blob: 0d37a7d0e6746b87c78e92ec781f7009a2f22ee1 [file] [log] [blame]
Bruno Cardoso Lopes2a3ffb52011-08-23 01:14:17 +00001//===-- X86VZeroUpper.cpp - AVX vzeroupper instruction inserter -----------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the pass which inserts x86 AVX vzeroupper instructions
11// before calls to SSE encoded functions. This avoids transition latency
12// penalty when tranfering control between AVX encoded instructions and old
13// SSE encoding mode.
14//
15//===----------------------------------------------------------------------===//
16
Eli Friedman8f249602011-11-04 23:46:11 +000017#define DEBUG_TYPE "x86-vzeroupper"
Bruno Cardoso Lopes2a3ffb52011-08-23 01:14:17 +000018#include "X86.h"
19#include "X86InstrInfo.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/CodeGen/MachineFunctionPass.h"
22#include "llvm/CodeGen/MachineInstrBuilder.h"
Eli Friedman8f249602011-11-04 23:46:11 +000023#include "llvm/CodeGen/MachineRegisterInfo.h"
Bruno Cardoso Lopes2a3ffb52011-08-23 01:14:17 +000024#include "llvm/CodeGen/Passes.h"
Eli Friedman8f249602011-11-04 23:46:11 +000025#include "llvm/Support/Debug.h"
26#include "llvm/Support/raw_ostream.h"
Bruno Cardoso Lopes2a3ffb52011-08-23 01:14:17 +000027#include "llvm/Target/TargetInstrInfo.h"
28using namespace llvm;
29
30STATISTIC(NumVZU, "Number of vzeroupper instructions inserted");
31
32namespace {
33 struct VZeroUpperInserter : public MachineFunctionPass {
34 static char ID;
35 VZeroUpperInserter() : MachineFunctionPass(ID) {}
36
37 virtual bool runOnMachineFunction(MachineFunction &MF);
38
39 bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
40
41 virtual const char *getPassName() const { return "X86 vzeroupper inserter";}
42
43 private:
44 const TargetInstrInfo *TII; // Machine instruction info.
Eli Friedman8f249602011-11-04 23:46:11 +000045
46 // Any YMM register live-in to this function?
47 bool FnHasLiveInYmm;
48
49 // BBState - Contains the state of each MBB: unknown, clean, dirty
50 SmallVector<uint8_t, 8> BBState;
51
52 // BBSolved - Keep track of all MBB which had been already analyzed
53 // and there is no further processing required.
54 BitVector BBSolved;
55
56 // Machine Basic Blocks are classified according this pass:
57 //
58 // ST_UNKNOWN - The MBB state is unknown, meaning from the entry state
59 // until the MBB exit there isn't a instruction using YMM to change
60 // the state to dirty, or one of the incoming predecessors is unknown
61 // and there's not a dirty predecessor between them.
62 //
63 // ST_CLEAN - No YMM usage in the end of the MBB. A MBB could have
64 // instructions using YMM and be marked ST_CLEAN, as long as the state
65 // is cleaned by a vzeroupper before any call.
66 //
67 // ST_DIRTY - Any MBB ending with a YMM usage not cleaned up by a
68 // vzeroupper instruction.
