blob: f2c69a258cb3ca055adaa9652925b8d81821881e [file] [log] [blame]
Chris Lattner476e6df2001-12-03 17:28:42 +00001//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
Misha Brukmanb1c93172005-04-21 23:48:37 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanb1c93172005-04-21 23:48:37 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner476e6df2001-12-03 17:28:42 +00009//
Chris Lattnere61b67d2004-04-02 20:24:31 +000010// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into simpler forms suitable for subsequent
12// analysis and transformation.
13//
Reid Spencer5495fe82006-08-18 09:01:07 +000014// This transformation makes the following changes to each loop with an
Chris Lattnere61b67d2004-04-02 20:24:31 +000015// identifiable induction variable:
16// 1. All loops are transformed to have a SINGLE canonical induction variable
17// which starts at zero and steps by one.
18// 2. The canonical induction variable is guaranteed to be the first PHI node
19// in the loop header block.
Dan Gohman9b4c85f2009-06-14 22:38:41 +000020// 3. The canonical induction variable is guaranteed to be in a wide enough
21// type so that IV expressions need not be (directly) zero-extended or
22// sign-extended.
23// 4. Any pointer arithmetic recurrences are raised to use array subscripts.
Chris Lattnere61b67d2004-04-02 20:24:31 +000024//
25// If the trip count of a loop is computable, this pass also makes the following
26// changes:
27// 1. The exit condition for the loop is canonicalized to compare the
28// induction value against the exit value. This turns loops like:
29// 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
30// 2. Any use outside of the loop of an expression derived from the indvar
31// is changed to compute the derived value outside of the loop, eliminating
32// the dependence on the exit value of the induction variable. If the only
33// purpose of the loop is to compute the exit value of some derived
34// expression, this transformation will make the loop dead.
35//
36// This transformation should be followed by strength reduction after all of the
Dan Gohman67587ce2009-05-19 20:38:47 +000037// desired loop transformations have been performed.
Chris Lattner476e6df2001-12-03 17:28:42 +000038//
39//===----------------------------------------------------------------------===//
40
Chris Lattner79a42ac2006-12-19 21:40:18 +000041#define DEBUG_TYPE "indvars"
Chris Lattnerb4cfa7f2002-05-07 20:03:00 +000042#include "llvm/Transforms/Scalar.h"
Chris Lattnere61b67d2004-04-02 20:24:31 +000043#include "llvm/BasicBlock.h"
Chris Lattner0cec5cb2004-04-15 15:21:43 +000044#include "llvm/Constants.h"
Chris Lattner6449dce2003-12-22 05:02:01 +000045#include "llvm/Instructions.h"
Devang Patel45c15052010-03-15 22:23:03 +000046#include "llvm/IntrinsicInst.h"
Owen Andersonb5618da2009-07-03 00:17:18 +000047#include "llvm/LLVMContext.h"
Chris Lattnere61b67d2004-04-02 20:24:31 +000048#include "llvm/Type.h"
Dan Gohmand76d71a2009-05-12 02:17:14 +000049#include "llvm/Analysis/Dominators.h"
50#include "llvm/Analysis/IVUsers.h"
Nate Begeman2bca4d92005-07-30 00:12:19 +000051#include "llvm/Analysis/ScalarEvolutionExpander.h"
John Criswellb22e9b42003-12-18 17:19:19 +000052#include "llvm/Analysis/LoopInfo.h"
Devang Patel2ac57e12007-03-07 06:39:01 +000053#include "llvm/Analysis/LoopPass.h"
Chris Lattner83d485b2002-02-12 22:39:50 +000054#include "llvm/Support/CFG.h"
Andrew Trick56b315a2011-06-28 03:01:46 +000055#include "llvm/Support/CommandLine.h"
Chris Lattner08165592007-01-07 01:14:12 +000056#include "llvm/Support/Debug.h"
Chris Lattnerb25de3f2009-08-23 04:37:46 +000057#include "llvm/Support/raw_ostream.h"
John Criswellb22e9b42003-12-18 17:19:19 +000058#include "llvm/Transforms/Utils/Local.h"
Dan Gohmand76d71a2009-05-12 02:17:14 +000059#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Andrew Trick1abe2962011-05-04 02:10:13 +000060#include "llvm/Target/TargetData.h"
Andrew Trick32390552011-07-06 20:50:43 +000061#include "llvm/ADT/DenseMap.h"
Reid Spencer7a9c62b2007-01-12 07:05:14 +000062#include "llvm/ADT/SmallVector.h"
Reid Spencer7c16caa2004-09-01 22:55:40 +000063#include "llvm/ADT/Statistic.h"
Dan Gohmand76d71a2009-05-12 02:17:14 +000064#include "llvm/ADT/STLExtras.h"
John Criswellb22e9b42003-12-18 17:19:19 +000065using namespace llvm;
Brian Gaeke960707c2003-11-11 22:41:34 +000066
Andrew Trick69d44522011-06-21 03:22:38 +000067STATISTIC(NumRemoved , "Number of aux indvars removed");
68STATISTIC(NumWidened , "Number of indvars widened");
69STATISTIC(NumInserted , "Number of canonical indvars added");
70STATISTIC(NumReplaced , "Number of exit values replaced");
71STATISTIC(NumLFTR , "Number of loop exit tests replaced");
72STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
73STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated");
74STATISTIC(NumElimRem , "Number of IV remainder operations eliminated");
75STATISTIC(NumElimCmp , "Number of IV comparisons eliminated");
Andrew Trick32390552011-07-06 20:50:43 +000076STATISTIC(NumElimIV , "Number of congruent IVs eliminated");
Chris Lattnerd3678bc2003-12-22 03:58:44 +000077
Andrew Trick56b315a2011-06-28 03:01:46 +000078static cl::opt<bool> DisableIVRewrite(
79 "disable-iv-rewrite", cl::Hidden,
80 cl::desc("Disable canonical induction variable rewriting"));
Andrew Trick1abe2962011-05-04 02:10:13 +000081
Andrew Trick7da24172011-07-18 20:32:31 +000082// Temporary flag for use with -disable-iv-rewrite to force a canonical IV for
83// LFTR purposes.
84static cl::opt<bool> ForceLFTR(
85 "force-lftr", cl::Hidden,
86 cl::desc("Enable forced linear function test replacement"));
87
Chris Lattner79a42ac2006-12-19 21:40:18 +000088namespace {
Chris Lattner2dd09db2009-09-02 06:11:42 +000089 class IndVarSimplify : public LoopPass {
Dan Gohmand76d71a2009-05-12 02:17:14 +000090 IVUsers *IU;
Chris Lattnere61b67d2004-04-02 20:24:31 +000091 LoopInfo *LI;
92 ScalarEvolution *SE;
Dan Gohmanfe174b62009-06-27 05:16:57 +000093 DominatorTree *DT;
Andrew Trick1abe2962011-05-04 02:10:13 +000094 TargetData *TD;
Andrew Trick69d44522011-06-21 03:22:38 +000095
Andrew Trick87716c92011-03-17 23:51:11 +000096 SmallVector<WeakVH, 16> DeadInsts;
Chris Lattner7e755e42003-12-23 07:47:09 +000097 bool Changed;
Chris Lattnerd3678bc2003-12-22 03:58:44 +000098 public:
Devang Patel09f162c2007-05-01 21:15:47 +000099
Dan Gohmanb0f8e992009-07-15 01:26:32 +0000100 static char ID; // Pass identification, replacement for typeid
Andrew Trick69d44522011-06-21 03:22:38 +0000101 IndVarSimplify() : LoopPass(ID), IU(0), LI(0), SE(0), DT(0), TD(0),
Andrew Trick8a3c39c2011-06-28 02:49:20 +0000102 Changed(false) {
Owen Anderson6c18d1a2010-10-19 17:21:58 +0000103 initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
104 }
Devang Patel09f162c2007-05-01 21:15:47 +0000105
Dan Gohmanb0f8e992009-07-15 01:26:32 +0000106 virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
Dan Gohman43300342009-02-17 20:49:49 +0000107
Dan Gohmanb0f8e992009-07-15 01:26:32 +0000108 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
109 AU.addRequired<DominatorTree>();
110 AU.addRequired<LoopInfo>();
111 AU.addRequired<ScalarEvolution>();
112 AU.addRequiredID(LoopSimplifyID);
113 AU.addRequiredID(LCSSAID);
Andrew Trick56b315a2011-06-28 03:01:46 +0000114 if (!DisableIVRewrite)
115 AU.addRequired<IVUsers>();
Dan Gohmanb0f8e992009-07-15 01:26:32 +0000116 AU.addPreserved<ScalarEvolution>();
117 AU.addPreservedID(LoopSimplifyID);
118 AU.addPreservedID(LCSSAID);
Andrew Trick69d44522011-06-21 03:22:38 +0000119 if (!DisableIVRewrite)
120 AU.addPreserved<IVUsers>();
Dan Gohmanb0f8e992009-07-15 01:26:32 +0000121 AU.setPreservesCFG();
122 }
Chris Lattner7e755e42003-12-23 07:47:09 +0000123
Chris Lattnere61b67d2004-04-02 20:24:31 +0000124 private:
Andrew Trick32390552011-07-06 20:50:43 +0000125 virtual void releaseMemory() {
Andrew Trick32390552011-07-06 20:50:43 +0000126 DeadInsts.clear();
127 }
128
Andrew Trick87716c92011-03-17 23:51:11 +0000129 bool isValidRewrite(Value *FromVal, Value *ToVal);
Devang Patel2ac57e12007-03-07 06:39:01 +0000130
Andrew Trickcdc22972011-07-12 00:08:50 +0000131 void HandleFloatingPointIV(Loop *L, PHINode *PH);
132 void RewriteNonIntegerIVs(Loop *L);
133
134 void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
135
Andrew Trickf44aadf2011-05-20 18:25:42 +0000136 void SimplifyIVUsers(SCEVExpander &Rewriter);
Andrew Trick69d44522011-06-21 03:22:38 +0000137 void SimplifyIVUsersNoRewrite(Loop *L, SCEVExpander &Rewriter);
138
139 bool EliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
Andrew Trick81683ed2011-05-12 00:04:28 +0000140 void EliminateIVComparison(ICmpInst *ICmp, Value *IVOperand);
141 void EliminateIVRemainder(BinaryOperator *Rem,
142 Value *IVOperand,
Andrew Trickfc4ccb22011-06-21 15:43:52 +0000143 bool IsSigned);
Chris Lattnere61b67d2004-04-02 20:24:31 +0000144
Andrew Trick32390552011-07-06 20:50:43 +0000145 void SimplifyCongruentIVs(Loop *L);
146
Dan Gohman8c16b382010-02-22 04:11:59 +0000147 void RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter);
Devang Patel92b032f2008-09-09 21:41:07 +0000148
Andrew Trick7da24172011-07-18 20:32:31 +0000149 Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
150 PHINode *IndVar, SCEVExpander &Rewriter);
Dan Gohmand76d71a2009-05-12 02:17:14 +0000151
Andrew Trickcdc22972011-07-12 00:08:50 +0000152 void SinkUnusedInvariants(Loop *L);
Chris Lattnerd3678bc2003-12-22 03:58:44 +0000153 };
Chris Lattner4184bcc2002-09-10 05:24:05 +0000154}
Chris Lattner91daaab2001-12-04 04:32:29 +0000155
Dan Gohmand78c4002008-05-13 00:00:25 +0000156char IndVarSimplify::ID = 0;
Owen Anderson8ac477f2010-10-12 19:48:12 +0000157INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
Andrew Trick1abe2962011-05-04 02:10:13 +0000158 "Induction Variable Simplification", false, false)
Owen Anderson8ac477f2010-10-12 19:48:12 +0000159INITIALIZE_PASS_DEPENDENCY(DominatorTree)
160INITIALIZE_PASS_DEPENDENCY(LoopInfo)
161INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
162INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
163INITIALIZE_PASS_DEPENDENCY(LCSSA)
164INITIALIZE_PASS_DEPENDENCY(IVUsers)
165INITIALIZE_PASS_END(IndVarSimplify, "indvars",
Andrew Trick1abe2962011-05-04 02:10:13 +0000166 "Induction Variable Simplification", false, false)
Dan Gohmand78c4002008-05-13 00:00:25 +0000167
Daniel Dunbar7f39e2d2008-10-22 23:32:42 +0000168Pass *llvm::createIndVarSimplifyPass() {
Chris Lattnerd3678bc2003-12-22 03:58:44 +0000169 return new IndVarSimplify();
Chris Lattner91daaab2001-12-04 04:32:29 +0000170}
171
Andrew Trick87716c92011-03-17 23:51:11 +0000172/// isValidRewrite - Return true if the SCEV expansion generated by the
173/// rewriter can replace the original value. SCEV guarantees that it
174/// produces the same value, but the way it is produced may be illegal IR.
175/// Ideally, this function will only be called for verification.
176bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
177 // If an SCEV expression subsumed multiple pointers, its expansion could
178 // reassociate the GEP changing the base pointer. This is illegal because the
179 // final address produced by a GEP chain must be inbounds relative to its
180 // underlying object. Otherwise basic alias analysis, among other things,
181 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
182 // producing an expression involving multiple pointers. Until then, we must
183 // bail out here.
184 //
185 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
186 // because it understands lcssa phis while SCEV does not.
187 Value *FromPtr = FromVal;
188 Value *ToPtr = ToVal;
189 if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
190 FromPtr = GEP->getPointerOperand();
191 }
192 if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
193 ToPtr = GEP->getPointerOperand();
194 }
195 if (FromPtr != FromVal || ToPtr != ToVal) {
196 // Quickly check the common case
197 if (FromPtr == ToPtr)
198 return true;
199
200 // SCEV may have rewritten an expression that produces the GEP's pointer
201 // operand. That's ok as long as the pointer operand has the same base
202 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
203 // base of a recurrence. This handles the case in which SCEV expansion
204 // converts a pointer type recurrence into a nonrecurrent pointer base
205 // indexed by an integer recurrence.
206 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
207 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
208 if (FromBase == ToBase)
209 return true;
210
211 DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
212 << *FromBase << " != " << *ToBase << "\n");
213
214 return false;
215 }
216 return true;
217}
218
Andrew Trick638b3552011-07-20 05:32:06 +0000219/// Determine the insertion point for this user. By default, insert immediately
220/// before the user. SCEVExpander or LICM will hoist loop invariants out of the
221/// loop. For PHI nodes, there may be multiple uses, so compute the nearest
222/// common dominator for the incoming blocks.
