blob: c08667022b2588382cbc5dfb87bdab828409e4ef [file] [log] [blame]
Chandler Carruthbf71a342014-02-06 04:37:03 +00001//===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "llvm/Analysis/LazyCallGraph.h"
Chandler Carruth11b3f602016-09-04 08:34:31 +000011#include "llvm/ADT/ScopeExit.h"
Chandler Carruth49d728a2016-09-16 10:20:17 +000012#include "llvm/ADT/Sequence.h"
Chandler Carruth18eadd922014-04-18 10:50:32 +000013#include "llvm/ADT/STLExtras.h"
Chandler Carruth86f0bdf2016-12-09 00:46:44 +000014#include "llvm/ADT/ScopeExit.h"
Chandler Carruth219b89b2014-03-04 11:01:28 +000015#include "llvm/IR/CallSite.h"
Chandler Carruth7da14f12014-03-06 03:23:41 +000016#include "llvm/IR/InstVisitor.h"
Chandler Carruthbf71a342014-02-06 04:37:03 +000017#include "llvm/IR/Instructions.h"
18#include "llvm/IR/PassManager.h"
Chandler Carruth99b756d2014-04-21 05:04:24 +000019#include "llvm/Support/Debug.h"
Sean Silva7cb30662016-06-18 09:17:32 +000020#include "llvm/Support/GraphWriter.h"
Chandler Carruthbf71a342014-02-06 04:37:03 +000021
22using namespace llvm;
23
Chandler Carruthf1221bd2014-04-22 02:48:03 +000024#define DEBUG_TYPE "lcg"
25
Chandler Carrutha4499e92016-02-02 03:57:13 +000026static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges,
Chandler Carruthe5944d92016-02-17 00:18:16 +000027 DenseMap<Function *, int> &EdgeIndexMap, Function &F,
Chandler Carrutha4499e92016-02-02 03:57:13 +000028 LazyCallGraph::Edge::Kind EK) {
Chandler Carruth86f0bdf2016-12-09 00:46:44 +000029 if (!EdgeIndexMap.insert({&F, Edges.size()}).second)
30 return;
31
32 DEBUG(dbgs() << " Added callable function: " << F.getName() << "\n");
33 Edges.emplace_back(LazyCallGraph::Edge(F, EK));
Chandler Carrutha4499e92016-02-02 03:57:13 +000034}
35
Chandler Carruth18eadd922014-04-18 10:50:32 +000036LazyCallGraph::Node::Node(LazyCallGraph &G, Function &F)
37 : G(&G), F(F), DFSNumber(0), LowLink(0) {
Chandler Carruth99b756d2014-04-21 05:04:24 +000038 DEBUG(dbgs() << " Adding functions called by '" << F.getName()
39 << "' to the graph.\n");
40
Chandler Carruthbf71a342014-02-06 04:37:03 +000041 SmallVector<Constant *, 16> Worklist;
Chandler Carrutha4499e92016-02-02 03:57:13 +000042 SmallPtrSet<Function *, 4> Callees;
Chandler Carruthbf71a342014-02-06 04:37:03 +000043 SmallPtrSet<Constant *, 16> Visited;
Chandler Carrutha4499e92016-02-02 03:57:13 +000044
45 // Find all the potential call graph edges in this function. We track both
46 // actual call edges and indirect references to functions. The direct calls
47 // are trivially added, but to accumulate the latter we walk the instructions
48 // and add every operand which is a constant to the worklist to process
49 // afterward.
Chandler Carruth86f0bdf2016-12-09 00:46:44 +000050 //
51 // Note that we consider *any* function with a definition to be a viable
52 // edge. Even if the function's definition is subject to replacement by
53 // some other module (say, a weak definition) there may still be
54 // optimizations which essentially speculate based on the definition and
55 // a way to check that the specific definition is in fact the one being
56 // used. For example, this could be done by moving the weak definition to
57 // a strong (internal) definition and making the weak definition be an
58 // alias. Then a test of the address of the weak function against the new
59 // strong definition's address would be an effective way to determine the
60 // safety of optimizing a direct call edge.
Chandler Carruthb9e2f8c2014-03-09 12:20:34 +000061 for (BasicBlock &BB : F)
Chandler Carrutha4499e92016-02-02 03:57:13 +000062 for (Instruction &I : BB) {
63 if (auto CS = CallSite(&I))
64 if (Function *Callee = CS.getCalledFunction())
Chandler Carruth86f0bdf2016-12-09 00:46:44 +000065 if (!Callee->isDeclaration())
66 if (Callees.insert(Callee).second) {
67 Visited.insert(Callee);
68 addEdge(Edges, EdgeIndexMap, *Callee, LazyCallGraph::Edge::Call);
69 }
Chandler Carrutha4499e92016-02-02 03:57:13 +000070
Chandler Carruthb9e2f8c2014-03-09 12:20:34 +000071 for (Value *Op : I.operand_values())
Chandler Carruth1583e992014-03-03 10:42:58 +000072 if (Constant *C = dyn_cast<Constant>(Op))
David Blaikie70573dc2014-11-19 07:49:26 +000073 if (Visited.insert(C).second)
Chandler Carruthbf71a342014-02-06 04:37:03 +000074 Worklist.push_back(C);
Chandler Carrutha4499e92016-02-02 03:57:13 +000075 }
Chandler Carruthbf71a342014-02-06 04:37:03 +000076
77 // We've collected all the constant (and thus potentially function or
78 // function containing) operands to all of the instructions in the function.
79 // Process them (recursively) collecting every function found.
Chandler Carruth88823462016-08-24 09:37:14 +000080 visitReferences(Worklist, Visited, [&](Function &F) {
81 addEdge(Edges, EdgeIndexMap, F, LazyCallGraph::Edge::Ref);
82 });
Chandler Carruthbf71a342014-02-06 04:37:03 +000083}
84
Chandler Carruthe5944d92016-02-17 00:18:16 +000085void LazyCallGraph::Node::insertEdgeInternal(Function &Target, Edge::Kind EK) {
86 if (Node *N = G->lookup(Target))
Chandler Carrutha4499e92016-02-02 03:57:13 +000087 return insertEdgeInternal(*N, EK);
Chandler Carruth5217c942014-04-30 10:48:36 +000088
Chandler Carruthe5944d92016-02-17 00:18:16 +000089 EdgeIndexMap.insert({&Target, Edges.size()});
90 Edges.emplace_back(Target, EK);
Chandler Carruth5217c942014-04-30 10:48:36 +000091}
92
Chandler Carruthe5944d92016-02-17 00:18:16 +000093void LazyCallGraph::Node::insertEdgeInternal(Node &TargetN, Edge::Kind EK) {
94 EdgeIndexMap.insert({&TargetN.getFunction(), Edges.size()});
95 Edges.emplace_back(TargetN, EK);
Chandler Carruthc00a7ff2014-04-28 11:10:23 +000096}
97
Chandler Carruthe5944d92016-02-17 00:18:16 +000098void LazyCallGraph::Node::setEdgeKind(Function &TargetF, Edge::Kind EK) {
99 Edges[EdgeIndexMap.find(&TargetF)->second].setKind(EK);
100}
101
102void LazyCallGraph::Node::removeEdgeInternal(Function &Target) {
103 auto IndexMapI = EdgeIndexMap.find(&Target);
Chandler Carrutha4499e92016-02-02 03:57:13 +0000104 assert(IndexMapI != EdgeIndexMap.end() &&
Chandler Carruthe5944d92016-02-17 00:18:16 +0000105 "Target not in the edge set for this caller?");
Chandler Carruthaa839b22014-04-27 01:59:50 +0000106
Chandler Carrutha4499e92016-02-02 03:57:13 +0000107 Edges[IndexMapI->second] = Edge();
108 EdgeIndexMap.erase(IndexMapI);
Chandler Carruthaa839b22014-04-27 01:59:50 +0000109}
110
Chandler Carruthdca83402016-06-27 23:26:08 +0000111void LazyCallGraph::Node::dump() const {
112 dbgs() << *this << '\n';
113}
114
Chandler Carruth2174f442014-04-18 20:44:16 +0000115LazyCallGraph::LazyCallGraph(Module &M) : NextDFSNumber(0) {
Chandler Carruth99b756d2014-04-21 05:04:24 +0000116 DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier()
117 << "\n");
Chandler Carruthb9e2f8c2014-03-09 12:20:34 +0000118 for (Function &F : M)
119 if (!F.isDeclaration() && !F.hasLocalLinkage())
Chandler Carruthe5944d92016-02-17 00:18:16 +0000120 if (EntryIndexMap.insert({&F, EntryEdges.size()}).second) {
Chandler Carruth99b756d2014-04-21 05:04:24 +0000121 DEBUG(dbgs() << " Adding '" << F.getName()
122 << "' to entry set of the graph.\n");
Chandler Carrutha4499e92016-02-02 03:57:13 +0000123 EntryEdges.emplace_back(F, Edge::Ref);
Chandler Carruth99b756d2014-04-21 05:04:24 +0000124 }
Chandler Carruthbf71a342014-02-06 04:37:03 +0000125
126 // Now add entry nodes for functions reachable via initializers to globals.
127 SmallVector<Constant *, 16> Worklist;
128 SmallPtrSet<Constant *, 16> Visited;
Chandler Carruthb9e2f8c2014-03-09 12:20:34 +0000129 for (GlobalVariable &GV : M.globals())
130 if (GV.hasInitializer())
David Blaikie70573dc2014-11-19 07:49:26 +0000131 if (Visited.insert(GV.getInitializer()).second)
Chandler Carruthb9e2f8c2014-03-09 12:20:34 +0000132 Worklist.push_back(GV.getInitializer());
Chandler Carruthbf71a342014-02-06 04:37:03 +0000133
Chandler Carruth99b756d2014-04-21 05:04:24 +0000134 DEBUG(dbgs() << " Adding functions referenced by global initializers to the "
135 "entry set.\n");
Chandler Carruth88823462016-08-24 09:37:14 +0000136 visitReferences(Worklist, Visited, [&](Function &F) {
137 addEdge(EntryEdges, EntryIndexMap, F, LazyCallGraph::Edge::Ref);
138 });
Chandler Carruth18eadd922014-04-18 10:50:32 +0000139
Chandler Carrutha4499e92016-02-02 03:57:13 +0000140 for (const Edge &E : EntryEdges)
Chandler Carruthe5944d92016-02-17 00:18:16 +0000141 RefSCCEntryNodes.push_back(&E.getFunction());
Chandler Carruthbf71a342014-02-06 04:37:03 +0000142}
143
Chandler Carruthbf71a342014-02-06 04:37:03 +0000144LazyCallGraph::LazyCallGraph(LazyCallGraph &&G)
Chandler Carruth2174f442014-04-18 20:44:16 +0000145 : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)),
Chandler Carrutha4499e92016-02-02 03:57:13 +0000146 EntryEdges(std::move(G.EntryEdges)),
Chandler Carruth0b623ba2014-04-23 04:00:17 +0000147 EntryIndexMap(std::move(G.EntryIndexMap)), SCCBPA(std::move(G.SCCBPA)),
Chandler Carruthe5944d92016-02-17 00:18:16 +0000148 SCCMap(std::move(G.SCCMap)), LeafRefSCCs(std::move(G.LeafRefSCCs)),
Chandler Carruth18eadd922014-04-18 10:50:32 +0000149 DFSStack(std::move(G.DFSStack)),
Chandler Carruthe5944d92016-02-17 00:18:16 +0000150 RefSCCEntryNodes(std::move(G.RefSCCEntryNodes)),
Chandler Carruth2174f442014-04-18 20:44:16 +0000151 NextDFSNumber(G.NextDFSNumber) {
Chandler Carruthd8d865e2014-04-18 11:02:33 +0000152 updateGraphPtrs();
153}
154
155LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) {
156 BPA = std::move(G.BPA);
Chandler Carruth2174f442014-04-18 20:44:16 +0000157 NodeMap = std::move(G.NodeMap);
Chandler Carrutha4499e92016-02-02 03:57:13 +0000158 EntryEdges = std::move(G.EntryEdges);
Chandler Carruth0b623ba2014-04-23 04:00:17 +0000159 EntryIndexMap = std::move(G.EntryIndexMap);
Chandler Carruthd8d865e2014-04-18 11:02:33 +0000160 SCCBPA = std::move(G.SCCBPA);
161 SCCMap = std::move(G.SCCMap);
Chandler Carruthe5944d92016-02-17 00:18:16 +0000162 LeafRefSCCs = std::move(G.LeafRefSCCs);
Chandler Carruthd8d865e2014-04-18 11:02:33 +0000163 DFSStack = std::move(G.DFSStack);
Chandler Carruthe5944d92016-02-17 00:18:16 +0000164 RefSCCEntryNodes = std::move(G.RefSCCEntryNodes);
Chandler Carruth2174f442014-04-18 20:44:16 +0000165 NextDFSNumber = G.NextDFSNumber;
Chandler Carruthd8d865e2014-04-18 11:02:33 +0000166 updateGraphPtrs();
167 return *this;
168}
169
Chandler Carruthdca83402016-06-27 23:26:08 +0000170void LazyCallGraph::SCC::dump() const {
171 dbgs() << *this << '\n';
172}
173
Chandler Carruthe5944d92016-02-17 00:18:16 +0000174#ifndef NDEBUG
175void LazyCallGraph::SCC::verify() {
176 assert(OuterRefSCC && "Can't have a null RefSCC!");
177 assert(!Nodes.empty() && "Can't have an empty SCC!");
Chandler Carruth8f92d6d2014-04-26 01:03:46 +0000178
Chandler Carruthe5944d92016-02-17 00:18:16 +0000179 for (Node *N : Nodes) {
180 assert(N && "Can't have a null node!");
181 assert(OuterRefSCC->G->lookupSCC(*N) == this &&
182 "Node does not map to this SCC!");
183 assert(N->DFSNumber == -1 &&
184 "Must set DFS numbers to -1 when adding a node to an SCC!");
185 assert(N->LowLink == -1 &&
186 "Must set low link to -1 when adding a node to an SCC!");
187 for (Edge &E : *N)
188 assert(E.getNode() && "Can't have an edge to a raw function!");
189 }
190}
191#endif
192
Chandler Carruthbae595b2016-11-22 19:23:31 +0000193bool LazyCallGraph::SCC::isParentOf(const SCC &C) const {
194 if (this == &C)
195 return false;
196
197 for (Node &N : *this)
198 for (Edge &E : N.calls())
199 if (Node *CalleeN = E.getNode())
200 if (OuterRefSCC->G->lookupSCC(*CalleeN) == &C)
201 return true;
202
203 // No edges found.
