 const bool Changed = !ToReplace.empty();
103
104 for (ReplacementInfo &Info : ToReplace) {
105 optimizeAtomic(*Info.I, Info.Op, Info.ValIdx, Info.ValDivergent);
106 }
107
108 ToReplace.clear();
109
110 return Changed;
111}
112
113void AMDGPUAtomicOptimizer::visitAtomicRMWInst(AtomicRMWInst &I) {
114 // Early exit for unhandled address space atomic instructions.
115 switch (I.getPointerAddressSpace()) {
116 default:
117 return;
118 case AMDGPUAS::GLOBAL_ADDRESS:
119 case AMDGPUAS::LOCAL_ADDRESS:
120 break;
121 }
122
123 Instruction::BinaryOps Op;
124
125 switch (I.getOperation()) {
126 default:
127 return;
128 case AtomicRMWInst::Add:
129 Op = Instruction::Add;
130 break;
131 case AtomicRMWInst::Sub:
132 Op = Instruction::Sub;
133 break;
134 }
135
136 const unsigned PtrIdx = 0;
137 const unsigned ValIdx = 1;
138
139 // If the pointer operand is divergent, then each lane is doing an atomic
140 // operation on a different address, and we cannot optimize that.
141 if (DA->isDivergent(I.getOperand(PtrIdx))) {
142 return;
143 }
144
145 const bool ValDivergent = DA->isDivergent(I.getOperand(ValIdx));
146
147 // If the value operand is divergent, each lane is contributing a different
148 // value to the atomic calculation. We can only optimize divergent values if
149 // we have DPP available on our subtarget, and the atomic operation is 32
150 // bits.
151 if (ValDivergent && (!HasDPP || (DL->getTypeSizeInBits(I.getType()) != 32))) {
152 return;
153 }
154
155 // If we get here, we can optimize the atomic using a single wavefront-wide
156 // atomic operation to do the calculation for the entire wavefront, so
157 // remember the instruction so we can come back to it.
158 const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
159
160 ToReplace.push_back(Info);
161}
162
163void AMDGPUAtomicOptimizer::visitIntrinsicInst(IntrinsicInst &I) {
164 Instruction::BinaryOps Op;
165
166 switch (I.getIntrinsicID()) {
167 default:
168 return;
169 case Intrinsic::amdgcn_buffer_atomic_add:
170 case Intrinsic::amdgcn_struct_buffer_atomic_add:
171 case Intrinsic::amdgcn_raw_buffer_atomic_add:
172 Op = Instruction::Add;
173 break;
174 case Intrinsic::amdgcn_buffer_atomic_sub:
175 case Intrinsic::amdgcn_struct_buffer_atomic_sub:
176 case Intrinsic::amdgcn_raw_buffer_atomic_sub:
177 Op = Instruction::Sub;
178 break;
179 }
180
181 const unsigned ValIdx = 0;
182
183 const bool ValDivergent = DA->isDivergent(I.getOperand(ValIdx));
184
185 // If the value operand is divergent, each lane is contributing a different
186 // value to the atomic calculation. We can only optimize divergent values if
187 // we have DPP available on our subtarget, and the atomic operation is 32
188 // bits.
189 if (ValDivergent && (!HasDPP || (DL->getTypeSizeInBits(I.getType()) != 32))) {
190 return;
191 }
192
193 // If any of the other arguments to the intrinsic are divergent, we can't
194 // optimize the operation.
195 for (unsigned Idx = 1; Idx < I.getNumOperands(); Idx++) {
196 if (DA->isDivergent(I.getOperand(Idx))) {
197 return;
198 }
199 }
200
201 // If we get here, we can optimize the atomic using a single wavefront-wide
202 // atomic operation to do the calculation for the entire wavefront, so
203 // remember the instruction so we can come back to it.
204 const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
205
206 ToReplace.push_back(Info);
207}
208
209void AMDGPUAtomicOptimizer::optimizeAtomic(Instruction &I,
210 Instruction::BinaryOps Op,
211 unsigned ValIdx,
212 bool ValDivergent) const {
Neil Henning66416572018-10-08 15:49:19 +0000213 // Start building just before the instruction.
214 IRBuilder<> B(&I);
215
Neil Henning233a02d2018-11-05 12:04:48 +0000216 // If we are in a pixel shader, because of how we have to mask out helper
217 // lane invocations, we need to record the entry and exit BB's.
