Krzysztof Parzyszek | e53b31a | 2015-07-07 15:16:42 +0000 | [diff] [blame] | 1 | //===--- BitTracker.h -----------------------------------------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | |
| 10 | #ifndef BITTRACKER_H |
| 11 | #define BITTRACKER_H |
| 12 | |
| 13 | #include "llvm/ADT/SetVector.h" |
| 14 | #include "llvm/ADT/SmallVector.h" |
| 15 | #include "llvm/CodeGen/MachineFunction.h" |
| 16 | |
| 17 | #include <map> |
| 18 | #include <queue> |
| 19 | #include <set> |
| 20 | |
| 21 | namespace llvm { |
| 22 | class ConstantInt; |
| 23 | class MachineRegisterInfo; |
| 24 | class MachineBasicBlock; |
| 25 | class MachineInstr; |
| 26 | class MachineOperand; |
| 27 | class raw_ostream; |
Krzysztof Parzyszek | e53b31a | 2015-07-07 15:16:42 +0000 | [diff] [blame] | 28 | |
| 29 | struct BitTracker { |
| 30 | struct BitRef; |
| 31 | struct RegisterRef; |
| 32 | struct BitValue; |
| 33 | struct BitMask; |
| 34 | struct RegisterCell; |
| 35 | struct MachineEvaluator; |
| 36 | |
Benjamin Kramer | d886151 | 2015-07-13 20:38:16 +0000 | [diff] [blame] | 37 | typedef SetVector<const MachineBasicBlock *> BranchTargetList; |
Krzysztof Parzyszek | e53b31a | 2015-07-07 15:16:42 +0000 | [diff] [blame] | 38 | |
Benjamin Kramer | 9a5d788 | 2015-07-18 17:43:23 +0000 | [diff] [blame] | 39 | typedef std::map<unsigned, RegisterCell> CellMapType; |
Krzysztof Parzyszek | e53b31a | 2015-07-07 15:16:42 +0000 | [diff] [blame] | 40 | |
Benjamin Kramer | d886151 | 2015-07-13 20:38:16 +0000 | [diff] [blame] | 41 | BitTracker(const MachineEvaluator &E, MachineFunction &F); |
Krzysztof Parzyszek | e53b31a | 2015-07-07 15:16:42 +0000 | [diff] [blame] | 42 | ~BitTracker(); |
| 43 | |
| 44 | void run(); |
| 45 | void trace(bool On = false) { Trace = On; } |
| 46 | bool has(unsigned Reg) const; |
| 47 | const RegisterCell &lookup(unsigned Reg) const; |
| 48 | RegisterCell get(RegisterRef RR) const; |
| 49 | void put(RegisterRef RR, const RegisterCell &RC); |
| 50 | void subst(RegisterRef OldRR, RegisterRef NewRR); |
Benjamin Kramer | d886151 | 2015-07-13 20:38:16 +0000 | [diff] [blame] | 51 | bool reached(const MachineBasicBlock *B) const; |
Krzysztof Parzyszek | 6eba5b8 | 2016-07-26 19:08:45 +0000 | [diff] [blame] | 52 | void visit(const MachineInstr &MI); |
Krzysztof Parzyszek | e53b31a | 2015-07-07 15:16:42 +0000 | [diff] [blame] | 53 | |
Krzysztof Parzyszek | 623afbd | 2016-08-03 18:13:32 +0000 | [diff] [blame] | 54 | void print_cells(raw_ostream &OS) const; |
| 55 | |
Krzysztof Parzyszek | e53b31a | 2015-07-07 15:16:42 +0000 | [diff] [blame] | 56 | private: |
Duncan P. N. Exon Smith | 98226e3 | 2016-07-12 01:55:32 +0000 | [diff] [blame] | 57 | void visitPHI(const MachineInstr &PI); |
| 58 | void visitNonBranch(const MachineInstr &MI); |
| 59 | void visitBranchesFrom(const MachineInstr &BI); |
Krzysztof Parzyszek | e53b31a | 2015-07-07 15:16:42 +0000 | [diff] [blame] | 60 | void visitUsesOf(unsigned Reg); |
| 61 | void reset(); |
| 62 | |
| 63 | typedef std::pair<int,int> CFGEdge; |
| 64 | typedef std::set<CFGEdge> EdgeSetType; |
Benjamin Kramer | d886151 | 2015-07-13 20:38:16 +0000 | [diff] [blame] | 65 | typedef std::set<const MachineInstr *> InstrSetType; |