204 return false;
205}
206
207bool LazyCallGraph::SCC::isAncestorOf(const SCC &TargetC) const {
208 if (this == &TargetC)
209 return false;
210
211 LazyCallGraph &G = *OuterRefSCC->G;
212
213 // Start with this SCC.
214 SmallPtrSet<const SCC *, 16> Visited = {this};
215 SmallVector<const SCC *, 16> Worklist = {this};
216
217 // Walk down the graph until we run out of edges or find a path to TargetC.
218 do {
219 const SCC &C = *Worklist.pop_back_val();
220 for (Node &N : C)
221 for (Edge &E : N.calls()) {
222 Node *CalleeN = E.getNode();
223 if (!CalleeN)
224 continue;
225 SCC *CalleeC = G.lookupSCC(*CalleeN);
226 if (!CalleeC)
227 continue;
228
229 // If the callee's SCC is the TargetC, we're done.
230 if (CalleeC == &TargetC)
231 return true;
232
233 // If this is the first time we've reached this SCC, put it on the
234 // worklist to recurse through.
235 if (Visited.insert(CalleeC).second)
236 Worklist.push_back(CalleeC);
237 }
238 } while (!Worklist.empty());
239
240 // No paths found.
241 return false;
242}
243
Chandler Carruthe5944d92016-02-17 00:18:16 +0000244LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {}
245
Chandler Carruthdca83402016-06-27 23:26:08 +0000246void LazyCallGraph::RefSCC::dump() const {
247 dbgs() << *this << '\n';
248}
249
Chandler Carruthe5944d92016-02-17 00:18:16 +0000250#ifndef NDEBUG
251void LazyCallGraph::RefSCC::verify() {
252 assert(G && "Can't have a null graph!");
253 assert(!SCCs.empty() && "Can't have an empty SCC!");
254
255 // Verify basic properties of the SCCs.
Chandler Carruth88823462016-08-24 09:37:14 +0000256 SmallPtrSet<SCC *, 4> SCCSet;
Chandler Carruthe5944d92016-02-17 00:18:16 +0000257 for (SCC *C : SCCs) {
258 assert(C && "Can't have a null SCC!");
259 C->verify();
260 assert(&C->getOuterRefSCC() == this &&
261 "SCC doesn't think it is inside this RefSCC!");
Chandler Carruth88823462016-08-24 09:37:14 +0000262 bool Inserted = SCCSet.insert(C).second;
263 assert(Inserted && "Found a duplicate SCC!");
Chandler Carruth23a6c3f2016-12-06 10:29:23 +0000264 auto IndexIt = SCCIndices.find(C);
265 assert(IndexIt != SCCIndices.end() &&
266 "Found an SCC that doesn't have an index!");
Chandler Carruthe5944d92016-02-17 00:18:16 +0000267 }
268
269 // Check that our indices map correctly.
270 for (auto &SCCIndexPair : SCCIndices) {
271 SCC *C = SCCIndexPair.first;
272 int i = SCCIndexPair.second;
273 assert(C && "Can't have a null SCC in the indices!");
Chandler Carruth88823462016-08-24 09:37:14 +0000274 assert(SCCSet.count(C) && "Found an index for an SCC not in the RefSCC!");
Chandler Carruthe5944d92016-02-17 00:18:16 +0000275 assert(SCCs[i] == C && "Index doesn't point to SCC!");
276 }
277
278 // Check that the SCCs are in fact in post-order.
279 for (int i = 0, Size = SCCs.size(); i < Size; ++i) {
280 SCC &SourceSCC = *SCCs[i];
281 for (Node &N : SourceSCC)
282 for (Edge &E : N) {
283 if (!E.isCall())
284 continue;
285 SCC &TargetSCC = *G->lookupSCC(*E.getNode());
286 if (&TargetSCC.getOuterRefSCC() == this) {
287 assert(SCCIndices.find(&TargetSCC)->second <= i &&
288 "Edge between SCCs violates post-order relationship.");
289 continue;
290 }
291 assert(TargetSCC.getOuterRefSCC().Parents.count(this) &&
292 "Edge to a RefSCC missing us in its parent set.");
293 }
294 }
Chandler Carruth5205c352016-12-07 01:42:40 +0000295
296 // Check that our parents are actually parents.
297 for (RefSCC *ParentRC : Parents) {
298 assert(ParentRC != this && "Cannot be our own parent!");
299 auto HasConnectingEdge = [&] {
300 for (SCC &C : *ParentRC)
301 for (Node &N : C)
302 for (Edge &E : N)
303 if (G->lookupRefSCC(*E.getNode()) == this)
304 return true;
305 return false;
306 };
307 assert(HasConnectingEdge() && "No edge connects the parent to us!");
308 }
Chandler Carruthe5944d92016-02-17 00:18:16 +0000309}
310#endif
311
312bool LazyCallGraph::RefSCC::isDescendantOf(const RefSCC &C) const {
Chandler Carruth4b096742014-05-01 12:12:42 +0000313 // Walk up the parents of this SCC and verify that we eventually find C.
Chandler Carruthe5944d92016-02-17 00:18:16 +0000314 SmallVector<const RefSCC *, 4> AncestorWorklist;
Chandler Carruth4b096742014-05-01 12:12:42 +0000315 AncestorWorklist.push_back(this);
316 do {
Chandler Carruthe5944d92016-02-17 00:18:16 +0000317 const RefSCC *AncestorC = AncestorWorklist.pop_back_val();
Chandler Carruth4b096742014-05-01 12:12:42 +0000318 if (AncestorC->isChildOf(C))
319 return true;
Chandler Carruthe5944d92016-02-17 00:18:16 +0000320 for (const RefSCC *ParentC : AncestorC->Parents)
Chandler Carruth4b096742014-05-01 12:12:42 +0000321 AncestorWorklist.push_back(ParentC);
322 } while (!AncestorWorklist.empty());
323
324 return false;
325}
326
Chandler Carruth1f621f02016-09-04 08:34:24 +0000327/// Generic helper that updates a postorder sequence of SCCs for a potentially
328/// cycle-introducing edge insertion.
329///
330/// A postorder sequence of SCCs of a directed graph has one fundamental
331/// property: all deges in the DAG of SCCs point "up" the sequence. That is,
332/// all edges in the SCC DAG point to prior SCCs in the sequence.
333///
334/// This routine both updates a postorder sequence and uses that sequence to
335/// compute the set of SCCs connected into a cycle. It should only be called to
336/// insert a "downward" edge which will require changing the sequence to
337/// restore it to a postorder.
338///
339/// When inserting an edge from an earlier SCC to a later SCC in some postorder
340/// sequence, all of the SCCs which may be impacted are in the closed range of
341/// those two within the postorder sequence. The algorithm used here to restore
342/// the state is as follows:
343///
344/// 1) Starting from the source SCC, construct a set of SCCs which reach the
345/// source SCC consisting of just the source SCC. Then scan toward the
346/// target SCC in postorder and for each SCC, if it has an edge to an SCC
347/// in the set, add it to the set. Otherwise, the source SCC is not
348/// a successor, move it in the postorder sequence to immediately before
349/// the source SCC, shifting the source SCC and all SCCs in the set one
350/// position toward the target SCC. Stop scanning after processing the
351/// target SCC.
352/// 2) If the source SCC is now past the target SCC in the postorder sequence,
353/// and thus the new edge will flow toward the start, we are done.
354/// 3) Otherwise, starting from the target SCC, walk all edges which reach an
355/// SCC between the source and the target, and add them to the set of
356/// connected SCCs, then recurse through them. Once a complete set of the
357/// SCCs the target connects to is known, hoist the remaining SCCs between
358/// the source and the target to be above the target. Note that there is no
359/// need to process the source SCC, it is already known to connect.
360/// 4) At this point, all of the SCCs in the closed range between the source
361/// SCC and the target SCC in the postorder sequence are connected,
362/// including the target SCC and the source SCC. Inserting the edge from
363/// the source SCC to the target SCC will form a cycle out of precisely
364/// these SCCs. Thus we can merge all of the SCCs in this closed range into
365/// a single SCC.
366///
367/// This process has various important properties:
368/// - Only mutates the SCCs when adding the edge actually changes the SCC
369/// structure.
370/// - Never mutates SCCs which are unaffected by the change.
371/// - Updates the postorder sequence to correctly satisfy the postorder
372/// constraint after the edge is inserted.
373/// - Only reorders SCCs in the closed postorder sequence from the source to
374/// the target, so easy to bound how much has changed even in the ordering.
375/// - Big-O is the number of edges in the closed postorder range of SCCs from
376/// source to target.
377///
378/// This helper routine, in addition to updating the postorder sequence itself
379/// will also update a map from SCCs to indices within that sequecne.
380///
381/// The sequence and the map must operate on pointers to the SCC type.
382///
383/// Two callbacks must be provided. The first computes the subset of SCCs in
384/// the postorder closed range from the source to the target which connect to
385/// the source SCC via some (transitive) set of edges. The second computes the
386/// subset of the same range which the target SCC connects to via some
387/// (transitive) set of edges. Both callbacks should populate the set argument
388/// provided.
389template <typename SCCT, typename PostorderSequenceT, typename SCCIndexMapT,
390 typename ComputeSourceConnectedSetCallableT,
391 typename ComputeTargetConnectedSetCallableT>
392static iterator_range<typename PostorderSequenceT::iterator>
393updatePostorderSequenceForEdgeInsertion(
394 SCCT &SourceSCC, SCCT &TargetSCC, PostorderSequenceT &SCCs,
395 SCCIndexMapT &SCCIndices,
396 ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet,
397 ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet) {
398 int SourceIdx = SCCIndices[&SourceSCC];
399 int TargetIdx = SCCIndices[&TargetSCC];
400 assert(SourceIdx < TargetIdx && "Cannot have equal indices here!");
401
402 SmallPtrSet<SCCT *, 4> ConnectedSet;
403
404 // Compute the SCCs which (transitively) reach the source.
405 ComputeSourceConnectedSet(ConnectedSet);
406
407 // Partition the SCCs in this part of the port-order sequence so only SCCs
408 // connecting to the source remain between it and the target. This is
409 // a benign partition as it preserves postorder.
410 auto SourceI = std::stable_partition(
411 SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1,
412 [&ConnectedSet](SCCT *C) { return !ConnectedSet.count(C); });
413 for (int i = SourceIdx, e = TargetIdx + 1; i < e; ++i)
414 SCCIndices.find(SCCs[i])->second = i;
415
416 // If the target doesn't connect to the source, then we've corrected the
417 // post-order and there are no cycles formed.
418 if (!ConnectedSet.count(&TargetSCC)) {
419 assert(SourceI > (SCCs.begin() + SourceIdx) &&
420 "Must have moved the source to fix the post-order.");
421 assert(*std::prev(SourceI) == &TargetSCC &&
422 "Last SCC to move should have bene the target.");
423
424 // Return an empty range at the target SCC indicating there is nothing to
425 // merge.
426 return make_range(std::prev(SourceI), std::prev(SourceI));
427 }
428
429 assert(SCCs[TargetIdx] == &TargetSCC &&
430 "Should not have moved target if connected!");
431 SourceIdx = SourceI - SCCs.begin();
432 assert(SCCs[SourceIdx] == &SourceSCC &&
433 "Bad updated index computation for the source SCC!");
434
435
436 // See whether there are any remaining intervening SCCs between the source
437 // and target. If so we need to make sure they all are reachable form the
438 // target.
439 if (SourceIdx + 1 < TargetIdx) {
440 ConnectedSet.clear();
441 ComputeTargetConnectedSet(ConnectedSet);
442
443 // Partition SCCs so that only SCCs reached from the target remain between
444 // the source and the target. This preserves postorder.
