blob: 21e339370cd454afe1bb058ce8a19e2d5d9fa11e [file] [log] [blame]
Sean Silva709c44d2012-12-12 23:44:55 +00001=========================
2Clang Language Extensions
3=========================
4
5.. contents::
6 :local:
Sean Silva13d43fe2013-01-02 21:09:58 +00007 :depth: 1
Sean Silva709c44d2012-12-12 23:44:55 +00008
Sean Silvaf380e0e2013-01-02 21:03:11 +00009.. toctree::
10 :hidden:
11
12 ObjectiveCLiterals
13 BlockLanguageSpec
Michael Gottesman6fd58462013-01-07 22:24:45 +000014 Block-ABI-Apple
DeLesley Hutchinsc51e08c2014-02-18 19:42:01 +000015 AutomaticReferenceCounting
Sean Silvaf380e0e2013-01-02 21:03:11 +000016
Sean Silva709c44d2012-12-12 23:44:55 +000017Introduction
18============
19
20This document describes the language extensions provided by Clang. In addition
21to the language extensions listed here, Clang aims to support a broad range of
22GCC extensions. Please see the `GCC manual
23<http://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html>`_ for more information on
24these extensions.
25
26.. _langext-feature_check:
27
28Feature Checking Macros
29=======================
30
31Language extensions can be very useful, but only if you know you can depend on
32them. In order to allow fine-grain features checks, we support three builtin
33function-like macros. This allows you to directly test for a feature in your
34code without having to resort to something like autoconf or fragile "compiler
35version checks".
36
37``__has_builtin``
38-----------------
39
40This function-like macro takes a single identifier argument that is the name of
41a builtin function. It evaluates to 1 if the builtin is supported or 0 if not.
42It can be used like this:
43
44.. code-block:: c++
45
46 #ifndef __has_builtin // Optional of course.
47 #define __has_builtin(x) 0 // Compatibility with non-clang compilers.
48 #endif
49
50 ...
51 #if __has_builtin(__builtin_trap)
52 __builtin_trap();
53 #else
54 abort();
55 #endif
56 ...
57
58.. _langext-__has_feature-__has_extension:
59
60``__has_feature`` and ``__has_extension``
61-----------------------------------------
62
63These function-like macros take a single identifier argument that is the name
64of a feature. ``__has_feature`` evaluates to 1 if the feature is both
65supported by Clang and standardized in the current language standard or 0 if
66not (but see :ref:`below <langext-has-feature-back-compat>`), while
67``__has_extension`` evaluates to 1 if the feature is supported by Clang in the
68current language (either as a language extension or a standard language
69feature) or 0 if not. They can be used like this:
70
71.. code-block:: c++
72
73 #ifndef __has_feature // Optional of course.
74 #define __has_feature(x) 0 // Compatibility with non-clang compilers.
75 #endif
76 #ifndef __has_extension
77 #define __has_extension __has_feature // Compatibility with pre-3.0 compilers.
78 #endif
79
80 ...
81 #if __has_feature(cxx_rvalue_references)
82 // This code will only be compiled with the -std=c++11 and -std=gnu++11
83 // options, because rvalue references are only standardized in C++11.
84 #endif
85
86 #if __has_extension(cxx_rvalue_references)
87 // This code will be compiled with the -std=c++11, -std=gnu++11, -std=c++98
88 // and -std=gnu++98 options, because rvalue references are supported as a
89 // language extension in C++98.
90 #endif
91
92.. _langext-has-feature-back-compat:
93
94For backwards compatibility reasons, ``__has_feature`` can also be used to test
95for support for non-standardized features, i.e. features not prefixed ``c_``,
96``cxx_`` or ``objc_``.
97
98Another use of ``__has_feature`` is to check for compiler features not related
Sean Silva173d2522013-01-02 13:07:47 +000099to the language standard, such as e.g. :doc:`AddressSanitizer
100<AddressSanitizer>`.
Sean Silva709c44d2012-12-12 23:44:55 +0000101
102If the ``-pedantic-errors`` option is given, ``__has_extension`` is equivalent
103to ``__has_feature``.
104
105The feature tag is described along with the language feature below.
106
107The feature name or extension name can also be specified with a preceding and
108following ``__`` (double underscore) to avoid interference from a macro with
109the same name. For instance, ``__cxx_rvalue_references__`` can be used instead
110of ``cxx_rvalue_references``.
111
112``__has_attribute``
113-------------------
114
115This function-like macro takes a single identifier argument that is the name of
Aaron Ballmana4bb4b92014-01-09 23:11:13 +0000116an attribute. It evaluates to 1 if the attribute is supported by the current
117compilation target, or 0 if not. It can be used like this:
Sean Silva709c44d2012-12-12 23:44:55 +0000118
119.. code-block:: c++
120
121 #ifndef __has_attribute // Optional of course.
122 #define __has_attribute(x) 0 // Compatibility with non-clang compilers.
123 #endif
124
125 ...
126 #if __has_attribute(always_inline)
127 #define ALWAYS_INLINE __attribute__((always_inline))
128 #else
129 #define ALWAYS_INLINE
130 #endif
131 ...
132
133The attribute name can also be specified with a preceding and following ``__``
134(double underscore) to avoid interference from a macro with the same name. For
135instance, ``__always_inline__`` can be used instead of ``always_inline``.
136
Aaron Ballmana4bb4b92014-01-09 23:11:13 +0000137
Sean Silva709c44d2012-12-12 23:44:55 +0000138Include File Checking Macros
139============================
140
141Not all developments systems have the same include files. The
142:ref:`langext-__has_include` and :ref:`langext-__has_include_next` macros allow
143you to check for the existence of an include file before doing a possibly
Dmitri Gribenko764ea242013-01-17 17:04:54 +0000144failing ``#include`` directive. Include file checking macros must be used
145as expressions in ``#if`` or ``#elif`` preprocessing directives.
Sean Silva709c44d2012-12-12 23:44:55 +0000146
147.. _langext-__has_include:
148
149``__has_include``
150-----------------
151
152This function-like macro takes a single file name string argument that is the
153name of an include file. It evaluates to 1 if the file can be found using the
154include paths, or 0 otherwise:
155
156.. code-block:: c++
157
158 // Note the two possible file name string formats.
159 #if __has_include("myinclude.h") && __has_include(<stdint.h>)
160 # include "myinclude.h"
161 #endif
162
Richard Smithccfc9ff2013-07-11 00:27:05 +0000163To test for this feature, use ``#if defined(__has_include)``:
164
165.. code-block:: c++
166
Sean Silva709c44d2012-12-12 23:44:55 +0000167 // To avoid problem with non-clang compilers not having this macro.
Richard Smithccfc9ff2013-07-11 00:27:05 +0000168 #if defined(__has_include)
169 #if __has_include("myinclude.h")
Sean Silva709c44d2012-12-12 23:44:55 +0000170 # include "myinclude.h"
171 #endif
Richard Smithccfc9ff2013-07-11 00:27:05 +0000172 #endif
Sean Silva709c44d2012-12-12 23:44:55 +0000173
174.. _langext-__has_include_next:
175
176``__has_include_next``
177----------------------
178
179This function-like macro takes a single file name string argument that is the
180name of an include file. It is like ``__has_include`` except that it looks for
181the second instance of the given file found in the include paths. It evaluates
182to 1 if the second instance of the file can be found using the include paths,
183or 0 otherwise:
184
185.. code-block:: c++
186
187 // Note the two possible file name string formats.
188 #if __has_include_next("myinclude.h") && __has_include_next(<stdint.h>)
189 # include_next "myinclude.h"
190 #endif
191
192 // To avoid problem with non-clang compilers not having this macro.
Richard Smithccfc9ff2013-07-11 00:27:05 +0000193 #if defined(__has_include_next)
194 #if __has_include_next("myinclude.h")
Sean Silva709c44d2012-12-12 23:44:55 +0000195 # include_next "myinclude.h"
196 #endif
Richard Smithccfc9ff2013-07-11 00:27:05 +0000197 #endif
Sean Silva709c44d2012-12-12 23:44:55 +0000198
199Note that ``__has_include_next``, like the GNU extension ``#include_next``
200directive, is intended for use in headers only, and will issue a warning if
201used in the top-level compilation file. A warning will also be issued if an
202absolute path is used in the file argument.
203
204``__has_warning``
205-----------------
206
207This function-like macro takes a string literal that represents a command line
208option for a warning and returns true if that is a valid warning option.
209
210.. code-block:: c++
211
212 #if __has_warning("-Wformat")
213 ...
214 #endif
215
216Builtin Macros
217==============
218
219``__BASE_FILE__``
220 Defined to a string that contains the name of the main input file passed to
221 Clang.
222
223``__COUNTER__``
224 Defined to an integer value that starts at zero and is incremented each time
225 the ``__COUNTER__`` macro is expanded.
226
227``__INCLUDE_LEVEL__``
228 Defined to an integral value that is the include depth of the file currently
229 being translated. For the main file, this value is zero.
230
231``__TIMESTAMP__``
232 Defined to the date and time of the last modification of the current source
233 file.
234
235``__clang__``
236 Defined when compiling with Clang
237
238``__clang_major__``
239 Defined to the major marketing version number of Clang (e.g., the 2 in
240 2.0.1). Note that marketing version numbers should not be used to check for
241 language features, as different vendors use different numbering schemes.
242 Instead, use the :ref:`langext-feature_check`.
243
244``__clang_minor__``
245 Defined to the minor version number of Clang (e.g., the 0 in 2.0.1). Note
246 that marketing version numbers should not be used to check for language
247 features, as different vendors use different numbering schemes. Instead, use
248 the :ref:`langext-feature_check`.
249
250``__clang_patchlevel__``
251 Defined to the marketing patch level of Clang (e.g., the 1 in 2.0.1).
252
253``__clang_version__``
254 Defined to a string that captures the Clang marketing version, including the
255 Subversion tag or revision number, e.g., "``1.5 (trunk 102332)``".
256
257.. _langext-vectors:
258
259Vectors and Extended Vectors
260============================
261
262Supports the GCC, OpenCL, AltiVec and NEON vector extensions.
263
264OpenCL vector types are created using ``ext_vector_type`` attribute. It
265support for ``V.xyzw`` syntax and other tidbits as seen in OpenCL. An example
266is:
267
268.. code-block:: c++
269
270 typedef float float4 __attribute__((ext_vector_type(4)));
271 typedef float float2 __attribute__((ext_vector_type(2)));
272
273 float4 foo(float2 a, float2 b) {
274 float4 c;
275 c.xz = a;
276 c.yw = b;
277 return c;
278 }
279
280Query for this feature with ``__has_extension(attribute_ext_vector_type)``.
281
282Giving ``-faltivec`` option to clang enables support for AltiVec vector syntax
283and functions. For example:
284
285.. code-block:: c++
286
287 vector float foo(vector int a) {
288 vector int b;
289 b = vec_add(a, a) + a;
290 return (vector float)b;
291 }
292
293NEON vector types are created using ``neon_vector_type`` and
294``neon_polyvector_type`` attributes. For example:
295
296.. code-block:: c++
297
298 typedef __attribute__((neon_vector_type(8))) int8_t int8x8_t;
299 typedef __attribute__((neon_polyvector_type(16))) poly8_t poly8x16_t;
300
301 int8x8_t foo(int8x8_t a) {
302 int8x8_t v;
303 v = a;
304 return v;
305 }
306
307Vector Literals
308---------------
309
310Vector literals can be used to create vectors from a set of scalars, or
311vectors. Either parentheses or braces form can be used. In the parentheses
312form the number of literal values specified must be one, i.e. referring to a
313scalar value, or must match the size of the vector type being created. If a
314single scalar literal value is specified, the scalar literal value will be
315replicated to all the components of the vector type. In the brackets form any
316number of literals can be specified. For example:
317
318.. code-block:: c++
319
320 typedef int v4si __attribute__((__vector_size__(16)));
321 typedef float float4 __attribute__((ext_vector_type(4)));
322 typedef float float2 __attribute__((ext_vector_type(2)));
323
324 v4si vsi = (v4si){1, 2, 3, 4};
325 float4 vf = (float4)(1.0f, 2.0f, 3.0f, 4.0f);
326 vector int vi1 = (vector int)(1); // vi1 will be (1, 1, 1, 1).
327 vector int vi2 = (vector int){1}; // vi2 will be (1, 0, 0, 0).
328 vector int vi3 = (vector int)(1, 2); // error
329 vector int vi4 = (vector int){1, 2}; // vi4 will be (1, 2, 0, 0).
330 vector int vi5 = (vector int)(1, 2, 3, 4);
331 float4 vf = (float4)((float2)(1.0f, 2.0f), (float2)(3.0f, 4.0f));
332
333Vector Operations
334-----------------
335
336The table below shows the support for each operation by vector extension. A
337dash indicates that an operation is not accepted according to a corresponding
338specification.
