blob: 646379bdbf09608d819300794878d4d7c0f38b8f [file] [log] [blame]
Nadav Rotem089cf422012-02-26 08:43:43 +00001//===-- llvm-stress.cpp - Generate random LL files to stress-test LLVM -----===//
Nadav Rotem78bda892012-02-26 08:35:53 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This program is a utility that generates random .ll files to stress-test
11// different components in LLVM.
12//
13//===----------------------------------------------------------------------===//
14#include "llvm/LLVMContext.h"
15#include "llvm/Module.h"
16#include "llvm/PassManager.h"
17#include "llvm/Constants.h"
18#include "llvm/Instruction.h"
19#include "llvm/CallGraphSCCPass.h"
20#include "llvm/Assembly/PrintModulePass.h"
21#include "llvm/Analysis/Verifier.h"
22#include "llvm/Support/PassNameParser.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/ManagedStatic.h"
25#include "llvm/Support/PluginLoader.h"
26#include "llvm/Support/PrettyStackTrace.h"
27#include "llvm/Support/ToolOutputFile.h"
28#include <memory>
29#include <sstream>
30#include <set>
31#include <vector>
32#include <algorithm>
33using namespace llvm;
34
35static cl::opt<unsigned> SeedCL("seed",
36 cl::desc("Seed used for randomness"), cl::init(0));
37static cl::opt<unsigned> SizeCL("size",
38 cl::desc("The estimated size of the generated function (# of instrs)"),
39 cl::init(100));
40static cl::opt<std::string>
41OutputFilename("o", cl::desc("Override output filename"),
42 cl::value_desc("filename"));
43
Hal Finkelc9474122012-02-27 23:59:33 +000044static cl::opt<bool> GenHalfFloat("generate-half-float",
45 cl::desc("Generate half-length floating-point values"), cl::init(false));
46static cl::opt<bool> GenX86FP80("generate-x86-fp80",
47 cl::desc("Generate 80-bit X86 floating-point values"), cl::init(false));
48static cl::opt<bool> GenFP128("generate-fp128",
49 cl::desc("Generate 128-bit floating-point values"), cl::init(false));
50static cl::opt<bool> GenPPCFP128("generate-ppc-fp128",
51 cl::desc("Generate 128-bit PPC floating-point values"), cl::init(false));
52static cl::opt<bool> GenX86MMX("generate-x86-mmx",
53 cl::desc("Generate X86 MMX floating-point values"), cl::init(false));
54
Nadav Rotem78bda892012-02-26 08:35:53 +000055/// A utility class to provide a pseudo-random number generator which is
56/// the same across all platforms. This is somewhat close to the libc
57/// implementation. Note: This is not a cryptographically secure pseudorandom
58/// number generator.
59class Random {
60public:
61 /// C'tor
62 Random(unsigned _seed):Seed(_seed) {}
63 /// Return the next random value.
64 unsigned Rand() {
65 unsigned Val = Seed + 0x000b07a1;
66 Seed = (Val * 0x3c7c0ac1);
67 // Only lowest 19 bits are random-ish.
68 return Seed & 0x7ffff;
69 }
70
71private:
72 unsigned Seed;
73};
74
75/// Generate an empty function with a default argument list.
76Function *GenEmptyFunction(Module *M) {
77 // Type Definitions
78 std::vector<Type*> ArgsTy;
79 // Define a few arguments
80 LLVMContext &Context = M->getContext();
81 ArgsTy.push_back(PointerType::get(IntegerType::getInt8Ty(Context), 0));
82 ArgsTy.push_back(PointerType::get(IntegerType::getInt32Ty(Context), 0));
83 ArgsTy.push_back(PointerType::get(IntegerType::getInt64Ty(Context), 0));
84 ArgsTy.push_back(IntegerType::getInt32Ty(Context));
85 ArgsTy.push_back(IntegerType::getInt64Ty(Context));
86 ArgsTy.push_back(IntegerType::getInt8Ty(Context));
87
88 FunctionType *FuncTy = FunctionType::get(Type::getVoidTy(Context), ArgsTy, 0);
89 // Pick a unique name to describe the input parameters
90 std::stringstream ss;
91 ss<<"autogen_SD"<<SeedCL;
92 Function *Func = Function::Create(FuncTy, GlobalValue::ExternalLinkage,
93 ss.str(), M);
94
95 Func->setCallingConv(CallingConv::C);
96 return Func;
97}
98
99/// A base class, implementing utilities needed for
100/// modifying and adding new random instructions.