445 auto TargetI = std::stable_partition(
446 SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1,
447 [&ConnectedSet](SCCT *C) { return ConnectedSet.count(C); });
448 for (int i = SourceIdx + 1, e = TargetIdx + 1; i < e; ++i)
449 SCCIndices.find(SCCs[i])->second = i;
450 TargetIdx = std::prev(TargetI) - SCCs.begin();
451 assert(SCCs[TargetIdx] == &TargetSCC &&
452 "Should always end with the target!");
453 }
454
455 // At this point, we know that connecting source to target forms a cycle
456 // because target connects back to source, and we know that all of the SCCs
457 // between the source and target in the postorder sequence participate in that
458 // cycle.
459 return make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx);
460}
461
Chandler Carruthe5944d92016-02-17 00:18:16 +0000462SmallVector<LazyCallGraph::SCC *, 1>
463LazyCallGraph::RefSCC::switchInternalEdgeToCall(Node &SourceN, Node &TargetN) {
464 assert(!SourceN[TargetN].isCall() && "Must start with a ref edge!");
Chandler Carruthe5944d92016-02-17 00:18:16 +0000465 SmallVector<SCC *, 1> DeletedSCCs;
Chandler Carruth5217c942014-04-30 10:48:36 +0000466
Chandler Carruth11b3f602016-09-04 08:34:31 +0000467#ifndef NDEBUG
468 // In a debug build, verify the RefSCC is valid to start with and when this
469 // routine finishes.
470 verify();
471 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
472#endif
473
Chandler Carruthe5944d92016-02-17 00:18:16 +0000474 SCC &SourceSCC = *G->lookupSCC(SourceN);
475 SCC &TargetSCC = *G->lookupSCC(TargetN);
476
477 // If the two nodes are already part of the same SCC, we're also done as
478 // we've just added more connectivity.
479 if (&SourceSCC == &TargetSCC) {
480 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
Chandler Carruthe5944d92016-02-17 00:18:16 +0000481 return DeletedSCCs;
482 }
483
484 // At this point we leverage the postorder list of SCCs to detect when the
485 // insertion of an edge changes the SCC structure in any way.
486 //
487 // First and foremost, we can eliminate the need for any changes when the
488 // edge is toward the beginning of the postorder sequence because all edges
489 // flow in that direction already. Thus adding a new one cannot form a cycle.
490 int SourceIdx = SCCIndices[&SourceSCC];
491 int TargetIdx = SCCIndices[&TargetSCC];
492 if (TargetIdx < SourceIdx) {
493 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
Chandler Carruthe5944d92016-02-17 00:18:16 +0000494 return DeletedSCCs;
495 }
496
Chandler Carruthe5944d92016-02-17 00:18:16 +0000497 // Compute the SCCs which (transitively) reach the source.
Chandler Carruth1f621f02016-09-04 08:34:24 +0000498 auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
Chandler Carruthe5944d92016-02-17 00:18:16 +0000499#ifndef NDEBUG
Chandler Carruth1f621f02016-09-04 08:34:24 +0000500 // Check that the RefSCC is still valid before computing this as the
501 // results will be nonsensical of we've broken its invariants.
Chandler Carruthe5944d92016-02-17 00:18:16 +0000502 verify();
503#endif
Chandler Carruth1f621f02016-09-04 08:34:24 +0000504 ConnectedSet.insert(&SourceSCC);
505 auto IsConnected = [&](SCC &C) {
506 for (Node &N : C)
507 for (Edge &E : N.calls()) {
508 assert(E.getNode() && "Must have formed a node within an SCC!");
509 if (ConnectedSet.count(G->lookupSCC(*E.getNode())))
510 return true;
511 }
Chandler Carruthe5944d92016-02-17 00:18:16 +0000512
Chandler Carruth1f621f02016-09-04 08:34:24 +0000513 return false;
514 };
Chandler Carruthe5944d92016-02-17 00:18:16 +0000515
Chandler Carruth1f621f02016-09-04 08:34:24 +0000516 for (SCC *C :
517 make_range(SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1))
518 if (IsConnected(*C))
519 ConnectedSet.insert(C);
520 };
521
522 // Use a normal worklist to find which SCCs the target connects to. We still
523 // bound the search based on the range in the postorder list we care about,
524 // but because this is forward connectivity we just "recurse" through the
525 // edges.
526 auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
Chandler Carruthe5944d92016-02-17 00:18:16 +0000527#ifndef NDEBUG
Chandler Carruth1f621f02016-09-04 08:34:24 +0000528 // Check that the RefSCC is still valid before computing this as the
529 // results will be nonsensical of we've broken its invariants.
530 verify();
Chandler Carruthe5944d92016-02-17 00:18:16 +0000531#endif
Chandler Carruthe5944d92016-02-17 00:18:16 +0000532 ConnectedSet.insert(&TargetSCC);
533 SmallVector<SCC *, 4> Worklist;
534 Worklist.push_back(&TargetSCC);
535 do {
536 SCC &C = *Worklist.pop_back_val();
537 for (Node &N : C)
538 for (Edge &E : N) {
539 assert(E.getNode() && "Must have formed a node within an SCC!");
540 if (!E.isCall())
541 continue;
542 SCC &EdgeC = *G->lookupSCC(*E.getNode());
543 if (&EdgeC.getOuterRefSCC() != this)
544 // Not in this RefSCC...
545 continue;
546 if (SCCIndices.find(&EdgeC)->second <= SourceIdx)
547 // Not in the postorder sequence between source and target.
548 continue;
549
550 if (ConnectedSet.insert(&EdgeC).second)
551 Worklist.push_back(&EdgeC);
552 }
553 } while (!Worklist.empty());
Chandler Carruth1f621f02016-09-04 08:34:24 +0000554 };
Chandler Carruthe5944d92016-02-17 00:18:16 +0000555
Chandler Carruth1f621f02016-09-04 08:34:24 +0000556 // Use a generic helper to update the postorder sequence of SCCs and return
557 // a range of any SCCs connected into a cycle by inserting this edge. This
558 // routine will also take care of updating the indices into the postorder
559 // sequence.
560 auto MergeRange = updatePostorderSequenceForEdgeInsertion(
561 SourceSCC, TargetSCC, SCCs, SCCIndices, ComputeSourceConnectedSet,
562 ComputeTargetConnectedSet);
Chandler Carruthe5944d92016-02-17 00:18:16 +0000563
Chandler Carruth1f621f02016-09-04 08:34:24 +0000564 // If the merge range is empty, then adding the edge didn't actually form any
565 // new cycles. We're done.
566 if (MergeRange.begin() == MergeRange.end()) {
567 // Now that the SCC structure is finalized, flip the kind to call.
568 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
Chandler Carruth1f621f02016-09-04 08:34:24 +0000569 return DeletedSCCs;
Chandler Carruthe5944d92016-02-17 00:18:16 +0000570 }
571
Chandler Carruth1f621f02016-09-04 08:34:24 +0000572#ifndef NDEBUG
573 // Before merging, check that the RefSCC remains valid after all the
574 // postorder updates.
575 verify();
576#endif
577
578 // Otherwise we need to merge all of the SCCs in the cycle into a single
Chandler Carruthe5944d92016-02-17 00:18:16 +0000579 // result SCC.
580 //
581 // NB: We merge into the target because all of these functions were already
582 // reachable from the target, meaning any SCC-wide properties deduced about it
583 // other than the set of functions within it will not have changed.
Chandler Carruthe5944d92016-02-17 00:18:16 +0000584 for (SCC *C : MergeRange) {
585 assert(C != &TargetSCC &&
586 "We merge *into* the target and shouldn't process it here!");
587 SCCIndices.erase(C);
588 TargetSCC.Nodes.append(C->Nodes.begin(), C->Nodes.end());
589 for (Node *N : C->Nodes)
590 G->SCCMap[N] = &TargetSCC;
591 C->clear();
592 DeletedSCCs.push_back(C);
593 }
594
595 // Erase the merged SCCs from the list and update the indices of the
596 // remaining SCCs.
597 int IndexOffset = MergeRange.end() - MergeRange.begin();
598 auto EraseEnd = SCCs.erase(MergeRange.begin(), MergeRange.end());
599 for (SCC *C : make_range(EraseEnd, SCCs.end()))
600 SCCIndices[C] -= IndexOffset;
601
602 // Now that the SCC structure is finalized, flip the kind to call.
603 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
604
Chandler Carruth11b3f602016-09-04 08:34:31 +0000605 // And we're done!
Chandler Carruthe5944d92016-02-17 00:18:16 +0000606 return DeletedSCCs;
Chandler Carruth5217c942014-04-30 10:48:36 +0000607}
608
Chandler Carruth88823462016-08-24 09:37:14 +0000609iterator_range<LazyCallGraph::RefSCC::iterator>
610LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN, Node &TargetN) {
Chandler Carruthe5944d92016-02-17 00:18:16 +0000611 assert(SourceN[TargetN].isCall() && "Must start with a call edge!");
612
Chandler Carruth11b3f602016-09-04 08:34:31 +0000613#ifndef NDEBUG
614 // In a debug build, verify the RefSCC is valid to start with and when this
615 // routine finishes.
616 verify();
617 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
618#endif
619
Chandler Carruthe5944d92016-02-17 00:18:16 +0000620 SCC &SourceSCC = *G->lookupSCC(SourceN);
621 SCC &TargetSCC = *G->lookupSCC(TargetN);
622
623 assert(&SourceSCC.getOuterRefSCC() == this &&
624 "Source must be in this RefSCC.");
625 assert(&TargetSCC.getOuterRefSCC() == this &&
626 "Target must be in this RefSCC.");
627
628 // Set the edge kind.
629 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Ref);
630
631 // If this call edge is just connecting two separate SCCs within this RefSCC,
632 // there is nothing to do.
Chandler Carruth11b3f602016-09-04 08:34:31 +0000633 if (&SourceSCC != &TargetSCC)
Chandler Carruth88823462016-08-24 09:37:14 +0000634 return make_range(SCCs.end(), SCCs.end());
Chandler Carruthe5944d92016-02-17 00:18:16 +0000635
636 // Otherwise we are removing a call edge from a single SCC. This may break
637 // the cycle. In order to compute the new set of SCCs, we need to do a small
638 // DFS over the nodes within the SCC to form any sub-cycles that remain as
639 // distinct SCCs and compute a postorder over the resulting SCCs.
640 //
641 // However, we specially handle the target node. The target node is known to
642 // reach all other nodes in the original SCC by definition. This means that
643 // we want the old SCC to be replaced with an SCC contaning that node as it
644 // will be the root of whatever SCC DAG results from the DFS. Assumptions
645 // about an SCC such as the set of functions called will continue to hold,
646 // etc.
647
648 SCC &OldSCC = TargetSCC;
649 SmallVector<std::pair<Node *, call_edge_iterator>, 16> DFSStack;
650 SmallVector<Node *, 16> PendingSCCStack;
651 SmallVector<SCC *, 4> NewSCCs;
652
653 // Prepare the nodes for a fresh DFS.
654 SmallVector<Node *, 16> Worklist;
655 Worklist.swap(OldSCC.Nodes);
656 for (Node *N : Worklist) {
657 N->DFSNumber = N->LowLink = 0;
658 G->SCCMap.erase(N);
659 }
660
661 // Force the target node to be in the old SCC. This also enables us to take
662 // a very significant short-cut in the standard Tarjan walk to re-form SCCs
663 // below: whenever we build an edge that reaches the target node, we know
664 // that the target node eventually connects back to all other nodes in our
665 // walk. As a consequence, we can detect and handle participants in that
666 // cycle without walking all the edges that form this connection, and instead
667 // by relying on the fundamental guarantee coming into this operation (all
668 // nodes are reachable from the target due to previously forming an SCC).
669 TargetN.DFSNumber = TargetN.LowLink = -1;
670 OldSCC.Nodes.push_back(&TargetN);
671 G->SCCMap[&TargetN] = &OldSCC;
672
673 // Scan down the stack and DFS across the call edges.
674 for (Node *RootN : Worklist) {
675 assert(DFSStack.empty() &&
676 "Cannot begin a new root with a non-empty DFS stack!");
677 assert(PendingSCCStack.empty() &&
678 "Cannot begin a new root with pending nodes for an SCC!");
679
680 // Skip any nodes we've already reached in the DFS.
681 if (RootN->DFSNumber != 0) {
682 assert(RootN->DFSNumber == -1 &&
683 "Shouldn't have any mid-DFS root nodes!");
684 continue;
685 }
686
687 RootN->DFSNumber = RootN->LowLink = 1;
688 int NextDFSNumber = 2;
689
690 DFSStack.push_back({RootN, RootN->call_begin()});
691 do {
692 Node *N;
693 call_edge_iterator I;
694 std::tie(N, I) = DFSStack.pop_back_val();
695 auto E = N->call_end();
696 while (I != E) {
697 Node &ChildN = *I->getNode();
698 if (ChildN.DFSNumber == 0) {
699 // We haven't yet visited this child, so descend, pushing the current
700 // node onto the stack.
701 DFSStack.push_back({N, I});
702
703 assert(!G->SCCMap.count(&ChildN) &&
704 "Found a node with 0 DFS number but already in an SCC!");
705 ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
706 N = &ChildN;
707 I = N->call_begin();
708 E = N->call_end();
709 continue;
710 }
711
712 // Check for the child already being part of some component.