339
340============================== ====== ======= === ====
341 Opeator OpenCL AltiVec GCC NEON
342============================== ====== ======= === ====
343[] yes yes yes --
344unary operators +, -- yes yes yes --
345++, -- -- yes yes yes --
346+,--,*,/,% yes yes yes --
347bitwise operators &,|,^,~ yes yes yes --
348>>,<< yes yes yes --
349!, &&, || no -- -- --
350==, !=, >, <, >=, <= yes yes -- --
351= yes yes yes yes
352:? yes -- -- --
353sizeof yes yes yes yes
354============================== ====== ======= === ====
355
356See also :ref:`langext-__builtin_shufflevector`.
357
358Messages on ``deprecated`` and ``unavailable`` Attributes
359=========================================================
360
361An optional string message can be added to the ``deprecated`` and
362``unavailable`` attributes. For example:
363
364.. code-block:: c++
365
366 void explode(void) __attribute__((deprecated("extremely unsafe, use 'combust' instead!!!")));
367
368If the deprecated or unavailable declaration is used, the message will be
369incorporated into the appropriate diagnostic:
370
371.. code-block:: c++
372
373 harmless.c:4:3: warning: 'explode' is deprecated: extremely unsafe, use 'combust' instead!!!
374 [-Wdeprecated-declarations]
375 explode();
376 ^
377
378Query for this feature with
379``__has_extension(attribute_deprecated_with_message)`` and
380``__has_extension(attribute_unavailable_with_message)``.
381
382Attributes on Enumerators
383=========================
384
385Clang allows attributes to be written on individual enumerators. This allows
386enumerators to be deprecated, made unavailable, etc. The attribute must appear
387after the enumerator name and before any initializer, like so:
388
389.. code-block:: c++
390
391 enum OperationMode {
392 OM_Invalid,
393 OM_Normal,
394 OM_Terrified __attribute__((deprecated)),
395 OM_AbortOnError __attribute__((deprecated)) = 4
396 };
397
398Attributes on the ``enum`` declaration do not apply to individual enumerators.
399
400Query for this feature with ``__has_extension(enumerator_attributes)``.
401
402'User-Specified' System Frameworks
403==================================
404
405Clang provides a mechanism by which frameworks can be built in such a way that
406they will always be treated as being "system frameworks", even if they are not
407present in a system framework directory. This can be useful to system
408framework developers who want to be able to test building other applications
409with development builds of their framework, including the manner in which the
410compiler changes warning behavior for system headers.
411
412Framework developers can opt-in to this mechanism by creating a
413"``.system_framework``" file at the top-level of their framework. That is, the
414framework should have contents like:
415
416.. code-block:: none
417
418 .../TestFramework.framework
419 .../TestFramework.framework/.system_framework
420 .../TestFramework.framework/Headers
421 .../TestFramework.framework/Headers/TestFramework.h
422 ...
423
424Clang will treat the presence of this file as an indicator that the framework
425should be treated as a system framework, regardless of how it was found in the
426framework search path. For consistency, we recommend that such files never be
427included in installed versions of the framework.
428
429Availability attribute
430======================
431
432Clang introduces the ``availability`` attribute, which can be placed on
433declarations to describe the lifecycle of that declaration relative to
434operating system versions. Consider the function declaration for a
435hypothetical function ``f``:
436
437.. code-block:: c++
438
439 void f(void) __attribute__((availability(macosx,introduced=10.4,deprecated=10.6,obsoleted=10.7)));
440
441The availability attribute states that ``f`` was introduced in Mac OS X 10.4,
442deprecated in Mac OS X 10.6, and obsoleted in Mac OS X 10.7. This information
443is used by Clang to determine when it is safe to use ``f``: for example, if
444Clang is instructed to compile code for Mac OS X 10.5, a call to ``f()``
445succeeds. If Clang is instructed to compile code for Mac OS X 10.6, the call
446succeeds but Clang emits a warning specifying that the function is deprecated.
447Finally, if Clang is instructed to compile code for Mac OS X 10.7, the call
448fails because ``f()`` is no longer available.
449
Douglas Gregor250ee632013-01-16 01:12:31 +0000450The availability attribute is a comma-separated list starting with the
Sean Silva709c44d2012-12-12 23:44:55 +0000451platform name and then including clauses specifying important milestones in the
452declaration's lifetime (in any order) along with additional information. Those
453clauses can be:
454
455introduced=\ *version*
456 The first version in which this declaration was introduced.
457
458deprecated=\ *version*
459 The first version in which this declaration was deprecated, meaning that
460 users should migrate away from this API.
461
462obsoleted=\ *version*
463 The first version in which this declaration was obsoleted, meaning that it
464 was removed completely and can no longer be used.
465
466unavailable
467 This declaration is never available on this platform.
468
469message=\ *string-literal*
470 Additional message text that Clang will provide when emitting a warning or
471 error about use of a deprecated or obsoleted declaration. Useful to direct
472 users to replacement APIs.
473
474Multiple availability attributes can be placed on a declaration, which may
475correspond to different platforms. Only the availability attribute with the
476platform corresponding to the target platform will be used; any others will be
477ignored. If no availability attribute specifies availability for the current
478target platform, the availability attributes are ignored. Supported platforms
479are:
480
481``ios``
482 Apple's iOS operating system. The minimum deployment target is specified by
483 the ``-mios-version-min=*version*`` or ``-miphoneos-version-min=*version*``
484 command-line arguments.
485
486``macosx``
487 Apple's Mac OS X operating system. The minimum deployment target is
488 specified by the ``-mmacosx-version-min=*version*`` command-line argument.
489
490A declaration can be used even when deploying back to a platform version prior
491to when the declaration was introduced. When this happens, the declaration is
492`weakly linked
493<https://developer.apple.com/library/mac/#documentation/MacOSX/Conceptual/BPFrameworks/Concepts/WeakLinking.html>`_,
494as if the ``weak_import`` attribute were added to the declaration. A
495weakly-linked declaration may or may not be present a run-time, and a program
496can determine whether the declaration is present by checking whether the
497address of that declaration is non-NULL.
498
Dmitri Gribenkofb5b2242013-01-16 01:17:05 +0000499If there are multiple declarations of the same entity, the availability
Douglas Gregor250ee632013-01-16 01:12:31 +0000500attributes must either match on a per-platform basis or later
501declarations must not have availability attributes for that
502platform. For example:
503
504.. code-block:: c
505
506 void g(void) __attribute__((availability(macosx,introduced=10.4)));
507 void g(void) __attribute__((availability(macosx,introduced=10.4))); // okay, matches
508 void g(void) __attribute__((availability(ios,introduced=4.0))); // okay, adds a new platform
509 void g(void); // okay, inherits both macosx and ios availability from above.
510 void g(void) __attribute__((availability(macosx,introduced=10.5))); // error: mismatch
511
512When one method overrides another, the overriding method can be more widely available than the overridden method, e.g.,:
513
514.. code-block:: objc
515
516 @interface A
517 - (id)method __attribute__((availability(macosx,introduced=10.4)));
518 - (id)method2 __attribute__((availability(macosx,introduced=10.4)));
519 @end
520
521 @interface B : A
522 - (id)method __attribute__((availability(macosx,introduced=10.3))); // okay: method moved into base class later
523 - (id)method __attribute__((availability(macosx,introduced=10.5))); // error: this method was available via the base class in 10.4
524 @end
525
Sean Silva709c44d2012-12-12 23:44:55 +0000526Checks for Standard Language Features
527=====================================
528
529The ``__has_feature`` macro can be used to query if certain standard language
530features are enabled. The ``__has_extension`` macro can be used to query if
531language features are available as an extension when compiling for a standard
532which does not provide them. The features which can be tested are listed here.
533
534C++98
535-----
536
537The features listed below are part of the C++98 standard. These features are
538enabled by default when compiling C++ code.
539
540C++ exceptions
541^^^^^^^^^^^^^^
542
543Use ``__has_feature(cxx_exceptions)`` to determine if C++ exceptions have been
544enabled. For example, compiling code with ``-fno-exceptions`` disables C++
545exceptions.
546
547C++ RTTI
548^^^^^^^^
549
550Use ``__has_feature(cxx_rtti)`` to determine if C++ RTTI has been enabled. For
551example, compiling code with ``-fno-rtti`` disables the use of RTTI.
552
553C++11
554-----
555
556The features listed below are part of the C++11 standard. As a result, all
557these features are enabled with the ``-std=c++11`` or ``-std=gnu++11`` option
558when compiling C++ code.
559
560C++11 SFINAE includes access control
561^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
562
563Use ``__has_feature(cxx_access_control_sfinae)`` or
564``__has_extension(cxx_access_control_sfinae)`` to determine whether
565access-control errors (e.g., calling a private constructor) are considered to
566be template argument deduction errors (aka SFINAE errors), per `C++ DR1170
567<http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#1170>`_.
568
569C++11 alias templates
570^^^^^^^^^^^^^^^^^^^^^
571
572Use ``__has_feature(cxx_alias_templates)`` or
573``__has_extension(cxx_alias_templates)`` to determine if support for C++11's
574alias declarations and alias templates is enabled.
575
576C++11 alignment specifiers
577^^^^^^^^^^^^^^^^^^^^^^^^^^
578
579Use ``__has_feature(cxx_alignas)`` or ``__has_extension(cxx_alignas)`` to
580determine if support for alignment specifiers using ``alignas`` is enabled.
581
582C++11 attributes
583^^^^^^^^^^^^^^^^
584
585Use ``__has_feature(cxx_attributes)`` or ``__has_extension(cxx_attributes)`` to
586determine if support for attribute parsing with C++11's square bracket notation
587is enabled.
588
589C++11 generalized constant expressions
590^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
591
592Use ``__has_feature(cxx_constexpr)`` to determine if support for generalized
593constant expressions (e.g., ``constexpr``) is enabled.
594
595C++11 ``decltype()``
596^^^^^^^^^^^^^^^^^^^^
597
598Use ``__has_feature(cxx_decltype)`` or ``__has_extension(cxx_decltype)`` to
599determine if support for the ``decltype()`` specifier is enabled. C++11's
600``decltype`` does not require type-completeness of a function call expression.
601Use ``__has_feature(cxx_decltype_incomplete_return_types)`` or
602``__has_extension(cxx_decltype_incomplete_return_types)`` to determine if
603support for this feature is enabled.
604
605C++11 default template arguments in function templates
606^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
607
608Use ``__has_feature(cxx_default_function_template_args)`` or
609``__has_extension(cxx_default_function_template_args)`` to determine if support
610for default template arguments in function templates is enabled.
611
612C++11 ``default``\ ed functions
613^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
614
615Use ``__has_feature(cxx_defaulted_functions)`` or
616``__has_extension(cxx_defaulted_functions)`` to determine if support for
617defaulted function definitions (with ``= default``) is enabled.
618
619C++11 delegating constructors
620^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
621
622Use ``__has_feature(cxx_delegating_constructors)`` to determine if support for
623delegating constructors is enabled.
624
625C++11 ``deleted`` functions
626^^^^^^^^^^^^^^^^^^^^^^^^^^^
627
628Use ``__has_feature(cxx_deleted_functions)`` or
629``__has_extension(cxx_deleted_functions)`` to determine if support for deleted
630function definitions (with ``= delete``) is enabled.
631
632C++11 explicit conversion functions
633^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
634
635Use ``__has_feature(cxx_explicit_conversions)`` to determine if support for
636``explicit`` conversion functions is enabled.
637
638C++11 generalized initializers
639^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
640
641Use ``__has_feature(cxx_generalized_initializers)`` to determine if support for
642generalized initializers (using braced lists and ``std::initializer_list``) is
643enabled.
644
645C++11 implicit move constructors/assignment operators
646^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
647
648Use ``__has_feature(cxx_implicit_moves)`` to determine if Clang will implicitly
649generate move constructors and move assignment operators where needed.
650
651C++11 inheriting constructors
652^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
653
654Use ``__has_feature(cxx_inheriting_constructors)`` to determine if support for
Richard Smith25b555a2013-04-19 17:00:31 +0000655inheriting constructors is enabled.
Sean Silva709c44d2012-12-12 23:44:55 +0000656
657C++11 inline namespaces
658^^^^^^^^^^^^^^^^^^^^^^^
659
660Use ``__has_feature(cxx_inline_namespaces)`` or
661``__has_extension(cxx_inline_namespaces)`` to determine if support for inline
662namespaces is enabled.
663
664C++11 lambdas
665^^^^^^^^^^^^^
666
667Use ``__has_feature(cxx_lambdas)`` or ``__has_extension(cxx_lambdas)`` to
668determine if support for lambdas is enabled.
669
670C++11 local and unnamed types as template arguments
671^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
672
673Use ``__has_feature(cxx_local_type_template_args)`` or
674``__has_extension(cxx_local_type_template_args)`` to determine if support for
675local and unnamed types as template arguments is enabled.
676
677C++11 noexcept
678^^^^^^^^^^^^^^
679
680Use ``__has_feature(cxx_noexcept)`` or ``__has_extension(cxx_noexcept)`` to
681determine if support for noexcept exception specifications is enabled.
682
683C++11 in-class non-static data member initialization
684^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
685
686Use ``__has_feature(cxx_nonstatic_member_init)`` to determine whether in-class
687initialization of non-static data members is enabled.