Krzysztof Parzyszek | e53b31a | 2015-07-07 15:16:42 +0000 | [diff] [blame] | 66 | typedef std::queue<CFGEdge> EdgeQueueType; |
| 67 | |
| 68 | EdgeSetType EdgeExec; // Executable flow graph edges. |
| 69 | InstrSetType InstrExec; // Executable instructions. |
| 70 | EdgeQueueType FlowQ; // Work queue of CFG edges. |
| 71 | bool Trace; // Enable tracing for debugging. |
| 72 | |
| 73 | const MachineEvaluator &ME; |
Benjamin Kramer | d886151 | 2015-07-13 20:38:16 +0000 | [diff] [blame] | 74 | MachineFunction &MF; |
| 75 | MachineRegisterInfo &MRI; |
Krzysztof Parzyszek | e53b31a | 2015-07-07 15:16:42 +0000 | [diff] [blame] | 76 | CellMapType ⤅ |
| 77 | }; |
| 78 | |
| 79 | |
| 80 | // Abstraction of a reference to bit at position Pos from a register Reg. |
| 81 | struct BitTracker::BitRef { |
| 82 | BitRef(unsigned R = 0, uint16_t P = 0) : Reg(R), Pos(P) {} |
Krzysztof Parzyszek | e53b31a | 2015-07-07 15:16:42 +0000 | [diff] [blame] | 83 | bool operator== (const BitRef &BR) const { |
| 84 | // If Reg is 0, disregard Pos. |
| 85 | return Reg == BR.Reg && (Reg == 0 || Pos == BR.Pos); |
| 86 | } |
| 87 | unsigned Reg; |
| 88 | uint16_t Pos; |
| 89 | }; |
| 90 | |
| 91 | |
| 92 | // Abstraction of a register reference in MachineOperand. It contains the |
| 93 | // register number and the subregister index. |
| 94 | struct BitTracker::RegisterRef { |
| 95 | RegisterRef(unsigned R = 0, unsigned S = 0) |
| 96 | : Reg(R), Sub(S) {} |
Benjamin Kramer | d886151 | 2015-07-13 20:38:16 +0000 | [diff] [blame] | 97 | RegisterRef(const MachineOperand &MO) |
| 98 | : Reg(MO.getReg()), Sub(MO.getSubReg()) {} |
Krzysztof Parzyszek | e53b31a | 2015-07-07 15:16:42 +0000 | [diff] [blame] | 99 | unsigned Reg, Sub; |
| 100 | }; |
| 101 | |
| 102 | |
| 103 | // Value that a single bit can take. This is outside of the context of |
| 104 | // any register, it is more of an abstraction of the two-element set of |
| 105 | // possible bit values. One extension here is the "Ref" type, which |
| 106 | // indicates that this bit takes the same value as the bit described by |
| 107 | // RefInfo. |
| 108 | struct BitTracker::BitValue { |
| 109 | enum ValueType { |
| 110 | Top, // Bit not yet defined. |
| 111 | Zero, // Bit = 0. |
| 112 | One, // Bit = 1. |
| 113 | Ref // Bit value same as the one described in RefI. |
| 114 | // Conceptually, there is no explicit "bottom" value: the lattice's |
| 115 | // bottom will be expressed as a "ref to itself", which, in the context |
| 116 | // of registers, could be read as "this value of this bit is defined by |
| 117 | // this bit". |
| 118 | // The ordering is: |
| 119 | // x <= Top, |
| 120 | // Self <= x, where "Self" is "ref to itself". |
| 121 | // This makes the value lattice different for each virtual register |
| 122 | // (even for each bit in the same virtual register), since the "bottom" |
| 123 | // for one register will be a simple "ref" for another register. |
| 124 | // Since we do not store the "Self" bit and register number, the meet |
| 125 | // operation will need to take it as a parameter. |
| 126 | // |