223static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
224 DominatorTree *DT) {
225 PHINode *PHI = dyn_cast<PHINode>(User);
226 if (!PHI)
227 return User;
228
229 Instruction *InsertPt = 0;
230 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
231 if (PHI->getIncomingValue(i) != Def)
232 continue;
233
234 BasicBlock *InsertBB = PHI->getIncomingBlock(i);
235 if (!InsertPt) {
236 InsertPt = InsertBB->getTerminator();
237 continue;
238 }
239 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
240 InsertPt = InsertBB->getTerminator();
241 }
242 assert(InsertPt && "Missing phi operand");
Jay Foad50bfbab2011-07-20 08:15:21 +0000243 assert((!isa<Instruction>(Def) ||
244 DT->dominates(cast<Instruction>(Def), InsertPt)) &&
Andrew Trick638b3552011-07-20 05:32:06 +0000245 "def does not dominate all uses");
246 return InsertPt;
247}
248
Andrew Trickcdc22972011-07-12 00:08:50 +0000249//===----------------------------------------------------------------------===//
250// RewriteNonIntegerIVs and helpers. Prefer integer IVs.
251//===----------------------------------------------------------------------===//
Andrew Trick38c4e342011-05-03 22:24:10 +0000252
Andrew Trickcdc22972011-07-12 00:08:50 +0000253/// ConvertToSInt - Convert APF to an integer, if possible.
254static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
255 bool isExact = false;
256 if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
Andrew Trick38c4e342011-05-03 22:24:10 +0000257 return false;
Andrew Trickcdc22972011-07-12 00:08:50 +0000258 // See if we can convert this to an int64_t
259 uint64_t UIntVal;
260 if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
261 &isExact) != APFloat::opOK || !isExact)
Andrew Trick38c4e342011-05-03 22:24:10 +0000262 return false;
Andrew Trickcdc22972011-07-12 00:08:50 +0000263 IntVal = UIntVal;
Andrew Trick38c4e342011-05-03 22:24:10 +0000264 return true;
265}
266
Andrew Trickcdc22972011-07-12 00:08:50 +0000267/// HandleFloatingPointIV - If the loop has floating induction variable
268/// then insert corresponding integer induction variable if possible.
269/// For example,
270/// for(double i = 0; i < 10000; ++i)
271/// bar(i)
272/// is converted into
273/// for(int i = 0; i < 10000; ++i)
274/// bar((double)i);
Andrew Trickeb3c36e2011-05-25 04:42:22 +0000275///
Andrew Trickcdc22972011-07-12 00:08:50 +0000276void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
277 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
278 unsigned BackEdge = IncomingEdge^1;
Andrew Trickeb3c36e2011-05-25 04:42:22 +0000279
Andrew Trickcdc22972011-07-12 00:08:50 +0000280 // Check incoming value.
281 ConstantFP *InitValueVal =
282 dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
Andrew Trickeb3c36e2011-05-25 04:42:22 +0000283
Andrew Trickcdc22972011-07-12 00:08:50 +0000284 int64_t InitValue;
285 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
286 return;
Andrew Trickeb3c36e2011-05-25 04:42:22 +0000287
Andrew Trickcdc22972011-07-12 00:08:50 +0000288 // Check IV increment. Reject this PN if increment operation is not
289 // an add or increment value can not be represented by an integer.
290 BinaryOperator *Incr =
291 dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
292 if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;
Andrew Trickeb3c36e2011-05-25 04:42:22 +0000293
Andrew Trickcdc22972011-07-12 00:08:50 +0000294 // If this is not an add of the PHI with a constantfp, or if the constant fp
295 // is not an integer, bail out.
296 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
297 int64_t IncValue;
298 if (IncValueVal == 0 || Incr->getOperand(0) != PN ||
299 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
300 return;
301
302 // Check Incr uses. One user is PN and the other user is an exit condition
303 // used by the conditional terminator.
304 Value::use_iterator IncrUse = Incr->use_begin();
305 Instruction *U1 = cast<Instruction>(*IncrUse++);
306 if (IncrUse == Incr->use_end()) return;
307 Instruction *U2 = cast<Instruction>(*IncrUse++);
308 if (IncrUse != Incr->use_end()) return;
309
310 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't
311 // only used by a branch, we can't transform it.
312 FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
313 if (!Compare)
314 Compare = dyn_cast<FCmpInst>(U2);
315 if (Compare == 0 || !Compare->hasOneUse() ||
316 !isa<BranchInst>(Compare->use_back()))
317 return;
318
319 BranchInst *TheBr = cast<BranchInst>(Compare->use_back());
320
321 // We need to verify that the branch actually controls the iteration count
322 // of the loop. If not, the new IV can overflow and no one will notice.
323 // The branch block must be in the loop and one of the successors must be out
324 // of the loop.
325 assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
326 if (!L->contains(TheBr->getParent()) ||
327 (L->contains(TheBr->getSuccessor(0)) &&
328 L->contains(TheBr->getSuccessor(1))))
329 return;
330
331
332 // If it isn't a comparison with an integer-as-fp (the exit value), we can't
333 // transform it.
334 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
335 int64_t ExitValue;
336 if (ExitValueVal == 0 ||
337 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
338 return;
339
340 // Find new predicate for integer comparison.
341 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
342 switch (Compare->getPredicate()) {
343 default: return; // Unknown comparison.
344 case CmpInst::FCMP_OEQ:
345 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
346 case CmpInst::FCMP_ONE:
347 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
348 case CmpInst::FCMP_OGT:
349 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
350 case CmpInst::FCMP_OGE:
351 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
352 case CmpInst::FCMP_OLT:
353 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
354 case CmpInst::FCMP_OLE:
355 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
Andrew Trickeb3c36e2011-05-25 04:42:22 +0000356 }
Andrew Trickeb3c36e2011-05-25 04:42:22 +0000357
Andrew Trickcdc22972011-07-12 00:08:50 +0000358 // We convert the floating point induction variable to a signed i32 value if
359 // we can. This is only safe if the comparison will not overflow in a way
360 // that won't be trapped by the integer equivalent operations. Check for this
361 // now.
362 // TODO: We could use i64 if it is native and the range requires it.
Dan Gohman4a645b82010-04-12 21:13:43 +0000363
Andrew Trickcdc22972011-07-12 00:08:50 +0000364 // The start/stride/exit values must all fit in signed i32.
365 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
366 return;
367
368 // If not actually striding (add x, 0.0), avoid touching the code.
369 if (IncValue == 0)
370 return;
371
372 // Positive and negative strides have different safety conditions.
373 if (IncValue > 0) {
374 // If we have a positive stride, we require the init to be less than the
375 // exit value and an equality or less than comparison.
376 if (InitValue >= ExitValue ||
377 NewPred == CmpInst::ICMP_SGT || NewPred == CmpInst::ICMP_SGE)
378 return;
379
380 uint32_t Range = uint32_t(ExitValue-InitValue);
381 if (NewPred == CmpInst::ICMP_SLE) {
382 // Normalize SLE -> SLT, check for infinite loop.
383 if (++Range == 0) return; // Range overflows.
Dan Gohmaneb6be652009-02-12 22:19:27 +0000384 }
Chris Lattner0cec5cb2004-04-15 15:21:43 +0000385
Andrew Trickcdc22972011-07-12 00:08:50 +0000386 unsigned Leftover = Range % uint32_t(IncValue);
387
388 // If this is an equality comparison, we require that the strided value
389 // exactly land on the exit value, otherwise the IV condition will wrap
390 // around and do things the fp IV wouldn't.
391 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
392 Leftover != 0)
393 return;
394
395 // If the stride would wrap around the i32 before exiting, we can't
396 // transform the IV.
397 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
398 return;
399
Chris Lattnerd7a559e2004-04-15 20:26:22 +0000400 } else {
Andrew Trickcdc22972011-07-12 00:08:50 +0000401 // If we have a negative stride, we require the init to be greater than the
402 // exit value and an equality or greater than comparison.
403 if (InitValue >= ExitValue ||
404 NewPred == CmpInst::ICMP_SLT || NewPred == CmpInst::ICMP_SLE)
405 return;
406
407 uint32_t Range = uint32_t(InitValue-ExitValue);
408 if (NewPred == CmpInst::ICMP_SGE) {
409 // Normalize SGE -> SGT, check for infinite loop.
410 if (++Range == 0) return; // Range overflows.
411 }
412
413 unsigned Leftover = Range % uint32_t(-IncValue);
414
415 // If this is an equality comparison, we require that the strided value
416 // exactly land on the exit value, otherwise the IV condition will wrap
417 // around and do things the fp IV wouldn't.
418 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
419 Leftover != 0)
420 return;
421
422 // If the stride would wrap around the i32 before exiting, we can't
423 // transform the IV.
424 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
425 return;
Chris Lattnerd7a559e2004-04-15 20:26:22 +0000426 }
Chris Lattner0cec5cb2004-04-15 15:21:43 +0000427
Chris Lattner229907c2011-07-18 04:54:35 +0000428 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
Chris Lattnere61b67d2004-04-02 20:24:31 +0000429
Andrew Trickcdc22972011-07-12 00:08:50 +0000430 // Insert new integer induction variable.
431 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
432 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
433 PN->getIncomingBlock(IncomingEdge));
Chris Lattnere61b67d2004-04-02 20:24:31 +0000434
Andrew Trickcdc22972011-07-12 00:08:50 +0000435 Value *NewAdd =
436 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
437 Incr->getName()+".int", Incr);
438 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
Dan Gohmaneb6be652009-02-12 22:19:27 +0000439
Andrew Trickcdc22972011-07-12 00:08:50 +0000440 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
441 ConstantInt::get(Int32Ty, ExitValue),
442 Compare->getName());
Dan Gohmand76d71a2009-05-12 02:17:14 +0000443
Andrew Trickcdc22972011-07-12 00:08:50 +0000444 // In the following deletions, PN may become dead and may be deleted.
445 // Use a WeakVH to observe whether this happens.
446 WeakVH WeakPH = PN;
447
448 // Delete the old floating point exit comparison. The branch starts using the
449 // new comparison.
450 NewCompare->takeName(Compare);
451 Compare->replaceAllUsesWith(NewCompare);
452 RecursivelyDeleteTriviallyDeadInstructions(Compare);
453
454 // Delete the old floating point increment.
455 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
456 RecursivelyDeleteTriviallyDeadInstructions(Incr);
457
458 // If the FP induction variable still has uses, this is because something else
459 // in the loop uses its value. In order to canonicalize the induction
460 // variable, we chose to eliminate the IV and rewrite it in terms of an
461 // int->fp cast.
462 //
463 // We give preference to sitofp over uitofp because it is faster on most
464 // platforms.
465 if (WeakPH) {
466 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
467 PN->getParent()->getFirstNonPHI());
468 PN->replaceAllUsesWith(Conv);
469 RecursivelyDeleteTriviallyDeadInstructions(PN);
470 }
471
472 // Add a new IVUsers entry for the newly-created integer PHI.
473 if (IU)
474 IU->AddUsersIfInteresting(NewPHI);
Chris Lattnere61b67d2004-04-02 20:24:31 +0000475}
476
Andrew Trickcdc22972011-07-12 00:08:50 +0000477void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
478 // First step. Check to see if there are any floating-point recurrences.
479 // If there are, change them into integer recurrences, permitting analysis by
480 // the SCEV routines.
481 //
482 BasicBlock *Header = L->getHeader();
483
484 SmallVector<WeakVH, 8> PHIs;
485 for (BasicBlock::iterator I = Header->begin();
486 PHINode *PN = dyn_cast<PHINode>(I); ++I)
487 PHIs.push_back(PN);
488
489 for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
490 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
491 HandleFloatingPointIV(L, PN);
492
493 // If the loop previously had floating-point IV, ScalarEvolution
494 // may not have been able to compute a trip count. Now that we've done some
495 // re-writing, the trip count may be computable.
496 if (Changed)
497 SE->forgetLoop(L);
498}
499
500//===----------------------------------------------------------------------===//
501// RewriteLoopExitValues - Optimize IV users outside the loop.
502// As a side effect, reduces the amount of IV processing within the loop.
503//===----------------------------------------------------------------------===//
504
Chris Lattnere61b67d2004-04-02 20:24:31 +0000505/// RewriteLoopExitValues - Check to see if this loop has a computable
506/// loop-invariant execution count. If so, this means that we can compute the
507/// final value of any expressions that are recurrent in the loop, and
508/// substitute the exit values from the loop into any instructions outside of
509/// the loop that use the final values of the current expressions.
Dan Gohmand76d71a2009-05-12 02:17:14 +0000510///
511/// This is mostly redundant with the regular IndVarSimplify activities that
512/// happen later, except that it's more powerful in some cases, because it's
513/// able to brute-force evaluate arbitrary instructions as long as they have
514/// constant operands at the beginning of the loop.
Chris Lattnera337f5e2011-01-09 02:16:18 +0000515void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
Dan Gohmand76d71a2009-05-12 02:17:14 +0000516 // Verify the input to the pass in already in LCSSA form.
Dan Gohman2734ebd2010-03-10 19:38:49 +0000517 assert(L->isLCSSAForm(*DT));
Dan Gohmand76d71a2009-05-12 02:17:14 +0000518
Devang Patelb5933bb2007-08-21 00:31:24 +0000519 SmallVector<BasicBlock*, 8> ExitBlocks;
Chris Lattnerd7b4c922007-03-04 03:43:23 +0000520 L->getUniqueExitBlocks(ExitBlocks);
Misha Brukmanb1c93172005-04-21 23:48:37 +0000521
Chris Lattnerd7b4c922007-03-04 03:43:23 +0000522 // Find all values that are computed inside the loop, but used outside of it.
523 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
524 // the exit blocks of the loop to find them.
525 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
526 BasicBlock *ExitBB = ExitBlocks[i];
Dan Gohmanf84d42f2009-02-17 19:13:57 +0000527
Chris Lattnerd7b4c922007-03-04 03:43:23 +0000528 // If there are no PHI nodes in this exit block, then no values defined
529 // inside the loop are used on this path, skip it.
530 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
531 if (!PN) continue;
Dan Gohmanf84d42f2009-02-17 19:13:57 +0000532
Chris Lattnerd7b4c922007-03-04 03:43:23 +0000533 unsigned NumPreds = PN->getNumIncomingValues();
Dan Gohmanf84d42f2009-02-17 19:13:57 +0000534
Chris Lattnerd7b4c922007-03-04 03:43:23 +0000535 // Iterate over all of the PHI nodes.
536 BasicBlock::iterator BBI = ExitBB->begin();
537 while ((PN = dyn_cast<PHINode>(BBI++))) {
Torok Edwin5349cf52009-05-24 19:36:09 +0000538 if (PN->use_empty())
539 continue; // dead use, don't replace it
Dan Gohmanc43d2642010-02-18 21:34:02 +0000540
541 // SCEV only supports integer expressions for now.
542 if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
543 continue;
544
Dale Johannesen1d6827a2010-02-19 07:14:22 +0000545 // It's necessary to tell ScalarEvolution about this explicitly so that
546 // it can walk the def-use list and forget all SCEVs, as it may not be
547 // watching the PHI itself. Once the new exit value is in place, there
548 // may not be a def-use connection between the loop and every instruction
549 // which got a SCEVAddRecExpr for that loop.