218 BasicBlock *PixelEntryBB = nullptr;
219 BasicBlock *PixelExitBB = nullptr;
220
221 // If we're optimizing an atomic within a pixel shader, we need to wrap the
222 // entire atomic operation in a helper-lane check. We do not want any helper
223 // lanes that are around only for the purposes of derivatives to take part
224 // in any cross-lane communication, and we use a branch on whether the lane is
225 // live to do this.
226 if (IsPixelShader) {
227 // Record I's original position as the entry block.
228 PixelEntryBB = I.getParent();
229
230 Value *const Cond = B.CreateIntrinsic(Intrinsic::amdgcn_ps_live, {}, {});
231 Instruction *const NonHelperTerminator =
232 SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr);
233
234 // Record I's new position as the exit block.
235 PixelExitBB = I.getParent();
236
237 I.moveBefore(NonHelperTerminator);
238 B.SetInsertPoint(&I);
239 }
240
Neil Henning66416572018-10-08 15:49:19 +0000241 Type *const Ty = I.getType();
242 const unsigned TyBitWidth = DL->getTypeSizeInBits(Ty);
243 Type *const VecTy = VectorType::get(B.getInt32Ty(), 2);
244
245 // This is the value in the atomic operation we need to combine in order to
246 // reduce the number of atomic operations.
247 Value *const V = I.getOperand(ValIdx);
248
249 // We need to know how many lanes are active within the wavefront, and we do
Neil Henning8c10fa12019-02-11 14:44:14 +0000250 // this by doing a ballot of active lanes.
251 CallInst *const Ballot =
252 B.CreateIntrinsic(Intrinsic::amdgcn_icmp, {B.getInt32Ty()},
253 {B.getInt32(1), B.getInt32(0), B.getInt32(33)});
Neil Henning66416572018-10-08 15:49:19 +0000254
255 // We need to know how many lanes are active within the wavefront that are
256 // below us. If we counted each lane linearly starting from 0, a lane is
257 // below us only if its associated index was less than ours. We do this by
258 // using the mbcnt intrinsic.
Neil Henning8c10fa12019-02-11 14:44:14 +0000259 Value *const BitCast = B.CreateBitCast(Ballot, VecTy);
Neil Henning66416572018-10-08 15:49:19 +0000260 Value *const ExtractLo = B.CreateExtractElement(BitCast, B.getInt32(0));
261 Value *const ExtractHi = B.CreateExtractElement(BitCast, B.getInt32(1));
262 CallInst *const PartialMbcnt = B.CreateIntrinsic(
263 Intrinsic::amdgcn_mbcnt_lo, {}, {ExtractLo, B.getInt32(0)});
264 CallInst *const Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_hi, {},
265 {ExtractHi, PartialMbcnt});
266
267 Value *const MbcntCast = B.CreateIntCast(Mbcnt, Ty, false);
268
269 Value *LaneOffset = nullptr;
270 Value *NewV = nullptr;
271
272 // If we have a divergent value in each lane, we need to combine the value
273 // using DPP.
274 if (ValDivergent) {
Neil Henning8c10fa12019-02-11 14:44:14 +0000275 Value *const Identity = B.getIntN(TyBitWidth, 0);
276
Neil Henning66416572018-10-08 15:49:19 +0000277 // First we need to set all inactive invocations to 0, so that they can
278 // correctly contribute to the final result.
Neil Henning8c10fa12019-02-11 14:44:14 +0000279 CallInst *const SetInactive =
280 B.CreateIntrinsic(Intrinsic::amdgcn_set_inactive, Ty, {V, Identity});
Neil Henning66416572018-10-08 15:49:19 +0000281
Neil Henning8c10fa12019-02-11 14:44:14 +0000282 CallInst *const FirstDPP =
283 B.CreateIntrinsic(Intrinsic::amdgcn_update_dpp, Ty,
284 {Identity, SetInactive, B.getInt32(DPP_WF_SR1),
285 B.getInt32(0xf), B.getInt32(0xf), B.getFalse()});
Neil Henning8c10fa12019-02-11 14:44:14 +0000286 NewV = FirstDPP;
Neil Henning66416572018-10-08 15:49:19 +0000287
Neil Henning8c10fa12019-02-11 14:44:14 +0000288 const unsigned Iters = 7;
289 const unsigned DPPCtrl[Iters] = {
290 DPP_ROW_SR1, DPP_ROW_SR2, DPP_ROW_SR3, DPP_ROW_SR4,
291 DPP_ROW_SR8, DPP_ROW_BCAST15, DPP_ROW_BCAST31};
292 const unsigned RowMask[Iters] = {0xf, 0xf, 0xf, 0xf, 0xf, 0xa, 0xc};
293 const unsigned BankMask[Iters] = {0xf, 0xf, 0xf, 0xe, 0xc, 0xf, 0xf};
294
295 // This loop performs an exclusive scan across the wavefront, with all lanes
Neil Henning66416572018-10-08 15:49:19 +0000296 // active (by using the WWM intrinsic).
