blob: 2246a83811fa6a8306e09faaab9f2c4e79b31a0d [file] [log] [blame]
Brendon Cahoon254f8892016-07-29 16:44:44 +00001//===-- MachinePipeliner.cpp - Machine Software Pipeliner Pass ------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
11//
12// Software pipelining (SWP) is an instruction scheduling technique for loops
13// that overlap loop iterations and explioits ILP via a compiler transformation.
14//
15// Swing Modulo Scheduling is an implementation of software pipelining
16// that generates schedules that are near optimal in terms of initiation
17// interval, register requirements, and stage count. See the papers:
18//
19// "Swing Modulo Scheduling: A Lifetime-Sensitive Approach", by J. Llosa,
20// A. Gonzalez, E. Ayguade, and M. Valero. In PACT '96 Processings of the 1996
21// Conference on Parallel Architectures and Compilation Techiniques.
22//
23// "Lifetime-Sensitive Modulo Scheduling in a Production Environment", by J.
24// Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt. In IEEE
25// Transactions on Computers, Vol. 50, No. 3, 2001.
26//
27// "An Implementation of Swing Modulo Scheduling With Extensions for
28// Superblocks", by T. Lattner, Master's Thesis, University of Illinois at
29// Urbana-Chambpain, 2005.
30//
31//
32// The SMS algorithm consists of three main steps after computing the minimal
33// initiation interval (MII).
34// 1) Analyze the dependence graph and compute information about each
35// instruction in the graph.
36// 2) Order the nodes (instructions) by priority based upon the heuristics
37// described in the algorithm.
38// 3) Attempt to schedule the nodes in the specified order using the MII.
39//
40// This SMS implementation is a target-independent back-end pass. When enabled,
41// the pass runs just prior to the register allocation pass, while the machine
42// IR is in SSA form. If software pipelining is successful, then the original
43// loop is replaced by the optimized loop. The optimized loop contains one or
44// more prolog blocks, the pipelined kernel, and one or more epilog blocks. If
45// the instructions cannot be scheduled in a given MII, we increase the MII by
46// one and try again.
47//
48// The SMS implementation is an extension of the ScheduleDAGInstrs class. We
49// represent loop carried dependences in the DAG as order edges to the Phi
50// nodes. We also perform several passes over the DAG to eliminate unnecessary
51// edges that inhibit the ability to pipeline. The implementation uses the
52// DFAPacketizer class to compute the minimum initiation interval and the check
53// where an instruction may be inserted in the pipelined schedule.
54//
55// In order for the SMS pass to work, several target specific hooks need to be
56// implemented to get information about the loop structure and to rewrite
57// instructions.
58//
59//===----------------------------------------------------------------------===//
60
61#include "llvm/ADT/DenseMap.h"
62#include "llvm/ADT/MapVector.h"
63#include "llvm/ADT/PriorityQueue.h"
64#include "llvm/ADT/SetVector.h"
65#include "llvm/ADT/SmallPtrSet.h"
66#include "llvm/ADT/SmallSet.h"
67#include "llvm/ADT/Statistic.h"
68#include "llvm/Analysis/AliasAnalysis.h"
69#include "llvm/Analysis/ValueTracking.h"
70#include "llvm/CodeGen/DFAPacketizer.h"
71#include "llvm/CodeGen/LiveIntervalAnalysis.h"
72#include "llvm/CodeGen/MachineBasicBlock.h"
73#include "llvm/CodeGen/MachineDominators.h"
74#include "llvm/CodeGen/MachineInstrBuilder.h"
75#include "llvm/CodeGen/MachineLoopInfo.h"
76#include "llvm/CodeGen/MachineRegisterInfo.h"
77#include "llvm/CodeGen/Passes.h"
78#include "llvm/CodeGen/RegisterClassInfo.h"
79#include "llvm/CodeGen/RegisterPressure.h"
80#include "llvm/CodeGen/ScheduleDAGInstrs.h"
81#include "llvm/MC/MCInstrItineraries.h"
82#include "llvm/Support/CommandLine.h"
83#include "llvm/Support/Debug.h"
84#include "llvm/Support/raw_ostream.h"
85#include "llvm/Target/TargetInstrInfo.h"
86#include "llvm/Target/TargetMachine.h"
87#include "llvm/Target/TargetRegisterInfo.h"
88#include "llvm/Target/TargetSubtargetInfo.h"
89#include <climits>
90#include <deque>
91#include <map>
92
93using namespace llvm;
94
95#define DEBUG_TYPE "pipeliner"
96
97STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline");
98STATISTIC(NumPipelined, "Number of loops software pipelined");
99
100/// A command line option to turn software pipelining on or off.
Benjamin Kramerb7d33112016-08-06 11:13:10 +0000101static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true),
102 cl::ZeroOrMore,
103 cl::desc("Enable Software Pipelining"));
Brendon Cahoon254f8892016-07-29 16:44:44 +0000104
105/// A command line option to enable SWP at -Os.
106static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size",
107 cl::desc("Enable SWP at Os."), cl::Hidden,
108 cl::init(false));
109
110/// A command line argument to limit minimum initial interval for pipelining.
111static cl::opt<int> SwpMaxMii("pipeliner-max-mii",
112 cl::desc("Size limit for the the MII."),
113 cl::Hidden, cl::init(27));
114
115/// A command line argument to limit the number of stages in the pipeline.
116static cl::opt<int>
117 SwpMaxStages("pipeliner-max-stages",
118 cl::desc("Maximum stages allowed in the generated scheduled."),
119 cl::Hidden, cl::init(3));
120
121/// A command line option to disable the pruning of chain dependences due to
122/// an unrelated Phi.
123static cl::opt<bool>
124 SwpPruneDeps("pipeliner-prune-deps",
125 cl::desc("Prune dependences between unrelated Phi nodes."),
126 cl::Hidden, cl::init(true));
127
128/// A command line option to disable the pruning of loop carried order
129/// dependences.
130static cl::opt<bool>
131 SwpPruneLoopCarried("pipeliner-prune-loop-carried",
132 cl::desc("Prune loop carried order dependences."),
133 cl::Hidden, cl::init(true));
134
135#ifndef NDEBUG
136static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1));
137#endif
138
139static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
140 cl::ReallyHidden, cl::init(false),
141 cl::ZeroOrMore, cl::desc("Ignore RecMII"));
142
143namespace {
144
145class NodeSet;
146class SMSchedule;
147class SwingSchedulerDAG;
148
149/// The main class in the implementation of the target independent
150/// software pipeliner pass.
151class MachinePipeliner : public MachineFunctionPass {
152public:
153 MachineFunction *MF = nullptr;
154 const MachineLoopInfo *MLI = nullptr;
155 const MachineDominatorTree *MDT = nullptr;
156 const InstrItineraryData *InstrItins;
157 const TargetInstrInfo *TII = nullptr;
158 RegisterClassInfo RegClassInfo;
159
160#ifndef NDEBUG
161 static int NumTries;
162#endif
163 /// Cache the target analysis information about the loop.
164 struct LoopInfo {
165 MachineBasicBlock *TBB = nullptr;
166 MachineBasicBlock *FBB = nullptr;
167 SmallVector<MachineOperand, 4> BrCond;
168 MachineInstr *LoopInductionVar = nullptr;
169 MachineInstr *LoopCompare = nullptr;
170 };
171 LoopInfo LI;
172
173 static char ID;
174 MachinePipeliner() : MachineFunctionPass(ID) {
175 initializeMachinePipelinerPass(*PassRegistry::getPassRegistry());
176 }
177
178 virtual bool runOnMachineFunction(MachineFunction &MF);
179
180 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
181 AU.addRequired<AAResultsWrapperPass>();
182 AU.addPreserved<AAResultsWrapperPass>();
183 AU.addRequired<MachineLoopInfo>();
184 AU.addRequired<MachineDominatorTree>();
185 AU.addRequired<LiveIntervals>();
186 MachineFunctionPass::getAnalysisUsage(AU);
187 }
188
189private:
190 bool canPipelineLoop(MachineLoop &L);
191 bool scheduleLoop(MachineLoop &L);
192 bool swingModuloScheduler(MachineLoop &L);
193};
194
195/// This class builds the dependence graph for the instructions in a loop,
196/// and attempts to schedule the instructions using the SMS algorithm.
197class SwingSchedulerDAG : public ScheduleDAGInstrs {
198 MachinePipeliner &Pass;
199 /// The minimum initiation interval between iterations for this schedule.
200 unsigned MII;
201 /// Set to true if a valid pipelined schedule is found for the loop.
202 bool Scheduled;
203 MachineLoop &Loop;
204 LiveIntervals &LIS;
205 const RegisterClassInfo &RegClassInfo;
206
207 /// A toplogical ordering of the SUnits, which is needed for changing
208 /// dependences and iterating over the SUnits.
209 ScheduleDAGTopologicalSort Topo;
210
211 struct NodeInfo {
212 int ASAP;
213 int ALAP;
214 NodeInfo() : ASAP(0), ALAP(0) {}
215 };
216 /// Computed properties for each node in the graph.
217 std::vector<NodeInfo> ScheduleInfo;
218
219 enum OrderKind { BottomUp = 0, TopDown = 1 };
220 /// Computed node ordering for scheduling.
221 SetVector<SUnit *> NodeOrder;
222
223 typedef SmallVector<NodeSet, 8> NodeSetType;
224 typedef DenseMap<unsigned, unsigned> ValueMapTy;
225 typedef SmallVectorImpl<MachineBasicBlock *> MBBVectorTy;
226 typedef DenseMap<MachineInstr *, MachineInstr *> InstrMapTy;
227
228 /// Instructions to change when emitting the final schedule.