550 SE->forgetValue(PN);
551
Chris Lattnerd7b4c922007-03-04 03:43:23 +0000552 // Iterate over all of the values in all the PHI nodes.
553 for (unsigned i = 0; i != NumPreds; ++i) {
554 // If the value being merged in is not integer or is not defined
555 // in the loop, skip it.
556 Value *InVal = PN->getIncomingValue(i);
Dan Gohmanc43d2642010-02-18 21:34:02 +0000557 if (!isa<Instruction>(InVal))
Chris Lattnerd7b4c922007-03-04 03:43:23 +0000558 continue;
Chris Lattnere61b67d2004-04-02 20:24:31 +0000559
Chris Lattnerd7b4c922007-03-04 03:43:23 +0000560 // If this pred is for a subloop, not L itself, skip it.
Dan Gohmanf84d42f2009-02-17 19:13:57 +0000561 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
Chris Lattnerd7b4c922007-03-04 03:43:23 +0000562 continue; // The Block is in a subloop, skip it.
563
564 // Check that InVal is defined in the loop.
565 Instruction *Inst = cast<Instruction>(InVal);
Dan Gohman18fa5682009-12-18 01:24:09 +0000566 if (!L->contains(Inst))
Chris Lattnerd7b4c922007-03-04 03:43:23 +0000567 continue;
Dan Gohmanf84d42f2009-02-17 19:13:57 +0000568
Chris Lattnerd7b4c922007-03-04 03:43:23 +0000569 // Okay, this instruction has a user outside of the current loop
570 // and varies predictably *inside* the loop. Evaluate the value it
571 // contains when the loop exits, if possible.
Dan Gohmanaf752342009-07-07 17:06:11 +0000572 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
Dan Gohmanafd6db92010-11-17 21:23:15 +0000573 if (!SE->isLoopInvariant(ExitValue, L))
Chris Lattnerd7b4c922007-03-04 03:43:23 +0000574 continue;
Chris Lattner1f7648e2007-03-04 01:00:28 +0000575
Dan Gohmandaafbe62009-06-26 22:53:46 +0000576 Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
Dan Gohmanf84d42f2009-02-17 19:13:57 +0000577
David Greene0dd384c2010-01-05 01:27:06 +0000578 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
Chris Lattnerb25de3f2009-08-23 04:37:46 +0000579 << " LoopVal = " << *Inst << "\n");
Chris Lattnerd7b4c922007-03-04 03:43:23 +0000580
Andrew Trick87716c92011-03-17 23:51:11 +0000581 if (!isValidRewrite(Inst, ExitVal)) {
582 DeadInsts.push_back(ExitVal);
583 continue;
584 }
585 Changed = true;
586 ++NumReplaced;
587
Chris Lattnerd7b4c922007-03-04 03:43:23 +0000588 PN->setIncomingValue(i, ExitVal);
Dan Gohmanf84d42f2009-02-17 19:13:57 +0000589
Dan Gohmand76d71a2009-05-12 02:17:14 +0000590 // If this instruction is dead now, delete it.
591 RecursivelyDeleteTriviallyDeadInstructions(Inst);
Dan Gohmanf84d42f2009-02-17 19:13:57 +0000592
Dan Gohman03d5d0f2009-07-14 01:09:02 +0000593 if (NumPreds == 1) {
594 // Completely replace a single-pred PHI. This is safe, because the
595 // NewVal won't be variant in the loop, so we don't need an LCSSA phi
596 // node anymore.
Chris Lattnerd7b4c922007-03-04 03:43:23 +0000597 PN->replaceAllUsesWith(ExitVal);
Dan Gohmand76d71a2009-05-12 02:17:14 +0000598 RecursivelyDeleteTriviallyDeadInstructions(PN);
Chris Lattnered30abf2007-03-03 22:48:48 +0000599 }
600 }
Dan Gohman03d5d0f2009-07-14 01:09:02 +0000601 if (NumPreds != 1) {
Dan Gohmandaafbe62009-06-26 22:53:46 +0000602 // Clone the PHI and delete the original one. This lets IVUsers and
603 // any other maps purge the original user from their records.
Devang Patel11cf3f42009-10-27 22:16:29 +0000604 PHINode *NewPN = cast<PHINode>(PN->clone());
Dan Gohmandaafbe62009-06-26 22:53:46 +0000605 NewPN->takeName(PN);
606 NewPN->insertBefore(PN);
607 PN->replaceAllUsesWith(NewPN);
608 PN->eraseFromParent();
609 }
Chris Lattnered30abf2007-03-03 22:48:48 +0000610 }
611 }
Dan Gohman1a2abe52010-03-20 03:53:53 +0000612
613 // The insertion point instruction may have been deleted; clear it out
614 // so that the rewriter doesn't trip over it later.
615 Rewriter.clearInsertPoint();
Chris Lattnere61b67d2004-04-02 20:24:31 +0000616}
617
Andrew Trickcdc22972011-07-12 00:08:50 +0000618//===----------------------------------------------------------------------===//
619// Rewrite IV users based on a canonical IV.
620// To be replaced by -disable-iv-rewrite.
621//===----------------------------------------------------------------------===//
Dale Johannesena71daa82009-04-15 23:31:51 +0000622
Andrew Trick69d44522011-06-21 03:22:38 +0000623/// SimplifyIVUsers - Iteratively perform simplification on IVUsers within this
624/// loop. IVUsers is treated as a worklist. Each successive simplification may
625/// push more users which may themselves be candidates for simplification.
626///
627/// This is the old approach to IV simplification to be replaced by
628/// SimplifyIVUsersNoRewrite.
629///
630void IndVarSimplify::SimplifyIVUsers(SCEVExpander &Rewriter) {
631 // Each round of simplification involves a round of eliminating operations
632 // followed by a round of widening IVs. A single IVUsers worklist is used
633 // across all rounds. The inner loop advances the user. If widening exposes
634 // more uses, then another pass through the outer loop is triggered.
635 for (IVUsers::iterator I = IU->begin(); I != IU->end(); ++I) {
636 Instruction *UseInst = I->getUser();
637 Value *IVOperand = I->getOperandValToReplace();
638
639 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
640 EliminateIVComparison(ICmp, IVOperand);
641 continue;
642 }
643 if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) {
644 bool IsSigned = Rem->getOpcode() == Instruction::SRem;
645 if (IsSigned || Rem->getOpcode() == Instruction::URem) {
Andrew Trickfc4ccb22011-06-21 15:43:52 +0000646 EliminateIVRemainder(Rem, IVOperand, IsSigned);
Andrew Trick69d44522011-06-21 03:22:38 +0000647 continue;
648 }
649 }
650 }
651}
652
Andrew Trickcdc22972011-07-12 00:08:50 +0000653// FIXME: It is an extremely bad idea to indvar substitute anything more
654// complex than affine induction variables. Doing so will put expensive
655// polynomial evaluations inside of the loop, and the str reduction pass
656// currently can only reduce affine polynomials. For now just disable
657// indvar subst on anything more complex than an affine addrec, unless
658// it can be expanded to a trivial value.
659static bool isSafe(const SCEV *S, const Loop *L, ScalarEvolution *SE) {
660 // Loop-invariant values are safe.
661 if (SE->isLoopInvariant(S, L)) return true;
662
663 // Affine addrecs are safe. Non-affine are not, because LSR doesn't know how
664 // to transform them into efficient code.
665 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
666 return AR->isAffine();
667
668 // An add is safe it all its operands are safe.
669 if (const SCEVCommutativeExpr *Commutative = dyn_cast<SCEVCommutativeExpr>(S)) {
670 for (SCEVCommutativeExpr::op_iterator I = Commutative->op_begin(),
671 E = Commutative->op_end(); I != E; ++I)
672 if (!isSafe(*I, L, SE)) return false;
673 return true;
674 }
675
676 // A cast is safe if its operand is.
677 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
678 return isSafe(C->getOperand(), L, SE);
679
680 // A udiv is safe if its operands are.
681 if (const SCEVUDivExpr *UD = dyn_cast<SCEVUDivExpr>(S))
682 return isSafe(UD->getLHS(), L, SE) &&
683 isSafe(UD->getRHS(), L, SE);
684
685 // SCEVUnknown is always safe.
686 if (isa<SCEVUnknown>(S))
687 return true;
688
689 // Nothing else is safe.
690 return false;
691}
692
693void IndVarSimplify::RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter) {
694 // Rewrite all induction variable expressions in terms of the canonical
695 // induction variable.
696 //
697 // If there were induction variables of other sizes or offsets, manually
698 // add the offsets to the primary induction variable and cast, avoiding
699 // the need for the code evaluation methods to insert induction variables
700 // of different sizes.
701 for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) {
702 Value *Op = UI->getOperandValToReplace();
Chris Lattner229907c2011-07-18 04:54:35 +0000703 Type *UseTy = Op->getType();
Andrew Trickcdc22972011-07-12 00:08:50 +0000704 Instruction *User = UI->getUser();
705
706 // Compute the final addrec to expand into code.
707 const SCEV *AR = IU->getReplacementExpr(*UI);
708
709 // Evaluate the expression out of the loop, if possible.
710 if (!L->contains(UI->getUser())) {
711 const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop());
712 if (SE->isLoopInvariant(ExitVal, L))
713 AR = ExitVal;
714 }
715
716 // FIXME: It is an extremely bad idea to indvar substitute anything more
717 // complex than affine induction variables. Doing so will put expensive
718 // polynomial evaluations inside of the loop, and the str reduction pass
719 // currently can only reduce affine polynomials. For now just disable
720 // indvar subst on anything more complex than an affine addrec, unless
721 // it can be expanded to a trivial value.
722 if (!isSafe(AR, L, SE))
723 continue;
724
725 // Determine the insertion point for this user. By default, insert
726 // immediately before the user. The SCEVExpander class will automatically
727 // hoist loop invariants out of the loop. For PHI nodes, there may be
728 // multiple uses, so compute the nearest common dominator for the
729 // incoming blocks.
Andrew Trick638b3552011-07-20 05:32:06 +0000730 Instruction *InsertPt = getInsertPointForUses(User, Op, DT);
Andrew Trickcdc22972011-07-12 00:08:50 +0000731
732 // Now expand it into actual Instructions and patch it into place.
733 Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt);
734
735 DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n'
736 << " into = " << *NewVal << "\n");
737
738 if (!isValidRewrite(Op, NewVal)) {
739 DeadInsts.push_back(NewVal);
740 continue;
741 }
742 // Inform ScalarEvolution that this value is changing. The change doesn't
743 // affect its value, but it does potentially affect which use lists the
744 // value will be on after the replacement, which affects ScalarEvolution's
745 // ability to walk use lists and drop dangling pointers when a value is
746 // deleted.
747 SE->forgetValue(User);
748
749 // Patch the new value into place.
750 if (Op->hasName())
751 NewVal->takeName(Op);
752 if (Instruction *NewValI = dyn_cast<Instruction>(NewVal))
753 NewValI->setDebugLoc(User->getDebugLoc());
754 User->replaceUsesOfWith(Op, NewVal);
755 UI->setOperandValToReplace(NewVal);
756
757 ++NumRemoved;
758 Changed = true;
759
760 // The old value may be dead now.
761 DeadInsts.push_back(Op);
762 }
763}
764
765//===----------------------------------------------------------------------===//
766// IV Widening - Extend the width of an IV to cover its widest uses.
767//===----------------------------------------------------------------------===//
768
Andrew Trickf44aadf2011-05-20 18:25:42 +0000769namespace {
770 // Collect information about induction variables that are used by sign/zero
771 // extend operations. This information is recorded by CollectExtend and
772 // provides the input to WidenIV.
773 struct WideIVInfo {
Chris Lattner229907c2011-07-18 04:54:35 +0000774 Type *WidestNativeType; // Widest integer type created [sz]ext
Andrew Trickf44aadf2011-05-20 18:25:42 +0000775 bool IsSigned; // Was an sext user seen before a zext?
776
777 WideIVInfo() : WidestNativeType(0), IsSigned(false) {}
778 };
Andrew Trickf44aadf2011-05-20 18:25:42 +0000779}
780
781/// CollectExtend - Update information about the induction variable that is
782/// extended by this sign or zero extend operation. This is used to determine
783/// the final width of the IV before actually widening it.
Andrew Trick69d44522011-06-21 03:22:38 +0000784static void CollectExtend(CastInst *Cast, bool IsSigned, WideIVInfo &WI,
785 ScalarEvolution *SE, const TargetData *TD) {
Chris Lattner229907c2011-07-18 04:54:35 +0000786 Type *Ty = Cast->getType();
Andrew Trickf44aadf2011-05-20 18:25:42 +0000787 uint64_t Width = SE->getTypeSizeInBits(Ty);
788 if (TD && !TD->isLegalInteger(Width))
789 return;
790
Andrew Trick69d44522011-06-21 03:22:38 +0000791 if (!WI.WidestNativeType) {
792 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
793 WI.IsSigned = IsSigned;
Andrew Trickf44aadf2011-05-20 18:25:42 +0000794 return;
795 }
796
797 // We extend the IV to satisfy the sign of its first user, arbitrarily.
Andrew Trick69d44522011-06-21 03:22:38 +0000798 if (WI.IsSigned != IsSigned)
Andrew Trickf44aadf2011-05-20 18:25:42 +0000799 return;
800
Andrew Trick69d44522011-06-21 03:22:38 +0000801 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
802 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
Andrew Trickf44aadf2011-05-20 18:25:42 +0000803}
804
805namespace {
Andrew Trick22104482011-07-20 04:39:24 +0000806
807/// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the
808/// WideIV that computes the same value as the Narrow IV def. This avoids
809/// caching Use* pointers.
810struct NarrowIVDefUse {
811 Instruction *NarrowDef;
812 Instruction *NarrowUse;
813 Instruction *WideDef;
814
815 NarrowIVDefUse(): NarrowDef(0), NarrowUse(0), WideDef(0) {}
816
817 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD):
818 NarrowDef(ND), NarrowUse(NU), WideDef(WD) {}
819};
820
Andrew Trickf44aadf2011-05-20 18:25:42 +0000821/// WidenIV - The goal of this transform is to remove sign and zero extends
822/// without creating any new induction variables. To do this, it creates a new
823/// phi of the wider type and redirects all users, either removing extends or
824/// inserting truncs whenever we stop propagating the type.