688
689C++11 ``nullptr``
690^^^^^^^^^^^^^^^^^
691
692Use ``__has_feature(cxx_nullptr)`` or ``__has_extension(cxx_nullptr)`` to
693determine if support for ``nullptr`` is enabled.
694
695C++11 ``override control``
696^^^^^^^^^^^^^^^^^^^^^^^^^^
697
698Use ``__has_feature(cxx_override_control)`` or
699``__has_extension(cxx_override_control)`` to determine if support for the
700override control keywords is enabled.
701
702C++11 reference-qualified functions
703^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
704
705Use ``__has_feature(cxx_reference_qualified_functions)`` or
706``__has_extension(cxx_reference_qualified_functions)`` to determine if support
707for reference-qualified functions (e.g., member functions with ``&`` or ``&&``
708applied to ``*this``) is enabled.
709
710C++11 range-based ``for`` loop
711^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
712
713Use ``__has_feature(cxx_range_for)`` or ``__has_extension(cxx_range_for)`` to
714determine if support for the range-based for loop is enabled.
715
716C++11 raw string literals
717^^^^^^^^^^^^^^^^^^^^^^^^^
718
719Use ``__has_feature(cxx_raw_string_literals)`` to determine if support for raw
720string literals (e.g., ``R"x(foo\bar)x"``) is enabled.
721
722C++11 rvalue references
723^^^^^^^^^^^^^^^^^^^^^^^
724
725Use ``__has_feature(cxx_rvalue_references)`` or
726``__has_extension(cxx_rvalue_references)`` to determine if support for rvalue
727references is enabled.
728
729C++11 ``static_assert()``
730^^^^^^^^^^^^^^^^^^^^^^^^^
731
732Use ``__has_feature(cxx_static_assert)`` or
733``__has_extension(cxx_static_assert)`` to determine if support for compile-time
734assertions using ``static_assert`` is enabled.
735
Richard Smith25b555a2013-04-19 17:00:31 +0000736C++11 ``thread_local``
737^^^^^^^^^^^^^^^^^^^^^^
738
739Use ``__has_feature(cxx_thread_local)`` to determine if support for
740``thread_local`` variables is enabled.
741
Sean Silva709c44d2012-12-12 23:44:55 +0000742C++11 type inference
743^^^^^^^^^^^^^^^^^^^^
744
745Use ``__has_feature(cxx_auto_type)`` or ``__has_extension(cxx_auto_type)`` to
746determine C++11 type inference is supported using the ``auto`` specifier. If
747this is disabled, ``auto`` will instead be a storage class specifier, as in C
748or C++98.
749
750C++11 strongly typed enumerations
751^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
752
753Use ``__has_feature(cxx_strong_enums)`` or
754``__has_extension(cxx_strong_enums)`` to determine if support for strongly
755typed, scoped enumerations is enabled.
756
757C++11 trailing return type
758^^^^^^^^^^^^^^^^^^^^^^^^^^
759
760Use ``__has_feature(cxx_trailing_return)`` or
761``__has_extension(cxx_trailing_return)`` to determine if support for the
762alternate function declaration syntax with trailing return type is enabled.
763
764C++11 Unicode string literals
765^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
766
767Use ``__has_feature(cxx_unicode_literals)`` to determine if support for Unicode
768string literals is enabled.
769
770C++11 unrestricted unions
771^^^^^^^^^^^^^^^^^^^^^^^^^
772
773Use ``__has_feature(cxx_unrestricted_unions)`` to determine if support for
774unrestricted unions is enabled.
775
776C++11 user-defined literals
777^^^^^^^^^^^^^^^^^^^^^^^^^^^
778
779Use ``__has_feature(cxx_user_literals)`` to determine if support for
780user-defined literals is enabled.
781
782C++11 variadic templates
783^^^^^^^^^^^^^^^^^^^^^^^^
784
785Use ``__has_feature(cxx_variadic_templates)`` or
786``__has_extension(cxx_variadic_templates)`` to determine if support for
787variadic templates is enabled.
788
Richard Smith0a715422013-05-07 19:32:56 +0000789C++1y
790-----
791
792The features listed below are part of the committee draft for the C++1y
793standard. As a result, all these features are enabled with the ``-std=c++1y``
794or ``-std=gnu++1y`` option when compiling C++ code.
795
796C++1y binary literals
797^^^^^^^^^^^^^^^^^^^^^
798
799Use ``__has_feature(cxx_binary_literals)`` or
800``__has_extension(cxx_binary_literals)`` to determine whether
801binary literals (for instance, ``0b10010``) are recognized. Clang supports this
802feature as an extension in all language modes.
803
804C++1y contextual conversions
805^^^^^^^^^^^^^^^^^^^^^^^^^^^^
806
807Use ``__has_feature(cxx_contextual_conversions)`` or
808``__has_extension(cxx_contextual_conversions)`` to determine if the C++1y rules
809are used when performing an implicit conversion for an array bound in a
810*new-expression*, the operand of a *delete-expression*, an integral constant
Richard Smithc0f7b812013-07-24 17:41:31 +0000811expression, or a condition in a ``switch`` statement.
Richard Smith0a715422013-05-07 19:32:56 +0000812
813C++1y decltype(auto)
814^^^^^^^^^^^^^^^^^^^^
815
816Use ``__has_feature(cxx_decltype_auto)`` or
817``__has_extension(cxx_decltype_auto)`` to determine if support
818for the ``decltype(auto)`` placeholder type is enabled.
819
820C++1y default initializers for aggregates
821^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
822
823Use ``__has_feature(cxx_aggregate_nsdmi)`` or
824``__has_extension(cxx_aggregate_nsdmi)`` to determine if support
825for default initializers in aggregate members is enabled.
826
827C++1y generalized lambda capture
828^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
829
Richard Smith4fb09722013-07-24 17:51:13 +0000830Use ``__has_feature(cxx_init_capture)`` or
831``__has_extension(cxx_init_capture)`` to determine if support for
832lambda captures with explicit initializers is enabled
Richard Smith0a715422013-05-07 19:32:56 +0000833(for instance, ``[n(0)] { return ++n; }``).
Richard Smith0a715422013-05-07 19:32:56 +0000834
835C++1y generic lambdas
836^^^^^^^^^^^^^^^^^^^^^
837
838Use ``__has_feature(cxx_generic_lambda)`` or
839``__has_extension(cxx_generic_lambda)`` to determine if support for generic
840(polymorphic) lambdas is enabled
841(for instance, ``[] (auto x) { return x + 1; }``).
Richard Smith0a715422013-05-07 19:32:56 +0000842
843C++1y relaxed constexpr
844^^^^^^^^^^^^^^^^^^^^^^^
845
846Use ``__has_feature(cxx_relaxed_constexpr)`` or
847``__has_extension(cxx_relaxed_constexpr)`` to determine if variable
848declarations, local variable modification, and control flow constructs
849are permitted in ``constexpr`` functions.
Richard Smith0a715422013-05-07 19:32:56 +0000850
851C++1y return type deduction
852^^^^^^^^^^^^^^^^^^^^^^^^^^^
853
854Use ``__has_feature(cxx_return_type_deduction)`` or
855``__has_extension(cxx_return_type_deduction)`` to determine if support
856for return type deduction for functions (using ``auto`` as a return type)
857is enabled.
Richard Smith0a715422013-05-07 19:32:56 +0000858
859C++1y runtime-sized arrays
860^^^^^^^^^^^^^^^^^^^^^^^^^^
861
862Use ``__has_feature(cxx_runtime_array)`` or
863``__has_extension(cxx_runtime_array)`` to determine if support
864for arrays of runtime bound (a restricted form of variable-length arrays)
865is enabled.
866Clang's implementation of this feature is incomplete.
867
868C++1y variable templates
869^^^^^^^^^^^^^^^^^^^^^^^^
870
871Use ``__has_feature(cxx_variable_templates)`` or
872``__has_extension(cxx_variable_templates)`` to determine if support for
873templated variable declarations is enabled.
Richard Smith0a715422013-05-07 19:32:56 +0000874
Sean Silva709c44d2012-12-12 23:44:55 +0000875C11
876---
877
878The features listed below are part of the C11 standard. As a result, all these
879features are enabled with the ``-std=c11`` or ``-std=gnu11`` option when
880compiling C code. Additionally, because these features are all
881backward-compatible, they are available as extensions in all language modes.
882
883C11 alignment specifiers
884^^^^^^^^^^^^^^^^^^^^^^^^
885
886Use ``__has_feature(c_alignas)`` or ``__has_extension(c_alignas)`` to determine
887if support for alignment specifiers using ``_Alignas`` is enabled.
888
889C11 atomic operations
890^^^^^^^^^^^^^^^^^^^^^
891
892Use ``__has_feature(c_atomic)`` or ``__has_extension(c_atomic)`` to determine
893if support for atomic types using ``_Atomic`` is enabled. Clang also provides
894:ref:`a set of builtins <langext-__c11_atomic>` which can be used to implement
895the ``<stdatomic.h>`` operations on ``_Atomic`` types.
896
897C11 generic selections
898^^^^^^^^^^^^^^^^^^^^^^
899
900Use ``__has_feature(c_generic_selections)`` or
901``__has_extension(c_generic_selections)`` to determine if support for generic
902selections is enabled.
903
904As an extension, the C11 generic selection expression is available in all
905languages supported by Clang. The syntax is the same as that given in the C11
906standard.
907
908In C, type compatibility is decided according to the rules given in the
909appropriate standard, but in C++, which lacks the type compatibility rules used
910in C, types are considered compatible only if they are equivalent.
911
912C11 ``_Static_assert()``
913^^^^^^^^^^^^^^^^^^^^^^^^
914
915Use ``__has_feature(c_static_assert)`` or ``__has_extension(c_static_assert)``
916to determine if support for compile-time assertions using ``_Static_assert`` is
917enabled.
918
Richard Smith25b555a2013-04-19 17:00:31 +0000919C11 ``_Thread_local``
920^^^^^^^^^^^^^^^^^^^^^
921
Ed Schouten401aeba2013-09-14 16:17:20 +0000922Use ``__has_feature(c_thread_local)`` or ``__has_extension(c_thread_local)``
923to determine if support for ``_Thread_local`` variables is enabled.
Richard Smith25b555a2013-04-19 17:00:31 +0000924
Alp Toker64197b92014-01-18 21:49:02 +0000925Checks for Type Trait Primitives
926================================
927
928Type trait primitives are special builtin constant expressions that can be used
929by the standard C++ library to facilitate or simplify the implementation of
930user-facing type traits in the <type_traits> header.
931
932They are not intended to be used directly by user code because they are
933implementation-defined and subject to change -- as such they're tied closely to
934the supported set of system headers, currently:
935
936* LLVM's own libc++
937* GNU libstdc++
938* The Microsoft standard C++ library
Sean Silva709c44d2012-12-12 23:44:55 +0000939
940Clang supports the `GNU C++ type traits
941<http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html>`_ and a subset of the
942`Microsoft Visual C++ Type traits
Alp Toker64197b92014-01-18 21:49:02 +0000943<http://msdn.microsoft.com/en-us/library/ms177194(v=VS.100).aspx>`_.
944
945Feature detection is supported only for some of the primitives at present. User
946code should not use these checks because they bear no direct relation to the
947actual set of type traits supported by the C++ standard library.
948
949For type trait ``__X``, ``__has_extension(X)`` indicates the presence of the
950type trait primitive in the compiler. A simplistic usage example as might be
951seen in standard C++ headers follows:
Sean Silva709c44d2012-12-12 23:44:55 +0000952
953.. code-block:: c++
954
955 #if __has_extension(is_convertible_to)
956 template<typename From, typename To>
957 struct is_convertible_to {
958 static const bool value = __is_convertible_to(From, To);
959 };
960 #else
Alp Toker64197b92014-01-18 21:49:02 +0000961 // Emulate type trait for compatibility with other compilers.
Sean Silva709c44d2012-12-12 23:44:55 +0000962 #endif
963
Alp Toker64197b92014-01-18 21:49:02 +0000964The following type trait primitives are supported by Clang:
Sean Silva709c44d2012-12-12 23:44:55 +0000965
966* ``__has_nothrow_assign`` (GNU, Microsoft)
967* ``__has_nothrow_copy`` (GNU, Microsoft)
968* ``__has_nothrow_constructor`` (GNU, Microsoft)
969* ``__has_trivial_assign`` (GNU, Microsoft)
970* ``__has_trivial_copy`` (GNU, Microsoft)
971* ``__has_trivial_constructor`` (GNU, Microsoft)
972* ``__has_trivial_destructor`` (GNU, Microsoft)
973* ``__has_virtual_destructor`` (GNU, Microsoft)
974* ``__is_abstract`` (GNU, Microsoft)
975* ``__is_base_of`` (GNU, Microsoft)
976* ``__is_class`` (GNU, Microsoft)
977* ``__is_convertible_to`` (Microsoft)
978* ``__is_empty`` (GNU, Microsoft)
979* ``__is_enum`` (GNU, Microsoft)
980* ``__is_interface_class`` (Microsoft)
981* ``__is_pod`` (GNU, Microsoft)
982* ``__is_polymorphic`` (GNU, Microsoft)
983* ``__is_union`` (GNU, Microsoft)
984* ``__is_literal(type)``: Determines whether the given type is a literal type
985* ``__is_final``: Determines whether the given type is declared with a
986 ``final`` class-virt-specifier.