| 127 | // In practice there is a special case for values that are not associa- |
| 128 | // ted with any specific virtual register. An example would be a value |
| 129 | // corresponding to a bit of a physical register, or an intermediate |
| 130 | // value obtained in some computation (such as instruction evaluation). |
| 131 | // Such cases are identical to the usual Ref type, but the register |
| 132 | // number is 0. In such case the Pos field of the reference is ignored. |
| 133 | // |
| 134 | // What is worthy of notice is that in value V (that is a "ref"), as long |
| 135 | // as the RefI.Reg is not 0, it may actually be the same register as the |
| 136 | // one in which V will be contained. If the RefI.Pos refers to the posi- |
| 137 | // tion of V, then V is assumed to be "bottom" (as a "ref to itself"), |
| 138 | // otherwise V is taken to be identical to the referenced bit of the |
| 139 | // same register. |
| 140 | // If RefI.Reg is 0, however, such a reference to the same register is |
| 141 | // not possible. Any value V that is a "ref", and whose RefI.Reg is 0 |
| 142 | // is treated as "bottom". |
| 143 | }; |
| 144 | ValueType Type; |
| 145 | BitRef RefI; |
| 146 | |
| 147 | BitValue(ValueType T = Top) : Type(T) {} |
| 148 | BitValue(bool B) : Type(B ? One : Zero) {} |
Krzysztof Parzyszek | e53b31a | 2015-07-07 15:16:42 +0000 | [diff] [blame] | 149 | BitValue(unsigned Reg, uint16_t Pos) : Type(Ref), RefI(Reg, Pos) {} |
| 150 | |
| 151 | bool operator== (const BitValue &V) const { |
| 152 | if (Type != V.Type) |
| 153 | return false; |
| 154 | if (Type == Ref && !(RefI == V.RefI)) |
| 155 | return false; |
| 156 | return true; |
| 157 | } |
| 158 | bool operator!= (const BitValue &V) const { |
| 159 | return !operator==(V); |
| 160 | } |
| 161 | bool is(unsigned T) const { |
| 162 | assert(T == 0 || T == 1); |
| 163 | return T == 0 ? Type == Zero |
| 164 | : (T == 1 ? Type == One : false); |
| 165 | } |
| 166 | |
| 167 | // The "meet" operation is the "." operation in a semilattice (L, ., T, B): |
| 168 | // (1) x.x = x |
| 169 | // (2) x.y = y.x |
| 170 | // (3) x.(y.z) = (x.y).z |
| 171 | // (4) x.T = x (i.e. T = "top") |
| 172 | // (5) x.B = B (i.e. B = "bottom") |
| 173 | // |
| 174 | // This "meet" function will update the value of the "*this" object with |
| 175 | // the newly calculated one, and return "true" if the value of *this has |
| 176 | // changed, and "false" otherwise. |
| 177 | // To prove that it satisfies the conditions (1)-(5), it is sufficient |
| 178 | // to show that a relation |
| 179 | // x <= y <=> x.y = x |
| 180 | // defines a partial order (i.e. that "meet" is same as "infimum"). |
| 181 | bool meet(const BitValue &V, const BitRef &Self) { |
| 182 | // First, check the cases where there is nothing to be done. |
| 183 | if (Type == Ref && RefI == Self) // Bottom.meet(V) = Bottom (i.e. This) |
| 184 | return false; |
| 185 | if (V.Type == Top) // This.meet(Top) = This |
| 186 | return false; |
| 187 | if (*this == V) // This.meet(This) = This |
| 188 | return false; |
| 189 | |
| 190 | // At this point, we know that the value of "this" will change. |