101struct Modifier {
102 /// Used to store the randomly generated values.
103 typedef std::vector<Value*> PieceTable;
104
105public:
106 /// C'tor
Nadav Rotemdc497b62012-02-26 08:59:25 +0000107 Modifier(BasicBlock *Block, PieceTable *PT, Random *R):
108 BB(Block),PT(PT),Ran(R),Context(BB->getContext()) {};
Nadav Rotem78bda892012-02-26 08:35:53 +0000109 /// Add a new instruction.
110 virtual void Act() = 0;
111 /// Add N new instructions,
112 virtual void ActN(unsigned n) {
113 for (unsigned i=0; i<n; ++i)
114 Act();
115 }
116
117protected:
118 /// Return a random value from the list of known values.
119 Value *getRandomVal() {
120 assert(PT->size());
121 return PT->at(Ran->Rand() % PT->size());
122 }
123
Nadav Roteme4972dd2012-02-26 13:56:18 +0000124 Constant *getRandomConstant(Type *Tp) {
125 if (Tp->isIntegerTy()) {
126 if (Ran->Rand() & 1)
127 return ConstantInt::getAllOnesValue(Tp);
128 return ConstantInt::getNullValue(Tp);
129 } else if (Tp->isFloatingPointTy()) {
130 if (Ran->Rand() & 1)
131 return ConstantFP::getAllOnesValue(Tp);
132 return ConstantFP::getNullValue(Tp);
133 }
134 return UndefValue::get(Tp);
135 }
136
Nadav Rotem78bda892012-02-26 08:35:53 +0000137 /// Return a random value with a known type.
138 Value *getRandomValue(Type *Tp) {
139 unsigned index = Ran->Rand();
140 for (unsigned i=0; i<PT->size(); ++i) {
141 Value *V = PT->at((index + i) % PT->size());
142 if (V->getType() == Tp)
143 return V;
144 }
145
146 // If the requested type was not found, generate a constant value.
147 if (Tp->isIntegerTy()) {
148 if (Ran->Rand() & 1)
149 return ConstantInt::getAllOnesValue(Tp);
150 return ConstantInt::getNullValue(Tp);
151 } else if (Tp->isFloatingPointTy()) {
152 if (Ran->Rand() & 1)
153 return ConstantFP::getAllOnesValue(Tp);
154 return ConstantFP::getNullValue(Tp);
Nadav Roteme4972dd2012-02-26 13:56:18 +0000155 } else if (Tp->isVectorTy()) {
156 VectorType *VTp = cast<VectorType>(Tp);
157
158 std::vector<Constant*> TempValues;
159 TempValues.reserve(VTp->getNumElements());
160 for (unsigned i = 0; i < VTp->getNumElements(); ++i)
161 TempValues.push_back(getRandomConstant(VTp->getScalarType()));
162
163 ArrayRef<Constant*> VectorValue(TempValues);
164 return ConstantVector::get(VectorValue);
Nadav Rotem78bda892012-02-26 08:35:53 +0000165 }
166
Nadav Rotem78bda892012-02-26 08:35:53 +0000167 return UndefValue::get(Tp);
168 }
169
170 /// Return a random value of any pointer type.
171 Value *getRandomPointerValue() {
172 unsigned index = Ran->Rand();
173 for (unsigned i=0; i<PT->size(); ++i) {
174 Value *V = PT->at((index + i) % PT->size());
175 if (V->getType()->isPointerTy())
176 return V;
177 }
178 return UndefValue::get(pickPointerType());
179 }
180
181 /// Return a random value of any vector type.
182 Value *getRandomVectorValue() {
183 unsigned index = Ran->Rand();
184 for (unsigned i=0; i<PT->size(); ++i) {
185 Value *V = PT->at((index + i) % PT->size());
186 if (V->getType()->isVectorTy())
187 return V;
188 }
189 return UndefValue::get(pickVectorType());
190 }
191
192 /// Pick a random type.