713 if (ChildN.DFSNumber == -1) {
714 if (G->lookupSCC(ChildN) == &OldSCC) {
715 // If the child is part of the old SCC, we know that it can reach
716 // every other node, so we have formed a cycle. Pull the entire DFS
717 // and pending stacks into it. See the comment above about setting
718 // up the old SCC for why we do this.
719 int OldSize = OldSCC.size();
720 OldSCC.Nodes.push_back(N);
721 OldSCC.Nodes.append(PendingSCCStack.begin(), PendingSCCStack.end());
722 PendingSCCStack.clear();
723 while (!DFSStack.empty())
724 OldSCC.Nodes.push_back(DFSStack.pop_back_val().first);
725 for (Node &N : make_range(OldSCC.begin() + OldSize, OldSCC.end())) {
726 N.DFSNumber = N.LowLink = -1;
727 G->SCCMap[&N] = &OldSCC;
728 }
729 N = nullptr;
730 break;
731 }
732
733 // If the child has already been added to some child component, it
734 // couldn't impact the low-link of this parent because it isn't
735 // connected, and thus its low-link isn't relevant so skip it.
736 ++I;
737 continue;
738 }
739
740 // Track the lowest linked child as the lowest link for this node.
741 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
742 if (ChildN.LowLink < N->LowLink)
743 N->LowLink = ChildN.LowLink;
744
745 // Move to the next edge.
746 ++I;
747 }
748 if (!N)
749 // Cleared the DFS early, start another round.
750 break;
751
752 // We've finished processing N and its descendents, put it on our pending
753 // SCC stack to eventually get merged into an SCC of nodes.
754 PendingSCCStack.push_back(N);
755
756 // If this node is linked to some lower entry, continue walking up the
757 // stack.
758 if (N->LowLink != N->DFSNumber)
759 continue;
760
761 // Otherwise, we've completed an SCC. Append it to our post order list of
762 // SCCs.
763 int RootDFSNumber = N->DFSNumber;
764 // Find the range of the node stack by walking down until we pass the
765 // root DFS number.
766 auto SCCNodes = make_range(
767 PendingSCCStack.rbegin(),
David Majnemer42531262016-08-12 03:55:06 +0000768 find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
769 return N->DFSNumber < RootDFSNumber;
770 }));
Chandler Carruthe5944d92016-02-17 00:18:16 +0000771
772 // Form a new SCC out of these nodes and then clear them off our pending
773 // stack.
774 NewSCCs.push_back(G->createSCC(*this, SCCNodes));
775 for (Node &N : *NewSCCs.back()) {
776 N.DFSNumber = N.LowLink = -1;
777 G->SCCMap[&N] = NewSCCs.back();
778 }
779 PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
780 } while (!DFSStack.empty());
781 }
782
783 // Insert the remaining SCCs before the old one. The old SCC can reach all
784 // other SCCs we form because it contains the target node of the removed edge
785 // of the old SCC. This means that we will have edges into all of the new
786 // SCCs, which means the old one must come last for postorder.
787 int OldIdx = SCCIndices[&OldSCC];
788 SCCs.insert(SCCs.begin() + OldIdx, NewSCCs.begin(), NewSCCs.end());
789
790 // Update the mapping from SCC* to index to use the new SCC*s, and remove the
791 // old SCC from the mapping.
792 for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx)
793 SCCIndices[SCCs[Idx]] = Idx;
794
Chandler Carruth88823462016-08-24 09:37:14 +0000795 return make_range(SCCs.begin() + OldIdx,
796 SCCs.begin() + OldIdx + NewSCCs.size());
Chandler Carruthe5944d92016-02-17 00:18:16 +0000797}
798
799void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN,
800 Node &TargetN) {
801 assert(!SourceN[TargetN].isCall() && "Must start with a ref edge!");
802
803 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
804 assert(G->lookupRefSCC(TargetN) != this &&
805 "Target must not be in this RefSCC.");
806 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
807 "Target must be a descendant of the Source.");
808
809 // Edges between RefSCCs are the same regardless of call or ref, so we can
810 // just flip the edge here.
811 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Call);
812
813#ifndef NDEBUG
814 // Check that the RefSCC is still valid.
815 verify();
816#endif
817}
818
819void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN,
820 Node &TargetN) {
821 assert(SourceN[TargetN].isCall() && "Must start with a call edge!");
822
823 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
824 assert(G->lookupRefSCC(TargetN) != this &&
825 "Target must not be in this RefSCC.");
826 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
827 "Target must be a descendant of the Source.");
828
829 // Edges between RefSCCs are the same regardless of call or ref, so we can
830 // just flip the edge here.
831 SourceN.setEdgeKind(TargetN.getFunction(), Edge::Ref);
832
833#ifndef NDEBUG
834 // Check that the RefSCC is still valid.
835 verify();
836#endif
837}
838
839void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN,
840 Node &TargetN) {
841 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
842 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
843
844 SourceN.insertEdgeInternal(TargetN, Edge::Ref);
845
846#ifndef NDEBUG
847 // Check that the RefSCC is still valid.
848 verify();
849#endif
850}
851
852void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN,
853 Edge::Kind EK) {
Chandler Carruth7cc4ed82014-05-01 12:18:20 +0000854 // First insert it into the caller.
Chandler Carruthe5944d92016-02-17 00:18:16 +0000855 SourceN.insertEdgeInternal(TargetN, EK);
Chandler Carruth7cc4ed82014-05-01 12:18:20 +0000856
Chandler Carruthe5944d92016-02-17 00:18:16 +0000857 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
Chandler Carruth7cc4ed82014-05-01 12:18:20 +0000858
Chandler Carruthe5944d92016-02-17 00:18:16 +0000859 RefSCC &TargetC = *G->lookupRefSCC(TargetN);
860 assert(&TargetC != this && "Target must not be in this RefSCC.");
861 assert(TargetC.isDescendantOf(*this) &&
862 "Target must be a descendant of the Source.");
Chandler Carruth7cc4ed82014-05-01 12:18:20 +0000863
Chandler Carruth91539112015-12-28 01:54:20 +0000864 // The only change required is to add this SCC to the parent set of the
865 // callee.
Chandler Carruthe5944d92016-02-17 00:18:16 +0000866 TargetC.Parents.insert(this);
867
868#ifndef NDEBUG
869 // Check that the RefSCC is still valid.
870 verify();
871#endif
Chandler Carruth7cc4ed82014-05-01 12:18:20 +0000872}
873
Chandler Carruthe5944d92016-02-17 00:18:16 +0000874SmallVector<LazyCallGraph::RefSCC *, 1>
875LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) {
Chandler Carruth49d728a2016-09-16 10:20:17 +0000876 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
877 RefSCC &SourceC = *G->lookupRefSCC(SourceN);
878 assert(&SourceC != this && "Source must not be in this RefSCC.");
879 assert(SourceC.isDescendantOf(*this) &&
880 "Source must be a descendant of the Target.");
881
882 SmallVector<RefSCC *, 1> DeletedRefSCCs;
Chandler Carruth312dddf2014-05-04 09:38:32 +0000883
Chandler Carruth11b3f602016-09-04 08:34:31 +0000884#ifndef NDEBUG
885 // In a debug build, verify the RefSCC is valid to start with and when this
886 // routine finishes.
887 verify();
888 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
889#endif
890
Chandler Carruth49d728a2016-09-16 10:20:17 +0000891 int SourceIdx = G->RefSCCIndices[&SourceC];
892 int TargetIdx = G->RefSCCIndices[this];
893 assert(SourceIdx < TargetIdx &&
894 "Postorder list doesn't see edge as incoming!");
Chandler Carruth312dddf2014-05-04 09:38:32 +0000895
Chandler Carruth49d728a2016-09-16 10:20:17 +0000896 // Compute the RefSCCs which (transitively) reach the source. We do this by
897 // working backwards from the source using the parent set in each RefSCC,
898 // skipping any RefSCCs that don't fall in the postorder range. This has the
899 // advantage of walking the sparser parent edge (in high fan-out graphs) but
900 // more importantly this removes examining all forward edges in all RefSCCs
901 // within the postorder range which aren't in fact connected. Only connected
902 // RefSCCs (and their edges) are visited here.
903 auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
904 Set.insert(&SourceC);
905 SmallVector<RefSCC *, 4> Worklist;
906 Worklist.push_back(&SourceC);
907 do {
908 RefSCC &RC = *Worklist.pop_back_val();
909 for (RefSCC &ParentRC : RC.parents()) {
910 // Skip any RefSCCs outside the range of source to target in the
911 // postorder sequence.
912 int ParentIdx = G->getRefSCCIndex(ParentRC);
913 assert(ParentIdx > SourceIdx && "Parent cannot precede source in postorder!");
914 if (ParentIdx > TargetIdx)
915 continue;
916 if (Set.insert(&ParentRC).second)
917 // First edge connecting to this parent, add it to our worklist.
918 Worklist.push_back(&ParentRC);
Chandler Carruth312dddf2014-05-04 09:38:32 +0000919 }
Chandler Carruth49d728a2016-09-16 10:20:17 +0000920 } while (!Worklist.empty());
921 };
Chandler Carruth312dddf2014-05-04 09:38:32 +0000922
Chandler Carruth49d728a2016-09-16 10:20:17 +0000923 // Use a normal worklist to find which SCCs the target connects to. We still
924 // bound the search based on the range in the postorder list we care about,
925 // but because this is forward connectivity we just "recurse" through the
926 // edges.
927 auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
928 Set.insert(this);
929 SmallVector<RefSCC *, 4> Worklist;
930 Worklist.push_back(this);
931 do {
932 RefSCC &RC = *Worklist.pop_back_val();
933 for (SCC &C : RC)
934 for (Node &N : C)
935 for (Edge &E : N) {
936 assert(E.getNode() && "Must have formed a node!");
937 RefSCC &EdgeRC = *G->lookupRefSCC(*E.getNode());
938 if (G->getRefSCCIndex(EdgeRC) <= SourceIdx)
939 // Not in the postorder sequence between source and target.
940 continue;
Chandler Carruth312dddf2014-05-04 09:38:32 +0000941
Chandler Carruth49d728a2016-09-16 10:20:17 +0000942 if (Set.insert(&EdgeRC).second)
943 Worklist.push_back(&EdgeRC);
944 }
945 } while (!Worklist.empty());
946 };
947
948 // Use a generic helper to update the postorder sequence of RefSCCs and return
949 // a range of any RefSCCs connected into a cycle by inserting this edge. This
950 // routine will also take care of updating the indices into the postorder
951 // sequence.
952 iterator_range<SmallVectorImpl<RefSCC *>::iterator> MergeRange =
953 updatePostorderSequenceForEdgeInsertion(
954 SourceC, *this, G->PostOrderRefSCCs, G->RefSCCIndices,
955 ComputeSourceConnectedSet, ComputeTargetConnectedSet);
956
Chandler Carruth5205c352016-12-07 01:42:40 +0000957 // Build a set so we can do fast tests for whether a RefSCC will end up as
958 // part of the merged RefSCC.
Chandler Carruth49d728a2016-09-16 10:20:17 +0000959 SmallPtrSet<RefSCC *, 16> MergeSet(MergeRange.begin(), MergeRange.end());
Chandler Carruth312dddf2014-05-04 09:38:32 +0000960
Chandler Carruth5205c352016-12-07 01:42:40 +0000961 // This RefSCC will always be part of that set, so just insert it here.
962 MergeSet.insert(this);
963
Chandler Carruth312dddf2014-05-04 09:38:32 +0000964 // Now that we have identified all of the SCCs which need to be merged into
965 // a connected set with the inserted edge, merge all of them into this SCC.
Chandler Carruthe5944d92016-02-17 00:18:16 +0000966 SmallVector<SCC *, 16> MergedSCCs;
967 int SCCIndex = 0;
Chandler Carruth49d728a2016-09-16 10:20:17 +0000968 for (RefSCC *RC : MergeRange) {
969 assert(RC != this && "We're merging into the target RefSCC, so it "
970 "shouldn't be in the range.");
Chandler Carruth312dddf2014-05-04 09:38:32 +0000971
Chandler Carruthe5944d92016-02-17 00:18:16 +0000972 // Merge the parents which aren't part of the merge into the our parents.
Chandler Carruth49d728a2016-09-16 10:20:17 +0000973 for (RefSCC *ParentRC : RC->Parents)
974 if (!MergeSet.count(ParentRC))
975 Parents.insert(ParentRC);
976 RC->Parents.clear();
Chandler Carruthe5944d92016-02-17 00:18:16 +0000977
978 // Walk the inner SCCs to update their up-pointer and walk all the edges to
979 // update any parent sets.
980 // FIXME: We should try to find a way to avoid this (rather expensive) edge
981 // walk by updating the parent sets in some other manner.