825///
826class WidenIV {
Andrew Trick69d44522011-06-21 03:22:38 +0000827 // Parameters
Andrew Trickf44aadf2011-05-20 18:25:42 +0000828 PHINode *OrigPhi;
Chris Lattner229907c2011-07-18 04:54:35 +0000829 Type *WideType;
Andrew Trickf44aadf2011-05-20 18:25:42 +0000830 bool IsSigned;
831
Andrew Trick69d44522011-06-21 03:22:38 +0000832 // Context
833 LoopInfo *LI;
834 Loop *L;
Andrew Trickf44aadf2011-05-20 18:25:42 +0000835 ScalarEvolution *SE;
Andrew Trick69d44522011-06-21 03:22:38 +0000836 DominatorTree *DT;
Andrew Trickf44aadf2011-05-20 18:25:42 +0000837
Andrew Trick69d44522011-06-21 03:22:38 +0000838 // Result
Andrew Trickf44aadf2011-05-20 18:25:42 +0000839 PHINode *WidePhi;
840 Instruction *WideInc;
841 const SCEV *WideIncExpr;
Andrew Trick69d44522011-06-21 03:22:38 +0000842 SmallVectorImpl<WeakVH> &DeadInsts;
Andrew Trickf44aadf2011-05-20 18:25:42 +0000843
Andrew Trick69d44522011-06-21 03:22:38 +0000844 SmallPtrSet<Instruction*,16> Widened;
Andrew Trick22104482011-07-20 04:39:24 +0000845 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
Andrew Trickf44aadf2011-05-20 18:25:42 +0000846
847public:
Andrew Trick69d44522011-06-21 03:22:38 +0000848 WidenIV(PHINode *PN, const WideIVInfo &WI, LoopInfo *LInfo,
849 ScalarEvolution *SEv, DominatorTree *DTree,
Andrew Trick7fac79e2011-05-26 00:46:11 +0000850 SmallVectorImpl<WeakVH> &DI) :
Andrew Trickf44aadf2011-05-20 18:25:42 +0000851 OrigPhi(PN),
Andrew Trick69d44522011-06-21 03:22:38 +0000852 WideType(WI.WidestNativeType),
853 IsSigned(WI.IsSigned),
Andrew Trickf44aadf2011-05-20 18:25:42 +0000854 LI(LInfo),
855 L(LI->getLoopFor(OrigPhi->getParent())),
856 SE(SEv),
Andrew Trick7fac79e2011-05-26 00:46:11 +0000857 DT(DTree),
Andrew Trickf44aadf2011-05-20 18:25:42 +0000858 WidePhi(0),
859 WideInc(0),
Andrew Trick69d44522011-06-21 03:22:38 +0000860 WideIncExpr(0),
861 DeadInsts(DI) {
Andrew Trickf44aadf2011-05-20 18:25:42 +0000862 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
863 }
864
Andrew Trick69d44522011-06-21 03:22:38 +0000865 PHINode *CreateWideIV(SCEVExpander &Rewriter);
Andrew Trickf44aadf2011-05-20 18:25:42 +0000866
867protected:
Andrew Trick22104482011-07-20 04:39:24 +0000868 Instruction *CloneIVUser(NarrowIVDefUse DU);
Andrew Trickf44aadf2011-05-20 18:25:42 +0000869
Andrew Trick92905a12011-07-05 18:19:39 +0000870 const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse);
871
Andrew Trick22104482011-07-20 04:39:24 +0000872 Instruction *WidenIVUse(NarrowIVDefUse DU);
Andrew Trick6d123092011-07-02 02:34:25 +0000873
874 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
Andrew Trickf44aadf2011-05-20 18:25:42 +0000875};
876} // anonymous namespace
877
Chris Lattner229907c2011-07-18 04:54:35 +0000878static Value *getExtend( Value *NarrowOper, Type *WideType,
Andrew Trickeb3c36e2011-05-25 04:42:22 +0000879 bool IsSigned, IRBuilder<> &Builder) {
880 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
881 Builder.CreateZExt(NarrowOper, WideType);
Andrew Trickf44aadf2011-05-20 18:25:42 +0000882}
883
884/// CloneIVUser - Instantiate a wide operation to replace a narrow
885/// operation. This only needs to handle operations that can evaluation to
886/// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
Andrew Trick22104482011-07-20 04:39:24 +0000887Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) {
888 unsigned Opcode = DU.NarrowUse->getOpcode();
Andrew Trickf44aadf2011-05-20 18:25:42 +0000889 switch (Opcode) {
890 default:
891 return 0;
892 case Instruction::Add:
893 case Instruction::Mul:
894 case Instruction::UDiv:
895 case Instruction::Sub:
896 case Instruction::And:
897 case Instruction::Or:
898 case Instruction::Xor:
899 case Instruction::Shl:
900 case Instruction::LShr:
901 case Instruction::AShr:
Andrew Trick22104482011-07-20 04:39:24 +0000902 DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n");
Andrew Trickf44aadf2011-05-20 18:25:42 +0000903
Andrew Trick22104482011-07-20 04:39:24 +0000904 IRBuilder<> Builder(DU.NarrowUse);
Andrew Trickeb3c36e2011-05-25 04:42:22 +0000905
906 // Replace NarrowDef operands with WideDef. Otherwise, we don't know
907 // anything about the narrow operand yet so must insert a [sz]ext. It is
908 // probably loop invariant and will be folded or hoisted. If it actually
909 // comes from a widened IV, it should be removed during a future call to
910 // WidenIVUse.
Andrew Trick22104482011-07-20 04:39:24 +0000911 Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef :
912 getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, Builder);
913 Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef :
914 getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, Builder);
Andrew Trickeb3c36e2011-05-25 04:42:22 +0000915
Andrew Trick22104482011-07-20 04:39:24 +0000916 BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse);
Andrew Trickf44aadf2011-05-20 18:25:42 +0000917 BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(),
Andrew Trickeb3c36e2011-05-25 04:42:22 +0000918 LHS, RHS,
Andrew Trickf44aadf2011-05-20 18:25:42 +0000919 NarrowBO->getName());
Andrew Trickf44aadf2011-05-20 18:25:42 +0000920 Builder.Insert(WideBO);
Andrew Trickefe89ad2011-06-30 19:02:17 +0000921 if (const OverflowingBinaryOperator *OBO =
922 dyn_cast<OverflowingBinaryOperator>(NarrowBO)) {
923 if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap();
924 if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap();
925 }
Andrew Trickeb3c36e2011-05-25 04:42:22 +0000926 return WideBO;
Andrew Trickf44aadf2011-05-20 18:25:42 +0000927 }
928 llvm_unreachable(0);
929}
930
Andrew Trick7fac79e2011-05-26 00:46:11 +0000931/// HoistStep - Attempt to hoist an IV increment above a potential use.
932///
933/// To successfully hoist, two criteria must be met:
934/// - IncV operands dominate InsertPos and
935/// - InsertPos dominates IncV
936///
937/// Meeting the second condition means that we don't need to check all of IncV's
938/// existing uses (it's moving up in the domtree).
939///
940/// This does not yet recursively hoist the operands, although that would
941/// not be difficult.
942static bool HoistStep(Instruction *IncV, Instruction *InsertPos,
943 const DominatorTree *DT)
944{
945 if (DT->dominates(IncV, InsertPos))
946 return true;
947
948 if (!DT->dominates(InsertPos->getParent(), IncV->getParent()))
949 return false;
950
951 if (IncV->mayHaveSideEffects())
952 return false;
953
954 // Attempt to hoist IncV
955 for (User::op_iterator OI = IncV->op_begin(), OE = IncV->op_end();
956 OI != OE; ++OI) {
957 Instruction *OInst = dyn_cast<Instruction>(OI);
958 if (OInst && !DT->dominates(OInst, InsertPos))
959 return false;
960 }
961 IncV->moveBefore(InsertPos);
962 return true;
963}
964
Andrew Trick92905a12011-07-05 18:19:39 +0000965// GetWideRecurrence - Is this instruction potentially interesting from IVUsers'
966// perspective after widening it's type? In other words, can the extend be
967// safely hoisted out of the loop with SCEV reducing the value to a recurrence
968// on the same loop. If so, return the sign or zero extended
969// recurrence. Otherwise return NULL.
970const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
971 if (!SE->isSCEVable(NarrowUse->getType()))
972 return 0;
973
974 const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
975 if (SE->getTypeSizeInBits(NarrowExpr->getType())
976 >= SE->getTypeSizeInBits(WideType)) {
977 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
978 // index. So don't follow this use.
979 return 0;
980 }
981
982 const SCEV *WideExpr = IsSigned ?
983 SE->getSignExtendExpr(NarrowExpr, WideType) :
984 SE->getZeroExtendExpr(NarrowExpr, WideType);
985 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
986 if (!AddRec || AddRec->getLoop() != L)
987 return 0;
988
989 return AddRec;
990}
991
Andrew Trickf44aadf2011-05-20 18:25:42 +0000992/// WidenIVUse - Determine whether an individual user of the narrow IV can be
993/// widened. If so, return the wide clone of the user.
Andrew Trick22104482011-07-20 04:39:24 +0000994Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU) {
Andrew Trickecdd6e42011-06-29 23:03:57 +0000995
Andrew Trick6d123092011-07-02 02:34:25 +0000996 // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
Andrew Trick22104482011-07-20 04:39:24 +0000997 if (isa<PHINode>(DU.NarrowUse) &&
998 LI->getLoopFor(DU.NarrowUse->getParent()) != L)
Andrew Trickf44aadf2011-05-20 18:25:42 +0000999 return 0;
1000
Andrew Trickf44aadf2011-05-20 18:25:42 +00001001 // Our raison d'etre! Eliminate sign and zero extension.
Andrew Trick22104482011-07-20 04:39:24 +00001002 if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) {
1003 Value *NewDef = DU.WideDef;
1004 if (DU.NarrowUse->getType() != WideType) {
1005 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
Andrew Trickeb3c36e2011-05-25 04:42:22 +00001006 unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1007 if (CastWidth < IVWidth) {
1008 // The cast isn't as wide as the IV, so insert a Trunc.
Andrew Trick22104482011-07-20 04:39:24 +00001009 IRBuilder<> Builder(DU.NarrowUse);
1010 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
Andrew Trickeb3c36e2011-05-25 04:42:22 +00001011 }
1012 else {
1013 // A wider extend was hidden behind a narrower one. This may induce
1014 // another round of IV widening in which the intermediate IV becomes
1015 // dead. It should be very rare.
1016 DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
Andrew Trick22104482011-07-20 04:39:24 +00001017 << " not wide enough to subsume " << *DU.NarrowUse << "\n");
1018 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1019 NewDef = DU.NarrowUse;
Andrew Trickeb3c36e2011-05-25 04:42:22 +00001020 }
1021 }
Andrew Trick22104482011-07-20 04:39:24 +00001022 if (NewDef != DU.NarrowUse) {
1023 DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1024 << " replaced by " << *DU.WideDef << "\n");
Andrew Trickeb3c36e2011-05-25 04:42:22 +00001025 ++NumElimExt;
Andrew Trick22104482011-07-20 04:39:24 +00001026 DU.NarrowUse->replaceAllUsesWith(NewDef);
1027 DeadInsts.push_back(DU.NarrowUse);
Andrew Trickeb3c36e2011-05-25 04:42:22 +00001028 }
Andrew Trick69d44522011-06-21 03:22:38 +00001029 // Now that the extend is gone, we want to expose it's uses for potential
1030 // further simplification. We don't need to directly inform SimplifyIVUsers
1031 // of the new users, because their parent IV will be processed later as a
1032 // new loop phi. If we preserved IVUsers analysis, we would also want to
1033 // push the uses of WideDef here.
Andrew Trickf44aadf2011-05-20 18:25:42 +00001034
1035 // No further widening is needed. The deceased [sz]ext had done it for us.
1036 return 0;
1037 }
Andrew Trick6d123092011-07-02 02:34:25 +00001038
1039 // Does this user itself evaluate to a recurrence after widening?
Andrew Trick22104482011-07-20 04:39:24 +00001040 const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse);
Andrew Trickf44aadf2011-05-20 18:25:42 +00001041 if (!WideAddRec) {
1042 // This user does not evaluate to a recurence after widening, so don't
1043 // follow it. Instead insert a Trunc to kill off the original use,
1044 // eventually isolating the original narrow IV so it can be removed.
Andrew Trick638b3552011-07-20 05:32:06 +00001045 IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT));
Andrew Trick22104482011-07-20 04:39:24 +00001046 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1047 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
Andrew Trickf44aadf2011-05-20 18:25:42 +00001048 return 0;
1049 }
Andrew Trick7da24172011-07-18 20:32:31 +00001050 // Assume block terminators cannot evaluate to a recurrence. We can't to
Andrew Trick6d123092011-07-02 02:34:25 +00001051 // insert a Trunc after a terminator if there happens to be a critical edge.
Andrew Trick22104482011-07-20 04:39:24 +00001052 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
Andrew Trick6d123092011-07-02 02:34:25 +00001053 "SCEV is not expected to evaluate a block terminator");
Andrew Trickecdd6e42011-06-29 23:03:57 +00001054
Andrew Trick7fac79e2011-05-26 00:46:11 +00001055 // Reuse the IV increment that SCEVExpander created as long as it dominates
1056 // NarrowUse.
Andrew Trickf44aadf2011-05-20 18:25:42 +00001057 Instruction *WideUse = 0;
Andrew Trick22104482011-07-20 04:39:24 +00001058 if (WideAddRec == WideIncExpr && HoistStep(WideInc, DU.NarrowUse, DT)) {
Andrew Trickf44aadf2011-05-20 18:25:42 +00001059 WideUse = WideInc;
1060 }
1061 else {
Andrew Trick22104482011-07-20 04:39:24 +00001062 WideUse = CloneIVUser(DU);
Andrew Trickf44aadf2011-05-20 18:25:42 +00001063 if (!WideUse)
1064 return 0;
1065 }
Andrew Trick6d123092011-07-02 02:34:25 +00001066 // Evaluation of WideAddRec ensured that the narrow expression could be
1067 // extended outside the loop without overflow. This suggests that the wide use
Andrew Trickf44aadf2011-05-20 18:25:42 +00001068 // evaluates to the same expression as the extended narrow use, but doesn't
1069 // absolutely guarantee it. Hence the following failsafe check. In rare cases
Andrew Trick69d44522011-06-21 03:22:38 +00001070 // where it fails, we simply throw away the newly created wide use.
Andrew Trickf44aadf2011-05-20 18:25:42 +00001071 if (WideAddRec != SE->getSCEV(WideUse)) {
1072 DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
1073 << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
1074 DeadInsts.push_back(WideUse);
1075 return 0;
1076 }
1077
1078 // Returning WideUse pushes it on the worklist.
1079 return WideUse;
1080}
1081
Andrew Trick6d123092011-07-02 02:34:25 +00001082/// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers.
1083///
1084void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1085 for (Value::use_iterator UI = NarrowDef->use_begin(),
1086 UE = NarrowDef->use_end(); UI != UE; ++UI) {
Andrew Trick22104482011-07-20 04:39:24 +00001087 Instruction *NarrowUse = cast<Instruction>(*UI);
Andrew Trick6d123092011-07-02 02:34:25 +00001088
1089 // Handle data flow merges and bizarre phi cycles.