229 DenseMap<SUnit *, std::pair<unsigned, int64_t>> InstrChanges;
230
231 /// We may create a new instruction, so remember it because it
232 /// must be deleted when the pass is finished.
233 SmallPtrSet<MachineInstr *, 4> NewMIs;
234
235 /// Helper class to implement Johnson's circuit finding algorithm.
236 class Circuits {
237 std::vector<SUnit> &SUnits;
238 SetVector<SUnit *> Stack;
239 BitVector Blocked;
240 SmallVector<SmallPtrSet<SUnit *, 4>, 10> B;
241 SmallVector<SmallVector<int, 4>, 16> AdjK;
242 unsigned NumPaths;
243 static unsigned MaxPaths;
244
245 public:
246 Circuits(std::vector<SUnit> &SUs)
247 : SUnits(SUs), Stack(), Blocked(SUs.size()), B(SUs.size()),
248 AdjK(SUs.size()) {}
249 /// Reset the data structures used in the circuit algorithm.
250 void reset() {
251 Stack.clear();
252 Blocked.reset();
253 B.assign(SUnits.size(), SmallPtrSet<SUnit *, 4>());
254 NumPaths = 0;
255 }
256 void createAdjacencyStructure(SwingSchedulerDAG *DAG);
257 bool circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge = false);
258 void unblock(int U);
259 };
260
261public:
262 SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis,
263 const RegisterClassInfo &rci)
264 : ScheduleDAGInstrs(*P.MF, P.MLI, false), Pass(P), MII(0),
265 Scheduled(false), Loop(L), LIS(lis), RegClassInfo(rci),
266 Topo(SUnits, &ExitSU) {}
267
268 void schedule();
269 void finishBlock();
270
271 /// Return true if the loop kernel has been scheduled.
272 bool hasNewSchedule() { return Scheduled; }
273
274 /// Return the earliest time an instruction may be scheduled.
275 int getASAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ASAP; }
276
277 /// Return the latest time an instruction my be scheduled.
278 int getALAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ALAP; }
279
280 /// The mobility function, which the the number of slots in which
281 /// an instruction may be scheduled.
282 int getMOV(SUnit *Node) { return getALAP(Node) - getASAP(Node); }
283
284 /// The depth, in the dependence graph, for a node.
285 int getDepth(SUnit *Node) { return Node->getDepth(); }
286
287 /// The height, in the dependence graph, for a node.
288 int getHeight(SUnit *Node) { return Node->getHeight(); }
289
290 /// Return true if the dependence is a back-edge in the data dependence graph.
291 /// Since the DAG doesn't contain cycles, we represent a cycle in the graph
292 /// using an anti dependence from a Phi to an instruction.
293 bool isBackedge(SUnit *Source, const SDep &Dep) {
294 if (Dep.getKind() != SDep::Anti)
295 return false;
296 return Source->getInstr()->isPHI() || Dep.getSUnit()->getInstr()->isPHI();
297 }
298
299 /// Return true if the dependence is an order dependence between non-Phis.
300 static bool isOrder(SUnit *Source, const SDep &Dep) {
301 if (Dep.getKind() != SDep::Order)
302 return false;
303 return (!Source->getInstr()->isPHI() &&
304 !Dep.getSUnit()->getInstr()->isPHI());
305 }
306
307 bool isLoopCarriedOrder(SUnit *Source, const SDep &Dep, bool isSucc = true);
308
309 /// The latency of the dependence.
310 unsigned getLatency(SUnit *Source, const SDep &Dep) {
311 // Anti dependences represent recurrences, so use the latency of the
312 // instruction on the back-edge.
313 if (Dep.getKind() == SDep::Anti) {
314 if (Source->getInstr()->isPHI())
315 return Dep.getSUnit()->Latency;
316 if (Dep.getSUnit()->getInstr()->isPHI())
317 return Source->Latency;
318 return Dep.getLatency();
319 }
320 return Dep.getLatency();
321 }
322
323 /// The distance function, which indicates that operation V of iteration I
324 /// depends on operations U of iteration I-distance.
325 unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep) {
326 // Instructions that feed a Phi have a distance of 1. Computing larger
327 // values for arrays requires data dependence information.
328 if (V->getInstr()->isPHI() && Dep.getKind() == SDep::Anti)
329 return 1;
330 return 0;
331 }
332
333 /// Set the Minimum Initiation Interval for this schedule attempt.
334 void setMII(unsigned mii) { MII = mii; }
335
336 MachineInstr *applyInstrChange(MachineInstr *MI, SMSchedule &Schedule,
337 bool UpdateDAG = false);
338
339 /// Return the new base register that was stored away for the changed
340 /// instruction.
341 unsigned getInstrBaseReg(SUnit *SU) {
342 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
343 InstrChanges.find(SU);
344 if (It != InstrChanges.end())
345 return It->second.first;
346 return 0;
347 }
348
349private:
350 void addLoopCarriedDependences(AliasAnalysis *AA);
351 void updatePhiDependences();
352 void changeDependences();
353 unsigned calculateResMII();
354 unsigned calculateRecMII(NodeSetType &RecNodeSets);
355 void findCircuits(NodeSetType &NodeSets);
356 void fuseRecs(NodeSetType &NodeSets);
357 void removeDuplicateNodes(NodeSetType &NodeSets);
358 void computeNodeFunctions(NodeSetType &NodeSets);
359 void registerPressureFilter(NodeSetType &NodeSets);
360 void colocateNodeSets(NodeSetType &NodeSets);
361 void checkNodeSets(NodeSetType &NodeSets);
362 void groupRemainingNodes(NodeSetType &NodeSets);
363 void addConnectedNodes(SUnit *SU, NodeSet &NewSet,
364 SetVector<SUnit *> &NodesAdded);
365 void computeNodeOrder(NodeSetType &NodeSets);
366 bool schedulePipeline(SMSchedule &Schedule);
367 void generatePipelinedLoop(SMSchedule &Schedule);
368 void generateProlog(SMSchedule &Schedule, unsigned LastStage,
369 MachineBasicBlock *KernelBB, ValueMapTy *VRMap,
370 MBBVectorTy &PrologBBs);
371 void generateEpilog(SMSchedule &Schedule, unsigned LastStage,
372 MachineBasicBlock *KernelBB, ValueMapTy *VRMap,
373 MBBVectorTy &EpilogBBs, MBBVectorTy &PrologBBs);
374 void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
375 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
376 SMSchedule &Schedule, ValueMapTy *VRMap,
377 InstrMapTy &InstrMap, unsigned LastStageNum,
378 unsigned CurStageNum, bool IsLast);
379 void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
380 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
381 SMSchedule &Schedule, ValueMapTy *VRMap,
382 InstrMapTy &InstrMap, unsigned LastStageNum,
383 unsigned CurStageNum, bool IsLast);
384 void removeDeadInstructions(MachineBasicBlock *KernelBB,
385 MBBVectorTy &EpilogBBs);
386 void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs,
387 SMSchedule &Schedule);
388 void addBranches(MBBVectorTy &PrologBBs, MachineBasicBlock *KernelBB,
389 MBBVectorTy &EpilogBBs, SMSchedule &Schedule,
390 ValueMapTy *VRMap);
391 bool computeDelta(MachineInstr &MI, unsigned &Delta);
392 void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI,
393 unsigned Num);
394 MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum,
395 unsigned InstStageNum);
396 MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum,
397 unsigned InstStageNum,
398 SMSchedule &Schedule);
399 void updateInstruction(MachineInstr *NewMI, bool LastDef,
400 unsigned CurStageNum, unsigned InstStageNum,
401 SMSchedule &Schedule, ValueMapTy *VRMap);
402 MachineInstr *findDefInLoop(unsigned Reg);
403 unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal,
404 unsigned LoopStage, ValueMapTy *VRMap,
405 MachineBasicBlock *BB);
406 void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum,
407 SMSchedule &Schedule, ValueMapTy *VRMap,
408 InstrMapTy &InstrMap);
409 void rewriteScheduledInstr(MachineBasicBlock *BB, SMSchedule &Schedule,
410 InstrMapTy &InstrMap, unsigned CurStageNum,
411 unsigned PhiNum, MachineInstr *Phi,
412 unsigned OldReg, unsigned NewReg,
413 unsigned PrevReg = 0);
414 bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos,
415 unsigned &OffsetPos, unsigned &NewBase,
416 int64_t &NewOffset);
417};
418
419/// A NodeSet contains a set of SUnit DAG nodes with additional information
420/// that assigns a priority to the set.
421class NodeSet {
422 SetVector<SUnit *> Nodes;
423 bool HasRecurrence;
424 unsigned RecMII = 0;
425 int MaxMOV = 0;
426 int MaxDepth = 0;
427 unsigned Colocate = 0;
428 SUnit *ExceedPressure = nullptr;
429
430public:
431 typedef SetVector<SUnit *>::const_iterator iterator;
432
433 NodeSet() : Nodes(), HasRecurrence(false) {}
434
435 NodeSet(iterator S, iterator E) : Nodes(S, E), HasRecurrence(true) {}
436
437 bool insert(SUnit *SU) { return Nodes.insert(SU); }
438
439 void insert(iterator S, iterator E) { Nodes.insert(S, E); }
440
441 template <typename UnaryPredicate> bool remove_if(UnaryPredicate P) {
442 return Nodes.remove_if(P);
443 }
444
445 unsigned count(SUnit *SU) const { return Nodes.count(SU); }
446
447 bool hasRecurrence() { return HasRecurrence; };
448
449 unsigned size() const { return Nodes.size(); }
450
451 bool empty() const { return Nodes.empty(); }
452
453 SUnit *getNode(unsigned i) const { return Nodes[i]; };
454
455 void setRecMII(unsigned mii) { RecMII = mii; };
456
457 void setColocate(unsigned c) { Colocate = c; };
458
459 void setExceedPressure(SUnit *SU) { ExceedPressure = SU; }
460
461 bool isExceedSU(SUnit *SU) { return ExceedPressure == SU; }
462
463 int compareRecMII(NodeSet &RHS) { return RecMII - RHS.RecMII; }
464
465 int getRecMII() { return RecMII; }
466
467 /// Summarize node functions for the entire node set.