193 Type *pickType() {
194 return (Ran->Rand() & 1 ? pickVectorType() : pickScalarType());
195 }
196
197 /// Pick a random pointer type.
198 Type *pickPointerType() {
199 Type *Ty = pickType();
200 return PointerType::get(Ty, 0);
201 }
202
203 /// Pick a random vector type.
204 Type *pickVectorType(unsigned len = (unsigned)-1) {
205 Type *Ty = pickScalarType();
206 // Pick a random vector width in the range 2**0 to 2**4.
207 // by adding two randoms we are generating a normal-like distribution
208 // around 2**3.
209 unsigned width = 1<<((Ran->Rand() % 3) + (Ran->Rand() % 3));
210 if (len != (unsigned)-1)
211 width = len;
212 return VectorType::get(Ty, width);
213 }
214
215 /// Pick a random scalar type.
216 Type *pickScalarType() {
Hal Finkelc9474122012-02-27 23:59:33 +0000217 Type *t = 0;
218 do {
219 switch (Ran->Rand() % 30) {
220 case 0: t = Type::getInt1Ty(Context); break;
221 case 1: t = Type::getInt8Ty(Context); break;
222 case 2: t = Type::getInt16Ty(Context); break;
223 case 3: case 4:
224 case 5: t = Type::getFloatTy(Context); break;
225 case 6: case 7:
226 case 8: t = Type::getDoubleTy(Context); break;
227 case 9: case 10:
228 case 11: t = Type::getInt32Ty(Context); break;
229 case 12: case 13:
230 case 14: t = Type::getInt64Ty(Context); break;
231 case 15: case 16:
232 case 17: if (GenHalfFloat) t = Type::getHalfTy(Context); break;
233 case 18: case 19:
234 case 20: if (GenX86FP80) t = Type::getX86_FP80Ty(Context); break;
235 case 21: case 22:
236 case 23: if (GenFP128) t = Type::getFP128Ty(Context); break;
237 case 24: case 25:
238 case 26: if (GenPPCFP128) t = Type::getPPC_FP128Ty(Context); break;
239 case 27: case 28:
240 case 29: if (GenX86MMX) t = Type::getX86_MMXTy(Context); break;
241 default: llvm_unreachable("Invalid scalar value");
242 }
243 } while (t == 0);
244
245 return t;
Nadav Rotem78bda892012-02-26 08:35:53 +0000246 }
247
248 /// Basic block to populate
249 BasicBlock *BB;
250 /// Value table
251 PieceTable *PT;
252 /// Random number generator
253 Random *Ran;
254 /// Context
255 LLVMContext &Context;
256};
257
258struct LoadModifier: public Modifier {
259 LoadModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {};
260 virtual void Act() {
261 // Try to use predefined pointers. If non exist, use undef pointer value;
262 Value *Ptr = getRandomPointerValue();
263 Value *V = new LoadInst(Ptr, "L", BB->getTerminator());
264 PT->push_back(V);
265 }
266};
267
268struct StoreModifier: public Modifier {
269 StoreModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {}
270 virtual void Act() {
271 // Try to use predefined pointers. If non exist, use undef pointer value;
272 Value *Ptr = getRandomPointerValue();
273 Type *Tp = Ptr->getType();
274 Value *Val = getRandomValue(Tp->getContainedType(0));
Nadav Rotem63ff91d2012-02-26 12:00:22 +0000275 Type *ValTy = Val->getType();
Nadav Rotem78bda892012-02-26 08:35:53 +0000276
277 // Do not store vectors of i1s because they are unsupported
Nadav Rotem115ec822012-02-26 12:34:17 +0000278 // by the codegen.
279 if (ValTy->isVectorTy() && ValTy->getScalarSizeInBits() == 1)
Nadav Rotem78bda892012-02-26 08:35:53 +0000280 return;
281
282 new StoreInst(Val, Ptr, BB->getTerminator());
283 }
284};
285
286struct BinModifier: public Modifier {
287 BinModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {}
288
289 virtual void Act() {
290 Value *Val0 = getRandomVal();
291 Value *Val1 = getRandomValue(Val0->getType());
292
293 // Don't handle pointer types.