69 //
70 // ST_INIT - Placeholder for an empty state set
71 //
72 enum {
73 ST_UNKNOWN = 0,
74 ST_CLEAN = 1,
75 ST_DIRTY = 2,
76 ST_INIT = 3
77 };
78
79 // computeState - Given two states, compute the resulting state, in
80 // the following way
81 //
82 // 1) One dirty state yields another dirty state
83 // 2) All states must be clean for the result to be clean
84 // 3) If none above and one unknown, the result state is also unknown
85 //
Craig Topper455bcaf2012-08-22 05:36:44 +000086 static unsigned computeState(unsigned PrevState, unsigned CurState) {
Eli Friedman8f249602011-11-04 23:46:11 +000087 if (PrevState == ST_INIT)
88 return CurState;
89
90 if (PrevState == ST_DIRTY || CurState == ST_DIRTY)
91 return ST_DIRTY;
92
93 if (PrevState == ST_CLEAN && CurState == ST_CLEAN)
94 return ST_CLEAN;
95
96 return ST_UNKNOWN;
97 }
98
Bruno Cardoso Lopes2a3ffb52011-08-23 01:14:17 +000099 };
100 char VZeroUpperInserter::ID = 0;
101}
102
103FunctionPass *llvm::createX86IssueVZeroUpperPass() {
104 return new VZeroUpperInserter();
105}
106
Eli Friedman8f249602011-11-04 23:46:11 +0000107static bool isYmmReg(unsigned Reg) {
Elena Demikhovsky8cfb43f2013-07-24 11:02:47 +0000108 return (Reg >= X86::YMM0 && Reg <= X86::YMM31);
109}
Eli Friedman8f249602011-11-04 23:46:11 +0000110
Elena Demikhovsky8cfb43f2013-07-24 11:02:47 +0000111static bool isZmmReg(unsigned Reg) {
112 return (Reg >= X86::ZMM0 && Reg <= X86::ZMM31);
Eli Friedman8f249602011-11-04 23:46:11 +0000113}
114
115static bool checkFnHasLiveInYmm(MachineRegisterInfo &MRI) {
116 for (MachineRegisterInfo::livein_iterator I = MRI.livein_begin(),
117 E = MRI.livein_end(); I != E; ++I)
Elena Demikhovsky8cfb43f2013-07-24 11:02:47 +0000118 if (isYmmReg(I->first) || isZmmReg(I->first))
Eli Friedman8f249602011-11-04 23:46:11 +0000119 return true;
120
121 return false;
122}
123
Elena Demikhovsky9e0df7c2013-02-13 08:02:04 +0000124static bool clobbersAllYmmRegs(const MachineOperand &MO) {
Elena Demikhovsky8cfb43f2013-07-24 11:02:47 +0000125 for (unsigned reg = X86::YMM0; reg < X86::YMM31; ++reg) {
126 if (!MO.clobbersPhysReg(reg))
127 return false;
128 }
129 for (unsigned reg = X86::ZMM0; reg < X86::ZMM31; ++reg) {
Elena Demikhovsky9e0df7c2013-02-13 08:02:04 +0000130 if (!MO.clobbersPhysReg(reg))
131 return false;
132 }
133 return true;
134}
135
Eli Friedman8f249602011-11-04 23:46:11 +0000136static bool hasYmmReg(MachineInstr *MI) {
Craig Topper056dfcc2012-08-22 05:59:59 +0000137 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
Eli Friedman8f249602011-11-04 23:46:11 +0000138 const MachineOperand &MO = MI->getOperand(i);
Elena Demikhovsky9e0df7c2013-02-13 08:02:04 +0000139 if (MI->isCall() && MO.isRegMask() && !clobbersAllYmmRegs(MO))
140 return true;
Eli Friedman8f249602011-11-04 23:46:11 +0000141 if (!MO.isReg())
142 continue;
143 if (MO.isDebug())
144 continue;
145 if (isYmmReg(MO.getReg()))
146 return true;
147 }
148 return false;
149}
150
Bruno Cardoso Lopes2a3ffb52011-08-23 01:14:17 +0000151/// runOnMachineFunction - Loop over all of the basic blocks, inserting
152/// vzero upper instructions before function calls.
153bool VZeroUpperInserter::runOnMachineFunction(MachineFunction &MF) {
154 TII = MF.getTarget().getInstrInfo();
Eli Friedman8f249602011-11-04 23:46:11 +0000155 MachineRegisterInfo &MRI = MF.getRegInfo();
156 bool EverMadeChange = false;
Bruno Cardoso Lopes2a3ffb52011-08-23 01:14:17 +0000157
Eli Friedman8f249602011-11-04 23:46:11 +0000158 // Fast check: if the function doesn't use any ymm registers, we don't need
159 // to insert any VZEROUPPER instructions. This is constant-time, so it is
160 // cheap in the common case of no ymm use.