Andrew Trick22104482011-07-20 04:39:24 +00001090 if (!Widened.insert(NarrowUse))
Andrew Trick6d123092011-07-02 02:34:25 +00001091 continue;
1092
Andrew Trick22104482011-07-20 04:39:24 +00001093 NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUse, WideDef));
Andrew Trick6d123092011-07-02 02:34:25 +00001094 }
1095}
1096
Andrew Trickf44aadf2011-05-20 18:25:42 +00001097/// CreateWideIV - Process a single induction variable. First use the
1098/// SCEVExpander to create a wide induction variable that evaluates to the same
1099/// recurrence as the original narrow IV. Then use a worklist to forward
Andrew Trick69d44522011-06-21 03:22:38 +00001100/// traverse the narrow IV's def-use chain. After WidenIVUse has processed all
Andrew Trickf44aadf2011-05-20 18:25:42 +00001101/// interesting IV users, the narrow IV will be isolated for removal by
1102/// DeleteDeadPHIs.
1103///
1104/// It would be simpler to delete uses as they are processed, but we must avoid
1105/// invalidating SCEV expressions.
1106///
Andrew Trick69d44522011-06-21 03:22:38 +00001107PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
Andrew Trickf44aadf2011-05-20 18:25:42 +00001108 // Is this phi an induction variable?
1109 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1110 if (!AddRec)
Andrew Trick69d44522011-06-21 03:22:38 +00001111 return NULL;
Andrew Trickf44aadf2011-05-20 18:25:42 +00001112
1113 // Widen the induction variable expression.
1114 const SCEV *WideIVExpr = IsSigned ?
1115 SE->getSignExtendExpr(AddRec, WideType) :
1116 SE->getZeroExtendExpr(AddRec, WideType);
1117
1118 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1119 "Expect the new IV expression to preserve its type");
1120
1121 // Can the IV be extended outside the loop without overflow?
1122 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1123 if (!AddRec || AddRec->getLoop() != L)
Andrew Trick69d44522011-06-21 03:22:38 +00001124 return NULL;
Andrew Trickf44aadf2011-05-20 18:25:42 +00001125
Andrew Trick69d44522011-06-21 03:22:38 +00001126 // An AddRec must have loop-invariant operands. Since this AddRec is
Andrew Trickf44aadf2011-05-20 18:25:42 +00001127 // materialized by a loop header phi, the expression cannot have any post-loop
1128 // operands, so they must dominate the loop header.
1129 assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1130 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
1131 && "Loop header phi recurrence inputs do not dominate the loop");
1132
1133 // The rewriter provides a value for the desired IV expression. This may
1134 // either find an existing phi or materialize a new one. Either way, we
1135 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1136 // of the phi-SCC dominates the loop entry.
1137 Instruction *InsertPt = L->getHeader()->begin();
1138 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1139
1140 // Remembering the WideIV increment generated by SCEVExpander allows
1141 // WidenIVUse to reuse it when widening the narrow IV's increment. We don't
1142 // employ a general reuse mechanism because the call above is the only call to
1143 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
Andrew Trick7fac79e2011-05-26 00:46:11 +00001144 if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1145 WideInc =
1146 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1147 WideIncExpr = SE->getSCEV(WideInc);
1148 }
Andrew Trickf44aadf2011-05-20 18:25:42 +00001149
1150 DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1151 ++NumWidened;
1152
1153 // Traverse the def-use chain using a worklist starting at the original IV.
Andrew Trick6d123092011-07-02 02:34:25 +00001154 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
Andrew Trickf44aadf2011-05-20 18:25:42 +00001155
Andrew Trick6d123092011-07-02 02:34:25 +00001156 Widened.insert(OrigPhi);
1157 pushNarrowIVUsers(OrigPhi, WidePhi);
1158
Andrew Trickf44aadf2011-05-20 18:25:42 +00001159 while (!NarrowIVUsers.empty()) {
Andrew Trick22104482011-07-20 04:39:24 +00001160 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
Andrew Trickf44aadf2011-05-20 18:25:42 +00001161
Andrew Trick7fac79e2011-05-26 00:46:11 +00001162 // Process a def-use edge. This may replace the use, so don't hold a
1163 // use_iterator across it.
Andrew Trick22104482011-07-20 04:39:24 +00001164 Instruction *WideUse = WidenIVUse(DU);
Andrew Trickf44aadf2011-05-20 18:25:42 +00001165
Andrew Trick7fac79e2011-05-26 00:46:11 +00001166 // Follow all def-use edges from the previous narrow use.
Andrew Trick6d123092011-07-02 02:34:25 +00001167 if (WideUse)
Andrew Trick22104482011-07-20 04:39:24 +00001168 pushNarrowIVUsers(DU.NarrowUse, WideUse);
Andrew Trick6d123092011-07-02 02:34:25 +00001169
Andrew Trick7fac79e2011-05-26 00:46:11 +00001170 // WidenIVUse may have removed the def-use edge.
Andrew Trick22104482011-07-20 04:39:24 +00001171 if (DU.NarrowDef->use_empty())
1172 DeadInsts.push_back(DU.NarrowDef);
Andrew Trickf44aadf2011-05-20 18:25:42 +00001173 }
Andrew Trick69d44522011-06-21 03:22:38 +00001174 return WidePhi;
Andrew Trickf44aadf2011-05-20 18:25:42 +00001175}
1176
Andrew Trickcdc22972011-07-12 00:08:50 +00001177//===----------------------------------------------------------------------===//
1178// Simplification of IV users based on SCEV evaluation.
1179//===----------------------------------------------------------------------===//
1180
Andrew Trick81683ed2011-05-12 00:04:28 +00001181void IndVarSimplify::EliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) {
1182 unsigned IVOperIdx = 0;
1183 ICmpInst::Predicate Pred = ICmp->getPredicate();
1184 if (IVOperand != ICmp->getOperand(0)) {
1185 // Swapped
1186 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
1187 IVOperIdx = 1;
1188 Pred = ICmpInst::getSwappedPredicate(Pred);
Dan Gohman5867a562010-04-13 01:46:36 +00001189 }
Andrew Trick81683ed2011-05-12 00:04:28 +00001190
1191 // Get the SCEVs for the ICmp operands.
1192 const SCEV *S = SE->getSCEV(ICmp->getOperand(IVOperIdx));
1193 const SCEV *X = SE->getSCEV(ICmp->getOperand(1 - IVOperIdx));
1194
1195 // Simplify unnecessary loops away.
1196 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
1197 S = SE->getSCEVAtScope(S, ICmpLoop);
1198 X = SE->getSCEVAtScope(X, ICmpLoop);
1199
1200 // If the condition is always true or always false, replace it with
1201 // a constant value.
1202 if (SE->isKnownPredicate(Pred, S, X))
1203 ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext()));
1204 else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X))
1205 ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext()));
1206 else
1207 return;
1208
1209 DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
Andrew Trickeb3c36e2011-05-25 04:42:22 +00001210 ++NumElimCmp;
Andrew Trickb75279c2011-05-20 03:37:48 +00001211 Changed = true;
Andrew Trick81683ed2011-05-12 00:04:28 +00001212 DeadInsts.push_back(ICmp);
1213}
1214
1215void IndVarSimplify::EliminateIVRemainder(BinaryOperator *Rem,
1216 Value *IVOperand,
Andrew Trickfc4ccb22011-06-21 15:43:52 +00001217 bool IsSigned) {
Andrew Trick81683ed2011-05-12 00:04:28 +00001218 // We're only interested in the case where we know something about
1219 // the numerator.
1220 if (IVOperand != Rem->getOperand(0))
1221 return;
1222
1223 // Get the SCEVs for the ICmp operands.
1224 const SCEV *S = SE->getSCEV(Rem->getOperand(0));
1225 const SCEV *X = SE->getSCEV(Rem->getOperand(1));
1226
1227 // Simplify unnecessary loops away.
1228 const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
1229 S = SE->getSCEVAtScope(S, ICmpLoop);
1230 X = SE->getSCEVAtScope(X, ICmpLoop);
1231
1232 // i % n --> i if i is in [0,n).
Andrew Trickb75279c2011-05-20 03:37:48 +00001233 if ((!IsSigned || SE->isKnownNonNegative(S)) &&
1234 SE->isKnownPredicate(IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
Andrew Trick81683ed2011-05-12 00:04:28 +00001235 S, X))
1236 Rem->replaceAllUsesWith(Rem->getOperand(0));
1237 else {
1238 // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n).
1239 const SCEV *LessOne =
1240 SE->getMinusSCEV(S, SE->getConstant(S->getType(), 1));
Andrew Trickb75279c2011-05-20 03:37:48 +00001241 if (IsSigned && !SE->isKnownNonNegative(LessOne))
Andrew Trick81683ed2011-05-12 00:04:28 +00001242 return;
1243
Andrew Trickb75279c2011-05-20 03:37:48 +00001244 if (!SE->isKnownPredicate(IsSigned ?
Andrew Trick81683ed2011-05-12 00:04:28 +00001245 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
1246 LessOne, X))
1247 return;
1248
1249 ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ,
1250 Rem->getOperand(0), Rem->getOperand(1),
1251 "tmp");
1252 SelectInst *Sel =
1253 SelectInst::Create(ICmp,
1254 ConstantInt::get(Rem->getType(), 0),
1255 Rem->getOperand(0), "tmp", Rem);
1256 Rem->replaceAllUsesWith(Sel);
1257 }
1258
1259 // Inform IVUsers about the new users.
Andrew Trick69d44522011-06-21 03:22:38 +00001260 if (IU) {
1261 if (Instruction *I = dyn_cast<Instruction>(Rem->getOperand(0)))
Andrew Trickfc4ccb22011-06-21 15:43:52 +00001262 IU->AddUsersIfInteresting(I);
Andrew Trick69d44522011-06-21 03:22:38 +00001263 }
Andrew Trick81683ed2011-05-12 00:04:28 +00001264 DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
Andrew Trickeb3c36e2011-05-25 04:42:22 +00001265 ++NumElimRem;
Andrew Trickb75279c2011-05-20 03:37:48 +00001266 Changed = true;
Andrew Trick81683ed2011-05-12 00:04:28 +00001267 DeadInsts.push_back(Rem);
Dan Gohman5867a562010-04-13 01:46:36 +00001268}
1269
Andrew Trick69d44522011-06-21 03:22:38 +00001270/// EliminateIVUser - Eliminate an operation that consumes a simple IV and has
1271/// no observable side-effect given the range of IV values.
1272bool IndVarSimplify::EliminateIVUser(Instruction *UseInst,
1273 Instruction *IVOperand) {
1274 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
1275 EliminateIVComparison(ICmp, IVOperand);
1276 return true;
1277 }
1278 if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) {
1279 bool IsSigned = Rem->getOpcode() == Instruction::SRem;
1280 if (IsSigned || Rem->getOpcode() == Instruction::URem) {
Andrew Trickfc4ccb22011-06-21 15:43:52 +00001281 EliminateIVRemainder(Rem, IVOperand, IsSigned);
Andrew Trick69d44522011-06-21 03:22:38 +00001282 return true;
1283 }
1284 }
1285
1286 // Eliminate any operation that SCEV can prove is an identity function.
1287 if (!SE->isSCEVable(UseInst->getType()) ||
Andrew Trickefe2b192011-06-29 03:13:40 +00001288 (UseInst->getType() != IVOperand->getType()) ||
Andrew Trick69d44522011-06-21 03:22:38 +00001289 (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
1290 return false;
1291
Andrew Trick69d44522011-06-21 03:22:38 +00001292 DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');
Andrew Trickcc686052011-06-30 01:27:23 +00001293
1294 UseInst->replaceAllUsesWith(IVOperand);
Andrew Trick69d44522011-06-21 03:22:38 +00001295 ++NumElimIdentity;
1296 Changed = true;
1297 DeadInsts.push_back(UseInst);
1298 return true;
1299}
1300
1301/// pushIVUsers - Add all uses of Def to the current IV's worklist.
1302///
Andrew Trick8a3c39c2011-06-28 02:49:20 +00001303static void pushIVUsers(
1304 Instruction *Def,
1305 SmallPtrSet<Instruction*,16> &Simplified,
1306 SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {
Andrew Trick69d44522011-06-21 03:22:38 +00001307
1308 for (Value::use_iterator UI = Def->use_begin(), E = Def->use_end();
1309 UI != E; ++UI) {
1310 Instruction *User = cast<Instruction>(*UI);
1311
1312 // Avoid infinite or exponential worklist processing.
1313 // Also ensure unique worklist users.
Andrew Trickcc686052011-06-30 01:27:23 +00001314 // If Def is a LoopPhi, it may not be in the Simplified set, so check for
1315 // self edges first.
1316 if (User != Def && Simplified.insert(User))
Andrew Trick69d44522011-06-21 03:22:38 +00001317 SimpleIVUsers.push_back(std::make_pair(User, Def));
1318 }
1319}
1320
1321/// isSimpleIVUser - Return true if this instruction generates a simple SCEV
1322/// expression in terms of that IV.
1323///
1324/// This is similar to IVUsers' isInsteresting() but processes each instruction
1325/// non-recursively when the operand is already known to be a simpleIVUser.
1326///
Andrew Trickcdc22972011-07-12 00:08:50 +00001327static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) {
Andrew Trick69d44522011-06-21 03:22:38 +00001328 if (!SE->isSCEVable(I->getType()))
1329 return false;
1330
1331 // Get the symbolic expression for this instruction.
1332 const SCEV *S = SE->getSCEV(I);
1333
1334 // Only consider affine recurrences.
1335 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
1336 if (AR && AR->getLoop() == L)
1337 return true;
1338
1339 return false;
1340}
1341
1342/// SimplifyIVUsersNoRewrite - Iteratively perform simplification on a worklist
1343/// of IV users. Each successive simplification may push more users which may
1344/// themselves be candidates for simplification.
1345///
1346/// The "NoRewrite" algorithm does not require IVUsers analysis. Instead, it
1347/// simplifies instructions in-place during analysis. Rather than rewriting
1348/// induction variables bottom-up from their users, it transforms a chain of
1349/// IVUsers top-down, updating the IR only when it encouters a clear
1350/// optimization opportunitiy. A SCEVExpander "Rewriter" instance is still
1351/// needed, but only used to generate a new IV (phi) of wider type for sign/zero
1352/// extend elimination.