468 void computeNodeSetInfo(SwingSchedulerDAG *SSD) {
469 for (SUnit *SU : *this) {
470 MaxMOV = std::max(MaxMOV, SSD->getMOV(SU));
471 MaxDepth = std::max(MaxDepth, SSD->getDepth(SU));
472 }
473 }
474
475 void clear() {
476 Nodes.clear();
477 RecMII = 0;
478 HasRecurrence = false;
479 MaxMOV = 0;
480 MaxDepth = 0;
481 Colocate = 0;
482 ExceedPressure = nullptr;
483 }
484
485 operator SetVector<SUnit *> &() { return Nodes; }
486
487 /// Sort the node sets by importance. First, rank them by recurrence MII,
488 /// then by mobility (least mobile done first), and finally by depth.
489 /// Each node set may contain a colocate value which is used as the first
490 /// tie breaker, if it's set.
491 bool operator>(const NodeSet &RHS) const {
492 if (RecMII == RHS.RecMII) {
493 if (Colocate != 0 && RHS.Colocate != 0 && Colocate != RHS.Colocate)
494 return Colocate < RHS.Colocate;
495 if (MaxMOV == RHS.MaxMOV)
496 return MaxDepth > RHS.MaxDepth;
497 return MaxMOV < RHS.MaxMOV;
498 }
499 return RecMII > RHS.RecMII;
500 }
501
502 bool operator==(const NodeSet &RHS) const {
503 return RecMII == RHS.RecMII && MaxMOV == RHS.MaxMOV &&
504 MaxDepth == RHS.MaxDepth;
505 }
506
507 bool operator!=(const NodeSet &RHS) const { return !operator==(RHS); }
508
509 iterator begin() { return Nodes.begin(); }
510 iterator end() { return Nodes.end(); }
511
512 void print(raw_ostream &os) const {
513 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
514 << " depth " << MaxDepth << " col " << Colocate << "\n";
515 for (const auto &I : Nodes)
516 os << " SU(" << I->NodeNum << ") " << *(I->getInstr());
517 os << "\n";
518 }
519
520 void dump() const { print(dbgs()); }
521};
522
523/// This class repesents the scheduled code. The main data structure is a
524/// map from scheduled cycle to instructions. During scheduling, the
525/// data structure explicitly represents all stages/iterations. When
526/// the algorithm finshes, the schedule is collapsed into a single stage,
527/// which represents instructions from different loop iterations.
528///
529/// The SMS algorithm allows negative values for cycles, so the first cycle
530/// in the schedule is the smallest cycle value.
531class SMSchedule {
532private:
533 /// Map from execution cycle to instructions.
534 DenseMap<int, std::deque<SUnit *>> ScheduledInstrs;
535
536 /// Map from instruction to execution cycle.
537 std::map<SUnit *, int> InstrToCycle;
538
539 /// Map for each register and the max difference between its uses and def.
540 /// The first element in the pair is the max difference in stages. The
541 /// second is true if the register defines a Phi value and loop value is
542 /// scheduled before the Phi.
543 std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff;
544
545 /// Keep track of the first cycle value in the schedule. It starts
546 /// as zero, but the algorithm allows negative values.
547 int FirstCycle;
548
549 /// Keep track of the last cycle value in the schedule.
550 int LastCycle;
551
552 /// The initiation interval (II) for the schedule.
553 int InitiationInterval;
554
555 /// Target machine information.
556 const TargetSubtargetInfo &ST;
557
558 /// Virtual register information.
559 MachineRegisterInfo &MRI;
560
561 DFAPacketizer *Resources;
562
563public:
564 SMSchedule(MachineFunction *mf)
565 : ST(mf->getSubtarget()), MRI(mf->getRegInfo()),
566 Resources(ST.getInstrInfo()->CreateTargetScheduleState(ST)) {
567 FirstCycle = 0;
568 LastCycle = 0;
569 InitiationInterval = 0;
570 }
571
572 ~SMSchedule() {
573 ScheduledInstrs.clear();
574 InstrToCycle.clear();
575 RegToStageDiff.clear();
576 delete Resources;
577 }
578
579 void reset() {
580 ScheduledInstrs.clear();
581 InstrToCycle.clear();
582 RegToStageDiff.clear();
583 FirstCycle = 0;
584 LastCycle = 0;
585 InitiationInterval = 0;
586 }
587
588 /// Set the initiation interval for this schedule.
589 void setInitiationInterval(int ii) { InitiationInterval = ii; }
590
591 /// Return the first cycle in the completed schedule. This
592 /// can be a negative value.
593 int getFirstCycle() const { return FirstCycle; }
594
595 /// Return the last cycle in the finalized schedule.
596 int getFinalCycle() const { return FirstCycle + InitiationInterval - 1; }
597
598 /// Return the cycle of the earliest scheduled instruction in the dependence
599 /// chain.
600 int earliestCycleInChain(const SDep &Dep);
601
602 /// Return the cycle of the latest scheduled instruction in the dependence
603 /// chain.
604 int latestCycleInChain(const SDep &Dep);
605
606 void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
607 int *MinEnd, int *MaxStart, int II, SwingSchedulerDAG *DAG);
608 bool insert(SUnit *SU, int StartCycle, int EndCycle, int II);
609
610 /// Iterators for the cycle to instruction map.
611 typedef DenseMap<int, std::deque<SUnit *>>::iterator sched_iterator;
612 typedef DenseMap<int, std::deque<SUnit *>>::const_iterator
613 const_sched_iterator;
614
615 /// Return true if the instruction is scheduled at the specified stage.
616 bool isScheduledAtStage(SUnit *SU, unsigned StageNum) {
617 return (stageScheduled(SU) == (int)StageNum);
618 }
619
620 /// Return the stage for a scheduled instruction. Return -1 if
621 /// the instruction has not been scheduled.
622 int stageScheduled(SUnit *SU) const {
623 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
624 if (it == InstrToCycle.end())
625 return -1;
626 return (it->second - FirstCycle) / InitiationInterval;
627 }
628
629 /// Return the cycle for a scheduled instruction. This function normalizes
630 /// the first cycle to be 0.
631 unsigned cycleScheduled(SUnit *SU) const {
632 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
633 assert(it != InstrToCycle.end() && "Instruction hasn't been scheduled.");
634 return (it->second - FirstCycle) % InitiationInterval;
635 }
636
637 /// Return the maximum stage count needed for this schedule.
638 unsigned getMaxStageCount() {
639 return (LastCycle - FirstCycle) / InitiationInterval;
640 }
641
642 /// Return the max. number of stages/iterations that can occur between a
643 /// register definition and its uses.
644 unsigned getStagesForReg(int Reg, unsigned CurStage) {
645 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
646 if (CurStage > getMaxStageCount() && Stages.first == 0 && Stages.second)
647 return 1;
648 return Stages.first;
649 }
650
651 /// The number of stages for a Phi is a little different than other
652 /// instructions. The minimum value computed in RegToStageDiff is 1
653 /// because we assume the Phi is needed for at least 1 iteration.
654 /// This is not the case if the loop value is scheduled prior to the
655 /// Phi in the same stage. This function returns the number of stages
656 /// or iterations needed between the Phi definition and any uses.
657 unsigned getStagesForPhi(int Reg) {
658 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
659 if (Stages.second)
660 return Stages.first;
661 return Stages.first - 1;
662 }
663
664 /// Return the instructions that are scheduled at the specified cycle.
665 std::deque<SUnit *> &getInstructions(int cycle) {
666 return ScheduledInstrs[cycle];
667 }
668
669 bool isValidSchedule(SwingSchedulerDAG *SSD);
670 void finalizeSchedule(SwingSchedulerDAG *SSD);
671 bool orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
672 std::deque<SUnit *> &Insts);
673 bool isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi);
674 bool isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, MachineInstr *Inst,
675 MachineOperand &MO);
676 void print(raw_ostream &os) const;
677 void dump() const;
678};
679
680} // end anonymous namespace
681
682unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
683char MachinePipeliner::ID = 0;
684#ifndef NDEBUG
685int MachinePipeliner::NumTries = 0;
686#endif
687char &llvm::MachinePipelinerID = MachinePipeliner::ID;
688INITIALIZE_PASS_BEGIN(MachinePipeliner, "pipeliner",
689 "Modulo Software Pipelining", false, false)
690INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
691INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
692INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
693INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
694INITIALIZE_PASS_END(MachinePipeliner, "pipeliner",
695 "Modulo Software Pipelining", false, false)
696
697/// The "main" function for implementing Swing Modulo Scheduling.
698bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) {
699 if (skipFunction(*mf.getFunction()))
700 return false;
701
702 if (!EnableSWP)
703 return false;
704
705 if (mf.getFunction()->getAttributes().hasAttribute(
706 AttributeSet::FunctionIndex, Attribute::OptimizeForSize) &&
707 !EnableSWPOptSize.getPosition())
708 return false;
709
710 MF = &mf;
711 MLI = &getAnalysis<MachineLoopInfo>();
712 MDT = &getAnalysis<MachineDominatorTree>();
713 TII = MF->getSubtarget().getInstrInfo();
714 RegClassInfo.runOnMachineFunction(*MF);
715
716 for (auto &L : *MLI)
717 scheduleLoop(*L);
718
719 return false;
720}
721
722/// Attempt to perform the SMS algorithm on the specified loop. This function is
723/// the main entry point for the algorithm. The function identifies candidate
724/// loops, calculates the minimum initiation interval, and attempts to schedule
725/// the loop.
726bool MachinePipeliner::scheduleLoop(MachineLoop &L) {
727 bool Changed = false;
728 for (auto &InnerLoop : L)
729 Changed |= scheduleLoop(*InnerLoop);
730
731#ifndef NDEBUG
732 // Stop trying after reaching the limit (if any).
733 int Limit = SwpLoopLimit;
734 if (Limit >= 0) {
735 if (NumTries >= SwpLoopLimit)
736 return Changed;
737 NumTries++;
738 }
739#endif
740
741 if (!canPipelineLoop(L))
742 return Changed;
743
744 ++NumTrytoPipeline;
745
746 Changed = swingModuloScheduler(L);
747
748 return Changed;
749}
750
751/// Return true if the loop can be software pipelined. The algorithm is
752/// restricted to loops with a single basic block. Make sure that the
753/// branch in the loop can be analyzed.
754bool MachinePipeliner::canPipelineLoop(MachineLoop &L) {
755 if (L.getNumBlocks() != 1)
756 return false;
757
758 // Check if the branch can't be understood because we can't do pipelining
759 // if that's the case.
760 LI.TBB = nullptr;
761 LI.FBB = nullptr;
762 LI.BrCond.clear();
763 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond))
764 return false;
765
766 LI.LoopInductionVar = nullptr;
767 LI.LoopCompare = nullptr;
768 if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare))
769 return false;
770
771 if (!L.getLoopPreheader())
772 return false;
773
774 // If any of the Phis contain subregs, then we can't pipeline
775 // because we don't know how to maintain subreg information in the
776 // VMap structure.
777 MachineBasicBlock *MBB = L.getHeader();
778 for (MachineBasicBlock::iterator BBI = MBB->instr_begin(),
779 BBE = MBB->getFirstNonPHI();
780 BBI != BBE; ++BBI)
781 for (unsigned i = 1; i != BBI->getNumOperands(); i += 2)
782 if (BBI->getOperand(i).getSubReg() != 0)
783 return false;
784
785 return true;
786}
787
788/// The SMS algorithm consists of the following main steps:
789/// 1. Computation and analysis of the dependence graph.
790/// 2. Ordering of the nodes (instructions).
791/// 3. Attempt to Schedule the loop.
792bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) {
793 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only.");
794
795 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo);
796
797 MachineBasicBlock *MBB = L.getHeader();
798 // The kernel should not include any terminator instructions. These
799 // will be added back later.
800 SMS.startBlock(MBB);
801
802 // Compute the number of 'real' instructions in the basic block by
803 // ignoring terminators.
804 unsigned size = MBB->size();
805 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(),
806 E = MBB->instr_end();
807 I != E; ++I, --size)
808 ;
809
810 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size);
811 SMS.schedule();
812 SMS.exitRegion();
813
814 SMS.finishBlock();
815 return SMS.hasNewSchedule();
816}
817
818/// We override the schedule function in ScheduleDAGInstrs to implement the
819/// scheduling part of the Swing Modulo Scheduling algorithm.
820void SwingSchedulerDAG::schedule() {
821 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults();
822 buildSchedGraph(AA);
823 addLoopCarriedDependences(AA);
824 updatePhiDependences();
825 Topo.InitDAGTopologicalSorting();
826 changeDependences();
827 DEBUG({
828 for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
829 SUnits[su].dumpAll(this);
830 });
831
832 NodeSetType NodeSets;
833 findCircuits(NodeSets);
834
835 // Calculate the MII.
836 unsigned ResMII = calculateResMII();
837 unsigned RecMII = calculateRecMII(NodeSets);
838
839 fuseRecs(NodeSets);
840
841 // This flag is used for testing and can cause correctness problems.
842 if (SwpIgnoreRecMII)
843 RecMII = 0;
844
845 MII = std::max(ResMII, RecMII);
846 DEBUG(dbgs() << "MII = " << MII << " (rec=" << RecMII << ", res=" << ResMII
847 << ")\n");
848
849 // Can't schedule a loop without a valid MII.
850 if (MII == 0)
851 return;
852
853 // Don't pipeline large loops.
854 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii)
855 return;
856
857 computeNodeFunctions(NodeSets);
858
859 registerPressureFilter(NodeSets);
860
861 colocateNodeSets(NodeSets);
862
863 checkNodeSets(NodeSets);
864
865 DEBUG({
866 for (auto &I : NodeSets) {
867 dbgs() << " Rec NodeSet ";
868 I.dump();
869 }
870 });
871
872 std::sort(NodeSets.begin(), NodeSets.end(), std::greater<NodeSet>());
873
874 groupRemainingNodes(NodeSets);
875
876 removeDuplicateNodes(NodeSets);
877
878 DEBUG({
879 for (auto &I : NodeSets) {
880 dbgs() << " NodeSet ";
881 I.dump();
882 }
883 });
884
885 computeNodeOrder(NodeSets);
886
887 SMSchedule Schedule(Pass.MF);
888 Scheduled = schedulePipeline(Schedule);
889
890 if (!Scheduled)
891 return;
892
893 unsigned numStages = Schedule.getMaxStageCount();
894 // No need to generate pipeline if there are no overlapped iterations.
895 if (numStages == 0)
896 return;
897
898 // Check that the maximum stage count is less than user-defined limit.
899 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages)
900 return;
901
902 generatePipelinedLoop(Schedule);
903 ++NumPipelined;
904}
905
906/// Clean up after the software pipeliner runs.
907void SwingSchedulerDAG::finishBlock() {
908 for (MachineInstr *I : NewMIs)
909 MF.DeleteMachineInstr(I);
910 NewMIs.clear();
911
912 // Call the superclass.
913 ScheduleDAGInstrs::finishBlock();
914}
915
916/// Return the register values for the operands of a Phi instruction.
917/// This function assume the instruction is a Phi.
918static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
919 unsigned &InitVal, unsigned &LoopVal) {
920 assert(Phi.isPHI() && "Expecting a Phi.");
921
922 InitVal = 0;
923 LoopVal = 0;
924 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
925 if (Phi.getOperand(i + 1).getMBB() != Loop)
926 InitVal = Phi.getOperand(i).getReg();
927 else if (Phi.getOperand(i + 1).getMBB() == Loop)
928 LoopVal = Phi.getOperand(i).getReg();
929
930 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
931}
932
933/// Return the Phi register value that comes from the incoming block.
934static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
935 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
936 if (Phi.getOperand(i + 1).getMBB() != LoopBB)
937 return Phi.getOperand(i).getReg();
938 return 0;
939}
940
941/// Return the Phi register value that comes the the loop block.
942static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
943 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
944 if (Phi.getOperand(i + 1).getMBB() == LoopBB)
945 return Phi.getOperand(i).getReg();
946 return 0;
947}
948
949/// Return true if SUb can be reached from SUa following the chain edges.
950static bool isSuccOrder(SUnit *SUa, SUnit *SUb) {
951 SmallPtrSet<SUnit *, 8> Visited;
952 SmallVector<SUnit *, 8> Worklist;
953 Worklist.push_back(SUa);
954 while (!Worklist.empty()) {
955 const SUnit *SU = Worklist.pop_back_val();
956 for (auto &SI : SU->Succs) {
957 SUnit *SuccSU = SI.getSUnit();
958 if (SI.getKind() == SDep::Order) {
959 if (Visited.count(SuccSU))
960 continue;
961 if (SuccSU == SUb)
962 return true;
963 Worklist.push_back(SuccSU);
964 Visited.insert(SuccSU);
965 }
966 }
967 }
968 return false;
969}
970
971/// Return true if the instruction causes a chain between memory
972/// references before and after it.
973static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) {
974 return MI.isCall() || MI.hasUnmodeledSideEffects() ||
975 (MI.hasOrderedMemoryRef() &&
976 (!MI.mayLoad() || !MI.isInvariantLoad(AA)));
977}
978
979/// Return the underlying objects for the memory references of an instruction.
980/// This function calls the code in ValueTracking, but first checks that the
981/// instruction has a memory operand.
982static void getUnderlyingObjects(MachineInstr *MI,
983 SmallVectorImpl<Value *> &Objs,
984 const DataLayout &DL) {
985 if (!MI->hasOneMemOperand())
986 return;
987 MachineMemOperand *MM = *MI->memoperands_begin();
988 if (!MM->getValue())
989 return;
990 GetUnderlyingObjects(const_cast<Value *>(MM->getValue()), Objs, DL);
991}
992
993/// Add a chain edge between a load and store if the store can be an
994/// alias of the load on a subsequent iteration, i.e., a loop carried
995/// dependence. This code is very similar to the code in ScheduleDAGInstrs
996/// but that code doesn't create loop carried dependences.