Chandler Carruth49d728a2016-09-16 10:20:17 +0000982 for (SCC &InnerC : *RC) {
Chandler Carruthe5944d92016-02-17 00:18:16 +0000983 InnerC.OuterRefSCC = this;
984 SCCIndices[&InnerC] = SCCIndex++;
985 for (Node &N : InnerC) {
986 G->SCCMap[&N] = &InnerC;
987 for (Edge &E : N) {
988 assert(E.getNode() &&
989 "Cannot have a null node within a visited SCC!");
990 RefSCC &ChildRC = *G->lookupRefSCC(*E.getNode());
Chandler Carruth49d728a2016-09-16 10:20:17 +0000991 if (MergeSet.count(&ChildRC))
Chandler Carruthe5944d92016-02-17 00:18:16 +0000992 continue;
Chandler Carruth49d728a2016-09-16 10:20:17 +0000993 ChildRC.Parents.erase(RC);
Chandler Carruthe5944d92016-02-17 00:18:16 +0000994 ChildRC.Parents.insert(this);
995 }
Chandler Carruth312dddf2014-05-04 09:38:32 +0000996 }
Chandler Carruth312dddf2014-05-04 09:38:32 +0000997 }
Chandler Carruthe5944d92016-02-17 00:18:16 +0000998
999 // Now merge in the SCCs. We can actually move here so try to reuse storage
1000 // the first time through.
1001 if (MergedSCCs.empty())
Chandler Carruth49d728a2016-09-16 10:20:17 +00001002 MergedSCCs = std::move(RC->SCCs);
Chandler Carruthe5944d92016-02-17 00:18:16 +00001003 else
Chandler Carruth49d728a2016-09-16 10:20:17 +00001004 MergedSCCs.append(RC->SCCs.begin(), RC->SCCs.end());
1005 RC->SCCs.clear();
1006 DeletedRefSCCs.push_back(RC);
Chandler Carruth312dddf2014-05-04 09:38:32 +00001007 }
Chandler Carruthe5944d92016-02-17 00:18:16 +00001008
Chandler Carruth49d728a2016-09-16 10:20:17 +00001009 // Append our original SCCs to the merged list and move it into place.
Chandler Carruthe5944d92016-02-17 00:18:16 +00001010 for (SCC &InnerC : *this)
1011 SCCIndices[&InnerC] = SCCIndex++;
1012 MergedSCCs.append(SCCs.begin(), SCCs.end());
1013 SCCs = std::move(MergedSCCs);
1014
Chandler Carruth49d728a2016-09-16 10:20:17 +00001015 // Remove the merged away RefSCCs from the post order sequence.
1016 for (RefSCC *RC : MergeRange)
1017 G->RefSCCIndices.erase(RC);
1018 int IndexOffset = MergeRange.end() - MergeRange.begin();
1019 auto EraseEnd =
1020 G->PostOrderRefSCCs.erase(MergeRange.begin(), MergeRange.end());
1021 for (RefSCC *RC : make_range(EraseEnd, G->PostOrderRefSCCs.end()))
1022 G->RefSCCIndices[RC] -= IndexOffset;
1023
Chandler Carruthe5944d92016-02-17 00:18:16 +00001024 // At this point we have a merged RefSCC with a post-order SCCs list, just
1025 // connect the nodes to form the new edge.
1026 SourceN.insertEdgeInternal(TargetN, Edge::Ref);
1027
Chandler Carruth312dddf2014-05-04 09:38:32 +00001028 // We return the list of SCCs which were merged so that callers can
1029 // invalidate any data they have associated with those SCCs. Note that these
1030 // SCCs are no longer in an interesting state (they are totally empty) but
1031 // the pointers will remain stable for the life of the graph itself.
Chandler Carruth49d728a2016-09-16 10:20:17 +00001032 return DeletedRefSCCs;
Chandler Carruth312dddf2014-05-04 09:38:32 +00001033}
1034
Chandler Carruthe5944d92016-02-17 00:18:16 +00001035void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) {
1036 assert(G->lookupRefSCC(SourceN) == this &&
1037 "The source must be a member of this RefSCC.");
1038
1039 RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
1040 assert(&TargetRC != this && "The target must not be a member of this RefSCC");
1041
David Majnemer0d955d02016-08-11 22:21:41 +00001042 assert(!is_contained(G->LeafRefSCCs, this) &&
Chandler Carruthe5944d92016-02-17 00:18:16 +00001043 "Cannot have a leaf RefSCC source.");
1044
Chandler Carruth11b3f602016-09-04 08:34:31 +00001045#ifndef NDEBUG
1046 // In a debug build, verify the RefSCC is valid to start with and when this
1047 // routine finishes.
1048 verify();
1049 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
1050#endif
1051
Chandler Carruthaa839b22014-04-27 01:59:50 +00001052 // First remove it from the node.
Chandler Carruthe5944d92016-02-17 00:18:16 +00001053 SourceN.removeEdgeInternal(TargetN.getFunction());
Chandler Carruthaa839b22014-04-27 01:59:50 +00001054
Chandler Carruthe5944d92016-02-17 00:18:16 +00001055 bool HasOtherEdgeToChildRC = false;
1056 bool HasOtherChildRC = false;
1057 for (SCC *InnerC : SCCs) {
1058 for (Node &N : *InnerC) {
1059 for (Edge &E : N) {
1060 assert(E.getNode() && "Cannot have a missing node in a visited SCC!");
1061 RefSCC &OtherChildRC = *G->lookupRefSCC(*E.getNode());
1062 if (&OtherChildRC == &TargetRC) {
1063 HasOtherEdgeToChildRC = true;
1064 break;
1065 }
1066 if (&OtherChildRC != this)
1067 HasOtherChildRC = true;
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001068 }
Chandler Carruthe5944d92016-02-17 00:18:16 +00001069 if (HasOtherEdgeToChildRC)
1070 break;
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001071 }
Chandler Carruthe5944d92016-02-17 00:18:16 +00001072 if (HasOtherEdgeToChildRC)
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001073 break;
1074 }
1075 // Because the SCCs form a DAG, deleting such an edge cannot change the set
1076 // of SCCs in the graph. However, it may cut an edge of the SCC DAG, making
Chandler Carruthe5944d92016-02-17 00:18:16 +00001077 // the source SCC no longer connected to the target SCC. If so, we need to
1078 // update the target SCC's map of its parents.
1079 if (!HasOtherEdgeToChildRC) {
1080 bool Removed = TargetRC.Parents.erase(this);
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001081 (void)Removed;
1082 assert(Removed &&
Chandler Carruthe5944d92016-02-17 00:18:16 +00001083 "Did not find the source SCC in the target SCC's parent list!");
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001084
1085 // It may orphan an SCC if it is the last edge reaching it, but that does
1086 // not violate any invariants of the graph.
Chandler Carruthe5944d92016-02-17 00:18:16 +00001087 if (TargetRC.Parents.empty())
1088 DEBUG(dbgs() << "LCG: Update removing " << SourceN.getFunction().getName()
1089 << " -> " << TargetN.getFunction().getName()
Chandler Carruthaa839b22014-04-27 01:59:50 +00001090 << " edge orphaned the callee's SCC!\n");
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001091
Chandler Carruthe5944d92016-02-17 00:18:16 +00001092 // It may make the Source SCC a leaf SCC.
1093 if (!HasOtherChildRC)
1094 G->LeafRefSCCs.push_back(this);
Chandler Carruthaca48d02014-04-26 09:06:53 +00001095 }
1096}
1097
Chandler Carruthe5944d92016-02-17 00:18:16 +00001098SmallVector<LazyCallGraph::RefSCC *, 1>
1099LazyCallGraph::RefSCC::removeInternalRefEdge(Node &SourceN, Node &TargetN) {
1100 assert(!SourceN[TargetN].isCall() &&
1101 "Cannot remove a call edge, it must first be made a ref edge");
Chandler Carruthaa839b22014-04-27 01:59:50 +00001102
Chandler Carruth11b3f602016-09-04 08:34:31 +00001103#ifndef NDEBUG
1104 // In a debug build, verify the RefSCC is valid to start with and when this
1105 // routine finishes.
1106 verify();
1107 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
1108#endif
1109
Chandler Carruthe5944d92016-02-17 00:18:16 +00001110 // First remove the actual edge.
1111 SourceN.removeEdgeInternal(TargetN.getFunction());
1112
1113 // We return a list of the resulting *new* RefSCCs in post-order.
1114 SmallVector<RefSCC *, 1> Result;
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001115
Chandler Carrutha7205b62014-04-26 03:36:37 +00001116 // Direct recursion doesn't impact the SCC graph at all.
Chandler Carruthe5944d92016-02-17 00:18:16 +00001117 if (&SourceN == &TargetN)
1118 return Result;
Chandler Carrutha7205b62014-04-26 03:36:37 +00001119
Chandler Carruthc6334572016-12-28 02:24:58 +00001120 // If this ref edge is within an SCC then there are sufficient other edges to
1121 // form a cycle without this edge so removing it is a no-op.
1122 SCC &SourceC = *G->lookupSCC(SourceN);
1123 SCC &TargetC = *G->lookupSCC(TargetN);
1124 if (&SourceC == &TargetC)
1125 return Result;
1126
Chandler Carruthe5944d92016-02-17 00:18:16 +00001127 // We build somewhat synthetic new RefSCCs by providing a postorder mapping
1128 // for each inner SCC. We also store these associated with *nodes* rather
1129 // than SCCs because this saves a round-trip through the node->SCC map and in
1130 // the common case, SCCs are small. We will verify that we always give the
1131 // same number to every node in the SCC such that these are equivalent.
1132 const int RootPostOrderNumber = 0;
1133 int PostOrderNumber = RootPostOrderNumber + 1;
1134 SmallDenseMap<Node *, int> PostOrderMapping;
1135
1136 // Every node in the target SCC can already reach every node in this RefSCC
1137 // (by definition). It is the only node we know will stay inside this RefSCC.
1138 // Everything which transitively reaches Target will also remain in the
1139 // RefSCC. We handle this by pre-marking that the nodes in the target SCC map
1140 // back to the root post order number.
1141 //
1142 // This also enables us to take a very significant short-cut in the standard
1143 // Tarjan walk to re-form RefSCCs below: whenever we build an edge that
1144 // references the target node, we know that the target node eventually
1145 // references all other nodes in our walk. As a consequence, we can detect
1146 // and handle participants in that cycle without walking all the edges that
1147 // form the connections, and instead by relying on the fundamental guarantee
1148 // coming into this operation.
Chandler Carruthe5944d92016-02-17 00:18:16 +00001149 for (Node &N : TargetC)
1150 PostOrderMapping[&N] = RootPostOrderNumber;
1151
1152 // Reset all the other nodes to prepare for a DFS over them, and add them to
1153 // our worklist.
1154 SmallVector<Node *, 8> Worklist;
1155 for (SCC *C : SCCs) {
1156 if (C == &TargetC)
1157 continue;
1158
1159 for (Node &N : *C)
1160 N.DFSNumber = N.LowLink = 0;
1161
1162 Worklist.append(C->Nodes.begin(), C->Nodes.end());
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001163 }
1164
Chandler Carruthe5944d92016-02-17 00:18:16 +00001165 auto MarkNodeForSCCNumber = [&PostOrderMapping](Node &N, int Number) {
1166 N.DFSNumber = N.LowLink = -1;
1167 PostOrderMapping[&N] = Number;
1168 };
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001169
Chandler Carruthe5944d92016-02-17 00:18:16 +00001170 SmallVector<std::pair<Node *, edge_iterator>, 4> DFSStack;
1171 SmallVector<Node *, 4> PendingRefSCCStack;
Chandler Carruthaca48d02014-04-26 09:06:53 +00001172 do {
Chandler Carruthe5944d92016-02-17 00:18:16 +00001173 assert(DFSStack.empty() &&
1174 "Cannot begin a new root with a non-empty DFS stack!");
1175 assert(PendingRefSCCStack.empty() &&
1176 "Cannot begin a new root with pending nodes for an SCC!");
1177
1178 Node *RootN = Worklist.pop_back_val();
1179 // Skip any nodes we've already reached in the DFS.
1180 if (RootN->DFSNumber != 0) {
1181 assert(RootN->DFSNumber == -1 &&
1182 "Shouldn't have any mid-DFS root nodes!");
1183 continue;
1184 }
1185
1186 RootN->DFSNumber = RootN->LowLink = 1;
1187 int NextDFSNumber = 2;
1188
1189 DFSStack.push_back({RootN, RootN->begin()});
1190 do {
1191 Node *N;
1192 edge_iterator I;
1193 std::tie(N, I) = DFSStack.pop_back_val();
1194 auto E = N->end();
1195
1196 assert(N->DFSNumber != 0 && "We should always assign a DFS number "
1197 "before processing a node.");
1198
1199 while (I != E) {
1200 Node &ChildN = I->getNode(*G);
1201 if (ChildN.DFSNumber == 0) {
1202 // Mark that we should start at this child when next this node is the
1203 // top of the stack. We don't start at the next child to ensure this
1204 // child's lowlink is reflected.
1205 DFSStack.push_back({N, I});
1206
1207 // Continue, resetting to the child node.
1208 ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
1209 N = &ChildN;
1210 I = ChildN.begin();
1211 E = ChildN.end();
1212 continue;
1213 }
1214 if (ChildN.DFSNumber == -1) {
1215 // Check if this edge's target node connects to the deleted edge's
1216 // target node. If so, we know that every node connected will end up
1217 // in this RefSCC, so collapse the entire current stack into the root
1218 // slot in our SCC numbering. See above for the motivation of
1219 // optimizing the target connected nodes in this way.