161 bool YMMUsed = false;
Craig Topperabadc662012-04-20 06:31:50 +0000162 const TargetRegisterClass *RC = &X86::VR256RegClass;
Eli Friedman8f249602011-11-04 23:46:11 +0000163 for (TargetRegisterClass::iterator i = RC->begin(), e = RC->end();
164 i != e; i++) {
Jakob Stoklund Olesena10c0982012-10-17 17:52:35 +0000165 if (!MRI.reg_nodbg_empty(*i)) {
Eli Friedman8f249602011-11-04 23:46:11 +0000166 YMMUsed = true;
167 break;
168 }
Bruno Cardoso Lopes2a3ffb52011-08-23 01:14:17 +0000169 }
Eli Friedman8f249602011-11-04 23:46:11 +0000170 if (!YMMUsed)
171 return EverMadeChange;
172
173 // Pre-compute the existence of any live-in YMM registers to this function
174 FnHasLiveInYmm = checkFnHasLiveInYmm(MRI);
175
176 assert(BBState.empty());
177 BBState.resize(MF.getNumBlockIDs(), 0);
178 BBSolved.resize(MF.getNumBlockIDs(), 0);
179
180 // Each BB state depends on all predecessors, loop over until everything
181 // converges. (Once we converge, we can implicitly mark everything that is
182 // still ST_UNKNOWN as ST_CLEAN.)
183 while (1) {
184 bool MadeChange = false;
185
186 // Process all basic blocks.
187 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
188 MadeChange |= processBasicBlock(MF, *I);
189
190 // If this iteration over the code changed anything, keep iterating.
191 if (!MadeChange) break;
192 EverMadeChange = true;
193 }
194
195 BBState.clear();
196 BBSolved.clear();
197 return EverMadeChange;
Bruno Cardoso Lopes2a3ffb52011-08-23 01:14:17 +0000198}
199
200/// processBasicBlock - Loop over all of the instructions in the basic block,
201/// inserting vzero upper instructions before function calls.
202bool VZeroUpperInserter::processBasicBlock(MachineFunction &MF,
203 MachineBasicBlock &BB) {
204 bool Changed = false;
Eli Friedman8f249602011-11-04 23:46:11 +0000205 unsigned BBNum = BB.getNumber();
Bruno Cardoso Lopes2a3ffb52011-08-23 01:14:17 +0000206
Eli Friedman8f249602011-11-04 23:46:11 +0000207 // Don't process already solved BBs
208 if (BBSolved[BBNum])
209 return false; // No changes
210
211 // Check the state of all predecessors
212 unsigned EntryState = ST_INIT;
213 for (MachineBasicBlock::const_pred_iterator PI = BB.pred_begin(),
214 PE = BB.pred_end(); PI != PE; ++PI) {
215 EntryState = computeState(EntryState, BBState[(*PI)->getNumber()]);
216 if (EntryState == ST_DIRTY)
217 break;
218 }
219
220
Benjamin Kramerbde91762012-06-02 10:20:22 +0000221 // The entry MBB for the function may set the initial state to dirty if
Eli Friedman8f249602011-11-04 23:46:11 +0000222 // the function receives any YMM incoming arguments
Craig Topper056dfcc2012-08-22 05:59:59 +0000223 if (&BB == MF.begin()) {
Eli Friedman8f249602011-11-04 23:46:11 +0000224 EntryState = ST_CLEAN;
225 if (FnHasLiveInYmm)
226 EntryState = ST_DIRTY;
227 }
228
229 // The current state is initialized according to the predecessors
230 unsigned CurState = EntryState;
231 bool BBHasCall = false;
232
Bruno Cardoso Lopes2a3ffb52011-08-23 01:14:17 +0000233 for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
Bruno Cardoso Lopes2a3ffb52011-08-23 01:14:17 +0000234 DebugLoc dl = I->getDebugLoc();
Michael Liaoc7bf44d2013-10-23 18:32:43 +0000235 MachineInstr *MI = I;
236
237 // Don't need to check instructions added in prolog.