997void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) {
998 MapVector<Value *, SmallVector<SUnit *, 4>> PendingLoads;
999 for (auto &SU : SUnits) {
1000 MachineInstr &MI = *SU.getInstr();
1001 if (isDependenceBarrier(MI, AA))
1002 PendingLoads.clear();
1003 else if (MI.mayLoad()) {
1004 SmallVector<Value *, 4> Objs;
1005 getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
1006 for (auto V : Objs) {
1007 SmallVector<SUnit *, 4> &SUs = PendingLoads[V];
1008 SUs.push_back(&SU);
1009 }
1010 } else if (MI.mayStore()) {
1011 SmallVector<Value *, 4> Objs;
1012 getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
1013 for (auto V : Objs) {
1014 MapVector<Value *, SmallVector<SUnit *, 4>>::iterator I =
1015 PendingLoads.find(V);
1016 if (I == PendingLoads.end())
1017 continue;
1018 for (auto Load : I->second) {
1019 if (isSuccOrder(Load, &SU))
1020 continue;
1021 MachineInstr &LdMI = *Load->getInstr();
1022 // First, perform the cheaper check that compares the base register.
1023 // If they are the same and the load offset is less than the store
1024 // offset, then mark the dependence as loop carried potentially.
1025 unsigned BaseReg1, BaseReg2;
1026 int64_t Offset1, Offset2;
1027 if (!TII->getMemOpBaseRegImmOfs(LdMI, BaseReg1, Offset1, TRI) ||
1028 !TII->getMemOpBaseRegImmOfs(MI, BaseReg2, Offset2, TRI)) {
1029 SU.addPred(SDep(Load, SDep::Barrier));
1030 continue;
1031 }
1032 if (BaseReg1 == BaseReg2 && (int)Offset1 < (int)Offset2) {
1033 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) &&
1034 "What happened to the chain edge?");
1035 SU.addPred(SDep(Load, SDep::Barrier));
1036 continue;
1037 }
1038 // Second, the more expensive check that uses alias analysis on the
1039 // base registers. If they alias, and the load offset is less than
1040 // the store offset, the mark the dependence as loop carried.
1041 if (!AA) {
1042 SU.addPred(SDep(Load, SDep::Barrier));
1043 continue;
1044 }
1045 MachineMemOperand *MMO1 = *LdMI.memoperands_begin();
1046 MachineMemOperand *MMO2 = *MI.memoperands_begin();
1047 if (!MMO1->getValue() || !MMO2->getValue()) {
1048 SU.addPred(SDep(Load, SDep::Barrier));
1049 continue;
1050 }
1051 if (MMO1->getValue() == MMO2->getValue() &&
1052 MMO1->getOffset() <= MMO2->getOffset()) {
1053 SU.addPred(SDep(Load, SDep::Barrier));
1054 continue;
1055 }
1056 AliasResult AAResult = AA->alias(
1057 MemoryLocation(MMO1->getValue(), MemoryLocation::UnknownSize,
1058 MMO1->getAAInfo()),
1059 MemoryLocation(MMO2->getValue(), MemoryLocation::UnknownSize,
1060 MMO2->getAAInfo()));
1061
1062 if (AAResult != NoAlias)
1063 SU.addPred(SDep(Load, SDep::Barrier));
1064 }
1065 }
1066 }
1067 }
1068}
1069
1070/// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer
1071/// processes dependences for PHIs. This function adds true dependences
1072/// from a PHI to a use, and a loop carried dependence from the use to the
1073/// PHI. The loop carried dependence is represented as an anti dependence
1074/// edge. This function also removes chain dependences between unrelated
1075/// PHIs.
1076void SwingSchedulerDAG::updatePhiDependences() {
1077 SmallVector<SDep, 4> RemoveDeps;
1078 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>();
1079
1080 // Iterate over each DAG node.
1081 for (SUnit &I : SUnits) {
1082 RemoveDeps.clear();
1083 // Set to true if the instruction has an operand defined by a Phi.
1084 unsigned HasPhiUse = 0;
1085 unsigned HasPhiDef = 0;
1086 MachineInstr *MI = I.getInstr();
1087 // Iterate over each operand, and we process the definitions.
1088 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
1089 MOE = MI->operands_end();
1090 MOI != MOE; ++MOI) {
1091 if (!MOI->isReg())
1092 continue;
1093 unsigned Reg = MOI->getReg();
1094 if (MOI->isDef()) {
1095 // If the register is used by a Phi, then create an anti dependence.
1096 for (MachineRegisterInfo::use_instr_iterator
1097 UI = MRI.use_instr_begin(Reg),
1098 UE = MRI.use_instr_end();
1099 UI != UE; ++UI) {
1100 MachineInstr *UseMI = &*UI;
1101 SUnit *SU = getSUnit(UseMI);
1102 if (SU != 0 && UseMI->isPHI()) {
1103 if (!MI->isPHI()) {
1104 SDep Dep(SU, SDep::Anti, Reg);
1105 I.addPred(Dep);
1106 } else {
1107 HasPhiDef = Reg;
1108 // Add a chain edge to a dependent Phi that isn't an existing
1109 // predecessor.
1110 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
1111 I.addPred(SDep(SU, SDep::Barrier));
1112 }
1113 }
1114 }
1115 } else if (MOI->isUse()) {
1116 // If the register is defined by a Phi, then create a true dependence.
1117 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg);
1118 if (DefMI == 0)
1119 continue;
1120 SUnit *SU = getSUnit(DefMI);
1121 if (SU != 0 && DefMI->isPHI()) {
1122 if (!MI->isPHI()) {
1123 SDep Dep(SU, SDep::Data, Reg);
1124 Dep.setLatency(0);
1125 ST.adjustSchedDependency(SU, &I, Dep);
1126 I.addPred(Dep);
1127 } else {
1128 HasPhiUse = Reg;
1129 // Add a chain edge to a dependent Phi that isn't an existing
1130 // predecessor.
1131 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
1132 I.addPred(SDep(SU, SDep::Barrier));
1133 }
1134 }
1135 }
1136 }
1137 // Remove order dependences from an unrelated Phi.
1138 if (!SwpPruneDeps)
1139 continue;
1140 for (auto &PI : I.Preds) {
1141 MachineInstr *PMI = PI.getSUnit()->getInstr();
1142 if (PMI->isPHI() && PI.getKind() == SDep::Order) {
1143 if (I.getInstr()->isPHI()) {
1144 if (PMI->getOperand(0).getReg() == HasPhiUse)
1145 continue;
1146 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef)
1147 continue;
1148 }
1149 RemoveDeps.push_back(PI);
1150 }
1151 }
1152 for (int i = 0, e = RemoveDeps.size(); i != e; ++i)
1153 I.removePred(RemoveDeps[i]);
1154 }
1155}
1156
1157/// Iterate over each DAG node and see if we can change any dependences
1158/// in order to reduce the recurrence MII.
1159void SwingSchedulerDAG::changeDependences() {
1160 // See if an instruction can use a value from the previous iteration.
1161 // If so, we update the base and offset of the instruction and change
1162 // the dependences.
1163 for (SUnit &I : SUnits) {
1164 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0;
1165 int64_t NewOffset = 0;
1166 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase,
1167 NewOffset))
1168 continue;
1169
1170 // Get the MI and SUnit for the instruction that defines the original base.
1171 unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg();
1172 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase);
1173 if (!DefMI)
1174 continue;
1175 SUnit *DefSU = getSUnit(DefMI);
1176 if (!DefSU)
1177 continue;
1178 // Get the MI and SUnit for the instruction that defins the new base.
1179 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase);
1180 if (!LastMI)
1181 continue;
1182 SUnit *LastSU = getSUnit(LastMI);
1183 if (!LastSU)
1184 continue;
1185
1186 if (Topo.IsReachable(&I, LastSU))
1187 continue;
1188
1189 // Remove the dependence. The value now depends on a prior iteration.
1190 SmallVector<SDep, 4> Deps;
1191 for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E;
1192 ++P)
1193 if (P->getSUnit() == DefSU)
1194 Deps.push_back(*P);
1195 for (int i = 0, e = Deps.size(); i != e; i++) {
1196 Topo.RemovePred(&I, Deps[i].getSUnit());
1197 I.removePred(Deps[i]);
1198 }
1199 // Remove the chain dependence between the instructions.
1200 Deps.clear();
1201 for (auto &P : LastSU->Preds)
1202 if (P.getSUnit() == &I && P.getKind() == SDep::Order)
1203 Deps.push_back(P);
1204 for (int i = 0, e = Deps.size(); i != e; i++) {
1205 Topo.RemovePred(LastSU, Deps[i].getSUnit());
1206 LastSU->removePred(Deps[i]);
1207 }
1208
1209 // Add a dependence between the new instruction and the instruction
1210 // that defines the new base.
1211 SDep Dep(&I, SDep::Anti, NewBase);
1212 LastSU->addPred(Dep);
1213
1214 // Remember the base and offset information so that we can update the
1215 // instruction during code generation.
1216 InstrChanges[&I] = std::make_pair(NewBase, NewOffset);
1217 }
1218}
1219
1220namespace {
1221// FuncUnitSorter - Comparison operator used to sort instructions by
1222// the number of functional unit choices.
1223struct FuncUnitSorter {
1224 const InstrItineraryData *InstrItins;
1225 DenseMap<unsigned, unsigned> Resources;
1226
1227 // Compute the number of functional unit alternatives needed
1228 // at each stage, and take the minimum value. We prioritize the
1229 // instructions by the least number of choices first.
1230 unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const {
1231 unsigned schedClass = Inst->getDesc().getSchedClass();
1232 unsigned min = UINT_MAX;
1233 for (const InstrStage *IS = InstrItins->beginStage(schedClass),
1234 *IE = InstrItins->endStage(schedClass);
1235 IS != IE; ++IS) {
1236 unsigned funcUnits = IS->getUnits();
1237 unsigned numAlternatives = countPopulation(funcUnits);
1238 if (numAlternatives < min) {
1239 min = numAlternatives;
1240 F = funcUnits;
1241 }
1242 }
1243 return min;
1244 }
1245
1246 // Compute the critical resources needed by the instruction. This
1247 // function records the functional units needed by instructions that
1248 // must use only one functional unit. We use this as a tie breaker
1249 // for computing the resource MII. The instrutions that require
1250 // the same, highly used, functional unit have high priority.