297 for (unsigned Idx = 0; Idx < Iters; Idx++) {
Neil Henning8c10fa12019-02-11 14:44:14 +0000298 Value *const UpdateValue = Idx < 3 ? FirstDPP : NewV;
299 CallInst *const DPP = B.CreateIntrinsic(
300 Intrinsic::amdgcn_update_dpp, Ty,
301 {Identity, UpdateValue, B.getInt32(DPPCtrl[Idx]),
302 B.getInt32(RowMask[Idx]), B.getInt32(BankMask[Idx]), B.getFalse()});
Neil Henning66416572018-10-08 15:49:19 +0000303
Neil Henning8c10fa12019-02-11 14:44:14 +0000304 NewV = B.CreateBinOp(Op, NewV, DPP);
Neil Henning66416572018-10-08 15:49:19 +0000305 }
306
Neil Henning8c10fa12019-02-11 14:44:14 +0000307 LaneOffset = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, NewV);
Carl Ritson9e3f7d82019-03-05 12:21:44 +0000308 NewV = B.CreateBinOp(Op, SetInactive, NewV);
Neil Henning66416572018-10-08 15:49:19 +0000309
310 // Read the value from the last lane, which has accumlated the values of
311 // each active lane in the wavefront. This will be our new value with which
312 // we will provide to the atomic operation.
313 if (TyBitWidth == 64) {
314 Value *const ExtractLo = B.CreateTrunc(NewV, B.getInt32Ty());
315 Value *const ExtractHi =
316 B.CreateTrunc(B.CreateLShr(NewV, B.getInt64(32)), B.getInt32Ty());
317 CallInst *const ReadLaneLo = B.CreateIntrinsic(
318 Intrinsic::amdgcn_readlane, {}, {ExtractLo, B.getInt32(63)});
Neil Henning66416572018-10-08 15:49:19 +0000319 CallInst *const ReadLaneHi = B.CreateIntrinsic(
320 Intrinsic::amdgcn_readlane, {}, {ExtractHi, B.getInt32(63)});
Neil Henning66416572018-10-08 15:49:19 +0000321 Value *const PartialInsert = B.CreateInsertElement(
322 UndefValue::get(VecTy), ReadLaneLo, B.getInt32(0));
323 Value *const Insert =
324 B.CreateInsertElement(PartialInsert, ReadLaneHi, B.getInt32(1));
325 NewV = B.CreateBitCast(Insert, Ty);
326 } else if (TyBitWidth == 32) {
327 CallInst *const ReadLane = B.CreateIntrinsic(Intrinsic::amdgcn_readlane,
328 {}, {NewV, B.getInt32(63)});
Neil Henning66416572018-10-08 15:49:19 +0000329 NewV = ReadLane;
330 } else {
331 llvm_unreachable("Unhandled atomic bit width");
332 }
Neil Henning8c10fa12019-02-11 14:44:14 +0000333
334 // Finally mark the readlanes in the WWM section.
335 NewV = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, NewV);
Neil Henning66416572018-10-08 15:49:19 +0000336 } else {
337 // Get the total number of active lanes we have by using popcount.
Neil Henning8c10fa12019-02-11 14:44:14 +0000338 Instruction *const Ctpop = B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot);
Neil Henning66416572018-10-08 15:49:19 +0000339 Value *const CtpopCast = B.CreateIntCast(Ctpop, Ty, false);
340
341 // Calculate the new value we will be contributing to the atomic operation
342 // for the entire wavefront.
343 NewV = B.CreateMul(V, CtpopCast);
344 LaneOffset = B.CreateMul(V, MbcntCast);
345 }
346
347 // We only want a single lane to enter our new control flow, and we do this
348 // by checking if there are any active lanes below us. Only one lane will
349 // have 0 active lanes below us, so that will be the only one to progress.