238 // In prolog, special function calls may be added for specific targets
239 // (e.g. on Windows, a prolog helper '_chkstk' is called when the local
240 // variables exceed 4K bytes on stack.) These helpers won't use/def YMM/XMM
241 // registers.
242 if (MI->getFlag(MachineInstr::FrameSetup))
243 continue;
244
Evan Cheng7f8e5632011-12-07 07:15:52 +0000245 bool isControlFlow = MI->isCall() || MI->isReturn();
Bruno Cardoso Lopes2a3ffb52011-08-23 01:14:17 +0000246
Chad Rosier24c19d22012-08-01 18:39:17 +0000247 // Shortcut: don't need to check regular instructions in dirty state.
Eli Friedman8f249602011-11-04 23:46:11 +0000248 if (!isControlFlow && CurState == ST_DIRTY)
249 continue;
250
251 if (hasYmmReg(MI)) {
252 // We found a ymm-using instruction; this could be an AVX instruction,
253 // or it could be control flow.
254 CurState = ST_DIRTY;
255 continue;
256 }
257
258 // Check for control-flow out of the current function (which might
259 // indirectly execute SSE instructions).
260 if (!isControlFlow)
261 continue;
262
263 BBHasCall = true;
264
265 // The VZEROUPPER instruction resets the upper 128 bits of all Intel AVX
266 // registers. This instruction has zero latency. In addition, the processor
267 // changes back to Clean state, after which execution of Intel SSE
268 // instructions or Intel AVX instructions has no transition penalty. Add
269 // the VZEROUPPER instruction before any function call/return that might
270 // execute SSE code.
271 // FIXME: In some cases, we may want to move the VZEROUPPER into a
272 // predecessor block.
273 if (CurState == ST_DIRTY) {
274 // Only insert the VZEROUPPER in case the entry state isn't unknown.
275 // When unknown, only compute the information within the block to have
276 // it available in the exit if possible, but don't change the block.
277 if (EntryState != ST_UNKNOWN) {
Craig Topper056dfcc2012-08-22 05:59:59 +0000278 BuildMI(BB, I, dl, TII->get(X86::VZEROUPPER));
Eli Friedman8f249602011-11-04 23:46:11 +0000279 ++NumVZU;
280 }
281
282 // After the inserted VZEROUPPER the state becomes clean again, but
283 // other YMM may appear before other subsequent calls or even before
284 // the end of the BB.
285 CurState = ST_CLEAN;
Bruno Cardoso Lopes2a3ffb52011-08-23 01:14:17 +0000286 }
287 }
288
Eli Friedman8f249602011-11-04 23:46:11 +0000289 DEBUG(dbgs() << "MBB #" << BBNum
290 << ", current state: " << CurState << '\n');
291
292 // A BB can only be considered solved when we both have done all the
293 // necessary transformations, and have computed the exit state. This happens
294 // in two cases:
295 // 1) We know the entry state: this immediately implies the exit state and
296 // all the necessary transformations.
297 // 2) There are no calls, and and a non-call instruction marks this block:
298 // no transformations are necessary, and we know the exit state.
299 if (EntryState != ST_UNKNOWN || (!BBHasCall && CurState != ST_UNKNOWN))
300 BBSolved[BBNum] = true;
301
302 if (CurState != BBState[BBNum])
303 Changed = true;
304
305 BBState[BBNum] = CurState;
Bruno Cardoso Lopes2a3ffb52011-08-23 01:14:17 +0000306 return Changed;
307}