1251 void calcCriticalResources(MachineInstr &MI) {
1252 unsigned SchedClass = MI.getDesc().getSchedClass();
1253 for (const InstrStage *IS = InstrItins->beginStage(SchedClass),
1254 *IE = InstrItins->endStage(SchedClass);
1255 IS != IE; ++IS) {
1256 unsigned FuncUnits = IS->getUnits();
1257 if (countPopulation(FuncUnits) == 1)
1258 Resources[FuncUnits]++;
1259 }
1260 }
1261
1262 FuncUnitSorter(const InstrItineraryData *IID) : InstrItins(IID) {}
1263 /// Return true if IS1 has less priority than IS2.
1264 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const {
1265 unsigned F1 = 0, F2 = 0;
1266 unsigned MFUs1 = minFuncUnits(IS1, F1);
1267 unsigned MFUs2 = minFuncUnits(IS2, F2);
1268 if (MFUs1 == 1 && MFUs2 == 1)
1269 return Resources.lookup(F1) < Resources.lookup(F2);
1270 return MFUs1 > MFUs2;
1271 }
1272};
1273}
1274
1275/// Calculate the resource constrained minimum initiation interval for the
1276/// specified loop. We use the DFA to model the resources needed for
1277/// each instruction, and we ignore dependences. A different DFA is created
1278/// for each cycle that is required. When adding a new instruction, we attempt
1279/// to add it to each existing DFA, until a legal space is found. If the
1280/// instruction cannot be reserved in an existing DFA, we create a new one.
1281unsigned SwingSchedulerDAG::calculateResMII() {
1282 SmallVector<DFAPacketizer *, 8> Resources;
1283 MachineBasicBlock *MBB = Loop.getHeader();
1284 Resources.push_back(TII->CreateTargetScheduleState(MF.getSubtarget()));
1285
1286 // Sort the instructions by the number of available choices for scheduling,
1287 // least to most. Use the number of critical resources as the tie breaker.
1288 FuncUnitSorter FUS =
1289 FuncUnitSorter(MF.getSubtarget().getInstrItineraryData());
1290 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
1291 E = MBB->getFirstTerminator();
1292 I != E; ++I)
1293 FUS.calcCriticalResources(*I);
1294 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter>
1295 FuncUnitOrder(FUS);
1296
1297 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
1298 E = MBB->getFirstTerminator();
1299 I != E; ++I)
1300 FuncUnitOrder.push(&*I);
1301
1302 while (!FuncUnitOrder.empty()) {
1303 MachineInstr *MI = FuncUnitOrder.top();
1304 FuncUnitOrder.pop();
1305 if (TII->isZeroCost(MI->getOpcode()))
1306 continue;
1307 // Attempt to reserve the instruction in an existing DFA. At least one
1308 // DFA is needed for each cycle.
1309 unsigned NumCycles = getSUnit(MI)->Latency;
1310 unsigned ReservedCycles = 0;
1311 SmallVectorImpl<DFAPacketizer *>::iterator RI = Resources.begin();
1312 SmallVectorImpl<DFAPacketizer *>::iterator RE = Resources.end();
1313 for (unsigned C = 0; C < NumCycles; ++C)
1314 while (RI != RE) {
1315 if ((*RI++)->canReserveResources(*MI)) {
1316 ++ReservedCycles;
1317 break;
1318 }
1319 }
1320 // Start reserving resources using existing DFAs.
1321 for (unsigned C = 0; C < ReservedCycles; ++C) {
1322 --RI;
1323 (*RI)->reserveResources(*MI);
1324 }
1325 // Add new DFAs, if needed, to reserve resources.
1326 for (unsigned C = ReservedCycles; C < NumCycles; ++C) {
1327 DFAPacketizer *NewResource =
1328 TII->CreateTargetScheduleState(MF.getSubtarget());
1329 assert(NewResource->canReserveResources(*MI) && "Reserve error.");
1330 NewResource->reserveResources(*MI);
1331 Resources.push_back(NewResource);
1332 }
1333 }
1334 int Resmii = Resources.size();
1335 // Delete the memory for each of the DFAs that were created earlier.
1336 for (DFAPacketizer *RI : Resources) {
1337 DFAPacketizer *D = RI;
1338 delete D;
1339 }
1340 Resources.clear();
1341 return Resmii;
1342}
1343
1344/// Calculate the recurrence-constrainted minimum initiation interval.
1345/// Iterate over each circuit. Compute the delay(c) and distance(c)
1346/// for each circuit. The II needs to satisfy the inequality
1347/// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest
1348/// II that satistifies the inequality, and the RecMII is the maximum
1349/// of those values.
1350unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) {
1351 unsigned RecMII = 0;
1352
1353 for (NodeSet &Nodes : NodeSets) {
1354 if (Nodes.size() == 0)
1355 continue;
1356
1357 unsigned Delay = Nodes.size() - 1;
1358 unsigned Distance = 1;
1359
1360 // ii = ceil(delay / distance)
1361 unsigned CurMII = (Delay + Distance - 1) / Distance;
1362 Nodes.setRecMII(CurMII);
1363 if (CurMII > RecMII)
1364 RecMII = CurMII;
1365 }
1366
1367 return RecMII;
1368}
1369
1370/// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1371/// but we do this to find the circuits, and then change them back.
1372static void swapAntiDependences(std::vector<SUnit> &SUnits) {
1373 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded;
1374 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1375 SUnit *SU = &SUnits[i];
1376 for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end();
1377 IP != EP; ++IP) {
1378 if (IP->getKind() != SDep::Anti)
1379 continue;
1380 DepsAdded.push_back(std::make_pair(SU, *IP));
1381 }
1382 }
1383 for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(),
1384 E = DepsAdded.end();
1385 I != E; ++I) {
1386 // Remove this anti dependency and add one in the reverse direction.
1387 SUnit *SU = I->first;
1388 SDep &D = I->second;
1389 SUnit *TargetSU = D.getSUnit();
1390 unsigned Reg = D.getReg();
1391 unsigned Lat = D.getLatency();
1392 SU->removePred(D);
1393 SDep Dep(SU, SDep::Anti, Reg);
1394 Dep.setLatency(Lat);
1395 TargetSU->addPred(Dep);
1396 }
1397}
1398
1399/// Create the adjacency structure of the nodes in the graph.
1400void SwingSchedulerDAG::Circuits::createAdjacencyStructure(
1401 SwingSchedulerDAG *DAG) {
1402 BitVector Added(SUnits.size());
1403 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1404 Added.reset();
1405 // Add any successor to the adjacency matrix and exclude duplicates.
1406 for (auto &SI : SUnits[i].Succs) {
1407 // Do not process a boundary node and a back-edge is processed only
1408 // if it goes to a Phi.
1409 if (SI.getSUnit()->isBoundaryNode() ||
1410 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI()))
1411 continue;
1412 int N = SI.getSUnit()->NodeNum;
1413 if (!Added.test(N)) {
1414 AdjK[i].push_back(N);
1415 Added.set(N);
1416 }
1417 }
1418 // A chain edge between a store and a load is treated as a back-edge in the
1419 // adjacency matrix.
1420 for (auto &PI : SUnits[i].Preds) {
1421 if (!SUnits[i].getInstr()->mayStore() ||
1422 !DAG->isLoopCarriedOrder(&SUnits[i], PI, false))
1423 continue;
1424 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) {
1425 int N = PI.getSUnit()->NodeNum;
1426 if (!Added.test(N)) {
1427 AdjK[i].push_back(N);
1428 Added.set(N);
1429 }
1430 }
1431 }
1432 }
1433}
1434
1435/// Identify an elementary circuit in the dependence graph starting at the
1436/// specified node.
1437bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets,
1438 bool HasBackedge) {
1439 SUnit *SV = &SUnits[V];
1440 bool F = false;
1441 Stack.insert(SV);
1442 Blocked.set(V);
1443
1444 for (auto W : AdjK[V]) {
1445 if (NumPaths > MaxPaths)
1446 break;
1447 if (W < S)
1448 continue;
1449 if (W == S) {
1450 if (!HasBackedge)
1451 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end()));
1452 F = true;
1453 ++NumPaths;
1454 break;
1455 } else if (!Blocked.test(W)) {
1456 if (circuit(W, S, NodeSets, W < V ? true : HasBackedge))
1457 F = true;
1458 }
1459 }
1460
1461 if (F)
1462 unblock(V);
1463 else {
1464 for (auto W : AdjK[V]) {
1465 if (W < S)
1466 continue;
1467 if (B[W].count(SV) == 0)
1468 B[W].insert(SV);
1469 }
1470 }
1471 Stack.pop_back();
1472 return F;
1473}
1474
1475/// Unblock a node in the circuit finding algorithm.
1476void SwingSchedulerDAG::Circuits::unblock(int U) {
1477 Blocked.reset(U);
1478 SmallPtrSet<SUnit *, 4> &BU = B[U];
1479 while (!BU.empty()) {
1480 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin();
1481 assert(SI != BU.end() && "Invalid B set.");
1482 SUnit *W = *SI;
1483 BU.erase(W);
1484 if (Blocked.test(W->NodeNum))
1485 unblock(W->NodeNum);
1486 }
1487}
1488
1489/// Identify all the elementary circuits in the dependence graph using
1490/// Johnson's circuit algorithm.