1353///
1354/// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
1355///
1356void IndVarSimplify::SimplifyIVUsersNoRewrite(Loop *L, SCEVExpander &Rewriter) {
Andrew Trick8a3c39c2011-06-28 02:49:20 +00001357 std::map<PHINode *, WideIVInfo> WideIVMap;
1358
Andrew Trick69d44522011-06-21 03:22:38 +00001359 SmallVector<PHINode*, 8> LoopPhis;
1360 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1361 LoopPhis.push_back(cast<PHINode>(I));
1362 }
Andrew Trick8a3c39c2011-06-28 02:49:20 +00001363 // Each round of simplification iterates through the SimplifyIVUsers worklist
1364 // for all current phis, then determines whether any IVs can be
1365 // widened. Widening adds new phis to LoopPhis, inducing another round of
1366 // simplification on the wide IVs.
Andrew Trick69d44522011-06-21 03:22:38 +00001367 while (!LoopPhis.empty()) {
Andrew Trick8a3c39c2011-06-28 02:49:20 +00001368 // Evaluate as many IV expressions as possible before widening any IVs. This
Andrew Trick4426f5b2011-06-28 16:45:04 +00001369 // forces SCEV to set no-wrap flags before evaluating sign/zero
Andrew Trick8a3c39c2011-06-28 02:49:20 +00001370 // extension. The first time SCEV attempts to normalize sign/zero extension,
1371 // the result becomes final. So for the most predictable results, we delay
1372 // evaluation of sign/zero extend evaluation until needed, and avoid running
1373 // other SCEV based analysis prior to SimplifyIVUsersNoRewrite.
1374 do {
1375 PHINode *CurrIV = LoopPhis.pop_back_val();
Andrew Trick69d44522011-06-21 03:22:38 +00001376
Andrew Trick8a3c39c2011-06-28 02:49:20 +00001377 // Information about sign/zero extensions of CurrIV.
1378 WideIVInfo WI;
Andrew Trick69d44522011-06-21 03:22:38 +00001379
Andrew Trick8a3c39c2011-06-28 02:49:20 +00001380 // Instructions processed by SimplifyIVUsers for CurrIV.
1381 SmallPtrSet<Instruction*,16> Simplified;
Andrew Trick69d44522011-06-21 03:22:38 +00001382
Andrew Trick32390552011-07-06 20:50:43 +00001383 // Use-def pairs if IV users waiting to be processed for CurrIV.
Andrew Trick8a3c39c2011-06-28 02:49:20 +00001384 SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
Andrew Trick69d44522011-06-21 03:22:38 +00001385
Andrew Trickcc686052011-06-30 01:27:23 +00001386 // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
1387 // called multiple times for the same LoopPhi. This is the proper thing to
1388 // do for loop header phis that use each other.
Andrew Trick8a3c39c2011-06-28 02:49:20 +00001389 pushIVUsers(CurrIV, Simplified, SimpleIVUsers);
1390
1391 while (!SimpleIVUsers.empty()) {
Andrew Trickcd3e8cb2011-07-21 17:37:39 +00001392 std::pair<Instruction*, Instruction*> UseOper =
1393 SimpleIVUsers.pop_back_val();
Andrew Trickefe89ad2011-06-30 19:02:17 +00001394 // Bypass back edges to avoid extra work.
Andrew Trickcd3e8cb2011-07-21 17:37:39 +00001395 if (UseOper.first == CurrIV) continue;
Andrew Trick8a3c39c2011-06-28 02:49:20 +00001396
Andrew Trickcd3e8cb2011-07-21 17:37:39 +00001397 if (EliminateIVUser(UseOper.first, UseOper.second)) {
1398 pushIVUsers(UseOper.second, Simplified, SimpleIVUsers);
Andrew Trick8a3c39c2011-06-28 02:49:20 +00001399 continue;
Andrew Trick69d44522011-06-21 03:22:38 +00001400 }
Andrew Trickcd3e8cb2011-07-21 17:37:39 +00001401 if (CastInst *Cast = dyn_cast<CastInst>(UseOper.first)) {
Andrew Trick8a3c39c2011-06-28 02:49:20 +00001402 bool IsSigned = Cast->getOpcode() == Instruction::SExt;
1403 if (IsSigned || Cast->getOpcode() == Instruction::ZExt) {
1404 CollectExtend(Cast, IsSigned, WI, SE, TD);
1405 }
1406 continue;
1407 }
Andrew Trickcd3e8cb2011-07-21 17:37:39 +00001408 if (isSimpleIVUser(UseOper.first, L, SE)) {
1409 pushIVUsers(UseOper.first, Simplified, SimpleIVUsers);
Andrew Trick8a3c39c2011-06-28 02:49:20 +00001410 }
Andrew Trick69d44522011-06-21 03:22:38 +00001411 }
Andrew Trick8a3c39c2011-06-28 02:49:20 +00001412 if (WI.WidestNativeType) {
1413 WideIVMap[CurrIV] = WI;
Andrew Trick69d44522011-06-21 03:22:38 +00001414 }
Andrew Trick8a3c39c2011-06-28 02:49:20 +00001415 } while(!LoopPhis.empty());
1416
1417 for (std::map<PHINode *, WideIVInfo>::const_iterator I = WideIVMap.begin(),
1418 E = WideIVMap.end(); I != E; ++I) {
1419 WidenIV Widener(I->first, I->second, LI, SE, DT, DeadInsts);
Andrew Trick69d44522011-06-21 03:22:38 +00001420 if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) {
1421 Changed = true;
1422 LoopPhis.push_back(WidePhi);
1423 }
1424 }
Andrew Trick8a3c39c2011-06-28 02:49:20 +00001425 WideIVMap.clear();
Andrew Trick69d44522011-06-21 03:22:38 +00001426 }
1427}
1428
Andrew Trick32390552011-07-06 20:50:43 +00001429/// SimplifyCongruentIVs - Check for congruent phis in this loop header and
1430/// populate ExprToIVMap for use later.
1431///
1432void IndVarSimplify::SimplifyCongruentIVs(Loop *L) {
Andrew Trick9ea55dc2011-07-16 01:06:48 +00001433 DenseMap<const SCEV *, PHINode *> ExprToIVMap;
Andrew Trick32390552011-07-06 20:50:43 +00001434 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1435 PHINode *Phi = cast<PHINode>(I);
Andrew Trickcdc22972011-07-12 00:08:50 +00001436 if (!SE->isSCEVable(Phi->getType()))
1437 continue;
1438
Andrew Trick32390552011-07-06 20:50:43 +00001439 const SCEV *S = SE->getSCEV(Phi);
Chris Lattner5cf753c2011-07-21 06:21:31 +00001440 std::pair<DenseMap<const SCEV *, PHINode *>::const_iterator, bool> Tmp =
1441 ExprToIVMap.insert(std::make_pair(S, Phi));
1442 if (Tmp.second)
Andrew Trick32390552011-07-06 20:50:43 +00001443 continue;
Chris Lattner5cf753c2011-07-21 06:21:31 +00001444 PHINode *OrigPhi = Tmp.first->second;
Andrew Trickc5dd3e92011-07-20 02:08:58 +00001445
1446 // If one phi derives from the other via GEPs, types may differ.
1447 if (OrigPhi->getType() != Phi->getType())
1448 continue;
1449
Andrew Trick32390552011-07-06 20:50:43 +00001450 // Replacing the congruent phi is sufficient because acyclic redundancy
1451 // elimination, CSE/GVN, should handle the rest. However, once SCEV proves
1452 // that a phi is congruent, it's almost certain to be the head of an IV
1453 // user cycle that is isomorphic with the original phi. So it's worth
1454 // eagerly cleaning up the common case of a single IV increment.
1455 if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1456 Instruction *OrigInc =
1457 cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
1458 Instruction *IsomorphicInc =
1459 cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
1460 if (OrigInc != IsomorphicInc &&
Andrew Trickc5dd3e92011-07-20 02:08:58 +00001461 OrigInc->getType() == IsomorphicInc->getType() &&
Andrew Trick32390552011-07-06 20:50:43 +00001462 SE->getSCEV(OrigInc) == SE->getSCEV(IsomorphicInc) &&
1463 HoistStep(OrigInc, IsomorphicInc, DT)) {
1464 DEBUG(dbgs() << "INDVARS: Eliminated congruent iv.inc: "
1465 << *IsomorphicInc << '\n');
1466 IsomorphicInc->replaceAllUsesWith(OrigInc);
1467 DeadInsts.push_back(IsomorphicInc);
1468 }
1469 }
1470 DEBUG(dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi << '\n');
1471 ++NumElimIV;
1472 Phi->replaceAllUsesWith(OrigPhi);
1473 DeadInsts.push_back(Phi);
1474 }
1475}
1476
Andrew Trickcdc22972011-07-12 00:08:50 +00001477//===----------------------------------------------------------------------===//
1478// LinearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1479//===----------------------------------------------------------------------===//
1480
Andrew Tricka27d8b12011-07-18 18:21:35 +00001481// Check for expressions that ScalarEvolution generates to compute
1482// BackedgeTakenInfo. If these expressions have not been reduced, then expanding
1483// them may incur additional cost (albeit in the loop preheader).
1484static bool isHighCostExpansion(const SCEV *S, BranchInst *BI,
1485 ScalarEvolution *SE) {
1486 // If the backedge-taken count is a UDiv, it's very likely a UDiv that
1487 // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a
1488 // precise expression, rather than a UDiv from the user's code. If we can't
1489 // find a UDiv in the code with some simple searching, assume the former and
1490 // forego rewriting the loop.
1491 if (isa<SCEVUDivExpr>(S)) {
1492 ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition());
1493 if (!OrigCond) return true;
1494 const SCEV *R = SE->getSCEV(OrigCond->getOperand(1));
1495 R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1));
1496 if (R != S) {
1497 const SCEV *L = SE->getSCEV(OrigCond->getOperand(0));
1498 L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1));
1499 if (L != S)
1500 return true;
1501 }
1502 }
1503
Andrew Trick7da24172011-07-18 20:32:31 +00001504 if (!DisableIVRewrite || ForceLFTR)
Andrew Tricka27d8b12011-07-18 18:21:35 +00001505 return false;
1506
1507 // Recurse past add expressions, which commonly occur in the
1508 // BackedgeTakenCount. They may already exist in program code, and if not,
1509 // they are not too expensive rematerialize.
1510 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
1511 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1512 I != E; ++I) {
1513 if (isHighCostExpansion(*I, BI, SE))
1514 return true;
1515 }
1516 return false;
1517 }
1518
1519 // HowManyLessThans uses a Max expression whenever the loop is not guarded by
1520 // the exit condition.
1521 if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S))
1522 return true;
1523
1524 // If we haven't recognized an expensive SCEV patter, assume its an expression
1525 // produced by program code.
1526 return false;
1527}
1528
Andrew Trickcdc22972011-07-12 00:08:50 +00001529/// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
1530/// count expression can be safely and cheaply expanded into an instruction
1531/// sequence that can be used by LinearFunctionTestReplace.
1532static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) {
1533 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1534 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
1535 BackedgeTakenCount->isZero())
1536 return false;
1537
1538 if (!L->getExitingBlock())
1539 return false;
1540
1541 // Can't rewrite non-branch yet.
1542 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1543 if (!BI)
1544 return false;
1545
Andrew Tricka27d8b12011-07-18 18:21:35 +00001546 if (isHighCostExpansion(BackedgeTakenCount, BI, SE))
1547 return false;
1548
Andrew Trickcdc22972011-07-12 00:08:50 +00001549 return true;
1550}
1551
1552/// getBackedgeIVType - Get the widest type used by the loop test after peeking
1553/// through Truncs.
1554///
Andrew Trick7da24172011-07-18 20:32:31 +00001555/// TODO: Unnecessary when ForceLFTR is removed.
Chris Lattner229907c2011-07-18 04:54:35 +00001556static Type *getBackedgeIVType(Loop *L) {
Andrew Trickcdc22972011-07-12 00:08:50 +00001557 if (!L->getExitingBlock())
1558 return 0;
1559
1560 // Can't rewrite non-branch yet.
1561 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1562 if (!BI)
1563 return 0;
1564
1565 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1566 if (!Cond)
1567 return 0;
1568
Chris Lattner229907c2011-07-18 04:54:35 +00001569 Type *Ty = 0;
Andrew Trickcdc22972011-07-12 00:08:50 +00001570 for(User::op_iterator OI = Cond->op_begin(), OE = Cond->op_end();
1571 OI != OE; ++OI) {
1572 assert((!Ty || Ty == (*OI)->getType()) && "bad icmp operand types");
1573 TruncInst *Trunc = dyn_cast<TruncInst>(*OI);
1574 if (!Trunc)
1575 continue;
1576
1577 return Trunc->getSrcTy();
1578 }
1579 return Ty;
1580}
1581
Andrew Trick7da24172011-07-18 20:32:31 +00001582/// isLoopInvariant - Perform a quick domtree based check for loop invariance
1583/// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems
1584/// gratuitous for this purpose.
1585static bool isLoopInvariant(Value *V, Loop *L, DominatorTree *DT) {
1586 Instruction *Inst = dyn_cast<Instruction>(V);
1587 if (!Inst)
1588 return true;
1589
1590 return DT->properlyDominates(Inst->getParent(), L->getHeader());
1591}
1592
1593/// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop
1594/// invariant value to the phi.
1595static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
1596 Instruction *IncI = dyn_cast<Instruction>(IncV);
1597 if (!IncI)
1598 return 0;
1599
1600 switch (IncI->getOpcode()) {
1601 case Instruction::Add:
1602 case Instruction::Sub:
1603 break;
1604 case Instruction::GetElementPtr:
1605 // An IV counter must preserve its type.
1606 if (IncI->getNumOperands() == 2)
1607 break;
1608 default:
1609 return 0;
1610 }
1611
1612 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
1613 if (Phi && Phi->getParent() == L->getHeader()) {
1614 if (isLoopInvariant(IncI->getOperand(1), L, DT))
1615 return Phi;
1616 return 0;
1617 }
1618 if (IncI->getOpcode() == Instruction::GetElementPtr)
1619 return 0;
1620
1621 // Allow add/sub to be commuted.
1622 Phi = dyn_cast<PHINode>(IncI->getOperand(1));
1623 if (Phi && Phi->getParent() == L->getHeader()) {
1624 if (isLoopInvariant(IncI->getOperand(0), L, DT))
1625 return Phi;
1626 }
1627 return 0;
1628}
1629
1630/// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show
1631/// that the current exit test is already sufficiently canonical.
1632static bool needsLFTR(Loop *L, DominatorTree *DT) {
1633 assert(L->getExitingBlock() && "expected loop exit");
1634
1635 BasicBlock *LatchBlock = L->getLoopLatch();
1636 // Don't bother with LFTR if the loop is not properly simplified.
1637 if (!LatchBlock)
1638 return false;
1639
1640 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1641 assert(BI && "expected exit branch");
1642
1643 // Do LFTR to simplify the exit condition to an ICMP.