| 191 | // If it is Top, it will become the same as V, otherwise it will |
| 192 | // become "bottom" (i.e. Self). |
| 193 | if (Type == Top) { |
| 194 | Type = V.Type; |
| 195 | RefI = V.RefI; // This may be irrelevant, but copy anyway. |
| 196 | return true; |
| 197 | } |
| 198 | // Become "bottom". |
| 199 | Type = Ref; |
| 200 | RefI = Self; |
| 201 | return true; |
| 202 | } |
| 203 | |
| 204 | // Create a reference to the bit value V. |
| 205 | static BitValue ref(const BitValue &V); |
| 206 | // Create a "self". |
| 207 | static BitValue self(const BitRef &Self = BitRef()); |
| 208 | |
| 209 | bool num() const { |
| 210 | return Type == Zero || Type == One; |
| 211 | } |
| 212 | operator bool() const { |
| 213 | assert(Type == Zero || Type == One); |
| 214 | return Type == One; |
| 215 | } |
| 216 | |
Benjamin Kramer | d886151 | 2015-07-13 20:38:16 +0000 | [diff] [blame] | 217 | friend raw_ostream &operator<<(raw_ostream &OS, const BitValue &BV); |
Krzysztof Parzyszek | e53b31a | 2015-07-07 15:16:42 +0000 | [diff] [blame] | 218 | }; |
| 219 | |
| 220 | |
| 221 | // This operation must be idempotent, i.e. ref(ref(V)) == ref(V). |
| 222 | inline BitTracker::BitValue |
| 223 | BitTracker::BitValue::ref(const BitValue &V) { |
| 224 | if (V.Type != Ref) |
| 225 | return BitValue(V.Type); |
| 226 | if (V.RefI.Reg != 0) |
| 227 | return BitValue(V.RefI.Reg, V.RefI.Pos); |
| 228 | return self(); |
| 229 | } |
| 230 | |
| 231 | |
| 232 | inline BitTracker::BitValue |
| 233 | BitTracker::BitValue::self(const BitRef &Self) { |
| 234 | return BitValue(Self.Reg, Self.Pos); |
| 235 | } |
| 236 | |
| 237 | |
| 238 | // A sequence of bits starting from index B up to and including index E. |
| 239 | // If E < B, the mask represents two sections: [0..E] and [B..W) where |
| 240 | // W is the width of the register. |
| 241 | struct BitTracker::BitMask { |
| 242 | BitMask() : B(0), E(0) {} |
| 243 | BitMask(uint16_t b, uint16_t e) : B(b), E(e) {} |
| 244 | uint16_t first() const { return B; } |
| 245 | uint16_t last() const { return E; } |
| 246 | private: |
| 247 | uint16_t B, E; |
| 248 | }; |
| 249 | |
| 250 | |
| 251 | // Representation of a register: a list of BitValues. |
| 252 | struct BitTracker::RegisterCell { |
| 253 | RegisterCell(uint16_t Width = DefaultBitN) : Bits(Width) {} |
| 254 | |
| 255 | uint16_t width() const { |
| 256 | return Bits.size(); |
| 257 | } |
| 258 | const BitValue &operator[](uint16_t BitN) const { |
| 259 | assert(BitN < Bits.size()); |
| 260 | return Bits[BitN]; |
| 261 | } |
| 262 | BitValue &operator[](uint16_t BitN) { |
| 263 | assert(BitN < Bits.size()); |
| 264 | return Bits[BitN]; |
| 265 | } |
| 266 | |
| 267 | bool meet(const RegisterCell &RC, unsigned SelfR); |
| 268 | RegisterCell &insert(const RegisterCell &RC, const BitMask &M); |
| 269 | RegisterCell extract(const BitMask &M) const; // Returns a new cell. |
| 270 | RegisterCell &rol(uint16_t Sh); // Rotate left. |
| 271 | RegisterCell &fill(uint16_t B, uint16_t E, const BitValue &V); |
| 272 | RegisterCell &cat(const RegisterCell &RC); // Concatenate. |
| 273 | uint16_t cl(bool B) const; |
| 274 | uint16_t ct(bool B) const; |