987* ``__underlying_type(type)``: Retrieves the underlying type for a given
988 ``enum`` type. This trait is required to implement the C++11 standard
989 library.
990* ``__is_trivially_assignable(totype, fromtype)``: Determines whether a value
991 of type ``totype`` can be assigned to from a value of type ``fromtype`` such
992 that no non-trivial functions are called as part of that assignment. This
993 trait is required to implement the C++11 standard library.
994* ``__is_trivially_constructible(type, argtypes...)``: Determines whether a
995 value of type ``type`` can be direct-initialized with arguments of types
996 ``argtypes...`` such that no non-trivial functions are called as part of
997 that initialization. This trait is required to implement the C++11 standard
998 library.
Alp Toker73287bf2014-01-20 00:24:09 +0000999* ``__is_destructible`` (MSVC 2013): partially implemented
1000* ``__is_nothrow_destructible`` (MSVC 2013): partially implemented
1001* ``__is_nothrow_assignable`` (MSVC 2013, clang)
1002* ``__is_constructible`` (MSVC 2013, clang)
1003* ``__is_nothrow_constructible`` (MSVC 2013, clang)
Sean Silva709c44d2012-12-12 23:44:55 +00001004
1005Blocks
1006======
1007
1008The syntax and high level language feature description is in
Michael Gottesman6fd58462013-01-07 22:24:45 +00001009:doc:`BlockLanguageSpec<BlockLanguageSpec>`. Implementation and ABI details for
1010the clang implementation are in :doc:`Block-ABI-Apple<Block-ABI-Apple>`.
Sean Silva709c44d2012-12-12 23:44:55 +00001011
1012Query for this feature with ``__has_extension(blocks)``.
1013
1014Objective-C Features
1015====================
1016
1017Related result types
1018--------------------
1019
1020According to Cocoa conventions, Objective-C methods with certain names
1021("``init``", "``alloc``", etc.) always return objects that are an instance of
1022the receiving class's type. Such methods are said to have a "related result
1023type", meaning that a message send to one of these methods will have the same
1024static type as an instance of the receiver class. For example, given the
1025following classes:
1026
1027.. code-block:: objc
1028
1029 @interface NSObject
1030 + (id)alloc;
1031 - (id)init;
1032 @end
1033
1034 @interface NSArray : NSObject
1035 @end
1036
1037and this common initialization pattern
1038
1039.. code-block:: objc
1040
1041 NSArray *array = [[NSArray alloc] init];
1042
1043the type of the expression ``[NSArray alloc]`` is ``NSArray*`` because
1044``alloc`` implicitly has a related result type. Similarly, the type of the
1045expression ``[[NSArray alloc] init]`` is ``NSArray*``, since ``init`` has a
1046related result type and its receiver is known to have the type ``NSArray *``.
1047If neither ``alloc`` nor ``init`` had a related result type, the expressions
1048would have had type ``id``, as declared in the method signature.
1049
1050A method with a related result type can be declared by using the type
1051``instancetype`` as its result type. ``instancetype`` is a contextual keyword
1052that is only permitted in the result type of an Objective-C method, e.g.
1053
1054.. code-block:: objc
1055
1056 @interface A
1057 + (instancetype)constructAnA;
1058 @end
1059
1060The related result type can also be inferred for some methods. To determine
1061whether a method has an inferred related result type, the first word in the
1062camel-case selector (e.g., "``init``" in "``initWithObjects``") is considered,
1063and the method will have a related result type if its return type is compatible
1064with the type of its class and if:
1065
1066* the first word is "``alloc``" or "``new``", and the method is a class method,
1067 or
1068
1069* the first word is "``autorelease``", "``init``", "``retain``", or "``self``",
1070 and the method is an instance method.
1071
1072If a method with a related result type is overridden by a subclass method, the
1073subclass method must also return a type that is compatible with the subclass
1074type. For example:
1075
1076.. code-block:: objc
1077
1078 @interface NSString : NSObject
1079 - (NSUnrelated *)init; // incorrect usage: NSUnrelated is not NSString or a superclass of NSString
1080 @end
1081
1082Related result types only affect the type of a message send or property access
1083via the given method. In all other respects, a method with a related result
1084type is treated the same way as method that returns ``id``.
1085
1086Use ``__has_feature(objc_instancetype)`` to determine whether the
1087``instancetype`` contextual keyword is available.
1088
1089Automatic reference counting
1090----------------------------
1091
Sean Silva173d2522013-01-02 13:07:47 +00001092Clang provides support for :doc:`automated reference counting
1093<AutomaticReferenceCounting>` in Objective-C, which eliminates the need
Sean Silva709c44d2012-12-12 23:44:55 +00001094for manual ``retain``/``release``/``autorelease`` message sends. There are two
1095feature macros associated with automatic reference counting:
1096``__has_feature(objc_arc)`` indicates the availability of automated reference
1097counting in general, while ``__has_feature(objc_arc_weak)`` indicates that
1098automated reference counting also includes support for ``__weak`` pointers to
1099Objective-C objects.
1100
Sean Silva173d2522013-01-02 13:07:47 +00001101.. _objc-fixed-enum:
1102
Sean Silva709c44d2012-12-12 23:44:55 +00001103Enumerations with a fixed underlying type
1104-----------------------------------------
1105
1106Clang provides support for C++11 enumerations with a fixed underlying type
1107within Objective-C. For example, one can write an enumeration type as:
1108
1109.. code-block:: c++
1110
1111 typedef enum : unsigned char { Red, Green, Blue } Color;
1112
1113This specifies that the underlying type, which is used to store the enumeration
1114value, is ``unsigned char``.
1115
1116Use ``__has_feature(objc_fixed_enum)`` to determine whether support for fixed
1117underlying types is available in Objective-C.
1118
1119Interoperability with C++11 lambdas
1120-----------------------------------
1121
1122Clang provides interoperability between C++11 lambdas and blocks-based APIs, by
1123permitting a lambda to be implicitly converted to a block pointer with the
1124corresponding signature. For example, consider an API such as ``NSArray``'s
1125array-sorting method:
1126
1127.. code-block:: objc
1128
1129 - (NSArray *)sortedArrayUsingComparator:(NSComparator)cmptr;
1130
1131``NSComparator`` is simply a typedef for the block pointer ``NSComparisonResult
1132(^)(id, id)``, and parameters of this type are generally provided with block
1133literals as arguments. However, one can also use a C++11 lambda so long as it
1134provides the same signature (in this case, accepting two parameters of type
1135``id`` and returning an ``NSComparisonResult``):
1136
1137.. code-block:: objc
1138
1139 NSArray *array = @[@"string 1", @"string 21", @"string 12", @"String 11",
1140 @"String 02"];
1141 const NSStringCompareOptions comparisonOptions
1142 = NSCaseInsensitiveSearch | NSNumericSearch |
1143 NSWidthInsensitiveSearch | NSForcedOrderingSearch;
1144 NSLocale *currentLocale = [NSLocale currentLocale];
1145 NSArray *sorted
1146 = [array sortedArrayUsingComparator:[=](id s1, id s2) -> NSComparisonResult {
1147 NSRange string1Range = NSMakeRange(0, [s1 length]);
1148 return [s1 compare:s2 options:comparisonOptions
1149 range:string1Range locale:currentLocale];
1150 }];
1151 NSLog(@"sorted: %@", sorted);
1152
1153This code relies on an implicit conversion from the type of the lambda
1154expression (an unnamed, local class type called the *closure type*) to the
1155corresponding block pointer type. The conversion itself is expressed by a
1156conversion operator in that closure type that produces a block pointer with the
1157same signature as the lambda itself, e.g.,
1158
1159.. code-block:: objc
1160
1161 operator NSComparisonResult (^)(id, id)() const;
1162
1163This conversion function returns a new block that simply forwards the two
1164parameters to the lambda object (which it captures by copy), then returns the
1165result. The returned block is first copied (with ``Block_copy``) and then
1166autoreleased. As an optimization, if a lambda expression is immediately
1167converted to a block pointer (as in the first example, above), then the block
1168is not copied and autoreleased: rather, it is given the same lifetime as a
1169block literal written at that point in the program, which avoids the overhead
1170of copying a block to the heap in the common case.
1171
1172The conversion from a lambda to a block pointer is only available in
1173Objective-C++, and not in C++ with blocks, due to its use of Objective-C memory
1174management (autorelease).
1175
1176Object Literals and Subscripting
1177--------------------------------
1178
Sean Silva173d2522013-01-02 13:07:47 +00001179Clang provides support for :doc:`Object Literals and Subscripting
1180<ObjectiveCLiterals>` in Objective-C, which simplifies common Objective-C
Sean Silva709c44d2012-12-12 23:44:55 +00001181programming patterns, makes programs more concise, and improves the safety of
1182container creation. There are several feature macros associated with object
1183literals and subscripting: ``__has_feature(objc_array_literals)`` tests the
1184availability of array literals; ``__has_feature(objc_dictionary_literals)``
1185tests the availability of dictionary literals;
1186``__has_feature(objc_subscripting)`` tests the availability of object
1187subscripting.
1188
1189Objective-C Autosynthesis of Properties
1190---------------------------------------
1191
1192Clang provides support for autosynthesis of declared properties. Using this
1193feature, clang provides default synthesis of those properties not declared
1194@dynamic and not having user provided backing getter and setter methods.
1195``__has_feature(objc_default_synthesize_properties)`` checks for availability
1196of this feature in version of clang being used.
1197
Jordan Rose32e94892012-12-15 00:37:01 +00001198.. _langext-objc_method_family:
1199
Ted Kremenekc3481f42013-10-23 22:14:59 +00001200
Ted Kremenek7f7a4832013-10-23 22:41:52 +00001201Objective-C requiring a call to ``super`` in an override
1202--------------------------------------------------------
Ted Kremenekf2ee81d2013-10-23 22:15:01 +00001203
Ted Kremenek7f7a4832013-10-23 22:41:52 +00001204Some Objective-C classes allow a subclass to override a particular method in a
Warren Hunte0bc9802013-10-24 00:59:24 +00001205parent class but expect that the overriding method also calls the overridden
1206method in the parent class. For these cases, we provide an attribute to
1207designate that a method requires a "call to ``super``" in the overriding
1208method in the subclass.
Ted Kremenekf2ee81d2013-10-23 22:15:01 +00001209
Warren Hunte0bc9802013-10-24 00:59:24 +00001210**Usage**: ``__attribute__((objc_requires_super))``. This attribute can only
1211be placed at the end of a method declaration:
Ted Kremenekf2ee81d2013-10-23 22:15:01 +00001212
1213.. code-block:: objc
1214
1215 - (void)foo __attribute__((objc_requires_super));
1216
Warren Hunte0bc9802013-10-24 00:59:24 +00001217This attribute can only be applied the method declarations within a class, and
1218not a protocol. Currently this attribute does not enforce any placement of
1219where the call occurs in the overriding method (such as in the case of
1220``-dealloc`` where the call must appear at the end). It checks only that it
1221exists.
Ted Kremenekf2ee81d2013-10-23 22:15:01 +00001222
1223Note that on both OS X and iOS that the Foundation framework provides a
Ted Kremenek620cde32013-10-23 22:25:59 +00001224convenience macro ``NS_REQUIRES_SUPER`` that provides syntactic sugar for this
Ted Kremenekf2ee81d2013-10-23 22:15:01 +00001225attribute:
1226
1227.. code-block:: objc
1228
1229 - (void)foo NS_REQUIRES_SUPER;
1230
1231This macro is conditionally defined depending on the compiler's support for
1232this attribute. If the compiler does not support the attribute the macro
1233expands to nothing.
1234
1235Operationally, when a method has this annotation the compiler will warn if the
1236implementation of an override in a subclass does not call super. For example:
1237
1238.. code-block:: objc
1239
1240 warning: method possibly missing a [super AnnotMeth] call
1241 - (void) AnnotMeth{};
1242 ^
1243
Ted Kremenekc3481f42013-10-23 22:14:59 +00001244Objective-C Method Families
1245---------------------------
Jordan Rose32e94892012-12-15 00:37:01 +00001246
1247Many methods in Objective-C have conventional meanings determined by their
1248selectors. It is sometimes useful to be able to mark a method as having a
1249particular conventional meaning despite not having the right selector, or as
1250not having the conventional meaning that its selector would suggest. For these
1251use cases, we provide an attribute to specifically describe the "method family"
1252that a method belongs to.
1253
1254**Usage**: ``__attribute__((objc_method_family(X)))``, where ``X`` is one of
1255``none``, ``alloc``, ``copy``, ``init``, ``mutableCopy``, or ``new``. This
1256attribute can only be placed at the end of a method declaration:
1257
1258.. code-block:: objc
1259
1260 - (NSString *)initMyStringValue __attribute__((objc_method_family(none)));
1261
1262Users who do not wish to change the conventional meaning of a method, and who
1263merely want to document its non-standard retain and release semantics, should
1264use the :ref:`retaining behavior attributes <langext-objc-retain-release>`
1265described below.