1220 auto PostOrderI = PostOrderMapping.find(&ChildN);
1221 if (PostOrderI != PostOrderMapping.end() &&
1222 PostOrderI->second == RootPostOrderNumber) {
1223 MarkNodeForSCCNumber(*N, RootPostOrderNumber);
1224 while (!PendingRefSCCStack.empty())
1225 MarkNodeForSCCNumber(*PendingRefSCCStack.pop_back_val(),
1226 RootPostOrderNumber);
1227 while (!DFSStack.empty())
1228 MarkNodeForSCCNumber(*DFSStack.pop_back_val().first,
1229 RootPostOrderNumber);
1230 // Ensure we break all the way out of the enclosing loop.
1231 N = nullptr;
1232 break;
1233 }
1234
1235 // If this child isn't currently in this RefSCC, no need to process
Chandler Carruth23a6c3f2016-12-06 10:29:23 +00001236 // it. However, we do need to remove this RefSCC from its RefSCC's
1237 // parent set.
Chandler Carruthe5944d92016-02-17 00:18:16 +00001238 RefSCC &ChildRC = *G->lookupRefSCC(ChildN);
1239 ChildRC.Parents.erase(this);
1240 ++I;
1241 continue;
1242 }
1243
1244 // Track the lowest link of the children, if any are still in the stack.
1245 // Any child not on the stack will have a LowLink of -1.
1246 assert(ChildN.LowLink != 0 &&
1247 "Low-link must not be zero with a non-zero DFS number.");
1248 if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink)
1249 N->LowLink = ChildN.LowLink;
1250 ++I;
1251 }
1252 if (!N)
1253 // We short-circuited this node.
1254 break;
1255
1256 // We've finished processing N and its descendents, put it on our pending
1257 // stack to eventually get merged into a RefSCC.
1258 PendingRefSCCStack.push_back(N);
1259
1260 // If this node is linked to some lower entry, continue walking up the
1261 // stack.
1262 if (N->LowLink != N->DFSNumber) {
1263 assert(!DFSStack.empty() &&
1264 "We never found a viable root for a RefSCC to pop off!");
1265 continue;
1266 }
1267
1268 // Otherwise, form a new RefSCC from the top of the pending node stack.
1269 int RootDFSNumber = N->DFSNumber;
1270 // Find the range of the node stack by walking down until we pass the
1271 // root DFS number.
1272 auto RefSCCNodes = make_range(
1273 PendingRefSCCStack.rbegin(),
David Majnemer42531262016-08-12 03:55:06 +00001274 find_if(reverse(PendingRefSCCStack), [RootDFSNumber](const Node *N) {
1275 return N->DFSNumber < RootDFSNumber;
1276 }));
Chandler Carruthe5944d92016-02-17 00:18:16 +00001277
1278 // Mark the postorder number for these nodes and clear them off the
1279 // stack. We'll use the postorder number to pull them into RefSCCs at the
1280 // end. FIXME: Fuse with the loop above.
1281 int RefSCCNumber = PostOrderNumber++;
1282 for (Node *N : RefSCCNodes)
1283 MarkNodeForSCCNumber(*N, RefSCCNumber);
1284
1285 PendingRefSCCStack.erase(RefSCCNodes.end().base(),
1286 PendingRefSCCStack.end());
1287 } while (!DFSStack.empty());
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001288
Chandler Carruthaca48d02014-04-26 09:06:53 +00001289 assert(DFSStack.empty() && "Didn't flush the entire DFS stack!");
Chandler Carruthe5944d92016-02-17 00:18:16 +00001290 assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!");
Chandler Carruthaca48d02014-04-26 09:06:53 +00001291 } while (!Worklist.empty());
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001292
Chandler Carruthe5944d92016-02-17 00:18:16 +00001293 // We now have a post-order numbering for RefSCCs and a mapping from each
1294 // node in this RefSCC to its final RefSCC. We create each new RefSCC node
1295 // (re-using this RefSCC node for the root) and build a radix-sort style map
1296 // from postorder number to the RefSCC. We then append SCCs to each of these
1297 // RefSCCs in the order they occured in the original SCCs container.
1298 for (int i = 1; i < PostOrderNumber; ++i)
1299 Result.push_back(G->createRefSCC(*G));
1300
Chandler Carruth49d728a2016-09-16 10:20:17 +00001301 // Insert the resulting postorder sequence into the global graph postorder
1302 // sequence before the current RefSCC in that sequence. The idea being that
1303 // this RefSCC is the target of the reference edge removed, and thus has
1304 // a direct or indirect edge to every other RefSCC formed and so must be at
1305 // the end of any postorder traversal.
1306 //
1307 // FIXME: It'd be nice to change the APIs so that we returned an iterator
1308 // range over the global postorder sequence and generally use that sequence
1309 // rather than building a separate result vector here.
1310 if (!Result.empty()) {
1311 int Idx = G->getRefSCCIndex(*this);
1312 G->PostOrderRefSCCs.insert(G->PostOrderRefSCCs.begin() + Idx,
1313 Result.begin(), Result.end());
1314 for (int i : seq<int>(Idx, G->PostOrderRefSCCs.size()))
1315 G->RefSCCIndices[G->PostOrderRefSCCs[i]] = i;
1316 assert(G->PostOrderRefSCCs[G->getRefSCCIndex(*this)] == this &&
1317 "Failed to update this RefSCC's index after insertion!");
1318 }
1319
Chandler Carruthe5944d92016-02-17 00:18:16 +00001320 for (SCC *C : SCCs) {
1321 auto PostOrderI = PostOrderMapping.find(&*C->begin());
1322 assert(PostOrderI != PostOrderMapping.end() &&
1323 "Cannot have missing mappings for nodes!");
1324 int SCCNumber = PostOrderI->second;
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001325#ifndef NDEBUG
Chandler Carruthe5944d92016-02-17 00:18:16 +00001326 for (Node &N : *C)
1327 assert(PostOrderMapping.find(&N)->second == SCCNumber &&
1328 "Cannot have different numbers for nodes in the same SCC!");
1329#endif
1330 if (SCCNumber == 0)
1331 // The root node is handled separately by removing the SCCs.
1332 continue;
1333
1334 RefSCC &RC = *Result[SCCNumber - 1];
1335 int SCCIndex = RC.SCCs.size();
1336 RC.SCCs.push_back(C);
Chandler Carruth23a6c3f2016-12-06 10:29:23 +00001337 RC.SCCIndices[C] = SCCIndex;
Chandler Carruthe5944d92016-02-17 00:18:16 +00001338 C->OuterRefSCC = &RC;
1339 }
1340
1341 // FIXME: We re-walk the edges in each RefSCC to establish whether it is
1342 // a leaf and connect it to the rest of the graph's parents lists. This is
1343 // really wasteful. We should instead do this during the DFS to avoid yet
1344 // another edge walk.
1345 for (RefSCC *RC : Result)
1346 G->connectRefSCC(*RC);
1347
1348 // Now erase all but the root's SCCs.
David Majnemer42531262016-08-12 03:55:06 +00001349 SCCs.erase(remove_if(SCCs,
1350 [&](SCC *C) {
1351 return PostOrderMapping.lookup(&*C->begin()) !=
1352 RootPostOrderNumber;
1353 }),
Chandler Carruthe5944d92016-02-17 00:18:16 +00001354 SCCs.end());
Chandler Carruth88823462016-08-24 09:37:14 +00001355 SCCIndices.clear();
1356 for (int i = 0, Size = SCCs.size(); i < Size; ++i)
1357 SCCIndices[SCCs[i]] = i;
Chandler Carruthe5944d92016-02-17 00:18:16 +00001358
1359#ifndef NDEBUG
1360 // Now we need to reconnect the current (root) SCC to the graph. We do this
1361 // manually because we can special case our leaf handling and detect errors.
1362 bool IsLeaf = true;
1363#endif
1364 for (SCC *C : SCCs)
1365 for (Node &N : *C) {
1366 for (Edge &E : N) {
1367 assert(E.getNode() && "Cannot have a missing node in a visited SCC!");
1368 RefSCC &ChildRC = *G->lookupRefSCC(*E.getNode());
1369 if (&ChildRC == this)
1370 continue;
1371 ChildRC.Parents.insert(this);
1372#ifndef NDEBUG
1373 IsLeaf = false;
1374#endif
1375 }
1376 }
1377#ifndef NDEBUG
1378 if (!Result.empty())
1379 assert(!IsLeaf && "This SCC cannot be a leaf as we have split out new "
1380 "SCCs by removing this edge.");
David Majnemer0a16c222016-08-11 21:15:00 +00001381 if (none_of(G->LeafRefSCCs, [&](RefSCC *C) { return C == this; }))
Chandler Carruthe5944d92016-02-17 00:18:16 +00001382 assert(!IsLeaf && "This SCC cannot be a leaf as it already had child "
1383 "SCCs before we removed this edge.");
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001384#endif
Chandler Carruth5dbc1642016-10-12 07:59:56 +00001385 // And connect both this RefSCC and all the new ones to the correct parents.
1386 // The easiest way to do this is just to re-analyze the old parent set.
1387 SmallVector<RefSCC *, 4> OldParents(Parents.begin(), Parents.end());
1388 Parents.clear();
1389 for (RefSCC *ParentRC : OldParents)
Chandler Carruth5205c352016-12-07 01:42:40 +00001390 for (SCC &ParentC : *ParentRC)
1391 for (Node &ParentN : ParentC)
Chandler Carruth5dbc1642016-10-12 07:59:56 +00001392 for (Edge &E : ParentN) {
1393 assert(E.getNode() && "Cannot have a missing node in a visited SCC!");
1394 RefSCC &RC = *G->lookupRefSCC(*E.getNode());
Chandler Carruth5205c352016-12-07 01:42:40 +00001395 if (&RC != ParentRC)
1396 RC.Parents.insert(ParentRC);
Chandler Carruth5dbc1642016-10-12 07:59:56 +00001397 }
1398
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001399 // If this SCC stopped being a leaf through this edge removal, remove it from
Chandler Carruthe5944d92016-02-17 00:18:16 +00001400 // the leaf SCC list. Note that this DTRT in the case where this was never
1401 // a leaf.
1402 // FIXME: As LeafRefSCCs could be very large, we might want to not walk the
1403 // entire list if this RefSCC wasn't a leaf before the edge removal.
1404 if (!Result.empty())
1405 G->LeafRefSCCs.erase(
1406 std::remove(G->LeafRefSCCs.begin(), G->LeafRefSCCs.end(), this),
1407 G->LeafRefSCCs.end());
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001408
Chandler Carruth23a6c3f2016-12-06 10:29:23 +00001409#ifndef NDEBUG
1410 // Verify all of the new RefSCCs.
1411 for (RefSCC *RC : Result)
1412 RC->verify();
1413#endif
1414
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001415 // Return the new list of SCCs.
Chandler Carruthe5944d92016-02-17 00:18:16 +00001416 return Result;
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001417}
1418
Chandler Carruth5dbc1642016-10-12 07:59:56 +00001419void LazyCallGraph::RefSCC::handleTrivialEdgeInsertion(Node &SourceN,
1420 Node &TargetN) {
1421 // The only trivial case that requires any graph updates is when we add new
1422 // ref edge and may connect different RefSCCs along that path. This is only
1423 // because of the parents set. Every other part of the graph remains constant
1424 // after this edge insertion.
1425 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
1426 RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
1427 if (&TargetRC == this) {
1428
1429 return;
1430 }
1431
1432 assert(TargetRC.isDescendantOf(*this) &&
1433 "Target must be a descendant of the Source.");
1434 // The only change required is to add this RefSCC to the parent set of the
1435 // target. This is a set and so idempotent if the edge already existed.
1436 TargetRC.Parents.insert(this);
1437}
1438
1439void LazyCallGraph::RefSCC::insertTrivialCallEdge(Node &SourceN,
1440 Node &TargetN) {
1441#ifndef NDEBUG
1442 // Check that the RefSCC is still valid when we finish.
1443 auto ExitVerifier = make_scope_exit([this] { verify(); });
Chandler Carruthbae595b2016-11-22 19:23:31 +00001444
1445 // Check that we aren't breaking some invariants of the SCC graph.
1446 SCC &SourceC = *G->lookupSCC(SourceN);
1447 SCC &TargetC = *G->lookupSCC(TargetN);
1448 if (&SourceC != &TargetC)
1449 assert(SourceC.isAncestorOf(TargetC) &&
1450 "Call edge is not trivial in the SCC graph!");
Chandler Carruth5dbc1642016-10-12 07:59:56 +00001451#endif
1452 // First insert it into the source or find the existing edge.
1453 auto InsertResult = SourceN.EdgeIndexMap.insert(
1454 {&TargetN.getFunction(), SourceN.Edges.size()});
1455 if (!InsertResult.second) {
1456 // Already an edge, just update it.
1457 Edge &E = SourceN.Edges[InsertResult.first->second];
1458 if (E.isCall())
1459 return; // Nothing to do!