| 275 | |
| 276 | bool operator== (const RegisterCell &RC) const; |
| 277 | bool operator!= (const RegisterCell &RC) const { |
| 278 | return !operator==(RC); |
| 279 | } |
| 280 | |
Krzysztof Parzyszek | e53b31a | 2015-07-07 15:16:42 +0000 | [diff] [blame] | 281 | // Generate a "ref" cell for the corresponding register. In the resulting |
| 282 | // cell each bit will be described as being the same as the corresponding |
| 283 | // bit in register Reg (i.e. the cell is "defined" by register Reg). |
| 284 | static RegisterCell self(unsigned Reg, uint16_t Width); |
| 285 | // Generate a "top" cell of given size. |
| 286 | static RegisterCell top(uint16_t Width); |
| 287 | // Generate a cell that is a "ref" to another cell. |
| 288 | static RegisterCell ref(const RegisterCell &C); |
| 289 | |
| 290 | private: |
| 291 | // The DefaultBitN is here only to avoid frequent reallocation of the |
| 292 | // memory in the vector. |
| 293 | static const unsigned DefaultBitN = 32; |
Benjamin Kramer | d886151 | 2015-07-13 20:38:16 +0000 | [diff] [blame] | 294 | typedef SmallVector<BitValue, DefaultBitN> BitValueList; |
Krzysztof Parzyszek | e53b31a | 2015-07-07 15:16:42 +0000 | [diff] [blame] | 295 | BitValueList Bits; |
| 296 | |
Benjamin Kramer | d886151 | 2015-07-13 20:38:16 +0000 | [diff] [blame] | 297 | friend raw_ostream &operator<<(raw_ostream &OS, const RegisterCell &RC); |
Krzysztof Parzyszek | e53b31a | 2015-07-07 15:16:42 +0000 | [diff] [blame] | 298 | }; |
| 299 | |
| 300 | |
| 301 | inline bool BitTracker::has(unsigned Reg) const { |
| 302 | return Map.find(Reg) != Map.end(); |
| 303 | } |
| 304 | |
| 305 | |
| 306 | inline const BitTracker::RegisterCell& |
| 307 | BitTracker::lookup(unsigned Reg) const { |
| 308 | CellMapType::const_iterator F = Map.find(Reg); |
| 309 | assert(F != Map.end()); |
| 310 | return F->second; |
| 311 | } |
| 312 | |
| 313 | |
| 314 | inline BitTracker::RegisterCell |
| 315 | BitTracker::RegisterCell::self(unsigned Reg, uint16_t Width) { |
| 316 | RegisterCell RC(Width); |
| 317 | for (uint16_t i = 0; i < Width; ++i) |
| 318 | RC.Bits[i] = BitValue::self(BitRef(Reg, i)); |
| 319 | return RC; |
| 320 | } |
| 321 | |
| 322 | |
| 323 | inline BitTracker::RegisterCell |
| 324 | BitTracker::RegisterCell::top(uint16_t Width) { |
| 325 | RegisterCell RC(Width); |
| 326 | for (uint16_t i = 0; i < Width; ++i) |
| 327 | RC.Bits[i] = BitValue(BitValue::Top); |
| 328 | return RC; |
| 329 | } |
| 330 | |
| 331 | |
| 332 | inline BitTracker::RegisterCell |
| 333 | BitTracker::RegisterCell::ref(const RegisterCell &C) { |
| 334 | uint16_t W = C.width(); |
| 335 | RegisterCell RC(W); |
| 336 | for (unsigned i = 0; i < W; ++i) |
| 337 | RC[i] = BitValue::ref(C[i]); |
| 338 | return RC; |
| 339 | } |
| 340 | |
Krzysztof Parzyszek | e53b31a | 2015-07-07 15:16:42 +0000 | [diff] [blame] | 341 | // A class to evaluate target's instructions and update the cell maps. |
| 342 | // This is used internally by the bit tracker. A target that wants to |
| 343 | // utilize this should implement the evaluation functions (noted below) |
| 344 | // in a subclass of this class. |