294 if (Val0->getType()->isPointerTy() ||
295 Val1->getType()->isPointerTy())
296 return;
297
298 // Don't handle i1 types.
299 if (Val0->getType()->getScalarSizeInBits() == 1)
300 return;
301
302
303 bool isFloat = Val0->getType()->getScalarType()->isFloatingPointTy();
304 Instruction* Term = BB->getTerminator();
305 unsigned R = Ran->Rand() % (isFloat ? 7 : 13);
306 Instruction::BinaryOps Op;
307
308 switch (R) {
309 default: llvm_unreachable("Invalid BinOp");
310 case 0:{Op = (isFloat?Instruction::FAdd : Instruction::Add); break; }
311 case 1:{Op = (isFloat?Instruction::FSub : Instruction::Sub); break; }
312 case 2:{Op = (isFloat?Instruction::FMul : Instruction::Mul); break; }
313 case 3:{Op = (isFloat?Instruction::FDiv : Instruction::SDiv); break; }
314 case 4:{Op = (isFloat?Instruction::FDiv : Instruction::UDiv); break; }
315 case 5:{Op = (isFloat?Instruction::FRem : Instruction::SRem); break; }
316 case 6:{Op = (isFloat?Instruction::FRem : Instruction::URem); break; }
317 case 7: {Op = Instruction::Shl; break; }
318 case 8: {Op = Instruction::LShr; break; }
319 case 9: {Op = Instruction::AShr; break; }
320 case 10:{Op = Instruction::And; break; }
321 case 11:{Op = Instruction::Or; break; }
322 case 12:{Op = Instruction::Xor; break; }
323 }
324
325 PT->push_back(BinaryOperator::Create(Op, Val0, Val1, "B", Term));
326 }
327};
328
329/// Generate constant values.
330struct ConstModifier: public Modifier {
331 ConstModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {}
332 virtual void Act() {
333 Type *Ty = pickType();
334
335 if (Ty->isVectorTy()) {
336 switch (Ran->Rand() % 2) {
337 case 0: if (Ty->getScalarType()->isIntegerTy())
338 return PT->push_back(ConstantVector::getAllOnesValue(Ty));
339 case 1: if (Ty->getScalarType()->isIntegerTy())
340 return PT->push_back(ConstantVector::getNullValue(Ty));
341 }
342 }
343
344 if (Ty->isFloatingPointTy()) {
345 if (Ran->Rand() & 1)
346 return PT->push_back(ConstantFP::getNullValue(Ty));
347 return PT->push_back(ConstantFP::get(Ty,
348 static_cast<double>(1)/Ran->Rand()));
349 }
350
351 if (Ty->isIntegerTy()) {
352 switch (Ran->Rand() % 7) {
353 case 0: if (Ty->isIntegerTy())
354 return PT->push_back(ConstantInt::get(Ty,
355 APInt::getAllOnesValue(Ty->getPrimitiveSizeInBits())));
356 case 1: if (Ty->isIntegerTy())
357 return PT->push_back(ConstantInt::get(Ty,
358 APInt::getNullValue(Ty->getPrimitiveSizeInBits())));
359 case 2: case 3: case 4: case 5:
360 case 6: if (Ty->isIntegerTy())
361 PT->push_back(ConstantInt::get(Ty, Ran->Rand()));
362 }
363 }
364
365 }
366};
367
368struct AllocaModifier: public Modifier {
369 AllocaModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R){}
370
371 virtual void Act() {
372 Type *Tp = pickType();
373 PT->push_back(new AllocaInst(Tp, "A", BB->getFirstNonPHI()));
374 }
375};
376
377struct ExtractElementModifier: public Modifier {
378 ExtractElementModifier(BasicBlock *BB, PieceTable *PT, Random *R):
379 Modifier(BB, PT, R) {}
380
381 virtual void Act() {
382 Value *Val0 = getRandomVectorValue();
383 Value *V = ExtractElementInst::Create(Val0,
384 ConstantInt::get(Type::getInt32Ty(BB->getContext()),
385 Ran->Rand() % cast<VectorType>(Val0->getType())->getNumElements()),
386 "E", BB->getTerminator());
387 return PT->push_back(V);
388 }
389};
390
391struct ShuffModifier: public Modifier {
392 ShuffModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {}
393 virtual void Act() {
394
395 Value *Val0 = getRandomVectorValue();
396 Value *Val1 = getRandomValue(Val0->getType());
397
398 unsigned Width = cast<VectorType>(Val0->getType())->getNumElements();
399 std::vector<Constant*> Idxs;
400
401 Type *I32 = Type::getInt32Ty(BB->getContext());
402 for (unsigned i=0; i<Width; ++i) {
403 Constant *CI = ConstantInt::get(I32, Ran->Rand() % (Width*2));
404 // Pick some undef values.