1266
1267Query for this feature with ``__has_attribute(objc_method_family)``.
1268
1269.. _langext-objc-retain-release:
1270
1271Objective-C retaining behavior attributes
1272-----------------------------------------
1273
1274In Objective-C, functions and methods are generally assumed to follow the
1275`Cocoa Memory Management
1276<http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/MemoryMgmt/Articles/mmRules.html>`_
1277conventions for ownership of object arguments and
1278return values. However, there are exceptions, and so Clang provides attributes
1279to allow these exceptions to be documented. This are used by ARC and the
1280`static analyzer <http://clang-analyzer.llvm.org>`_ Some exceptions may be
1281better described using the :ref:`objc_method_family
1282<langext-objc_method_family>` attribute instead.
1283
1284**Usage**: The ``ns_returns_retained``, ``ns_returns_not_retained``,
1285``ns_returns_autoreleased``, ``cf_returns_retained``, and
1286``cf_returns_not_retained`` attributes can be placed on methods and functions
1287that return Objective-C or CoreFoundation objects. They are commonly placed at
1288the end of a function prototype or method declaration:
1289
1290.. code-block:: objc
1291
1292 id foo() __attribute__((ns_returns_retained));
1293
1294 - (NSString *)bar:(int)x __attribute__((ns_returns_retained));
1295
1296The ``*_returns_retained`` attributes specify that the returned object has a +1
1297retain count. The ``*_returns_not_retained`` attributes specify that the return
1298object has a +0 retain count, even if the normal convention for its selector
1299would be +1. ``ns_returns_autoreleased`` specifies that the returned object is
1300+0, but is guaranteed to live at least as long as the next flush of an
1301autorelease pool.
1302
1303**Usage**: The ``ns_consumed`` and ``cf_consumed`` attributes can be placed on
1304an parameter declaration; they specify that the argument is expected to have a
1305+1 retain count, which will be balanced in some way by the function or method.
1306The ``ns_consumes_self`` attribute can only be placed on an Objective-C
1307method; it specifies that the method expects its ``self`` parameter to have a
1308+1 retain count, which it will balance in some way.
1309
1310.. code-block:: objc
1311
1312 void foo(__attribute__((ns_consumed)) NSString *string);
1313
1314 - (void) bar __attribute__((ns_consumes_self));
1315 - (void) baz:(id) __attribute__((ns_consumed)) x;
1316
1317Further examples of these attributes are available in the static analyzer's `list of annotations for analysis
1318<http://clang-analyzer.llvm.org/annotations.html#cocoa_mem>`_.
1319
1320Query for these features with ``__has_attribute(ns_consumed)``,
1321``__has_attribute(ns_returns_retained)``, etc.
1322
1323
Ted Kremenek84342d62013-10-15 04:28:42 +00001324Objective-C++ ABI: protocol-qualifier mangling of parameters
1325------------------------------------------------------------
1326
1327Starting with LLVM 3.4, Clang produces a new mangling for parameters whose
1328type is a qualified-``id`` (e.g., ``id<Foo>``). This mangling allows such
1329parameters to be differentiated from those with the regular unqualified ``id``
1330type.
1331
1332This was a non-backward compatible mangling change to the ABI. This change
1333allows proper overloading, and also prevents mangling conflicts with template
1334parameters of protocol-qualified type.
1335
1336Query the presence of this new mangling with
1337``__has_feature(objc_protocol_qualifier_mangling)``.
1338
Nick Lewycky35a6ef42014-01-11 02:50:57 +00001339.. _langext-overloading:
1340
Sean Silva709c44d2012-12-12 23:44:55 +00001341Function Overloading in C
1342=========================
1343
1344Clang provides support for C++ function overloading in C. Function overloading
1345in C is introduced using the ``overloadable`` attribute. For example, one
1346might provide several overloaded versions of a ``tgsin`` function that invokes
1347the appropriate standard function computing the sine of a value with ``float``,
1348``double``, or ``long double`` precision:
1349
1350.. code-block:: c
1351
1352 #include <math.h>
1353 float __attribute__((overloadable)) tgsin(float x) { return sinf(x); }
1354 double __attribute__((overloadable)) tgsin(double x) { return sin(x); }
1355 long double __attribute__((overloadable)) tgsin(long double x) { return sinl(x); }
1356
1357Given these declarations, one can call ``tgsin`` with a ``float`` value to
1358receive a ``float`` result, with a ``double`` to receive a ``double`` result,
1359etc. Function overloading in C follows the rules of C++ function overloading
1360to pick the best overload given the call arguments, with a few C-specific
1361semantics:
1362
1363* Conversion from ``float`` or ``double`` to ``long double`` is ranked as a
1364 floating-point promotion (per C99) rather than as a floating-point conversion
1365 (as in C++).
1366
1367* A conversion from a pointer of type ``T*`` to a pointer of type ``U*`` is
1368 considered a pointer conversion (with conversion rank) if ``T`` and ``U`` are
1369 compatible types.
1370
1371* A conversion from type ``T`` to a value of type ``U`` is permitted if ``T``
1372 and ``U`` are compatible types. This conversion is given "conversion" rank.
1373
1374The declaration of ``overloadable`` functions is restricted to function
1375declarations and definitions. Most importantly, if any function with a given
1376name is given the ``overloadable`` attribute, then all function declarations
1377and definitions with that name (and in that scope) must have the
1378``overloadable`` attribute. This rule even applies to redeclarations of
1379functions whose original declaration had the ``overloadable`` attribute, e.g.,
1380
1381.. code-block:: c
1382
1383 int f(int) __attribute__((overloadable));
1384 float f(float); // error: declaration of "f" must have the "overloadable" attribute
1385
1386 int g(int) __attribute__((overloadable));
1387 int g(int) { } // error: redeclaration of "g" must also have the "overloadable" attribute
1388
1389Functions marked ``overloadable`` must have prototypes. Therefore, the
1390following code is ill-formed:
1391
1392.. code-block:: c
1393
1394 int h() __attribute__((overloadable)); // error: h does not have a prototype
1395
1396However, ``overloadable`` functions are allowed to use a ellipsis even if there
1397are no named parameters (as is permitted in C++). This feature is particularly
1398useful when combined with the ``unavailable`` attribute:
1399
1400.. code-block:: c++
1401
1402 void honeypot(...) __attribute__((overloadable, unavailable)); // calling me is an error
1403
1404Functions declared with the ``overloadable`` attribute have their names mangled
1405according to the same rules as C++ function names. For example, the three
1406``tgsin`` functions in our motivating example get the mangled names
1407``_Z5tgsinf``, ``_Z5tgsind``, and ``_Z5tgsine``, respectively. There are two
1408caveats to this use of name mangling:
1409
1410* Future versions of Clang may change the name mangling of functions overloaded
1411 in C, so you should not depend on an specific mangling. To be completely
1412 safe, we strongly urge the use of ``static inline`` with ``overloadable``
1413 functions.
1414
1415* The ``overloadable`` attribute has almost no meaning when used in C++,
1416 because names will already be mangled and functions are already overloadable.
1417 However, when an ``overloadable`` function occurs within an ``extern "C"``
1418 linkage specification, it's name *will* be mangled in the same way as it
1419 would in C.
1420
1421Query for this feature with ``__has_extension(attribute_overloadable)``.
1422
Nick Lewycky35a6ef42014-01-11 02:50:57 +00001423Controlling Overload Resolution
1424===============================
1425
1426Clang introduces the ``enable_if`` attribute, which can be placed on function
1427declarations to control which overload is selected based on the values of the
1428function's arguments. When combined with the
Nick Lewyckyed91da72014-01-18 02:29:10 +00001429:ref:`overloadable<langext-overloading>` attribute, this feature is also
Nick Lewycky35a6ef42014-01-11 02:50:57 +00001430available in C.
1431
1432.. code-block:: c++
1433
Nick Lewyckyb9737cd2014-01-15 06:34:12 +00001434 int isdigit(int c);
Nick Lewyckyb05a8442014-01-28 06:20:56 +00001435 int isdigit(int c) __attribute__((enable_if(c <= -1 || c > 255, "chosen when 'c' is out of range"))) __attribute__((unavailable("'c' must have the value of an unsigned char or EOF")));
Nick Lewycky35a6ef42014-01-11 02:50:57 +00001436
1437 void foo(char c) {
Nick Lewyckyb9737cd2014-01-15 06:34:12 +00001438 isdigit(c);
Nick Lewycky35a6ef42014-01-11 02:50:57 +00001439 isdigit(10);
1440 isdigit(-10); // results in a compile-time error.
1441 }
1442
1443The enable_if attribute takes two arguments, the first is an expression written
1444in terms of the function parameters, the second is a string explaining why this
1445overload candidate could not be selected to be displayed in diagnostics. The
1446expression is part of the function signature for the purposes of determining
1447whether it is a redeclaration (following the rules used when determining
1448whether a C++ template specialization is ODR-equivalent), but is not part of
1449the type.
1450
Nick Lewycky8993f262014-01-28 07:03:46 +00001451The enable_if expression is evaluated as if it were the body of a
1452bool-returning constexpr function declared with the arguments of the function
1453it is being applied to, then called with the parameters at the callsite. If the
1454result is false or could not be determined through constant expression
1455evaluation, then this overload will not be chosen and the provided string may
1456be used in a diagnostic if the compile fails as a result.
Nick Lewycky35a6ef42014-01-11 02:50:57 +00001457
1458Because the enable_if expression is an unevaluated context, there are no global
1459state changes, nor the ability to pass information from the enable_if
1460expression to the function body. For example, suppose we want calls to
1461strnlen(strbuf, maxlen) to resolve to strnlen_chk(strbuf, maxlen, size of
1462strbuf) only if the size of strbuf can be determined:
1463
1464.. code-block:: c++
1465
1466 __attribute__((always_inline))
1467 static inline size_t strnlen(const char *s, size_t maxlen)
1468 __attribute__((overloadable))
1469 __attribute__((enable_if(__builtin_object_size(s, 0) != -1))),
1470 "chosen when the buffer size is known but 'maxlen' is not")))
1471 {
1472 return strnlen_chk(s, maxlen, __builtin_object_size(s, 0));
1473 }
1474
1475Multiple enable_if attributes may be applied to a single declaration. In this
1476case, the enable_if expressions are evaluated from left to right in the
1477following manner. First, the candidates whose enable_if expressions evaluate to
1478false or cannot be evaluated are discarded. If the remaining candidates do not
1479share ODR-equivalent enable_if expressions, the overload resolution is
1480ambiguous. Otherwise, enable_if overload resolution continues with the next
1481enable_if attribute on the candidates that have not been discarded and have
1482remaining enable_if attributes. In this way, we pick the most specific
1483overload out of a number of viable overloads using enable_if.
1484
1485.. code-block:: c++
Nick Lewycky9c8754f2014-01-15 08:33:00 +00001486
Nick Lewycky35a6ef42014-01-11 02:50:57 +00001487 void f() __attribute__((enable_if(true, ""))); // #1
1488 void f() __attribute__((enable_if(true, ""))) __attribute__((enable_if(true, ""))); // #2
1489
1490 void g(int i, int j) __attribute__((enable_if(i, ""))); // #1
1491 void g(int i, int j) __attribute__((enable_if(j, ""))) __attribute__((enable_if(true))); // #2
1492
1493In this example, a call to f() is always resolved to #2, as the first enable_if
1494expression is ODR-equivalent for both declarations, but #1 does not have another
1495enable_if expression to continue evaluating, so the next round of evaluation has
1496only a single candidate. In a call to g(1, 1), the call is ambiguous even though
1497#2 has more enable_if attributes, because the first enable_if expressions are
1498not ODR-equivalent.
1499
1500Query for this feature with ``__has_attribute(enable_if)``.
1501
Sean Silva709c44d2012-12-12 23:44:55 +00001502Initializer lists for complex numbers in C
1503==========================================
1504
1505clang supports an extension which allows the following in C:
1506
1507.. code-block:: c++
1508
1509 #include <math.h>
1510 #include <complex.h>
1511 complex float x = { 1.0f, INFINITY }; // Init to (1, Inf)
1512
1513This construct is useful because there is no way to separately initialize the
1514real and imaginary parts of a complex variable in standard C, given that clang
1515does not support ``_Imaginary``. (Clang also supports the ``__real__`` and
1516``__imag__`` extensions from gcc, which help in some cases, but are not usable
1517in static initializers.)
1518
1519Note that this extension does not allow eliding the braces; the meaning of the
1520following two lines is different:
1521
1522.. code-block:: c++
1523
1524 complex float x[] = { { 1.0f, 1.0f } }; // [0] = (1, 1)
1525 complex float x[] = { 1.0f, 1.0f }; // [0] = (1, 0), [1] = (1, 0)
1526
1527This extension also works in C++ mode, as far as that goes, but does not apply
1528to the C++ ``std::complex``. (In C++11, list initialization allows the same
1529syntax to be used with ``std::complex`` with the same meaning.)