1644 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1645 if (!Cond)
1646 return true;
1647
1648 // Do LFTR to simplify the exit ICMP to EQ/NE
1649 ICmpInst::Predicate Pred = Cond->getPredicate();
1650 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
1651 return true;
1652
1653 // Look for a loop invariant RHS
1654 Value *LHS = Cond->getOperand(0);
1655 Value *RHS = Cond->getOperand(1);
1656 if (!isLoopInvariant(RHS, L, DT)) {
1657 if (!isLoopInvariant(LHS, L, DT))
1658 return true;
1659 std::swap(LHS, RHS);
1660 }
1661 // Look for a simple IV counter LHS
1662 PHINode *Phi = dyn_cast<PHINode>(LHS);
1663 if (!Phi)
1664 Phi = getLoopPhiForCounter(LHS, L, DT);
1665
1666 if (!Phi)
1667 return true;
1668
1669 // Do LFTR if the exit condition's IV is *not* a simple counter.
1670 Value *IncV = Phi->getIncomingValueForBlock(L->getLoopLatch());
1671 return Phi != getLoopPhiForCounter(IncV, L, DT);
1672}
1673
1674/// AlmostDeadIV - Return true if this IV has any uses other than the (soon to
1675/// be rewritten) loop exit test.
1676static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
1677 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1678 Value *IncV = Phi->getIncomingValue(LatchIdx);
1679
1680 for (Value::use_iterator UI = Phi->use_begin(), UE = Phi->use_end();
1681 UI != UE; ++UI) {
1682 if (*UI != Cond && *UI != IncV) return false;
1683 }
1684
1685 for (Value::use_iterator UI = IncV->use_begin(), UE = IncV->use_end();
1686 UI != UE; ++UI) {
1687 if (*UI != Cond && *UI != Phi) return false;
1688 }
1689 return true;
1690}
1691
1692/// FindLoopCounter - Find an affine IV in canonical form.
1693///
1694/// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
1695///
1696/// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
1697/// This is difficult in general for SCEV because of potential overflow. But we
1698/// could at least handle constant BECounts.
1699static PHINode *
1700FindLoopCounter(Loop *L, const SCEV *BECount,
1701 ScalarEvolution *SE, DominatorTree *DT, const TargetData *TD) {
1702 // I'm not sure how BECount could be a pointer type, but we definitely don't
1703 // want to LFTR that.
1704 if (BECount->getType()->isPointerTy())
1705 return 0;
1706
1707 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
1708
1709 Value *Cond =
1710 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
1711
1712 // Loop over all of the PHI nodes, looking for a simple counter.
1713 PHINode *BestPhi = 0;
1714 const SCEV *BestInit = 0;
1715 BasicBlock *LatchBlock = L->getLoopLatch();
1716 assert(LatchBlock && "needsLFTR should guarantee a loop latch");
1717
1718 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1719 PHINode *Phi = cast<PHINode>(I);
1720 if (!SE->isSCEVable(Phi->getType()))
1721 continue;
1722
1723 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
1724 if (!AR || AR->getLoop() != L || !AR->isAffine())
1725 continue;
1726
1727 // AR may be a pointer type, while BECount is an integer type.
1728 // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
1729 // AR may not be a narrower type, or we may never exit.
1730 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
1731 if (PhiWidth < BCWidth || (TD && !TD->isLegalInteger(PhiWidth)))
1732 continue;
1733
1734 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
1735 if (!Step || !Step->isOne())
1736 continue;
1737
1738 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1739 Value *IncV = Phi->getIncomingValue(LatchIdx);
1740 if (getLoopPhiForCounter(IncV, L, DT) != Phi)
1741 continue;
1742
1743 const SCEV *Init = AR->getStart();
1744
1745 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
1746 // Don't force a live loop counter if another IV can be used.
1747 if (AlmostDeadIV(Phi, LatchBlock, Cond))
1748 continue;
1749
1750 // Prefer to count-from-zero. This is a more "canonical" counter form. It
1751 // also prefers integer to pointer IVs.
1752 if (BestInit->isZero() != Init->isZero()) {
1753 if (BestInit->isZero())
1754 continue;
1755 }
1756 // If two IVs both count from zero or both count from nonzero then the
1757 // narrower is likely a dead phi that has been widened. Use the wider phi
1758 // to allow the other to be eliminated.
1759 if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
1760 continue;
1761 }
1762 BestPhi = Phi;
1763 BestInit = Init;
1764 }
1765 return BestPhi;
1766}
1767
Andrew Trickcdc22972011-07-12 00:08:50 +00001768/// LinearFunctionTestReplace - This method rewrites the exit condition of the
1769/// loop to be a canonical != comparison against the incremented loop induction
1770/// variable. This pass is able to rewrite the exit tests of any loop where the
1771/// SCEV analysis can determine a loop-invariant trip count of the loop, which
1772/// is actually a much broader range than just linear tests.
Andrew Trick7da24172011-07-18 20:32:31 +00001773Value *IndVarSimplify::
Andrew Trickcdc22972011-07-12 00:08:50 +00001774LinearFunctionTestReplace(Loop *L,
1775 const SCEV *BackedgeTakenCount,
1776 PHINode *IndVar,
1777 SCEVExpander &Rewriter) {
1778 assert(canExpandBackedgeTakenCount(L, SE) && "precondition");
1779 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1780
Andrew Trick7da24172011-07-18 20:32:31 +00001781 // In DisableIVRewrite mode, IndVar is not necessarily a canonical IV. In this
1782 // mode, LFTR can ignore IV overflow and truncate to the width of
1783 // BECount. This avoids materializing the add(zext(add)) expression.
1784 Type *CntTy = DisableIVRewrite ?
1785 BackedgeTakenCount->getType() : IndVar->getType();
1786
1787 const SCEV *IVLimit = BackedgeTakenCount;
1788
Andrew Trickcdc22972011-07-12 00:08:50 +00001789 // If the exiting block is not the same as the backedge block, we must compare
1790 // against the preincremented value, otherwise we prefer to compare against
1791 // the post-incremented value.
1792 Value *CmpIndVar;
Andrew Trickcdc22972011-07-12 00:08:50 +00001793 if (L->getExitingBlock() == L->getLoopLatch()) {
1794 // Add one to the "backedge-taken" count to get the trip count.
1795 // If this addition may overflow, we have to be more pessimistic and
1796 // cast the induction variable before doing the add.
Andrew Trickcdc22972011-07-12 00:08:50 +00001797 const SCEV *N =
Andrew Trick7da24172011-07-18 20:32:31 +00001798 SE->getAddExpr(IVLimit, SE->getConstant(IVLimit->getType(), 1));
1799 if (CntTy == IVLimit->getType())
1800 IVLimit = N;
1801 else {
1802 const SCEV *Zero = SE->getConstant(IVLimit->getType(), 0);
1803 if ((isa<SCEVConstant>(N) && !N->isZero()) ||
1804 SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
1805 // No overflow. Cast the sum.
1806 IVLimit = SE->getTruncateOrZeroExtend(N, CntTy);
1807 } else {
1808 // Potential overflow. Cast before doing the add.
1809 IVLimit = SE->getTruncateOrZeroExtend(IVLimit, CntTy);
1810 IVLimit = SE->getAddExpr(IVLimit, SE->getConstant(CntTy, 1));
1811 }
Andrew Trickcdc22972011-07-12 00:08:50 +00001812 }
Andrew Trickcdc22972011-07-12 00:08:50 +00001813 // The BackedgeTaken expression contains the number of times that the
1814 // backedge branches to the loop header. This is one less than the
1815 // number of times the loop executes, so use the incremented indvar.
1816 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
1817 } else {
1818 // We have to use the preincremented value...
Andrew Trick7da24172011-07-18 20:32:31 +00001819 IVLimit = SE->getTruncateOrZeroExtend(IVLimit, CntTy);
Andrew Trickcdc22972011-07-12 00:08:50 +00001820 CmpIndVar = IndVar;
1821 }
1822
Andrew Trick7da24172011-07-18 20:32:31 +00001823 // For unit stride, IVLimit = Start + BECount with 2's complement overflow.
1824 // So for, non-zero start compute the IVLimit here.
1825 bool isPtrIV = false;
1826 Type *CmpTy = CntTy;
1827 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1828 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
1829 if (!AR->getStart()->isZero()) {
1830 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
1831 const SCEV *IVInit = AR->getStart();
1832
1833 // For pointer types, sign extend BECount in order to materialize a GEP.
1834 // Note that for DisableIVRewrite, we never run SCEVExpander on a
1835 // pointer type, because we must preserve the existing GEPs. Instead we
1836 // directly generate a GEP later.
1837 if (IVInit->getType()->isPointerTy()) {
1838 isPtrIV = true;
1839 CmpTy = SE->getEffectiveSCEVType(IVInit->getType());
1840 IVLimit = SE->getTruncateOrSignExtend(IVLimit, CmpTy);
1841 }
1842 // For integer types, truncate the IV before computing IVInit + BECount.
1843 else {
1844 if (SE->getTypeSizeInBits(IVInit->getType())
1845 > SE->getTypeSizeInBits(CmpTy))
1846 IVInit = SE->getTruncateExpr(IVInit, CmpTy);
1847
1848 IVLimit = SE->getAddExpr(IVInit, IVLimit);
1849 }
1850 }
Andrew Trickcdc22972011-07-12 00:08:50 +00001851 // Expand the code for the iteration count.
Andrew Trick7da24172011-07-18 20:32:31 +00001852 IRBuilder<> Builder(BI);
1853
1854 assert(SE->isLoopInvariant(IVLimit, L) &&
Andrew Trickcdc22972011-07-12 00:08:50 +00001855 "Computed iteration count is not loop invariant!");
Andrew Trick7da24172011-07-18 20:32:31 +00001856 Value *ExitCnt = Rewriter.expandCodeFor(IVLimit, CmpTy, BI);
1857
1858 // Create a gep for IVInit + IVLimit from on an existing pointer base.
1859 assert(isPtrIV == IndVar->getType()->isPointerTy() &&
1860 "IndVar type must match IVInit type");
1861 if (isPtrIV) {
1862 Value *IVStart = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
1863 assert(AR->getStart() == SE->getSCEV(IVStart) && "bad loop counter");
Andrew Trickc43b6762011-07-18 21:15:03 +00001864 assert(SE->getSizeOfExpr(
1865 cast<PointerType>(IVStart->getType())->getElementType())->isOne()
1866 && "unit stride pointer IV must be i8*");
Andrew Trick7da24172011-07-18 20:32:31 +00001867
1868 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
1869 ExitCnt = Builder.CreateGEP(IVStart, ExitCnt, "lftr.limit");
1870 Builder.SetInsertPoint(BI);
1871 }
Andrew Trickcdc22972011-07-12 00:08:50 +00001872
1873 // Insert a new icmp_ne or icmp_eq instruction before the branch.
Andrew Trick7da24172011-07-18 20:32:31 +00001874 ICmpInst::Predicate P;
Andrew Trickcdc22972011-07-12 00:08:50 +00001875 if (L->contains(BI->getSuccessor(0)))
Andrew Trick7da24172011-07-18 20:32:31 +00001876 P = ICmpInst::ICMP_NE;
Andrew Trickcdc22972011-07-12 00:08:50 +00001877 else
Andrew Trick7da24172011-07-18 20:32:31 +00001878 P = ICmpInst::ICMP_EQ;
Andrew Trickcdc22972011-07-12 00:08:50 +00001879
1880 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1881 << " LHS:" << *CmpIndVar << '\n'
1882 << " op:\t"
Andrew Trick7da24172011-07-18 20:32:31 +00001883 << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
1884 << " RHS:\t" << *ExitCnt << "\n"
1885 << " Expr:\t" << *IVLimit << "\n");
Andrew Trickcdc22972011-07-12 00:08:50 +00001886
Andrew Trick7da24172011-07-18 20:32:31 +00001887 if (SE->getTypeSizeInBits(CmpIndVar->getType())
1888 > SE->getTypeSizeInBits(CmpTy)) {
1889 CmpIndVar = Builder.CreateTrunc(CmpIndVar, CmpTy, "lftr.wideiv");
1890 }
1891
1892 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
Andrew Trickcdc22972011-07-12 00:08:50 +00001893 Value *OrigCond = BI->getCondition();
1894 // It's tempting to use replaceAllUsesWith here to fully replace the old
1895 // comparison, but that's not immediately safe, since users of the old
1896 // comparison may not be dominated by the new comparison. Instead, just
1897 // update the branch to use the new comparison; in the common case this
1898 // will make old comparison dead.
1899 BI->setCondition(Cond);
1900 DeadInsts.push_back(OrigCond);
1901
1902 ++NumLFTR;
1903 Changed = true;
1904 return Cond;
1905}
1906
1907//===----------------------------------------------------------------------===//
1908// SinkUnusedInvariants. A late subpass to cleanup loop preheaders.
1909//===----------------------------------------------------------------------===//
1910
1911/// If there's a single exit block, sink any loop-invariant values that
1912/// were defined in the preheader but not used inside the loop into the
1913/// exit block to reduce register pressure in the loop.
1914void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
1915 BasicBlock *ExitBlock = L->getExitBlock();
1916 if (!ExitBlock) return;
1917
1918 BasicBlock *Preheader = L->getLoopPreheader();
1919 if (!Preheader) return;
1920
1921 Instruction *InsertPt = ExitBlock->getFirstNonPHI();
1922 BasicBlock::iterator I = Preheader->getTerminator();
1923 while (I != Preheader->begin()) {
1924 --I;
1925 // New instructions were inserted at the end of the preheader.
1926 if (isa<PHINode>(I))
1927 break;
1928
1929 // Don't move instructions which might have side effects, since the side
1930 // effects need to complete before instructions inside the loop. Also don't
1931 // move instructions which might read memory, since the loop may modify
1932 // memory. Note that it's okay if the instruction might have undefined
1933 // behavior: LoopSimplify guarantees that the preheader dominates the exit
1934 // block.
1935 if (I->mayHaveSideEffects() || I->mayReadFromMemory())
1936 continue;
1937
1938 // Skip debug info intrinsics.
1939 if (isa<DbgInfoIntrinsic>(I))
1940 continue;
1941
1942 // Don't sink static AllocaInsts out of the entry block, which would
1943 // turn them into dynamic allocas!
1944 if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
1945 if (AI->isStaticAlloca())
1946 continue;
1947
1948 // Determine if there is a use in or before the loop (direct or
1949 // otherwise).
1950 bool UsedInLoop = false;
1951 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
1952 UI != UE; ++UI) {
1953 User *U = *UI;
1954 BasicBlock *UseBB = cast<Instruction>(U)->getParent();
1955 if (PHINode *P = dyn_cast<PHINode>(U)) {
1956 unsigned i =
1957 PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
1958 UseBB = P->getIncomingBlock(i);
1959 }
1960 if (UseBB == Preheader || L->contains(UseBB)) {
1961 UsedInLoop = true;
1962 break;
1963 }
1964 }
1965
1966 // If there is, the def must remain in the preheader.