405 if (!(Ran->Rand() % 5))
406 CI = UndefValue::get(I32);
407 Idxs.push_back(CI);
408 }
409
410 Constant *Mask = ConstantVector::get(Idxs);
411
412 Value *V = new ShuffleVectorInst(Val0, Val1, Mask, "Shuff",
413 BB->getTerminator());
414 PT->push_back(V);
415 }
416};
417
418struct InsertElementModifier: public Modifier {
419 InsertElementModifier(BasicBlock *BB, PieceTable *PT, Random *R):
420 Modifier(BB, PT, R) {}
421
422 virtual void Act() {
423 Value *Val0 = getRandomVectorValue();
424 Value *Val1 = getRandomValue(Val0->getType()->getScalarType());
425
426 Value *V = InsertElementInst::Create(Val0, Val1,
427 ConstantInt::get(Type::getInt32Ty(BB->getContext()),
428 Ran->Rand() % cast<VectorType>(Val0->getType())->getNumElements()),
429 "I", BB->getTerminator());
430 return PT->push_back(V);
431 }
432
433};
434
435struct CastModifier: public Modifier {
436 CastModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {}
437 virtual void Act() {
438
439 Value *V = getRandomVal();
440 Type *VTy = V->getType();
441 Type *DestTy = pickScalarType();
442
443 // Handle vector casts vectors.
444 if (VTy->isVectorTy()) {
445 VectorType *VecTy = cast<VectorType>(VTy);
446 DestTy = pickVectorType(VecTy->getNumElements());
447 }
448
449 // no need to casr.
450 if (VTy == DestTy) return;
451
452 // Pointers:
453 if (VTy->isPointerTy()) {
454 if (!DestTy->isPointerTy())
455 DestTy = PointerType::get(DestTy, 0);
456 return PT->push_back(
457 new BitCastInst(V, DestTy, "PC", BB->getTerminator()));
458 }
459
460 // Generate lots of bitcasts.
461 if ((Ran->Rand() & 1) &&
462 VTy->getPrimitiveSizeInBits() == DestTy->getPrimitiveSizeInBits()) {
463 return PT->push_back(
464 new BitCastInst(V, DestTy, "BC", BB->getTerminator()));
465 }
466
467 // Both types are integers:
468 if (VTy->getScalarType()->isIntegerTy() &&
469 DestTy->getScalarType()->isIntegerTy()) {
470 if (VTy->getScalarType()->getPrimitiveSizeInBits() >
471 DestTy->getScalarType()->getPrimitiveSizeInBits()) {
472 return PT->push_back(
473 new TruncInst(V, DestTy, "Tr", BB->getTerminator()));
474 } else {
475 if (Ran->Rand() & 1)
476 return PT->push_back(
477 new ZExtInst(V, DestTy, "ZE", BB->getTerminator()));
478 return PT->push_back(new SExtInst(V, DestTy, "Se", BB->getTerminator()));
479 }
480 }
481
482 // Fp to int.
483 if (VTy->getScalarType()->isFloatingPointTy() &&
484 DestTy->getScalarType()->isIntegerTy()) {
485 if (Ran->Rand() & 1)
486 return PT->push_back(
487 new FPToSIInst(V, DestTy, "FC", BB->getTerminator()));
488 return PT->push_back(new FPToUIInst(V, DestTy, "FC", BB->getTerminator()));
489 }
490
491 // Int to fp.