350 Value *const Cond = B.CreateICmpEQ(MbcntCast, B.getIntN(TyBitWidth, 0));
351
352 // Store I's original basic block before we split the block.
353 BasicBlock *const EntryBB = I.getParent();
354
355 // We need to introduce some new control flow to force a single lane to be
356 // active. We do this by splitting I's basic block at I, and introducing the
357 // new block such that:
358 // entry --> single_lane -\
359 // \------------------> exit
360 Instruction *const SingleLaneTerminator =
361 SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr);
362
363 // Move the IR builder into single_lane next.
364 B.SetInsertPoint(SingleLaneTerminator);
365
366 // Clone the original atomic operation into single lane, replacing the
367 // original value with our newly created one.
368 Instruction *const NewI = I.clone();
369 B.Insert(NewI);
370 NewI->setOperand(ValIdx, NewV);
371
372 // Move the IR builder into exit next, and start inserting just before the
373 // original instruction.
374 B.SetInsertPoint(&I);
375
376 // Create a PHI node to get our new atomic result into the exit block.
377 PHINode *const PHI = B.CreatePHI(Ty, 2);
378 PHI->addIncoming(UndefValue::get(Ty), EntryBB);
379 PHI->addIncoming(NewI, SingleLaneTerminator->getParent());
380
381 // We need to broadcast the value who was the lowest active lane (the first
382 // lane) to all other lanes in the wavefront. We use an intrinsic for this,
383 // but have to handle 64-bit broadcasts with two calls to this intrinsic.
384 Value *BroadcastI = nullptr;
385
386 if (TyBitWidth == 64) {
387 Value *const ExtractLo = B.CreateTrunc(PHI, B.getInt32Ty());
388 Value *const ExtractHi =
389 B.CreateTrunc(B.CreateLShr(PHI, B.getInt64(32)), B.getInt32Ty());
390 CallInst *const ReadFirstLaneLo =
391 B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractLo);
Neil Henning66416572018-10-08 15:49:19 +0000392 CallInst *const ReadFirstLaneHi =
393 B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractHi);
Neil Henning66416572018-10-08 15:49:19 +0000394 Value *const PartialInsert = B.CreateInsertElement(
395 UndefValue::get(VecTy), ReadFirstLaneLo, B.getInt32(0));
396 Value *const Insert =
397 B.CreateInsertElement(PartialInsert, ReadFirstLaneHi, B.getInt32(1));
398 BroadcastI = B.CreateBitCast(Insert, Ty);
399 } else if (TyBitWidth == 32) {
Matt Arsenault3a31b3f2019-03-14 13:46:09 +0000400
401 BroadcastI = B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, PHI);
Neil Henning66416572018-10-08 15:49:19 +0000402 } else {
403 llvm_unreachable("Unhandled atomic bit width");
404 }
405
406 // Now that we have the result of our single atomic operation, we need to
407 // get our individual lane's slice into the result. We use the lane offset we
408 // previously calculated combined with the atomic result value we got from the
409 // first lane, to get our lane's index into the atomic result.
410 Value *const Result = B.CreateBinOp(Op, BroadcastI, LaneOffset);
411
Neil Henning233a02d2018-11-05 12:04:48 +0000412 if (IsPixelShader) {
413 // Need a final PHI to reconverge to above the helper lane branch mask.
414 B.SetInsertPoint(PixelExitBB->getFirstNonPHI());
415
416 PHINode *const PHI = B.CreatePHI(Ty, 2);
417 PHI->addIncoming(UndefValue::get(Ty), PixelEntryBB);
418 PHI->addIncoming(Result, I.getParent());
419 I.replaceAllUsesWith(PHI);
420 } else {
421 // Replace the original atomic instruction with the new one.
422 I.replaceAllUsesWith(Result);
423 }
Neil Henning66416572018-10-08 15:49:19 +0000424
425 // And delete the original.
426 I.eraseFromParent();
427}
428
Neil Henning66416572018-10-08 15:49:19 +0000429INITIALIZE_PASS_BEGIN(AMDGPUAtomicOptimizer, DEBUG_TYPE,
430 "AMDGPU atomic optimizations", false, false)
431INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
432INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
433INITIALIZE_PASS_END(AMDGPUAtomicOptimizer, DEBUG_TYPE,
434 "AMDGPU atomic optimizations", false, false)
435
436FunctionPass *llvm::createAMDGPUAtomicOptimizerPass() {
437 return new AMDGPUAtomicOptimizer();
438}