1530
1531Builtin Functions
1532=================
1533
1534Clang supports a number of builtin library functions with the same syntax as
1535GCC, including things like ``__builtin_nan``, ``__builtin_constant_p``,
1536``__builtin_choose_expr``, ``__builtin_types_compatible_p``,
1537``__sync_fetch_and_add``, etc. In addition to the GCC builtins, Clang supports
1538a number of builtins that GCC does not, which are listed here.
1539
1540Please note that Clang does not and will not support all of the GCC builtins
1541for vector operations. Instead of using builtins, you should use the functions
1542defined in target-specific header files like ``<xmmintrin.h>``, which define
1543portable wrappers for these. Many of the Clang versions of these functions are
1544implemented directly in terms of :ref:`extended vector support
1545<langext-vectors>` instead of builtins, in order to reduce the number of
1546builtins that we need to implement.
1547
1548``__builtin_readcyclecounter``
1549------------------------------
1550
1551``__builtin_readcyclecounter`` is used to access the cycle counter register (or
1552a similar low-latency, high-accuracy clock) on those targets that support it.
1553
1554**Syntax**:
1555
1556.. code-block:: c++
1557
1558 __builtin_readcyclecounter()
1559
1560**Example of Use**:
1561
1562.. code-block:: c++
1563
1564 unsigned long long t0 = __builtin_readcyclecounter();
1565 do_something();
1566 unsigned long long t1 = __builtin_readcyclecounter();
1567 unsigned long long cycles_to_do_something = t1 - t0; // assuming no overflow
1568
1569**Description**:
1570
1571The ``__builtin_readcyclecounter()`` builtin returns the cycle counter value,
1572which may be either global or process/thread-specific depending on the target.
1573As the backing counters often overflow quickly (on the order of seconds) this
1574should only be used for timing small intervals. When not supported by the
1575target, the return value is always zero. This builtin takes no arguments and
1576produces an unsigned long long result.
1577
Tim Northoverbfe2e5f72013-05-23 19:14:12 +00001578Query for this feature with ``__has_builtin(__builtin_readcyclecounter)``. Note
1579that even if present, its use may depend on run-time privilege or other OS
1580controlled state.
Sean Silva709c44d2012-12-12 23:44:55 +00001581
1582.. _langext-__builtin_shufflevector:
1583
1584``__builtin_shufflevector``
1585---------------------------
1586
1587``__builtin_shufflevector`` is used to express generic vector
1588permutation/shuffle/swizzle operations. This builtin is also very important
1589for the implementation of various target-specific header files like
1590``<xmmintrin.h>``.
1591
1592**Syntax**:
1593
1594.. code-block:: c++
1595
1596 __builtin_shufflevector(vec1, vec2, index1, index2, ...)
1597
1598**Examples**:
1599
1600.. code-block:: c++
1601
Craig Topper50ad5b72013-08-03 17:40:38 +00001602 // identity operation - return 4-element vector v1.
1603 __builtin_shufflevector(v1, v1, 0, 1, 2, 3)
Sean Silva709c44d2012-12-12 23:44:55 +00001604
1605 // "Splat" element 0 of V1 into a 4-element result.
1606 __builtin_shufflevector(V1, V1, 0, 0, 0, 0)
1607
1608 // Reverse 4-element vector V1.
1609 __builtin_shufflevector(V1, V1, 3, 2, 1, 0)
1610
1611 // Concatenate every other element of 4-element vectors V1 and V2.
1612 __builtin_shufflevector(V1, V2, 0, 2, 4, 6)
1613
1614 // Concatenate every other element of 8-element vectors V1 and V2.
1615 __builtin_shufflevector(V1, V2, 0, 2, 4, 6, 8, 10, 12, 14)
1616
Craig Topper50ad5b72013-08-03 17:40:38 +00001617 // Shuffle v1 with some elements being undefined
1618 __builtin_shufflevector(v1, v1, 3, -1, 1, -1)
1619
Sean Silva709c44d2012-12-12 23:44:55 +00001620**Description**:
1621
1622The first two arguments to ``__builtin_shufflevector`` are vectors that have
1623the same element type. The remaining arguments are a list of integers that
1624specify the elements indices of the first two vectors that should be extracted
1625and returned in a new vector. These element indices are numbered sequentially
1626starting with the first vector, continuing into the second vector. Thus, if
1627``vec1`` is a 4-element vector, index 5 would refer to the second element of
Craig Topper50ad5b72013-08-03 17:40:38 +00001628``vec2``. An index of -1 can be used to indicate that the corresponding element
1629in the returned vector is a don't care and can be optimized by the backend.
Sean Silva709c44d2012-12-12 23:44:55 +00001630
1631The result of ``__builtin_shufflevector`` is a vector with the same element
1632type as ``vec1``/``vec2`` but that has an element count equal to the number of
1633indices specified.
1634
1635Query for this feature with ``__has_builtin(__builtin_shufflevector)``.
1636
Hal Finkelc4d7c822013-09-18 03:29:45 +00001637``__builtin_convertvector``
1638---------------------------
1639
1640``__builtin_convertvector`` is used to express generic vector
1641type-conversion operations. The input vector and the output vector
1642type must have the same number of elements.
1643
1644**Syntax**:
1645
1646.. code-block:: c++
1647
1648 __builtin_convertvector(src_vec, dst_vec_type)
1649
1650**Examples**:
1651
1652.. code-block:: c++
1653
1654 typedef double vector4double __attribute__((__vector_size__(32)));
1655 typedef float vector4float __attribute__((__vector_size__(16)));
1656 typedef short vector4short __attribute__((__vector_size__(8)));
1657 vector4float vf; vector4short vs;
1658
1659 // convert from a vector of 4 floats to a vector of 4 doubles.
1660 __builtin_convertvector(vf, vector4double)
1661 // equivalent to:
1662 (vector4double) { (double) vf[0], (double) vf[1], (double) vf[2], (double) vf[3] }
1663
1664 // convert from a vector of 4 shorts to a vector of 4 floats.
1665 __builtin_convertvector(vs, vector4float)
1666 // equivalent to:
1667 (vector4float) { (float) vf[0], (float) vf[1], (float) vf[2], (float) vf[3] }
1668
1669**Description**:
1670
1671The first argument to ``__builtin_convertvector`` is a vector, and the second
1672argument is a vector type with the same number of elements as the first
1673argument.
1674
1675The result of ``__builtin_convertvector`` is a vector with the same element
1676type as the second argument, with a value defined in terms of the action of a
1677C-style cast applied to each element of the first argument.
1678
1679Query for this feature with ``__has_builtin(__builtin_convertvector)``.
1680
Sean Silva709c44d2012-12-12 23:44:55 +00001681``__builtin_unreachable``
1682-------------------------
1683
1684``__builtin_unreachable`` is used to indicate that a specific point in the
1685program cannot be reached, even if the compiler might otherwise think it can.
1686This is useful to improve optimization and eliminates certain warnings. For
1687example, without the ``__builtin_unreachable`` in the example below, the
1688compiler assumes that the inline asm can fall through and prints a "function
1689declared '``noreturn``' should not return" warning.
1690
1691**Syntax**:
1692
1693.. code-block:: c++
1694
1695 __builtin_unreachable()
1696
1697**Example of use**:
1698
1699.. code-block:: c++
1700
1701 void myabort(void) __attribute__((noreturn));
1702 void myabort(void) {
1703 asm("int3");
1704 __builtin_unreachable();
1705 }
1706
1707**Description**:
1708
1709The ``__builtin_unreachable()`` builtin has completely undefined behavior.
1710Since it has undefined behavior, it is a statement that it is never reached and
1711the optimizer can take advantage of this to produce better code. This builtin
1712takes no arguments and produces a void result.
1713
1714Query for this feature with ``__has_builtin(__builtin_unreachable)``.
1715
1716``__sync_swap``
1717---------------
1718
1719``__sync_swap`` is used to atomically swap integers or pointers in memory.
1720
1721**Syntax**:
1722
1723.. code-block:: c++
1724
1725 type __sync_swap(type *ptr, type value, ...)
1726
1727**Example of Use**:
1728
1729.. code-block:: c++
1730
1731 int old_value = __sync_swap(&value, new_value);
1732
1733**Description**:
1734
1735The ``__sync_swap()`` builtin extends the existing ``__sync_*()`` family of
1736atomic intrinsics to allow code to atomically swap the current value with the
1737new value. More importantly, it helps developers write more efficient and
1738correct code by avoiding expensive loops around
1739``__sync_bool_compare_and_swap()`` or relying on the platform specific
1740implementation details of ``__sync_lock_test_and_set()``. The
1741``__sync_swap()`` builtin is a full barrier.
1742
Richard Smith6cbd65d2013-07-11 02:27:57 +00001743``__builtin_addressof``
1744-----------------------
1745
1746``__builtin_addressof`` performs the functionality of the built-in ``&``
1747operator, ignoring any ``operator&`` overload. This is useful in constant
1748expressions in C++11, where there is no other way to take the address of an
1749object that overloads ``operator&``.
1750
1751**Example of use**:
1752
1753.. code-block:: c++
1754
1755 template<typename T> constexpr T *addressof(T &value) {
1756 return __builtin_addressof(value);
1757 }
1758
Michael Gottesmanc5cc9f12013-01-13 04:35:31 +00001759Multiprecision Arithmetic Builtins
1760----------------------------------
1761
1762Clang provides a set of builtins which expose multiprecision arithmetic in a
1763manner amenable to C. They all have the following form:
1764
1765.. code-block:: c
1766
1767 unsigned x = ..., y = ..., carryin = ..., carryout;
1768 unsigned sum = __builtin_addc(x, y, carryin, &carryout);
1769
1770Thus one can form a multiprecision addition chain in the following manner:
1771
1772.. code-block:: c
1773
1774 unsigned *x, *y, *z, carryin=0, carryout;
1775 z[0] = __builtin_addc(x[0], y[0], carryin, &carryout);
1776 carryin = carryout;
1777 z[1] = __builtin_addc(x[1], y[1], carryin, &carryout);
1778 carryin = carryout;
1779 z[2] = __builtin_addc(x[2], y[2], carryin, &carryout);
1780 carryin = carryout;
1781 z[3] = __builtin_addc(x[3], y[3], carryin, &carryout);
1782
1783The complete list of builtins are:
1784
1785.. code-block:: c
1786
Michael Gottesman15343992013-06-18 20:40:40 +00001787 unsigned char __builtin_addcb (unsigned char x, unsigned char y, unsigned char carryin, unsigned char *carryout);
Michael Gottesmanc5cc9f12013-01-13 04:35:31 +00001788 unsigned short __builtin_addcs (unsigned short x, unsigned short y, unsigned short carryin, unsigned short *carryout);
1789 unsigned __builtin_addc (unsigned x, unsigned y, unsigned carryin, unsigned *carryout);
1790 unsigned long __builtin_addcl (unsigned long x, unsigned long y, unsigned long carryin, unsigned long *carryout);
1791 unsigned long long __builtin_addcll(unsigned long long x, unsigned long long y, unsigned long long carryin, unsigned long long *carryout);
Michael Gottesman15343992013-06-18 20:40:40 +00001792 unsigned char __builtin_subcb (unsigned char x, unsigned char y, unsigned char carryin, unsigned char *carryout);
Michael Gottesmanc5cc9f12013-01-13 04:35:31 +00001793 unsigned short __builtin_subcs (unsigned short x, unsigned short y, unsigned short carryin, unsigned short *carryout);
1794 unsigned __builtin_subc (unsigned x, unsigned y, unsigned carryin, unsigned *carryout);
1795 unsigned long __builtin_subcl (unsigned long x, unsigned long y, unsigned long carryin, unsigned long *carryout);
1796 unsigned long long __builtin_subcll(unsigned long long x, unsigned long long y, unsigned long long carryin, unsigned long long *carryout);
1797
Michael Gottesman930ecdb2013-06-20 23:28:10 +00001798Checked Arithmetic Builtins
1799---------------------------
1800
1801Clang provides a set of builtins that implement checked arithmetic for security
1802critical applications in a manner that is fast and easily expressable in C. As
1803an example of their usage:
1804
1805.. code-block:: c
1806
1807 errorcode_t security_critical_application(...) {
1808 unsigned x, y, result;
1809 ...
1810 if (__builtin_umul_overflow(x, y, &result))
1811 return kErrorCodeHackers;
1812 ...
1813 use_multiply(result);
1814 ...