1491void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) {
1492 // Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1493 // but we do this to find the circuits, and then change them back.
1494 swapAntiDependences(SUnits);
1495
1496 Circuits Cir(SUnits);
1497 // Create the adjacency structure.
1498 Cir.createAdjacencyStructure(this);
1499 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1500 Cir.reset();
1501 Cir.circuit(i, i, NodeSets);
1502 }
1503
1504 // Change the dependences back so that we've created a DAG again.
1505 swapAntiDependences(SUnits);
1506}
1507
1508/// Return true for DAG nodes that we ignore when computing the cost functions.
1509/// We ignore the back-edge recurrence in order to avoid unbounded recurison
1510/// in the calculation of the ASAP, ALAP, etc functions.
1511static bool ignoreDependence(const SDep &D, bool isPred) {
1512 if (D.isArtificial())
1513 return true;
1514 return D.getKind() == SDep::Anti && isPred;
1515}
1516
1517/// Compute several functions need to order the nodes for scheduling.
1518/// ASAP - Earliest time to schedule a node.
1519/// ALAP - Latest time to schedule a node.
1520/// MOV - Mobility function, difference between ALAP and ASAP.
1521/// D - Depth of each node.
1522/// H - Height of each node.
1523void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) {
1524
1525 ScheduleInfo.resize(SUnits.size());
1526
1527 DEBUG({
1528 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
1529 E = Topo.end();
1530 I != E; ++I) {
1531 SUnit *SU = &SUnits[*I];
1532 SU->dump(this);
1533 }
1534 });
1535
1536 int maxASAP = 0;
1537 // Compute ASAP.
1538 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
1539 E = Topo.end();
1540 I != E; ++I) {
1541 int asap = 0;
1542 SUnit *SU = &SUnits[*I];
1543 for (SUnit::const_pred_iterator IP = SU->Preds.begin(),
1544 EP = SU->Preds.end();
1545 IP != EP; ++IP) {
1546 if (ignoreDependence(*IP, true))
1547 continue;
1548 SUnit *pred = IP->getSUnit();
1549 asap = std::max(asap, (int)(getASAP(pred) + getLatency(SU, *IP) -
1550 getDistance(pred, SU, *IP) * MII));
1551 }
1552 maxASAP = std::max(maxASAP, asap);
1553 ScheduleInfo[*I].ASAP = asap;
1554 }
1555
1556 // Compute ALAP and MOV.
1557 for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(),
1558 E = Topo.rend();
1559 I != E; ++I) {
1560 int alap = maxASAP;
1561 SUnit *SU = &SUnits[*I];
1562 for (SUnit::const_succ_iterator IS = SU->Succs.begin(),
1563 ES = SU->Succs.end();
1564 IS != ES; ++IS) {
1565 if (ignoreDependence(*IS, true))
1566 continue;
1567 SUnit *succ = IS->getSUnit();
1568 alap = std::min(alap, (int)(getALAP(succ) - getLatency(SU, *IS) +
1569 getDistance(SU, succ, *IS) * MII));
1570 }
1571
1572 ScheduleInfo[*I].ALAP = alap;
1573 }
1574
1575 // After computing the node functions, compute the summary for each node set.
1576 for (NodeSet &I : NodeSets)
1577 I.computeNodeSetInfo(this);
1578
1579 DEBUG({
1580 for (unsigned i = 0; i < SUnits.size(); i++) {
1581 dbgs() << "\tNode " << i << ":\n";
1582 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n";
1583 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n";
1584 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n";
1585 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n";
1586 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n";
1587 }
1588 });
1589}
1590
1591/// Compute the Pred_L(O) set, as defined in the paper. The set is defined
1592/// as the predecessors of the elements of NodeOrder that are not also in
1593/// NodeOrder.
1594static bool pred_L(SetVector<SUnit *> &NodeOrder,
1595 SmallSetVector<SUnit *, 8> &Preds,
1596 const NodeSet *S = nullptr) {
1597 Preds.clear();
1598 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1599 I != E; ++I) {
1600 for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end();
1601 PI != PE; ++PI) {
1602 if (S && S->count(PI->getSUnit()) == 0)
1603 continue;
1604 if (ignoreDependence(*PI, true))
1605 continue;
1606 if (NodeOrder.count(PI->getSUnit()) == 0)
1607 Preds.insert(PI->getSUnit());
1608 }
1609 // Back-edges are predecessors with an anti-dependence.
1610 for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(),
1611 ES = (*I)->Succs.end();
1612 IS != ES; ++IS) {
1613 if (IS->getKind() != SDep::Anti)
1614 continue;
1615 if (S && S->count(IS->getSUnit()) == 0)
1616 continue;
1617 if (NodeOrder.count(IS->getSUnit()) == 0)
1618 Preds.insert(IS->getSUnit());
1619 }
1620 }
1621 return Preds.size() > 0;
1622}
1623
1624/// Compute the Succ_L(O) set, as defined in the paper. The set is defined
1625/// as the successors of the elements of NodeOrder that are not also in
1626/// NodeOrder.
1627static bool succ_L(SetVector<SUnit *> &NodeOrder,
1628 SmallSetVector<SUnit *, 8> &Succs,
1629 const NodeSet *S = nullptr) {
1630 Succs.clear();
1631 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1632 I != E; ++I) {
1633 for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end();
1634 SI != SE; ++SI) {
1635 if (S && S->count(SI->getSUnit()) == 0)
1636 continue;
1637 if (ignoreDependence(*SI, false))
1638 continue;
1639 if (NodeOrder.count(SI->getSUnit()) == 0)
1640 Succs.insert(SI->getSUnit());
1641 }
1642 for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(),
1643 PE = (*I)->Preds.end();
1644 PI != PE; ++PI) {
1645 if (PI->getKind() != SDep::Anti)
1646 continue;
1647 if (S && S->count(PI->getSUnit()) == 0)
1648 continue;
1649 if (NodeOrder.count(PI->getSUnit()) == 0)
1650 Succs.insert(PI->getSUnit());
1651 }
1652 }
1653 return Succs.size() > 0;
1654}
1655
1656/// Return true if there is a path from the specified node to any of the nodes
1657/// in DestNodes. Keep track and return the nodes in any path.
1658static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path,
1659 SetVector<SUnit *> &DestNodes,
1660 SetVector<SUnit *> &Exclude,
1661 SmallPtrSet<SUnit *, 8> &Visited) {
1662 if (Cur->isBoundaryNode())
1663 return false;
1664 if (Exclude.count(Cur) != 0)
1665 return false;
1666 if (DestNodes.count(Cur) != 0)
1667 return true;
1668 if (!Visited.insert(Cur).second)
1669 return Path.count(Cur) != 0;
1670 bool FoundPath = false;
1671 for (auto &SI : Cur->Succs)
1672 FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited);
1673 for (auto &PI : Cur->Preds)
1674 if (PI.getKind() == SDep::Anti)
1675 FoundPath |=
1676 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited);
1677 if (FoundPath)
1678 Path.insert(Cur);
1679 return FoundPath;
1680}
1681
1682/// Return true if Set1 is a subset of Set2.
1683template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) {
1684 for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I)
1685 if (Set2.count(*I) == 0)
1686 return false;
1687 return true;
1688}
1689
1690/// Compute the live-out registers for the instructions in a node-set.
1691/// The live-out registers are those that are defined in the node-set,
1692/// but not used. Except for use operands of Phis.
1693static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker,
1694 NodeSet &NS) {
1695 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1696 MachineRegisterInfo &MRI = MF.getRegInfo();
1697 SmallVector<RegisterMaskPair, 8> LiveOutRegs;
1698 SmallSet<unsigned, 4> Uses;
1699 for (SUnit *SU : NS) {
1700 const MachineInstr *MI = SU->getInstr();
1701 if (MI->isPHI())
1702 continue;
1703 for (ConstMIOperands MO(*MI); MO.isValid(); ++MO)
1704 if (MO->isReg() && MO->isUse()) {
1705 unsigned Reg = MO->getReg();
1706 if (TargetRegisterInfo::isVirtualRegister(Reg))
1707 Uses.insert(Reg);
1708 else if (MRI.isAllocatable(Reg))
1709 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1710 Uses.insert(*Units);
1711 }
1712 }
1713 for (SUnit *SU : NS)
1714 for (ConstMIOperands MO(*SU->getInstr()); MO.isValid(); ++MO)
1715 if (MO->isReg() && MO->isDef() && !MO->isDead()) {
1716 unsigned Reg = MO->getReg();
1717 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1718 if (!Uses.count(Reg))
1719 LiveOutRegs.push_back(RegisterMaskPair(Reg, 0));
1720 } else if (MRI.isAllocatable(Reg)) {
1721 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1722 if (!Uses.count(*Units))
1723 LiveOutRegs.push_back(RegisterMaskPair(*Units, 0));
1724 }
1725 }
1726 RPTracker.addLiveRegs(LiveOutRegs);
1727}
1728
1729/// A heuristic to filter nodes in recurrent node-sets if the register
1730/// pressure of a set is too high.
1731void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) {
1732 for (auto &NS : NodeSets) {
1733 // Skip small node-sets since they won't cause register pressure problems.
1734 if (NS.size() <= 2)
1735 continue;
1736 IntervalPressure RecRegPressure;
1737 RegPressureTracker RecRPTracker(RecRegPressure);
1738 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true);
1739 computeLiveOuts(MF, RecRPTracker, NS);
1740 RecRPTracker.closeBottom();
1741
1742 std::vector<SUnit *> SUnits(NS.begin(), NS.end());
1743 std::sort(SUnits.begin(), SUnits.end(), [](const SUnit *A, const SUnit *B) {
1744 return A->NodeNum > B->NodeNum;
1745 });
1746
1747 for (auto &SU : SUnits) {
1748 // Since we're computing the register pressure for a subset of the
1749 // instructions in a block, we need to set the tracker for each
1750 // instruction in the node-set. The tracker is set to the instruction
1751 // just after the one we're interested in.