1967 if (UsedInLoop)
1968 continue;
1969
1970 // Otherwise, sink it to the exit block.
1971 Instruction *ToMove = I;
1972 bool Done = false;
1973
1974 if (I != Preheader->begin()) {
1975 // Skip debug info intrinsics.
1976 do {
1977 --I;
1978 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
1979
1980 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
1981 Done = true;
1982 } else {
1983 Done = true;
1984 }
1985
1986 ToMove->moveBefore(InsertPt);
1987 if (Done) break;
1988 InsertPt = ToMove;
1989 }
1990}
1991
1992//===----------------------------------------------------------------------===//
1993// IndVarSimplify driver. Manage several subpasses of IV simplification.
1994//===----------------------------------------------------------------------===//
1995
Dan Gohmaneb6be652009-02-12 22:19:27 +00001996bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
Dan Gohmanf3aea7a2010-06-18 01:35:11 +00001997 // If LoopSimplify form is not available, stay out of trouble. Some notes:
1998 // - LSR currently only supports LoopSimplify-form loops. Indvars'
1999 // canonicalization can be a pessimization without LSR to "clean up"
2000 // afterwards.
2001 // - We depend on having a preheader; in particular,
2002 // Loop::getCanonicalInductionVariable only supports loops with preheaders,
2003 // and we're in trouble if we can't find the induction variable even when
2004 // we've manually inserted one.
2005 if (!L->isLoopSimplifyForm())
2006 return false;
2007
Andrew Trick69d44522011-06-21 03:22:38 +00002008 if (!DisableIVRewrite)
2009 IU = &getAnalysis<IVUsers>();
Devang Patel2ac57e12007-03-07 06:39:01 +00002010 LI = &getAnalysis<LoopInfo>();
2011 SE = &getAnalysis<ScalarEvolution>();
Dan Gohmanfe174b62009-06-27 05:16:57 +00002012 DT = &getAnalysis<DominatorTree>();
Andrew Trick1abe2962011-05-04 02:10:13 +00002013 TD = getAnalysisIfAvailable<TargetData>();
2014
Andrew Trick87716c92011-03-17 23:51:11 +00002015 DeadInsts.clear();
Devang Patel2ac57e12007-03-07 06:39:01 +00002016 Changed = false;
Dan Gohman43300342009-02-17 20:49:49 +00002017
Dan Gohman0a40ad92009-04-16 03:18:22 +00002018 // If there are any floating-point recurrences, attempt to
Dan Gohman43300342009-02-17 20:49:49 +00002019 // transform them to use integer recurrences.
2020 RewriteNonIntegerIVs(L);
2021
Dan Gohmanaf752342009-07-07 17:06:11 +00002022 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
Chris Lattner1f7648e2007-03-04 01:00:28 +00002023
Dan Gohmandaafbe62009-06-26 22:53:46 +00002024 // Create a rewriter object which we'll use to transform the code with.
Andrew Trick411daa52011-06-28 05:07:32 +00002025 SCEVExpander Rewriter(*SE, "indvars");
Andrew Trick163b4a72011-06-27 23:17:44 +00002026
2027 // Eliminate redundant IV users.
Andrew Trick8a3c39c2011-06-28 02:49:20 +00002028 //
2029 // Simplification works best when run before other consumers of SCEV. We
2030 // attempt to avoid evaluating SCEVs for sign/zero extend operations until
2031 // other expressions involving loop IVs have been evaluated. This helps SCEV
Andrew Trick4426f5b2011-06-28 16:45:04 +00002032 // set no-wrap flags before normalizing sign/zero extension.
Andrew Trick163b4a72011-06-27 23:17:44 +00002033 if (DisableIVRewrite) {
Andrew Trick1abe2962011-05-04 02:10:13 +00002034 Rewriter.disableCanonicalMode();
Andrew Trick163b4a72011-06-27 23:17:44 +00002035 SimplifyIVUsersNoRewrite(L, Rewriter);
2036 }
Andrew Trick1abe2962011-05-04 02:10:13 +00002037
Chris Lattnere61b67d2004-04-02 20:24:31 +00002038 // Check to see if this loop has a computable loop-invariant execution count.
2039 // If so, this means that we can compute the final value of any expressions
2040 // that are recurrent in the loop, and substitute the exit values from the
2041 // loop into any instructions outside of the loop that use the final values of
2042 // the current expressions.
Chris Lattner0b18c1d2002-05-10 15:38:35 +00002043 //
Dan Gohman0bddac12009-02-24 18:55:53 +00002044 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
Dan Gohman8c16b382010-02-22 04:11:59 +00002045 RewriteLoopExitValues(L, Rewriter);
Chris Lattner476e6df2001-12-03 17:28:42 +00002046
Andrew Trickf44aadf2011-05-20 18:25:42 +00002047 // Eliminate redundant IV users.
Andrew Trick163b4a72011-06-27 23:17:44 +00002048 if (!DisableIVRewrite)
Andrew Trick69d44522011-06-21 03:22:38 +00002049 SimplifyIVUsers(Rewriter);
Dan Gohman5867a562010-04-13 01:46:36 +00002050
Andrew Trick9ea55dc2011-07-16 01:06:48 +00002051 // Eliminate redundant IV cycles.
Andrew Trick32390552011-07-06 20:50:43 +00002052 if (DisableIVRewrite)
2053 SimplifyCongruentIVs(L);
2054
Dan Gohmand76d71a2009-05-12 02:17:14 +00002055 // Compute the type of the largest recurrence expression, and decide whether
2056 // a canonical induction variable should be inserted.
Chris Lattner229907c2011-07-18 04:54:35 +00002057 Type *LargestType = 0;
Dan Gohmand76d71a2009-05-12 02:17:14 +00002058 bool NeedCannIV = false;
Andrew Trick7da24172011-07-18 20:32:31 +00002059 bool ReuseIVForExit = DisableIVRewrite && !ForceLFTR;
Andrew Trickeb3c36e2011-05-25 04:42:22 +00002060 bool ExpandBECount = canExpandBackedgeTakenCount(L, SE);
Andrew Trick7da24172011-07-18 20:32:31 +00002061 if (ExpandBECount && !ReuseIVForExit) {
Dan Gohmand76d71a2009-05-12 02:17:14 +00002062 // If we have a known trip count and a single exit block, we'll be
2063 // rewriting the loop exit test condition below, which requires a
2064 // canonical induction variable.
Andrew Trick38c4e342011-05-03 22:24:10 +00002065 NeedCannIV = true;
Chris Lattner229907c2011-07-18 04:54:35 +00002066 Type *Ty = BackedgeTakenCount->getType();
Andrew Trickeb3c36e2011-05-25 04:42:22 +00002067 if (DisableIVRewrite) {
2068 // In this mode, SimplifyIVUsers may have already widened the IV used by
2069 // the backedge test and inserted a Trunc on the compare's operand. Get
2070 // the wider type to avoid creating a redundant narrow IV only used by the
2071 // loop test.
2072 LargestType = getBackedgeIVType(L);
2073 }
Andrew Trick38c4e342011-05-03 22:24:10 +00002074 if (!LargestType ||
2075 SE->getTypeSizeInBits(Ty) >
2076 SE->getTypeSizeInBits(LargestType))
2077 LargestType = SE->getEffectiveSCEVType(Ty);
Chris Lattner885a6eb2004-04-17 18:08:33 +00002078 }
Andrew Trick1abe2962011-05-04 02:10:13 +00002079 if (!DisableIVRewrite) {
2080 for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) {
2081 NeedCannIV = true;
Chris Lattner229907c2011-07-18 04:54:35 +00002082 Type *Ty =
Andrew Trick1abe2962011-05-04 02:10:13 +00002083 SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType());
2084 if (!LargestType ||
2085 SE->getTypeSizeInBits(Ty) >
Dan Gohmanb397e1a2009-04-21 01:07:12 +00002086 SE->getTypeSizeInBits(LargestType))
Andrew Trick1abe2962011-05-04 02:10:13 +00002087 LargestType = Ty;
2088 }
Chris Lattner476e6df2001-12-03 17:28:42 +00002089 }
2090
Dan Gohman4a618822010-02-10 16:03:48 +00002091 // Now that we know the largest of the induction variable expressions
Dan Gohmand76d71a2009-05-12 02:17:14 +00002092 // in this loop, insert a canonical induction variable of the largest size.
Dan Gohman12725c72010-07-20 17:18:52 +00002093 PHINode *IndVar = 0;
Dan Gohmand76d71a2009-05-12 02:17:14 +00002094 if (NeedCannIV) {
Dan Gohmana9c205c2010-02-25 06:57:05 +00002095 // Check to see if the loop already has any canonical-looking induction
2096 // variables. If any are present and wider than the planned canonical
2097 // induction variable, temporarily remove them, so that the Rewriter
2098 // doesn't attempt to reuse them.
2099 SmallVector<PHINode *, 2> OldCannIVs;
2100 while (PHINode *OldCannIV = L->getCanonicalInductionVariable()) {
Dan Gohman426901a2009-06-13 16:25:49 +00002101 if (SE->getTypeSizeInBits(OldCannIV->getType()) >
2102 SE->getTypeSizeInBits(LargestType))
2103 OldCannIV->removeFromParent();
2104 else
Dan Gohmana9c205c2010-02-25 06:57:05 +00002105 break;
2106 OldCannIVs.push_back(OldCannIV);
Dan Gohman426901a2009-06-13 16:25:49 +00002107 }
2108
Dan Gohmandaafbe62009-06-26 22:53:46 +00002109 IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType);
Dan Gohman426901a2009-06-13 16:25:49 +00002110
Dan Gohmaneb6be652009-02-12 22:19:27 +00002111 ++NumInserted;
2112 Changed = true;
David Greene0dd384c2010-01-05 01:27:06 +00002113 DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar << '\n');
Dan Gohman426901a2009-06-13 16:25:49 +00002114
2115 // Now that the official induction variable is established, reinsert
Dan Gohmana9c205c2010-02-25 06:57:05 +00002116 // any old canonical-looking variables after it so that the IR remains
2117 // consistent. They will be deleted as part of the dead-PHI deletion at
Dan Gohman426901a2009-06-13 16:25:49 +00002118 // the end of the pass.
Dan Gohmana9c205c2010-02-25 06:57:05 +00002119 while (!OldCannIVs.empty()) {
2120 PHINode *OldCannIV = OldCannIVs.pop_back_val();
2121 OldCannIV->insertBefore(L->getHeader()->getFirstNonPHI());
2122 }
Dan Gohmancb9e09a2007-06-15 14:38:12 +00002123 }
Andrew Trick7da24172011-07-18 20:32:31 +00002124 else if (ExpandBECount && ReuseIVForExit && needsLFTR(L, DT)) {
2125 IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, TD);
2126 }
Dan Gohmaneb6be652009-02-12 22:19:27 +00002127 // If we have a trip count expression, rewrite the loop's exit condition
2128 // using it. We can currently only handle loops with a single exit.
Andrew Trick7da24172011-07-18 20:32:31 +00002129 Value *NewICmp = 0;
2130 if (ExpandBECount && IndVar) {
Andrew Trickc591f3a2011-07-16 01:18:53 +00002131 // Check preconditions for proper SCEVExpander operation. SCEV does not
2132 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
2133 // pass that uses the SCEVExpander must do it. This does not work well for
2134 // loop passes because SCEVExpander makes assumptions about all loops, while
2135 // LoopPassManager only forces the current loop to be simplified.
2136 //
2137 // FIXME: SCEV expansion has no way to bail out, so the caller must
2138 // explicitly check any assumptions made by SCEV. Brittle.
2139 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
2140 if (!AR || AR->getLoop()->getLoopPreheader())
2141 NewICmp =
2142 LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar, Rewriter);
Chris Lattnerc1a682d2004-04-22 14:59:40 +00002143 }
Andrew Trick87716c92011-03-17 23:51:11 +00002144 // Rewrite IV-derived expressions.
Andrew Trick1abe2962011-05-04 02:10:13 +00002145 if (!DisableIVRewrite)
2146 RewriteIVExpressions(L, Rewriter);
Dan Gohmaneb6be652009-02-12 22:19:27 +00002147
Andrew Trick87716c92011-03-17 23:51:11 +00002148 // Clear the rewriter cache, because values that are in the rewriter's cache
2149 // can be deleted in the loop below, causing the AssertingVH in the cache to
2150 // trigger.
2151 Rewriter.clear();
2152
2153 // Now that we're done iterating through lists, clean up any instructions
2154 // which are now dead.
2155 while (!DeadInsts.empty())
2156 if (Instruction *Inst =
2157 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
2158 RecursivelyDeleteTriviallyDeadInstructions(Inst);
2159
Dan Gohmandaafbe62009-06-26 22:53:46 +00002160 // The Rewriter may not be used from this point on.
Torok Edwin26895b52009-05-24 20:08:21 +00002161
Dan Gohmand76d71a2009-05-12 02:17:14 +00002162 // Loop-invariant instructions in the preheader that aren't used in the
2163 // loop may be sunk below the loop to reduce register pressure.
Dan Gohmandaafbe62009-06-26 22:53:46 +00002164 SinkUnusedInvariants(L);
Dan Gohmand76d71a2009-05-12 02:17:14 +00002165
2166 // For completeness, inform IVUsers of the IV use in the newly-created
2167 // loop exit test instruction.
Andrew Trick7da24172011-07-18 20:32:31 +00002168 if (IU && NewICmp) {
2169 ICmpInst *NewICmpInst = dyn_cast<ICmpInst>(NewICmp);
2170 if (NewICmpInst)
2171 IU->AddUsersIfInteresting(cast<Instruction>(NewICmpInst->getOperand(0)));
2172 }
Dan Gohmand76d71a2009-05-12 02:17:14 +00002173 // Clean up dead instructions.
Dan Gohmanb5358002010-01-05 16:31:45 +00002174 Changed |= DeleteDeadPHIs(L->getHeader());
Dan Gohmand76d71a2009-05-12 02:17:14 +00002175 // Check a post-condition.
Andrew Trick494c5492011-07-18 18:44:20 +00002176 assert(L->isLCSSAForm(*DT) &&
2177 "Indvars did not leave the loop in lcssa form!");
2178
2179 // Verify that LFTR, and any other change have not interfered with SCEV's
2180 // ability to compute trip count.
2181#ifndef NDEBUG
2182 if (DisableIVRewrite && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
2183 SE->forgetLoop(L);
2184 const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
2185 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
2186 SE->getTypeSizeInBits(NewBECount->getType()))
2187 NewBECount = SE->getTruncateOrNoop(NewBECount,
2188 BackedgeTakenCount->getType());
2189 else
2190 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
2191 NewBECount->getType());
2192 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
2193 }
2194#endif
2195
Devang Patel2ac57e12007-03-07 06:39:01 +00002196 return Changed;
Chris Lattner476e6df2001-12-03 17:28:42 +00002197}