1815 }
1816
1817A complete enumeration of the builtins are:
1818
1819.. code-block:: c
1820
1821 bool __builtin_uadd_overflow (unsigned x, unsigned y, unsigned *sum);
1822 bool __builtin_uaddl_overflow (unsigned long x, unsigned long y, unsigned long *sum);
1823 bool __builtin_uaddll_overflow(unsigned long long x, unsigned long long y, unsigned long long *sum);
1824 bool __builtin_usub_overflow (unsigned x, unsigned y, unsigned *diff);
1825 bool __builtin_usubl_overflow (unsigned long x, unsigned long y, unsigned long *diff);
1826 bool __builtin_usubll_overflow(unsigned long long x, unsigned long long y, unsigned long long *diff);
1827 bool __builtin_umul_overflow (unsigned x, unsigned y, unsigned *prod);
1828 bool __builtin_umull_overflow (unsigned long x, unsigned long y, unsigned long *prod);
1829 bool __builtin_umulll_overflow(unsigned long long x, unsigned long long y, unsigned long long *prod);
1830 bool __builtin_sadd_overflow (int x, int y, int *sum);
1831 bool __builtin_saddl_overflow (long x, long y, long *sum);
1832 bool __builtin_saddll_overflow(long long x, long long y, long long *sum);
1833 bool __builtin_ssub_overflow (int x, int y, int *diff);
1834 bool __builtin_ssubl_overflow (long x, long y, long *diff);
1835 bool __builtin_ssubll_overflow(long long x, long long y, long long *diff);
1836 bool __builtin_smul_overflow (int x, int y, int *prod);
1837 bool __builtin_smull_overflow (long x, long y, long *prod);
1838 bool __builtin_smulll_overflow(long long x, long long y, long long *prod);
1839
1840
Sean Silva709c44d2012-12-12 23:44:55 +00001841.. _langext-__c11_atomic:
1842
1843__c11_atomic builtins
1844---------------------
1845
1846Clang provides a set of builtins which are intended to be used to implement
1847C11's ``<stdatomic.h>`` header. These builtins provide the semantics of the
1848``_explicit`` form of the corresponding C11 operation, and are named with a
1849``__c11_`` prefix. The supported operations are:
1850
1851* ``__c11_atomic_init``
1852* ``__c11_atomic_thread_fence``
1853* ``__c11_atomic_signal_fence``
1854* ``__c11_atomic_is_lock_free``
1855* ``__c11_atomic_store``
1856* ``__c11_atomic_load``
1857* ``__c11_atomic_exchange``
1858* ``__c11_atomic_compare_exchange_strong``
1859* ``__c11_atomic_compare_exchange_weak``
1860* ``__c11_atomic_fetch_add``
1861* ``__c11_atomic_fetch_sub``
1862* ``__c11_atomic_fetch_and``
1863* ``__c11_atomic_fetch_or``
1864* ``__c11_atomic_fetch_xor``
1865
Tim Northover6aacd492013-07-16 09:47:53 +00001866Low-level ARM exclusive memory builtins
1867---------------------------------------
1868
1869Clang provides overloaded builtins giving direct access to the three key ARM
1870instructions for implementing atomic operations.
1871
1872.. code-block:: c
Sean Silvaa928c242013-09-09 19:50:40 +00001873
Tim Northover6aacd492013-07-16 09:47:53 +00001874 T __builtin_arm_ldrex(const volatile T *addr);
1875 int __builtin_arm_strex(T val, volatile T *addr);
1876 void __builtin_arm_clrex(void);
1877
1878The types ``T`` currently supported are:
1879* Integer types with width at most 64 bits.
1880* Floating-point types
1881* Pointer types.
1882
1883Note that the compiler does not guarantee it will not insert stores which clear
1884the exclusive monitor in between an ``ldrex`` and its paired ``strex``. In
1885practice this is only usually a risk when the extra store is on the same cache
1886line as the variable being modified and Clang will only insert stack stores on
1887its own, so it is best not to use these operations on variables with automatic
1888storage duration.
1889
1890Also, loads and stores may be implicit in code written between the ``ldrex`` and
1891``strex``. Clang will not necessarily mitigate the effects of these either, so
1892care should be exercised.
1893
1894For these reasons the higher level atomic primitives should be preferred where
1895possible.
1896
Sean Silva709c44d2012-12-12 23:44:55 +00001897Non-standard C++11 Attributes
1898=============================
1899
Richard Smithf6d2d3b2013-02-14 00:13:34 +00001900Clang's non-standard C++11 attributes live in the ``clang`` attribute
1901namespace.
Sean Silva709c44d2012-12-12 23:44:55 +00001902
1903The ``clang::fallthrough`` attribute
1904------------------------------------
1905
1906The ``clang::fallthrough`` attribute is used along with the
1907``-Wimplicit-fallthrough`` argument to annotate intentional fall-through
1908between switch labels. It can only be applied to a null statement placed at a
1909point of execution between any statement and the next switch label. It is
1910common to mark these places with a specific comment, but this attribute is
1911meant to replace comments with a more strict annotation, which can be checked
1912by the compiler. This attribute doesn't change semantics of the code and can
1913be used wherever an intended fall-through occurs. It is designed to mimic
1914control-flow statements like ``break;``, so it can be placed in most places
1915where ``break;`` can, but only if there are no statements on the execution path
1916between it and the next switch label.
1917
1918Here is an example:
1919
1920.. code-block:: c++
1921
1922 // compile with -Wimplicit-fallthrough
1923 switch (n) {
1924 case 22:
1925 case 33: // no warning: no statements between case labels
1926 f();
1927 case 44: // warning: unannotated fall-through
1928 g();
1929 [[clang::fallthrough]];
1930 case 55: // no warning
1931 if (x) {
1932 h();
1933 break;
1934 }
1935 else {
1936 i();
1937 [[clang::fallthrough]];
1938 }
1939 case 66: // no warning
1940 p();
1941 [[clang::fallthrough]]; // warning: fallthrough annotation does not
1942 // directly precede case label
1943 q();
1944 case 77: // warning: unannotated fall-through
1945 r();
1946 }
1947
Richard Smithf6d2d3b2013-02-14 00:13:34 +00001948``gnu::`` attributes
1949--------------------
1950
1951Clang also supports GCC's ``gnu`` attribute namespace. All GCC attributes which
1952are accepted with the ``__attribute__((foo))`` syntax are also accepted as
1953``[[gnu::foo]]``. This only extends to attributes which are specified by GCC
1954(see the list of `GCC function attributes
1955<http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html>`_, `GCC variable
1956attributes <http://gcc.gnu.org/onlinedocs/gcc/Variable-Attributes.html>`_, and
1957`GCC type attributes
Richard Smithccfc9ff2013-07-11 00:27:05 +00001958<http://gcc.gnu.org/onlinedocs/gcc/Type-Attributes.html>`_). As with the GCC
Richard Smithf6d2d3b2013-02-14 00:13:34 +00001959implementation, these attributes must appertain to the *declarator-id* in a
1960declaration, which means they must go either at the start of the declaration or
1961immediately after the name being declared.
1962
1963For example, this applies the GNU ``unused`` attribute to ``a`` and ``f``, and
1964also applies the GNU ``noreturn`` attribute to ``f``.
1965
1966.. code-block:: c++
1967
1968 [[gnu::unused]] int a, f [[gnu::noreturn]] ();
1969
Sean Silva709c44d2012-12-12 23:44:55 +00001970Target-Specific Extensions
1971==========================
1972
1973Clang supports some language features conditionally on some targets.
1974
1975X86/X86-64 Language Extensions
1976------------------------------
1977
1978The X86 backend has these language extensions:
1979
1980Memory references off the GS segment
1981^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1982
1983Annotating a pointer with address space #256 causes it to be code generated
1984relative to the X86 GS segment register, and address space #257 causes it to be
1985relative to the X86 FS segment. Note that this is a very very low-level
1986feature that should only be used if you know what you're doing (for example in
1987an OS kernel).
1988
1989Here is an example:
1990
1991.. code-block:: c++
1992
1993 #define GS_RELATIVE __attribute__((address_space(256)))
1994 int foo(int GS_RELATIVE *P) {
1995 return *P;
1996 }
1997
1998Which compiles to (on X86-32):
1999
2000.. code-block:: gas
2001
2002 _foo:
2003 movl 4(%esp), %eax
2004 movl %gs:(%eax), %eax
2005 ret
2006
Tim Northovera484bc02013-10-01 14:34:25 +00002007ARM Language Extensions
2008-----------------------
2009
2010Interrupt attribute
2011^^^^^^^^^^^^^^^^^^^
2012
Alp Toker3b557ba2013-12-03 06:53:39 +00002013Clang supports the GNU style ``__attribute__((interrupt("TYPE")))`` attribute on
2014ARM targets. This attribute may be attached to a function definition and
Tim Northovera484bc02013-10-01 14:34:25 +00002015instructs the backend to generate appropriate function entry/exit code so that
2016it can be used directly as an interrupt service routine.
2017
DeLesley Hutchinsc51e08c2014-02-18 19:42:01 +00002018The parameter passed to the interrupt attribute is optional, but if
Tim Northovera484bc02013-10-01 14:34:25 +00002019provided it must be a string literal with one of the following values: "IRQ",
2020"FIQ", "SWI", "ABORT", "UNDEF".
2021
2022The semantics are as follows:
2023
2024- If the function is AAPCS, Clang instructs the backend to realign the stack to
2025 8 bytes on entry. This is a general requirement of the AAPCS at public
2026 interfaces, but may not hold when an exception is taken. Doing this allows
2027 other AAPCS functions to be called.
2028- If the CPU is M-class this is all that needs to be done since the architecture
2029 itself is designed in such a way that functions obeying the normal AAPCS ABI
2030 constraints are valid exception handlers.
2031- If the CPU is not M-class, the prologue and epilogue are modified to save all
2032 non-banked registers that are used, so that upon return the user-mode state
2033 will not be corrupted. Note that to avoid unnecessary overhead, only
2034 general-purpose (integer) registers are saved in this way. If VFP operations
2035 are needed, that state must be saved manually.
2036
2037 Specifically, interrupt kinds other than "FIQ" will save all core registers
2038 except "lr" and "sp". "FIQ" interrupts will save r0-r7.
2039- If the CPU is not M-class, the return instruction is changed to one of the
2040 canonical sequences permitted by the architecture for exception return. Where
2041 possible the function itself will make the necessary "lr" adjustments so that
2042 the "preferred return address" is selected.
2043
Tim Northovera77b7b82013-10-01 14:39:43 +00002044 Unfortunately the compiler is unable to make this guarantee for an "UNDEF"
Tim Northovera484bc02013-10-01 14:34:25 +00002045 handler, where the offset from "lr" to the preferred return address depends on
2046 the execution state of the code which generated the exception. In this case
2047 a sequence equivalent to "movs pc, lr" will be used.
2048
Jordan Rose32e94892012-12-15 00:37:01 +00002049Extensions for Static Analysis
Dmitri Gribenkoace09a22012-12-15 14:25:25 +00002050==============================
Sean Silva709c44d2012-12-12 23:44:55 +00002051
2052Clang supports additional attributes that are useful for documenting program
Jordan Rose32e94892012-12-15 00:37:01 +00002053invariants and rules for static analysis tools, such as the `Clang Static
2054Analyzer <http://clang-analyzer.llvm.org/>`_. These attributes are documented
2055in the analyzer's `list of source-level annotations
2056<http://clang-analyzer.llvm.org/annotations.html>`_.
Sean Silva709c44d2012-12-12 23:44:55 +00002057
Sean Silva709c44d2012-12-12 23:44:55 +00002058
Jordan Rose32e94892012-12-15 00:37:01 +00002059Extensions for Dynamic Analysis
Dmitri Gribenkoace09a22012-12-15 14:25:25 +00002060===============================
Sean Silva709c44d2012-12-12 23:44:55 +00002061
2062.. _langext-address_sanitizer:
2063
2064AddressSanitizer
2065----------------
2066
2067Use ``__has_feature(address_sanitizer)`` to check if the code is being built
Dmitri Gribenkoace09a22012-12-15 14:25:25 +00002068with :doc:`AddressSanitizer`.
Sean Silva709c44d2012-12-12 23:44:55 +00002069
Kostya Serebryany4c0fc992013-02-26 06:58:27 +00002070Use ``__attribute__((no_sanitize_address))``
2071on a function declaration
Sean Silva709c44d2012-12-12 23:44:55 +00002072to specify that address safety instrumentation (e.g. AddressSanitizer) should
2073not be applied to that function.
2074
Kostya Serebryany4c0fc992013-02-26 06:58:27 +00002075.. _langext-thread_sanitizer:
2076
2077ThreadSanitizer
2078----------------
2079
2080Use ``__has_feature(thread_sanitizer)`` to check if the code is being built
2081with :doc:`ThreadSanitizer`.
2082
2083Use ``__attribute__((no_sanitize_thread))`` on a function declaration
2084to specify that checks for data races on plain (non-atomic) memory accesses
2085should not be inserted by ThreadSanitizer.
Dmitry Vyukovae4ea1d2013-10-17 08:06:19 +00002086The function is still instrumented by the tool to avoid false positives and
2087provide meaningful stack traces.
Kostya Serebryany4c0fc992013-02-26 06:58:27 +00002088
2089.. _langext-memory_sanitizer:
2090
2091MemorySanitizer
2092----------------
2093Use ``__has_feature(memory_sanitizer)`` to check if the code is being built
2094with :doc:`MemorySanitizer`.
2095
2096Use ``__attribute__((no_sanitize_memory))`` on a function declaration
2097to specify that checks for uninitialized memory should not be inserted
2098(e.g. by MemorySanitizer). The function may still be instrumented by the tool
2099to avoid false positives in other places.