492 if (VTy->getScalarType()->isIntegerTy() &&
493 DestTy->getScalarType()->isFloatingPointTy()) {
494 if (Ran->Rand() & 1)
495 return PT->push_back(
496 new SIToFPInst(V, DestTy, "FC", BB->getTerminator()));
497 return PT->push_back(new UIToFPInst(V, DestTy, "FC", BB->getTerminator()));
498
499 }
500
501 // Both floats.
502 if (VTy->getScalarType()->isFloatingPointTy() &&
503 DestTy->getScalarType()->isFloatingPointTy()) {
504 if (VTy->getScalarType()->getPrimitiveSizeInBits() >
505 DestTy->getScalarType()->getPrimitiveSizeInBits()) {
506 return PT->push_back(
507 new FPTruncInst(V, DestTy, "Tr", BB->getTerminator()));
508 } else {
509 return PT->push_back(
510 new FPExtInst(V, DestTy, "ZE", BB->getTerminator()));
511 }
512 }
513 }
514
515};
516
517struct SelectModifier: public Modifier {
518 SelectModifier(BasicBlock *BB, PieceTable *PT, Random *R):
519 Modifier(BB, PT, R) {}
520
521 virtual void Act() {
522 // Try a bunch of different select configuration until a valid one is found.
523 Value *Val0 = getRandomVal();
524 Value *Val1 = getRandomValue(Val0->getType());
525
526 Type *CondTy = Type::getInt1Ty(Context);
527
528 // If the value type is a vector, and we allow vector select, then in 50%
529 // of the cases generate a vector select.
530 if (Val0->getType()->isVectorTy() && (Ran->Rand() % 1)) {
531 unsigned NumElem = cast<VectorType>(Val0->getType())->getNumElements();
532 CondTy = VectorType::get(CondTy, NumElem);
533 }
534
535 Value *Cond = getRandomValue(CondTy);
536 Value *V = SelectInst::Create(Cond, Val0, Val1, "Sl", BB->getTerminator());
537 return PT->push_back(V);
538 }
539};
540
541
542struct CmpModifier: public Modifier {
543 CmpModifier(BasicBlock *BB, PieceTable *PT, Random *R):Modifier(BB, PT, R) {}
544 virtual void Act() {
545
546 Value *Val0 = getRandomVal();
547 Value *Val1 = getRandomValue(Val0->getType());
548
549 if (Val0->getType()->isPointerTy()) return;
550 bool fp = Val0->getType()->getScalarType()->isFloatingPointTy();
551
552 int op;
553 if (fp) {
554 op = Ran->Rand() %
555 (CmpInst::LAST_FCMP_PREDICATE - CmpInst::FIRST_FCMP_PREDICATE) +
556 CmpInst::FIRST_FCMP_PREDICATE;
557 } else {
558 op = Ran->Rand() %
559 (CmpInst::LAST_ICMP_PREDICATE - CmpInst::FIRST_ICMP_PREDICATE) +
560 CmpInst::FIRST_ICMP_PREDICATE;
561 }
562
563 Value *V = CmpInst::Create(fp ? Instruction::FCmp : Instruction::ICmp,
564 op, Val0, Val1, "Cmp", BB->getTerminator());
565 return PT->push_back(V);
566 }
567};
568
569void FillFunction(Function *F) {
570 // Create a legal entry block.
571 BasicBlock *BB = BasicBlock::Create(F->getContext(), "BB", F);
572 ReturnInst::Create(F->getContext(), BB);
573
574 // Create the value table.
575 Modifier::PieceTable PT;
576 // Pick an initial seed value
577 Random R(SeedCL);
578
579 // Consider arguments as legal values.
580 for (Function::arg_iterator it = F->arg_begin(), e = F->arg_end();
581 it != e; ++it)
582 PT.push_back(it);
583
584 // List of modifiers which add new random instructions.