1460 E.setKind(Edge::Call);
1461 } else {
1462 // Create the new edge.
1463 SourceN.Edges.emplace_back(TargetN, Edge::Call);
1464 }
1465
1466 // Now that we have the edge, handle the graph fallout.
1467 handleTrivialEdgeInsertion(SourceN, TargetN);
1468}
1469
1470void LazyCallGraph::RefSCC::insertTrivialRefEdge(Node &SourceN, Node &TargetN) {
1471#ifndef NDEBUG
1472 // Check that the RefSCC is still valid when we finish.
1473 auto ExitVerifier = make_scope_exit([this] { verify(); });
Chandler Carruth9eb857c2016-11-22 21:40:10 +00001474
1475 // Check that we aren't breaking some invariants of the RefSCC graph.
1476 RefSCC &SourceRC = *G->lookupRefSCC(SourceN);
1477 RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
1478 if (&SourceRC != &TargetRC)
1479 assert(SourceRC.isAncestorOf(TargetRC) &&
1480 "Ref edge is not trivial in the RefSCC graph!");
Chandler Carruth5dbc1642016-10-12 07:59:56 +00001481#endif
1482 // First insert it into the source or find the existing edge.
1483 auto InsertResult = SourceN.EdgeIndexMap.insert(
1484 {&TargetN.getFunction(), SourceN.Edges.size()});
1485 if (!InsertResult.second)
1486 // Already an edge, we're done.
1487 return;
1488
1489 // Create the new edge.
1490 SourceN.Edges.emplace_back(TargetN, Edge::Ref);
1491
1492 // Now that we have the edge, handle the graph fallout.
1493 handleTrivialEdgeInsertion(SourceN, TargetN);
1494}
1495
Chandler Carruthe5944d92016-02-17 00:18:16 +00001496void LazyCallGraph::insertEdge(Node &SourceN, Function &Target, Edge::Kind EK) {
Chandler Carruthc00a7ff2014-04-28 11:10:23 +00001497 assert(SCCMap.empty() && DFSStack.empty() &&
1498 "This method cannot be called after SCCs have been formed!");
1499
Chandler Carruthe5944d92016-02-17 00:18:16 +00001500 return SourceN.insertEdgeInternal(Target, EK);
Chandler Carruthc00a7ff2014-04-28 11:10:23 +00001501}
1502
Chandler Carruthe5944d92016-02-17 00:18:16 +00001503void LazyCallGraph::removeEdge(Node &SourceN, Function &Target) {
Chandler Carruthaa839b22014-04-27 01:59:50 +00001504 assert(SCCMap.empty() && DFSStack.empty() &&
1505 "This method cannot be called after SCCs have been formed!");
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001506
Chandler Carruthe5944d92016-02-17 00:18:16 +00001507 return SourceN.removeEdgeInternal(Target);
Chandler Carruth9302fbf2014-04-23 11:03:03 +00001508}
1509
Chandler Carruth5dbc1642016-10-12 07:59:56 +00001510void LazyCallGraph::removeDeadFunction(Function &F) {
1511 // FIXME: This is unnecessarily restrictive. We should be able to remove
1512 // functions which recursively call themselves.
1513 assert(F.use_empty() &&
1514 "This routine should only be called on trivially dead functions!");
1515
1516 auto EII = EntryIndexMap.find(&F);
1517 if (EII != EntryIndexMap.end()) {
1518 EntryEdges[EII->second] = Edge();
1519 EntryIndexMap.erase(EII);
1520 }
1521
1522 // It's safe to just remove un-visited functions from the RefSCC entry list.
1523 // FIXME: This is a linear operation which could become hot and benefit from
1524 // an index map.
1525 auto RENI = find(RefSCCEntryNodes, &F);
1526 if (RENI != RefSCCEntryNodes.end())
1527 RefSCCEntryNodes.erase(RENI);
1528
1529 auto NI = NodeMap.find(&F);
1530 if (NI == NodeMap.end())
1531 // Not in the graph at all!
1532 return;
1533
1534 Node &N = *NI->second;
1535 NodeMap.erase(NI);
1536
1537 if (SCCMap.empty() && DFSStack.empty()) {
1538 // No SCC walk has begun, so removing this is fine and there is nothing
1539 // else necessary at this point but clearing out the node.
1540 N.clear();
1541 return;
1542 }
1543
1544 // Check that we aren't going to break the DFS walk.
1545 assert(all_of(DFSStack,
1546 [&N](const std::pair<Node *, edge_iterator> &Element) {
1547 return Element.first != &N;
1548 }) &&
1549 "Tried to remove a function currently in the DFS stack!");
1550 assert(find(PendingRefSCCStack, &N) == PendingRefSCCStack.end() &&
1551 "Tried to remove a function currently pending to add to a RefSCC!");
1552
1553 // Cannot remove a function which has yet to be visited in the DFS walk, so
1554 // if we have a node at all then we must have an SCC and RefSCC.
1555 auto CI = SCCMap.find(&N);
1556 assert(CI != SCCMap.end() &&
1557 "Tried to remove a node without an SCC after DFS walk started!");
1558 SCC &C = *CI->second;
1559 SCCMap.erase(CI);
1560 RefSCC &RC = C.getOuterRefSCC();
1561
1562 // This node must be the only member of its SCC as it has no callers, and
1563 // that SCC must be the only member of a RefSCC as it has no references.
1564 // Validate these properties first.
1565 assert(C.size() == 1 && "Dead functions must be in a singular SCC");
1566 assert(RC.size() == 1 && "Dead functions must be in a singular RefSCC");
1567 assert(RC.Parents.empty() && "Cannot have parents of a dead RefSCC!");
1568
1569 // Now remove this RefSCC from any parents sets and the leaf list.
1570 for (Edge &E : N)
1571 if (Node *TargetN = E.getNode())
1572 if (RefSCC *TargetRC = lookupRefSCC(*TargetN))
1573 TargetRC->Parents.erase(&RC);
1574 // FIXME: This is a linear operation which could become hot and benefit from
1575 // an index map.
1576 auto LRI = find(LeafRefSCCs, &RC);
1577 if (LRI != LeafRefSCCs.end())
1578 LeafRefSCCs.erase(LRI);
1579
1580 auto RCIndexI = RefSCCIndices.find(&RC);
1581 int RCIndex = RCIndexI->second;
1582 PostOrderRefSCCs.erase(PostOrderRefSCCs.begin() + RCIndex);
1583 RefSCCIndices.erase(RCIndexI);
1584 for (int i = RCIndex, Size = PostOrderRefSCCs.size(); i < Size; ++i)
1585 RefSCCIndices[PostOrderRefSCCs[i]] = i;
1586
1587 // Finally clear out all the data structures from the node down through the
1588 // components.
1589 N.clear();
1590 C.clear();
1591 RC.clear();
1592
1593 // Nothing to delete as all the objects are allocated in stable bump pointer
1594 // allocators.
1595}
1596
Chandler Carruth2a898e02014-04-23 23:20:36 +00001597LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
1598 return *new (MappedN = BPA.Allocate()) Node(*this, F);
Chandler Carruthd8d865e2014-04-18 11:02:33 +00001599}
1600
1601void LazyCallGraph::updateGraphPtrs() {
Chandler Carruthb60cb312014-04-17 07:25:59 +00001602 // Process all nodes updating the graph pointers.
Chandler Carruthaa839b22014-04-27 01:59:50 +00001603 {
1604 SmallVector<Node *, 16> Worklist;
Chandler Carrutha4499e92016-02-02 03:57:13 +00001605 for (Edge &E : EntryEdges)
1606 if (Node *EntryN = E.getNode())
Chandler Carruthaa839b22014-04-27 01:59:50 +00001607 Worklist.push_back(EntryN);
Chandler Carruthb60cb312014-04-17 07:25:59 +00001608
Chandler Carruthaa839b22014-04-27 01:59:50 +00001609 while (!Worklist.empty()) {
1610 Node *N = Worklist.pop_back_val();
1611 N->G = this;
Chandler Carrutha4499e92016-02-02 03:57:13 +00001612 for (Edge &E : N->Edges)
Chandler Carruthe5944d92016-02-17 00:18:16 +00001613 if (Node *TargetN = E.getNode())
1614 Worklist.push_back(TargetN);
Chandler Carruthaa839b22014-04-27 01:59:50 +00001615 }
1616 }
1617
1618 // Process all SCCs updating the graph pointers.
1619 {
Chandler Carruthe5944d92016-02-17 00:18:16 +00001620 SmallVector<RefSCC *, 16> Worklist(LeafRefSCCs.begin(), LeafRefSCCs.end());
Chandler Carruthaa839b22014-04-27 01:59:50 +00001621
1622 while (!Worklist.empty()) {
Chandler Carruthe5944d92016-02-17 00:18:16 +00001623 RefSCC &C = *Worklist.pop_back_val();
1624 C.G = this;
1625 for (RefSCC &ParentC : C.parents())
1626 Worklist.push_back(&ParentC);
Chandler Carruthaa839b22014-04-27 01:59:50 +00001627 }
Chandler Carruthb60cb312014-04-17 07:25:59 +00001628 }
Chandler Carruthbf71a342014-02-06 04:37:03 +00001629}
Chandler Carruthbf71a342014-02-06 04:37:03 +00001630
Chandler Carruthe5944d92016-02-17 00:18:16 +00001631/// Build the internal SCCs for a RefSCC from a sequence of nodes.
1632///
1633/// Appends the SCCs to the provided vector and updates the map with their
1634/// indices. Both the vector and map must be empty when passed into this
1635/// routine.
1636void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) {
1637 assert(RC.SCCs.empty() && "Already built SCCs!");
1638 assert(RC.SCCIndices.empty() && "Already mapped SCC indices!");
Chandler Carruth3f9869a2014-04-23 06:09:03 +00001639
Chandler Carruthe5944d92016-02-17 00:18:16 +00001640 for (Node *N : Nodes) {
1641 assert(N->LowLink >= (*Nodes.begin())->LowLink &&
Chandler Carruthcace6622014-04-23 10:31:17 +00001642 "We cannot have a low link in an SCC lower than its root on the "
1643 "stack!");
Chandler Carruth3f9869a2014-04-23 06:09:03 +00001644
Chandler Carruthe5944d92016-02-17 00:18:16 +00001645 // This node will go into the next RefSCC, clear out its DFS and low link
1646 // as we scan.
1647 N->DFSNumber = N->LowLink = 0;
1648 }
1649
1650 // Each RefSCC contains a DAG of the call SCCs. To build these, we do
1651 // a direct walk of the call edges using Tarjan's algorithm. We reuse the
1652 // internal storage as we won't need it for the outer graph's DFS any longer.
1653
1654 SmallVector<std::pair<Node *, call_edge_iterator>, 16> DFSStack;
1655 SmallVector<Node *, 16> PendingSCCStack;
1656
1657 // Scan down the stack and DFS across the call edges.
1658 for (Node *RootN : Nodes) {
1659 assert(DFSStack.empty() &&
1660 "Cannot begin a new root with a non-empty DFS stack!");
1661 assert(PendingSCCStack.empty() &&
1662 "Cannot begin a new root with pending nodes for an SCC!");
1663
1664 // Skip any nodes we've already reached in the DFS.
1665 if (RootN->DFSNumber != 0) {
1666 assert(RootN->DFSNumber == -1 &&
1667 "Shouldn't have any mid-DFS root nodes!");
1668 continue;
Chandler Carruth3f9869a2014-04-23 06:09:03 +00001669 }
1670
Chandler Carruthe5944d92016-02-17 00:18:16 +00001671 RootN->DFSNumber = RootN->LowLink = 1;
1672 int NextDFSNumber = 2;
Chandler Carruth3f9869a2014-04-23 06:09:03 +00001673
Chandler Carruthe5944d92016-02-17 00:18:16 +00001674 DFSStack.push_back({RootN, RootN->call_begin()});
1675 do {
1676 Node *N;
1677 call_edge_iterator I;
1678 std::tie(N, I) = DFSStack.pop_back_val();
1679 auto E = N->call_end();
1680 while (I != E) {
1681 Node &ChildN = *I->getNode();
1682 if (ChildN.DFSNumber == 0) {
1683 // We haven't yet visited this child, so descend, pushing the current
1684 // node onto the stack.
1685 DFSStack.push_back({N, I});
1686
1687 assert(!lookupSCC(ChildN) &&
1688 "Found a node with 0 DFS number but already in an SCC!");
1689 ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
1690 N = &ChildN;
1691 I = N->call_begin();
1692 E = N->call_end();
1693 continue;
1694 }
1695
1696 // If the child has already been added to some child component, it
1697 // couldn't impact the low-link of this parent because it isn't
1698 // connected, and thus its low-link isn't relevant so skip it.
1699 if (ChildN.DFSNumber == -1) {
1700 ++I;
1701 continue;
1702 }
1703
1704 // Track the lowest linked child as the lowest link for this node.
1705 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
1706 if (ChildN.LowLink < N->LowLink)
1707 N->LowLink = ChildN.LowLink;
1708
1709 // Move to the next edge.
1710 ++I;
1711 }
1712
1713 // We've finished processing N and its descendents, put it on our pending
1714 // SCC stack to eventually get merged into an SCC of nodes.