| 345 | struct BitTracker::MachineEvaluator { |
Benjamin Kramer | d886151 | 2015-07-13 20:38:16 +0000 | [diff] [blame] | 346 | MachineEvaluator(const TargetRegisterInfo &T, MachineRegisterInfo &M) |
| 347 | : TRI(T), MRI(M) {} |
Krzysztof Parzyszek | e53b31a | 2015-07-07 15:16:42 +0000 | [diff] [blame] | 348 | virtual ~MachineEvaluator() {} |
| 349 | |
| 350 | uint16_t getRegBitWidth(const RegisterRef &RR) const; |
| 351 | |
| 352 | RegisterCell getCell(const RegisterRef &RR, const CellMapType &M) const; |
| 353 | void putCell(const RegisterRef &RR, RegisterCell RC, CellMapType &M) const; |
| 354 | // A result of any operation should use refs to the source cells, not |
| 355 | // the cells directly. This function is a convenience wrapper to quickly |
| 356 | // generate a ref for a cell corresponding to a register reference. |
| 357 | RegisterCell getRef(const RegisterRef &RR, const CellMapType &M) const { |
| 358 | RegisterCell RC = getCell(RR, M); |
| 359 | return RegisterCell::ref(RC); |
| 360 | } |
| 361 | |
| 362 | // Helper functions. |
| 363 | // Check if a cell is an immediate value (i.e. all bits are either 0 or 1). |
| 364 | bool isInt(const RegisterCell &A) const; |
| 365 | // Convert cell to an immediate value. |
| 366 | uint64_t toInt(const RegisterCell &A) const; |
| 367 | |
| 368 | // Generate cell from an immediate value. |
| 369 | RegisterCell eIMM(int64_t V, uint16_t W) const; |
Benjamin Kramer | d886151 | 2015-07-13 20:38:16 +0000 | [diff] [blame] | 370 | RegisterCell eIMM(const ConstantInt *CI) const; |
Krzysztof Parzyszek | e53b31a | 2015-07-07 15:16:42 +0000 | [diff] [blame] | 371 | |
| 372 | // Arithmetic. |
| 373 | RegisterCell eADD(const RegisterCell &A1, const RegisterCell &A2) const; |
| 374 | RegisterCell eSUB(const RegisterCell &A1, const RegisterCell &A2) const; |
| 375 | RegisterCell eMLS(const RegisterCell &A1, const RegisterCell &A2) const; |
| 376 | RegisterCell eMLU(const RegisterCell &A1, const RegisterCell &A2) const; |
| 377 | |
| 378 | // Shifts. |
| 379 | RegisterCell eASL(const RegisterCell &A1, uint16_t Sh) const; |
| 380 | RegisterCell eLSR(const RegisterCell &A1, uint16_t Sh) const; |
| 381 | RegisterCell eASR(const RegisterCell &A1, uint16_t Sh) const; |
| 382 | |
| 383 | // Logical. |
| 384 | RegisterCell eAND(const RegisterCell &A1, const RegisterCell &A2) const; |
| 385 | RegisterCell eORL(const RegisterCell &A1, const RegisterCell &A2) const; |
| 386 | RegisterCell eXOR(const RegisterCell &A1, const RegisterCell &A2) const; |
| 387 | RegisterCell eNOT(const RegisterCell &A1) const; |
| 388 | |
| 389 | // Set bit, clear bit. |
| 390 | RegisterCell eSET(const RegisterCell &A1, uint16_t BitN) const; |
| 391 | RegisterCell eCLR(const RegisterCell &A1, uint16_t BitN) const; |
| 392 | |
| 393 | // Count leading/trailing bits (zeros/ones). |
| 394 | RegisterCell eCLB(const RegisterCell &A1, bool B, uint16_t W) const; |
| 395 | RegisterCell eCTB(const RegisterCell &A1, bool B, uint16_t W) const; |
| 396 | |
| 397 | // Sign/zero extension. |
| 398 | RegisterCell eSXT(const RegisterCell &A1, uint16_t FromN) const; |
| 399 | RegisterCell eZXT(const RegisterCell &A1, uint16_t FromN) const; |