2100
2101
DeLesley Hutchinsc51e08c2014-02-18 19:42:01 +00002102Thread Safety Analysis
2103======================
Sean Silva709c44d2012-12-12 23:44:55 +00002104
DeLesley Hutchinsc51e08c2014-02-18 19:42:01 +00002105Clang Thread Safety Analysis is a C++ language extension which warns about
2106potential race conditions in code. The analysis works very much like a type
2107system for multi-threaded programs. In addition to declaring the *type* of
2108data (e.g. ``int``, ``float``, etc.), the programmer can (optionally) declare
2109how access to that data is controlled in a multi-threaded environment. The
2110compiler will then issue warnings whenever code fails to follow obey the
2111declared requirements.
Sean Silva709c44d2012-12-12 23:44:55 +00002112
DeLesley Hutchinsc51e08c2014-02-18 19:42:01 +00002113The complete list of thread safety attributes, along with examples and
2114frequently asked questions, can be found in the main documentation: see
2115:doc:`ThreadSafetyAnalysis`.
Sean Silva709c44d2012-12-12 23:44:55 +00002116
Sean Silva709c44d2012-12-12 23:44:55 +00002117
DeLesley Hutchinsc2ecf0d2013-08-22 20:44:47 +00002118Consumed Annotation Checking
2119============================
2120
2121Clang supports additional attributes for checking basic resource management
2122properties, specifically for unique objects that have a single owning reference.
2123The following attributes are currently supported, although **the implementation
2124for these annotations is currently in development and are subject to change.**
2125
Chris Wailes155df712013-10-21 20:54:06 +00002126``consumable``
2127--------------
DeLesley Hutchinsc2ecf0d2013-08-22 20:44:47 +00002128
Chris Wailes155df712013-10-21 20:54:06 +00002129Each class that uses any of the following annotations must first be marked
2130using the consumable attribute. Failure to do so will result in a warning.
DeLesley Hutchinsc2ecf0d2013-08-22 20:44:47 +00002131
Chris Wailes155df712013-10-21 20:54:06 +00002132``set_typestate(new_state)``
DeLesley Hutchinsc2ecf0d2013-08-22 20:44:47 +00002133----------------------------
2134
Chris Wailes155df712013-10-21 20:54:06 +00002135Annotate methods that transition an object into a new state with
2136``__attribute__((set_typestate(new_state)))``. The new new state must be
2137unconsumed, consumed, or unknown.
DeLesley Hutchinsc2ecf0d2013-08-22 20:44:47 +00002138
Chris Wailes155df712013-10-21 20:54:06 +00002139``callable_when(...)``
2140----------------------
DeLesley Hutchinsc2ecf0d2013-08-22 20:44:47 +00002141
Chris Wailes155df712013-10-21 20:54:06 +00002142Use ``__attribute__((callable_when(...)))`` to indicate what states a method
2143may be called in. Valid states are unconsumed, consumed, or unknown. Each
2144argument to this attribute must be a quoted string. E.g.:
DeLesley Hutchinsc2ecf0d2013-08-22 20:44:47 +00002145
Chris Wailes155df712013-10-21 20:54:06 +00002146``__attribute__((callable_when("unconsumed", "unknown")))``
2147
2148``tests_typestate(tested_state)``
2149---------------------------------
2150
2151Use ``__attribute__((tests_typestate(tested_state)))`` to indicate that a method
2152returns true if the object is in the specified state..
2153
2154``param_typestate(expected_state)``
2155-----------------------------------
2156
2157This attribute specifies expectations about function parameters. Calls to an
2158function with annotated parameters will issue a warning if the corresponding
2159argument isn't in the expected state. The attribute is also used to set the
2160initial state of the parameter when analyzing the function's body.
2161
2162``return_typestate(ret_state)``
2163-------------------------------
2164
2165The ``return_typestate`` attribute can be applied to functions or parameters.
2166When applied to a function the attribute specifies the state of the returned
2167value. The function's body is checked to ensure that it always returns a value
2168in the specified state. On the caller side, values returned by the annotated
2169function are initialized to the given state.
2170
2171If the attribute is applied to a function parameter it modifies the state of
2172an argument after a call to the function returns. The function's body is
2173checked to ensure that the parameter is in the expected state before returning.
DeLesley Hutchinsc2ecf0d2013-08-22 20:44:47 +00002174
Sean Silva709c44d2012-12-12 23:44:55 +00002175Type Safety Checking
2176====================
2177
2178Clang supports additional attributes to enable checking type safety properties
Richard Smith36ee4fc2013-07-11 00:34:42 +00002179that can't be enforced by the C type system. Use cases include:
Sean Silva709c44d2012-12-12 23:44:55 +00002180
2181* MPI library implementations, where these attributes enable checking that
Richard Smith36ee4fc2013-07-11 00:34:42 +00002182 the buffer type matches the passed ``MPI_Datatype``;
2183* for HDF5 library there is a similar use case to MPI;
Sean Silva709c44d2012-12-12 23:44:55 +00002184* checking types of variadic functions' arguments for functions like
2185 ``fcntl()`` and ``ioctl()``.
2186
2187You can detect support for these attributes with ``__has_attribute()``. For
2188example:
2189
2190.. code-block:: c++
2191
2192 #if defined(__has_attribute)
2193 # if __has_attribute(argument_with_type_tag) && \
2194 __has_attribute(pointer_with_type_tag) && \
2195 __has_attribute(type_tag_for_datatype)
2196 # define ATTR_MPI_PWT(buffer_idx, type_idx) __attribute__((pointer_with_type_tag(mpi,buffer_idx,type_idx)))
2197 /* ... other macros ... */
2198 # endif
2199 #endif
2200
2201 #if !defined(ATTR_MPI_PWT)
2202 # define ATTR_MPI_PWT(buffer_idx, type_idx)
2203 #endif
2204
2205 int MPI_Send(void *buf, int count, MPI_Datatype datatype /*, other args omitted */)
2206 ATTR_MPI_PWT(1,3);
2207
2208``argument_with_type_tag(...)``
2209-------------------------------
2210
2211Use ``__attribute__((argument_with_type_tag(arg_kind, arg_idx,
2212type_tag_idx)))`` on a function declaration to specify that the function
2213accepts a type tag that determines the type of some other argument.
2214``arg_kind`` is an identifier that should be used when annotating all
2215applicable type tags.
2216
2217This attribute is primarily useful for checking arguments of variadic functions
Richard Smith36ee4fc2013-07-11 00:34:42 +00002218(``pointer_with_type_tag`` can be used in most non-variadic cases).
Sean Silva709c44d2012-12-12 23:44:55 +00002219
2220For example:
2221
2222.. code-block:: c++
2223
2224 int fcntl(int fd, int cmd, ...)
2225 __attribute__(( argument_with_type_tag(fcntl,3,2) ));
2226
2227``pointer_with_type_tag(...)``
2228------------------------------
2229
2230Use ``__attribute__((pointer_with_type_tag(ptr_kind, ptr_idx, type_tag_idx)))``
2231on a function declaration to specify that the function accepts a type tag that
2232determines the pointee type of some other pointer argument.
2233
2234For example:
2235
2236.. code-block:: c++
2237
2238 int MPI_Send(void *buf, int count, MPI_Datatype datatype /*, other args omitted */)
2239 __attribute__(( pointer_with_type_tag(mpi,1,3) ));
2240
2241``type_tag_for_datatype(...)``
2242------------------------------
2243
2244Clang supports annotating type tags of two forms.
2245
2246* **Type tag that is an expression containing a reference to some declared
2247 identifier.** Use ``__attribute__((type_tag_for_datatype(kind, type)))`` on a
2248 declaration with that identifier:
2249
2250 .. code-block:: c++
2251
2252 extern struct mpi_datatype mpi_datatype_int
2253 __attribute__(( type_tag_for_datatype(mpi,int) ));
2254 #define MPI_INT ((MPI_Datatype) &mpi_datatype_int)
2255
2256* **Type tag that is an integral literal.** Introduce a ``static const``
2257 variable with a corresponding initializer value and attach
2258 ``__attribute__((type_tag_for_datatype(kind, type)))`` on that declaration,
2259 for example:
2260
2261 .. code-block:: c++
2262
2263 #define MPI_INT ((MPI_Datatype) 42)
2264 static const MPI_Datatype mpi_datatype_int
2265 __attribute__(( type_tag_for_datatype(mpi,int) )) = 42
2266
2267The attribute also accepts an optional third argument that determines how the
2268expression is compared to the type tag. There are two supported flags:
2269
2270* ``layout_compatible`` will cause types to be compared according to
2271 layout-compatibility rules (C++11 [class.mem] p 17, 18). This is
2272 implemented to support annotating types like ``MPI_DOUBLE_INT``.
2273
2274 For example:
2275
2276 .. code-block:: c++
2277
2278 /* In mpi.h */
2279 struct internal_mpi_double_int { double d; int i; };
2280 extern struct mpi_datatype mpi_datatype_double_int
2281 __attribute__(( type_tag_for_datatype(mpi, struct internal_mpi_double_int, layout_compatible) ));
2282
2283 #define MPI_DOUBLE_INT ((MPI_Datatype) &mpi_datatype_double_int)
2284
2285 /* In user code */
2286 struct my_pair { double a; int b; };
2287 struct my_pair *buffer;
2288 MPI_Send(buffer, 1, MPI_DOUBLE_INT /*, ... */); // no warning
2289
2290 struct my_int_pair { int a; int b; }
2291 struct my_int_pair *buffer2;
2292 MPI_Send(buffer2, 1, MPI_DOUBLE_INT /*, ... */); // warning: actual buffer element
2293 // type 'struct my_int_pair'
2294 // doesn't match specified MPI_Datatype
2295
2296* ``must_be_null`` specifies that the expression should be a null pointer
2297 constant, for example:
2298
2299 .. code-block:: c++
2300
2301 /* In mpi.h */
2302 extern struct mpi_datatype mpi_datatype_null
2303 __attribute__(( type_tag_for_datatype(mpi, void, must_be_null) ));
2304
2305 #define MPI_DATATYPE_NULL ((MPI_Datatype) &mpi_datatype_null)
2306
2307 /* In user code */
2308 MPI_Send(buffer, 1, MPI_DATATYPE_NULL /*, ... */); // warning: MPI_DATATYPE_NULL
2309 // was specified but buffer
2310 // is not a null pointer
2311
Dmitri Gribenkodc81f512013-01-13 16:37:18 +00002312Format String Checking
2313======================
2314
2315Clang supports the ``format`` attribute, which indicates that the function
2316accepts a ``printf`` or ``scanf``-like format string and corresponding
2317arguments or a ``va_list`` that contains these arguments.
2318
2319Please see `GCC documentation about format attribute
2320<http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html>`_ to find details
2321about attribute syntax.
2322
2323Clang implements two kinds of checks with this attribute.
2324
2325#. Clang checks that the function with the ``format`` attribute is called with
2326 a format string that uses format specifiers that are allowed, and that
2327 arguments match the format string. This is the ``-Wformat`` warning, it is
2328 on by default.
2329
2330#. Clang checks that the format string argument is a literal string. This is
2331 the ``-Wformat-nonliteral`` warning, it is off by default.
2332
2333 Clang implements this mostly the same way as GCC, but there is a difference
2334 for functions that accept a ``va_list`` argument (for example, ``vprintf``).
2335 GCC does not emit ``-Wformat-nonliteral`` warning for calls to such
2336 fuctions. Clang does not warn if the format string comes from a function
Richard Smithfabbcd92013-02-14 00:22:00 +00002337 parameter, where the function is annotated with a compatible attribute,
Dmitri Gribenkodc81f512013-01-13 16:37:18 +00002338 otherwise it warns. For example:
2339
2340 .. code-block:: c
2341
2342 __attribute__((__format__ (__scanf__, 1, 3)))
2343 void foo(const char* s, char *buf, ...) {
2344 va_list ap;
2345 va_start(ap, buf);
2346
2347 vprintf(s, ap); // warning: format string is not a string literal
2348 }
2349
2350 In this case we warn because ``s`` contains a format string for a
Richard Smithfabbcd92013-02-14 00:22:00 +00002351 ``scanf``-like function, but it is passed to a ``printf``-like function.
Dmitri Gribenkodc81f512013-01-13 16:37:18 +00002352
2353 If the attribute is removed, clang still warns, because the format string is
2354 not a string literal.
2355
Richard Smithfabbcd92013-02-14 00:22:00 +00002356 Another example:
Dmitri Gribenkodc81f512013-01-13 16:37:18 +00002357
Richard Smithd06a8702013-02-14 00:23:04 +00002358 .. code-block:: c
Dmitri Gribenkodc81f512013-01-13 16:37:18 +00002359
2360 __attribute__((__format__ (__printf__, 1, 3)))
2361 void foo(const char* s, char *buf, ...) {
2362 va_list ap;
2363 va_start(ap, buf);
2364
2365 vprintf(s, ap); // warning
2366 }
2367
Richard Smithfabbcd92013-02-14 00:22:00 +00002368 In this case Clang does not warn because the format string ``s`` and
2369 the corresponding arguments are annotated. If the arguments are
2370 incorrect, the caller of ``foo`` will receive a warning.