1715 PendingSCCStack.push_back(N);
1716
1717 // If this node is linked to some lower entry, continue walking up the
1718 // stack.
1719 if (N->LowLink != N->DFSNumber)
1720 continue;
1721
1722 // Otherwise, we've completed an SCC. Append it to our post order list of
1723 // SCCs.
1724 int RootDFSNumber = N->DFSNumber;
1725 // Find the range of the node stack by walking down until we pass the
1726 // root DFS number.
1727 auto SCCNodes = make_range(
1728 PendingSCCStack.rbegin(),
David Majnemer42531262016-08-12 03:55:06 +00001729 find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
1730 return N->DFSNumber < RootDFSNumber;
1731 }));
Chandler Carruthe5944d92016-02-17 00:18:16 +00001732 // Form a new SCC out of these nodes and then clear them off our pending
1733 // stack.
1734 RC.SCCs.push_back(createSCC(RC, SCCNodes));
1735 for (Node &N : *RC.SCCs.back()) {
1736 N.DFSNumber = N.LowLink = -1;
1737 SCCMap[&N] = RC.SCCs.back();
1738 }
1739 PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
1740 } while (!DFSStack.empty());
1741 }
1742
1743 // Wire up the SCC indices.
1744 for (int i = 0, Size = RC.SCCs.size(); i < Size; ++i)
1745 RC.SCCIndices[RC.SCCs[i]] = i;
Chandler Carruth3f9869a2014-04-23 06:09:03 +00001746}
1747
Chandler Carruthe5944d92016-02-17 00:18:16 +00001748// FIXME: We should move callers of this to embed the parent linking and leaf
1749// tracking into their DFS in order to remove a full walk of all edges.
1750void LazyCallGraph::connectRefSCC(RefSCC &RC) {
1751 // Walk all edges in the RefSCC (this remains linear as we only do this once
1752 // when we build the RefSCC) to connect it to the parent sets of its
1753 // children.
1754 bool IsLeaf = true;
1755 for (SCC &C : RC)
1756 for (Node &N : C)
1757 for (Edge &E : N) {
1758 assert(E.getNode() &&
1759 "Cannot have a missing node in a visited part of the graph!");
1760 RefSCC &ChildRC = *lookupRefSCC(*E.getNode());
1761 if (&ChildRC == &RC)
1762 continue;
1763 ChildRC.Parents.insert(&RC);
1764 IsLeaf = false;
1765 }
1766
Chandler Carruth5dbc1642016-10-12 07:59:56 +00001767 // For the SCCs where we find no child SCCs, add them to the leaf list.
Chandler Carruthe5944d92016-02-17 00:18:16 +00001768 if (IsLeaf)
1769 LeafRefSCCs.push_back(&RC);
1770}
1771
Chandler Carruth49d728a2016-09-16 10:20:17 +00001772bool LazyCallGraph::buildNextRefSCCInPostOrder() {
Chandler Carruthe5944d92016-02-17 00:18:16 +00001773 if (DFSStack.empty()) {
1774 Node *N;
Chandler Carruth90821c22014-04-26 09:45:55 +00001775 do {
Chandler Carruthe5944d92016-02-17 00:18:16 +00001776 // If we've handled all candidate entry nodes to the SCC forest, we're
1777 // done.
1778 if (RefSCCEntryNodes.empty())
Chandler Carruth49d728a2016-09-16 10:20:17 +00001779 return false;
Chandler Carruth18eadd922014-04-18 10:50:32 +00001780
Chandler Carruthe5944d92016-02-17 00:18:16 +00001781 N = &get(*RefSCCEntryNodes.pop_back_val());
Chandler Carruth90821c22014-04-26 09:45:55 +00001782 } while (N->DFSNumber != 0);
Chandler Carruthe5944d92016-02-17 00:18:16 +00001783
1784 // Found a new root, begin the DFS here.
Chandler Carruth5e2d70b2014-04-26 09:28:00 +00001785 N->LowLink = N->DFSNumber = 1;
Chandler Carruth09751bf2014-04-24 09:59:59 +00001786 NextDFSNumber = 2;
Chandler Carruthe5944d92016-02-17 00:18:16 +00001787 DFSStack.push_back({N, N->begin()});
Chandler Carruth18eadd922014-04-18 10:50:32 +00001788 }
1789
Chandler Carruth91dcf0f2014-04-24 21:19:30 +00001790 for (;;) {
Chandler Carruthe5944d92016-02-17 00:18:16 +00001791 Node *N;
1792 edge_iterator I;
1793 std::tie(N, I) = DFSStack.pop_back_val();
1794
1795 assert(N->DFSNumber > 0 && "We should always assign a DFS number "
1796 "before placing a node onto the stack.");
Chandler Carruth24553932014-04-24 11:05:20 +00001797
Chandler Carrutha4499e92016-02-02 03:57:13 +00001798 auto E = N->end();
Chandler Carruth5e2d70b2014-04-26 09:28:00 +00001799 while (I != E) {
Chandler Carrutha4499e92016-02-02 03:57:13 +00001800 Node &ChildN = I->getNode(*this);
Chandler Carruthbd5d3082014-04-23 23:34:48 +00001801 if (ChildN.DFSNumber == 0) {
Chandler Carruthe5944d92016-02-17 00:18:16 +00001802 // We haven't yet visited this child, so descend, pushing the current
1803 // node onto the stack.
1804 DFSStack.push_back({N, N->begin()});
Chandler Carruth18eadd922014-04-18 10:50:32 +00001805
Chandler Carruth09751bf2014-04-24 09:59:59 +00001806 assert(!SCCMap.count(&ChildN) &&
1807 "Found a node with 0 DFS number but already in an SCC!");
1808 ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
Chandler Carruth5e2d70b2014-04-26 09:28:00 +00001809 N = &ChildN;
Chandler Carruthe5944d92016-02-17 00:18:16 +00001810 I = N->begin();
1811 E = N->end();
Chandler Carruth5e2d70b2014-04-26 09:28:00 +00001812 continue;
Chandler Carruthcace6622014-04-23 10:31:17 +00001813 }
1814
Chandler Carruthe5944d92016-02-17 00:18:16 +00001815 // If the child has already been added to some child component, it
1816 // couldn't impact the low-link of this parent because it isn't
1817 // connected, and thus its low-link isn't relevant so skip it.
1818 if (ChildN.DFSNumber == -1) {
1819 ++I;
1820 continue;
1821 }
1822
1823 // Track the lowest linked child as the lowest link for this node.
1824 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
1825 if (ChildN.LowLink < N->LowLink)
Chandler Carruthbd5d3082014-04-23 23:34:48 +00001826 N->LowLink = ChildN.LowLink;
Chandler Carruthe5944d92016-02-17 00:18:16 +00001827
1828 // Move to the next edge.
Chandler Carruth5e2d70b2014-04-26 09:28:00 +00001829 ++I;
Chandler Carruth18eadd922014-04-18 10:50:32 +00001830 }
1831
Chandler Carruthe5944d92016-02-17 00:18:16 +00001832 // We've finished processing N and its descendents, put it on our pending
1833 // SCC stack to eventually get merged into an SCC of nodes.
1834 PendingRefSCCStack.push_back(N);
Chandler Carruth18eadd922014-04-18 10:50:32 +00001835
Chandler Carruthe5944d92016-02-17 00:18:16 +00001836 // If this node is linked to some lower entry, continue walking up the
1837 // stack.
1838 if (N->LowLink != N->DFSNumber) {
1839 assert(!DFSStack.empty() &&
1840 "We never found a viable root for an SCC to pop off!");
1841 continue;
1842 }
Chandler Carruth5e2d70b2014-04-26 09:28:00 +00001843
Chandler Carruthe5944d92016-02-17 00:18:16 +00001844 // Otherwise, form a new RefSCC from the top of the pending node stack.
1845 int RootDFSNumber = N->DFSNumber;
1846 // Find the range of the node stack by walking down until we pass the
1847 // root DFS number.
1848 auto RefSCCNodes = node_stack_range(
1849 PendingRefSCCStack.rbegin(),
David Majnemer42531262016-08-12 03:55:06 +00001850 find_if(reverse(PendingRefSCCStack), [RootDFSNumber](const Node *N) {
1851 return N->DFSNumber < RootDFSNumber;
1852 }));
Chandler Carruthe5944d92016-02-17 00:18:16 +00001853 // Form a new RefSCC out of these nodes and then clear them off our pending
1854 // stack.
1855 RefSCC *NewRC = createRefSCC(*this);
1856 buildSCCs(*NewRC, RefSCCNodes);
1857 connectRefSCC(*NewRC);
1858 PendingRefSCCStack.erase(RefSCCNodes.end().base(),
1859 PendingRefSCCStack.end());
1860
Chandler Carruth49d728a2016-09-16 10:20:17 +00001861 // Push the new node into the postorder list and return true indicating we
1862 // successfully grew the postorder sequence by one.
1863 bool Inserted =
1864 RefSCCIndices.insert({NewRC, PostOrderRefSCCs.size()}).second;
1865 (void)Inserted;
1866 assert(Inserted && "Cannot already have this RefSCC in the index map!");
1867 PostOrderRefSCCs.push_back(NewRC);
1868 return true;
Chandler Carruth91dcf0f2014-04-24 21:19:30 +00001869 }
Chandler Carruth18eadd922014-04-18 10:50:32 +00001870}
1871
Chandler Carruthdab4eae2016-11-23 17:53:26 +00001872AnalysisKey LazyCallGraphAnalysis::Key;
NAKAMURA Takumidf0cd722016-02-28 17:17:00 +00001873
Chandler Carruthbf71a342014-02-06 04:37:03 +00001874LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}
1875
Chandler Carruthe5944d92016-02-17 00:18:16 +00001876static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) {
Chandler Carrutha4499e92016-02-02 03:57:13 +00001877 OS << " Edges in function: " << N.getFunction().getName() << "\n";
1878 for (const LazyCallGraph::Edge &E : N)
1879 OS << " " << (E.isCall() ? "call" : "ref ") << " -> "
1880 << E.getFunction().getName() << "\n";
Chandler Carruth11f50322015-01-14 00:27:45 +00001881
1882 OS << "\n";
1883}
1884
Chandler Carruthe5944d92016-02-17 00:18:16 +00001885static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) {
1886 ptrdiff_t Size = std::distance(C.begin(), C.end());
1887 OS << " SCC with " << Size << " functions:\n";
Chandler Carruth11f50322015-01-14 00:27:45 +00001888
Chandler Carruthe5944d92016-02-17 00:18:16 +00001889 for (LazyCallGraph::Node &N : C)
1890 OS << " " << N.getFunction().getName() << "\n";
1891}
1892
1893static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) {
1894 ptrdiff_t Size = std::distance(C.begin(), C.end());
1895 OS << " RefSCC with " << Size << " call SCCs:\n";
1896
1897 for (LazyCallGraph::SCC &InnerC : C)
1898 printSCC(OS, InnerC);
Chandler Carruth11f50322015-01-14 00:27:45 +00001899
1900 OS << "\n";
1901}
1902
Chandler Carruthd174ce42015-01-05 02:47:05 +00001903PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M,
Chandler Carruthb47f8012016-03-11 11:05:24 +00001904 ModuleAnalysisManager &AM) {
1905 LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
Chandler Carruth11f50322015-01-14 00:27:45 +00001906
1907 OS << "Printing the call graph for module: " << M.getModuleIdentifier()
1908 << "\n\n";
1909
Chandler Carruthe5944d92016-02-17 00:18:16 +00001910 for (Function &F : M)
1911 printNode(OS, G.get(F));
Chandler Carruth11f50322015-01-14 00:27:45 +00001912
Chandler Carruthe5944d92016-02-17 00:18:16 +00001913 for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs())
1914 printRefSCC(OS, C);
Chandler Carruth18eadd922014-04-18 10:50:32 +00001915
Chandler Carruthbf71a342014-02-06 04:37:03 +00001916 return PreservedAnalyses::all();
Chandler Carruthbf71a342014-02-06 04:37:03 +00001917}
Sean Silva7cb30662016-06-18 09:17:32 +00001918
1919LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream &OS)
1920 : OS(OS) {}
1921
1922static void printNodeDOT(raw_ostream &OS, LazyCallGraph::Node &N) {
1923 std::string Name = "\"" + DOT::EscapeString(N.getFunction().getName()) + "\"";
1924
1925 for (const LazyCallGraph::Edge &E : N) {
1926 OS << " " << Name << " -> \""
1927 << DOT::EscapeString(E.getFunction().getName()) << "\"";
1928 if (!E.isCall()) // It is a ref edge.
1929 OS << " [style=dashed,label=\"ref\"]";
1930 OS << ";\n";
1931 }
1932
1933 OS << "\n";
1934}
1935
1936PreservedAnalyses LazyCallGraphDOTPrinterPass::run(Module &M,
1937 ModuleAnalysisManager &AM) {
1938 LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
1939
1940 OS << "digraph \"" << DOT::EscapeString(M.getModuleIdentifier()) << "\" {\n";
1941
1942 for (Function &F : M)
1943 printNodeDOT(OS, G.get(F));
1944
1945 OS << "}\n";
1946
1947 return PreservedAnalyses::all();
1948}