585 std::vector<Modifier*> Modifiers;
586 std::auto_ptr<Modifier> LM(new LoadModifier(BB, &PT, &R));
587 std::auto_ptr<Modifier> SM(new StoreModifier(BB, &PT, &R));
588 std::auto_ptr<Modifier> EE(new ExtractElementModifier(BB, &PT, &R));
589 std::auto_ptr<Modifier> SHM(new ShuffModifier(BB, &PT, &R));
590 std::auto_ptr<Modifier> IE(new InsertElementModifier(BB, &PT, &R));
591 std::auto_ptr<Modifier> BM(new BinModifier(BB, &PT, &R));
592 std::auto_ptr<Modifier> CM(new CastModifier(BB, &PT, &R));
593 std::auto_ptr<Modifier> SLM(new SelectModifier(BB, &PT, &R));
594 std::auto_ptr<Modifier> PM(new CmpModifier(BB, &PT, &R));
595 Modifiers.push_back(LM.get());
596 Modifiers.push_back(SM.get());
597 Modifiers.push_back(EE.get());
598 Modifiers.push_back(SHM.get());
599 Modifiers.push_back(IE.get());
600 Modifiers.push_back(BM.get());
601 Modifiers.push_back(CM.get());
602 Modifiers.push_back(SLM.get());
603 Modifiers.push_back(PM.get());
604
605 // Generate the random instructions
606 AllocaModifier AM(BB, &PT, &R); AM.ActN(5); // Throw in a few allocas
607 ConstModifier COM(BB, &PT, &R); COM.ActN(40); // Throw in a few constants
608
609 for (unsigned i=0; i< SizeCL / Modifiers.size(); ++i)
610 for (std::vector<Modifier*>::iterator it = Modifiers.begin(),
611 e = Modifiers.end(); it != e; ++it) {
612 (*it)->Act();
613 }
614
615 SM->ActN(5); // Throw in a few stores.
616}
617
618void IntroduceControlFlow(Function *F) {
619 std::set<Instruction*> BoolInst;
620 for (BasicBlock::iterator it = F->begin()->begin(),
621 e = F->begin()->end(); it != e; ++it) {
622 if (it->getType() == IntegerType::getInt1Ty(F->getContext()))
623 BoolInst.insert(it);
624 }
625
626 for (std::set<Instruction*>::iterator it = BoolInst.begin(),
627 e = BoolInst.end(); it != e; ++it) {
628 Instruction *Instr = *it;
629 BasicBlock *Curr = Instr->getParent();
630 BasicBlock::iterator Loc= Instr;
631 BasicBlock *Next = Curr->splitBasicBlock(Loc, "CF");
632 Instr->moveBefore(Curr->getTerminator());
633 if (Curr != &F->getEntryBlock()) {
634 BranchInst::Create(Curr, Next, Instr, Curr->getTerminator());
635 Curr->getTerminator()->eraseFromParent();
636 }
637 }
638}
639
640int main(int argc, char **argv) {
641 // Init LLVM, call llvm_shutdown() on exit, parse args, etc.
642 llvm::PrettyStackTraceProgram X(argc, argv);
643 cl::ParseCommandLineOptions(argc, argv, "llvm codegen stress-tester\n");
644 llvm_shutdown_obj Y;
645
646 std::auto_ptr<Module> M(new Module("/tmp/autogen.bc", getGlobalContext()));
647 Function *F = GenEmptyFunction(M.get());
648 FillFunction(F);
649 IntroduceControlFlow(F);
650
651 // Figure out what stream we are supposed to write to...
652 OwningPtr<tool_output_file> Out;
653 // Default to standard output.
654 if (OutputFilename.empty())
655 OutputFilename = "-";
656
657 std::string ErrorInfo;
658 Out.reset(new tool_output_file(OutputFilename.c_str(), ErrorInfo,
659 raw_fd_ostream::F_Binary));
660 if (!ErrorInfo.empty()) {
661 errs() << ErrorInfo << '\n';
662 return 1;
663 }
664
665 PassManager Passes;
666 Passes.add(createVerifierPass());
667 Passes.add(createPrintModulePass(&Out->os()));
668 Passes.run(*M.get());
669 Out->keep();
670
671 return 0;
672}