| 400 | |
| 401 | // Extract/insert |
| 402 | // XTR R,b,e: extract bits from A1 starting at bit b, ending at e-1. |
| 403 | // INS R,S,b: take R and replace bits starting from b with S. |
| 404 | RegisterCell eXTR(const RegisterCell &A1, uint16_t B, uint16_t E) const; |
| 405 | RegisterCell eINS(const RegisterCell &A1, const RegisterCell &A2, |
| 406 | uint16_t AtN) const; |
| 407 | |
| 408 | // User-provided functions for individual targets: |
| 409 | |
| 410 | // Return a sub-register mask that indicates which bits in Reg belong |
| 411 | // to the subregister Sub. These bits are assumed to be contiguous in |
| 412 | // the super-register, and have the same ordering in the sub-register |
| 413 | // as in the super-register. It is valid to call this function with |
| 414 | // Sub == 0, in this case, the function should return a mask that spans |
| 415 | // the entire register Reg (which is what the default implementation |
| 416 | // does). |
| 417 | virtual BitMask mask(unsigned Reg, unsigned Sub) const; |
| 418 | // Indicate whether a given register class should be tracked. |
Benjamin Kramer | d886151 | 2015-07-13 20:38:16 +0000 | [diff] [blame] | 419 | virtual bool track(const TargetRegisterClass *RC) const { return true; } |
Krzysztof Parzyszek | e53b31a | 2015-07-07 15:16:42 +0000 | [diff] [blame] | 420 | // Evaluate a non-branching machine instruction, given the cell map with |
| 421 | // the input values. Place the results in the Outputs map. Return "true" |
| 422 | // if evaluation succeeded, "false" otherwise. |
Duncan P. N. Exon Smith | 98226e3 | 2016-07-12 01:55:32 +0000 | [diff] [blame] | 423 | virtual bool evaluate(const MachineInstr &MI, const CellMapType &Inputs, |
Benjamin Kramer | d886151 | 2015-07-13 20:38:16 +0000 | [diff] [blame] | 424 | CellMapType &Outputs) const; |
Krzysztof Parzyszek | e53b31a | 2015-07-07 15:16:42 +0000 | [diff] [blame] | 425 | // Evaluate a branch, given the cell map with the input values. Fill out |
| 426 | // a list of all possible branch targets and indicate (through a flag) |
| 427 | // whether the branch could fall-through. Return "true" if this information |
| 428 | // has been successfully computed, "false" otherwise. |
Duncan P. N. Exon Smith | 98226e3 | 2016-07-12 01:55:32 +0000 | [diff] [blame] | 429 | virtual bool evaluate(const MachineInstr &BI, const CellMapType &Inputs, |
Benjamin Kramer | d886151 | 2015-07-13 20:38:16 +0000 | [diff] [blame] | 430 | BranchTargetList &Targets, bool &FallsThru) const = 0; |
Krzysztof Parzyszek | e53b31a | 2015-07-07 15:16:42 +0000 | [diff] [blame] | 431 | |
Benjamin Kramer | d886151 | 2015-07-13 20:38:16 +0000 | [diff] [blame] | 432 | const TargetRegisterInfo &TRI; |
| 433 | MachineRegisterInfo &MRI; |
Krzysztof Parzyszek | e53b31a | 2015-07-07 15:16:42 +0000 | [diff] [blame] | 434 | }; |
| 435 | |
Benjamin Kramer | d886151 | 2015-07-13 20:38:16 +0000 | [diff] [blame] | 436 | } // end namespace llvm |
Krzysztof Parzyszek | e53b31a | 2015-07-07 15:16:42 +0000 | [diff] [blame] | 437 | |
Benjamin Kramer | d886151 | 2015-07-13 20:38:16 +0000 | [diff] [blame] | 438 | #endif |