1752 MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
1753 RecRPTracker.setPos(std::next(CurInstI));
1754
1755 RegPressureDelta RPDelta;
1756 ArrayRef<PressureChange> CriticalPSets;
1757 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta,
1758 CriticalPSets,
1759 RecRegPressure.MaxSetPressure);
1760 if (RPDelta.Excess.isValid()) {
1761 DEBUG(dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") "
1762 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet())
1763 << ":" << RPDelta.Excess.getUnitInc());
1764 NS.setExceedPressure(SU);
1765 break;
1766 }
1767 RecRPTracker.recede();
1768 }
1769 }
1770}
1771
1772/// A heuristic to colocate node sets that have the same set of
1773/// successors.
1774void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) {
1775 unsigned Colocate = 0;
1776 for (int i = 0, e = NodeSets.size(); i < e; ++i) {
1777 NodeSet &N1 = NodeSets[i];
1778 SmallSetVector<SUnit *, 8> S1;
1779 if (N1.empty() || !succ_L(N1, S1))
1780 continue;
1781 for (int j = i + 1; j < e; ++j) {
1782 NodeSet &N2 = NodeSets[j];
1783 if (N1.compareRecMII(N2) != 0)
1784 continue;
1785 SmallSetVector<SUnit *, 8> S2;
1786 if (N2.empty() || !succ_L(N2, S2))
1787 continue;
1788 if (isSubset(S1, S2) && S1.size() == S2.size()) {
1789 N1.setColocate(++Colocate);
1790 N2.setColocate(Colocate);
1791 break;
1792 }
1793 }
1794 }
1795}
1796
1797/// Check if the existing node-sets are profitable. If not, then ignore the
1798/// recurrent node-sets, and attempt to schedule all nodes together. This is
1799/// a heuristic. If the MII is large and there is a non-recurrent node with
1800/// a large depth compared to the MII, then it's best to try and schedule
1801/// all instruction together instead of starting with the recurrent node-sets.
1802void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) {
1803 // Look for loops with a large MII.
1804 if (MII <= 20)
1805 return;
1806 // Check if the node-set contains only a simple add recurrence.
1807 for (auto &NS : NodeSets)
1808 if (NS.size() > 2)
1809 return;
1810 // If the depth of any instruction is significantly larger than the MII, then
1811 // ignore the recurrent node-sets and treat all instructions equally.
1812 for (auto &SU : SUnits)
1813 if (SU.getDepth() > MII * 1.5) {
1814 NodeSets.clear();
1815 DEBUG(dbgs() << "Clear recurrence node-sets\n");
1816 return;
1817 }
1818}
1819
1820/// Add the nodes that do not belong to a recurrence set into groups
1821/// based upon connected componenets.
1822void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) {
1823 SetVector<SUnit *> NodesAdded;
1824 SmallPtrSet<SUnit *, 8> Visited;
1825 // Add the nodes that are on a path between the previous node sets and
1826 // the current node set.
1827 for (NodeSet &I : NodeSets) {
1828 SmallSetVector<SUnit *, 8> N;
1829 // Add the nodes from the current node set to the previous node set.
1830 if (succ_L(I, N)) {
1831 SetVector<SUnit *> Path;
1832 for (SUnit *NI : N) {
1833 Visited.clear();
1834 computePath(NI, Path, NodesAdded, I, Visited);
1835 }
1836 if (Path.size() > 0)
1837 I.insert(Path.begin(), Path.end());
1838 }
1839 // Add the nodes from the previous node set to the current node set.
1840 N.clear();
1841 if (succ_L(NodesAdded, N)) {
1842 SetVector<SUnit *> Path;
1843 for (SUnit *NI : N) {
1844 Visited.clear();
1845 computePath(NI, Path, I, NodesAdded, Visited);
1846 }
1847 if (Path.size() > 0)
1848 I.insert(Path.begin(), Path.end());
1849 }
1850 NodesAdded.insert(I.begin(), I.end());
1851 }
1852
1853 // Create a new node set with the connected nodes of any successor of a node
1854 // in a recurrent set.
1855 NodeSet NewSet;
1856 SmallSetVector<SUnit *, 8> N;
1857 if (succ_L(NodesAdded, N))
1858 for (SUnit *I : N)
1859 addConnectedNodes(I, NewSet, NodesAdded);
1860 if (NewSet.size() > 0)
1861 NodeSets.push_back(NewSet);
1862
1863 // Create a new node set with the connected nodes of any predecessor of a node
1864 // in a recurrent set.
1865 NewSet.clear();
1866 if (pred_L(NodesAdded, N))
1867 for (SUnit *I : N)
1868 addConnectedNodes(I, NewSet, NodesAdded);
1869 if (NewSet.size() > 0)
1870 NodeSets.push_back(NewSet);
1871
1872 // Create new nodes sets with the connected nodes any any remaining node that
1873 // has no predecessor.
1874 for (unsigned i = 0; i < SUnits.size(); ++i) {
1875 SUnit *SU = &SUnits[i];
1876 if (NodesAdded.count(SU) == 0) {
1877 NewSet.clear();
1878 addConnectedNodes(SU, NewSet, NodesAdded);
1879 if (NewSet.size() > 0)
1880 NodeSets.push_back(NewSet);
1881 }
1882 }
1883}
1884
1885/// Add the node to the set, and add all is its connected nodes to the set.
1886void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet,
1887 SetVector<SUnit *> &NodesAdded) {
1888 NewSet.insert(SU);
1889 NodesAdded.insert(SU);
1890 for (auto &SI : SU->Succs) {
1891 SUnit *Successor = SI.getSUnit();
1892 if (!SI.isArtificial() && NodesAdded.count(Successor) == 0)
1893 addConnectedNodes(Successor, NewSet, NodesAdded);
1894 }
1895 for (auto &PI : SU->Preds) {
1896 SUnit *Predecessor = PI.getSUnit();
1897 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0)
1898 addConnectedNodes(Predecessor, NewSet, NodesAdded);
1899 }
1900}
1901
1902/// Return true if Set1 contains elements in Set2. The elements in common
1903/// are returned in a different container.
1904static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2,
1905 SmallSetVector<SUnit *, 8> &Result) {
1906 Result.clear();
1907 for (unsigned i = 0, e = Set1.size(); i != e; ++i) {
1908 SUnit *SU = Set1[i];
1909 if (Set2.count(SU) != 0)
1910 Result.insert(SU);
1911 }
1912 return !Result.empty();
1913}
1914
1915/// Merge the recurrence node sets that have the same initial node.
1916void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) {
1917 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1918 ++I) {
1919 NodeSet &NI = *I;
1920 for (NodeSetType::iterator J = I + 1; J != E;) {
1921 NodeSet &NJ = *J;
1922 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) {
1923 if (NJ.compareRecMII(NI) > 0)
1924 NI.setRecMII(NJ.getRecMII());
1925 for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI;
1926 ++NII)
1927 I->insert(*NII);
1928 NodeSets.erase(J);
1929 E = NodeSets.end();
1930 } else {
1931 ++J;
1932 }
1933 }
1934 }
1935}
1936
1937/// Remove nodes that have been scheduled in previous NodeSets.
1938void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) {
1939 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1940 ++I)
1941 for (NodeSetType::iterator J = I + 1; J != E;) {
1942 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); });
1943
1944 if (J->size() == 0) {
1945 NodeSets.erase(J);
1946 E = NodeSets.end();
1947 } else {
1948 ++J;
1949 }
1950 }
1951}
1952
1953/// Return true if Inst1 defines a value that is used in Inst2.
1954static bool hasDataDependence(SUnit *Inst1, SUnit *Inst2) {
1955 for (auto &SI : Inst1->Succs)
1956 if (SI.getSUnit() == Inst2 && SI.getKind() == SDep::Data)
1957 return true;
1958 return false;
1959}
1960
1961/// Compute an ordered list of the dependence graph nodes, which
1962/// indicates the order that the nodes will be scheduled. This is a
1963/// two-level algorithm. First, a partial order is created, which
1964/// consists of a list of sets ordered from highest to lowest priority.
1965void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) {
1966 SmallSetVector<SUnit *, 8> R;
1967 NodeOrder.clear();
1968
1969 for (auto &Nodes : NodeSets) {
1970 DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n");
1971 OrderKind Order;
1972 SmallSetVector<SUnit *, 8> N;
1973 if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) {
1974 R.insert(N.begin(), N.end());
1975 Order = BottomUp;
1976 DEBUG(dbgs() << " Bottom up (preds) ");
1977 } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) {
1978 R.insert(N.begin(), N.end());
1979 Order = TopDown;
1980 DEBUG(dbgs() << " Top down (succs) ");
1981 } else if (isIntersect(N, Nodes, R)) {
1982 // If some of the successors are in the existing node-set, then use the
1983 // top-down ordering.
1984 Order = TopDown;
1985 DEBUG(dbgs() << " Top down (intersect) ");
1986 } else if (NodeSets.size() == 1) {
1987 for (auto &N : Nodes)
1988 if (N->Succs.size() == 0)
1989 R.insert(N);
1990 Order = BottomUp;
1991 DEBUG(dbgs() << " Bottom up (all) ");
1992 } else {
1993 // Find the node with the highest ASAP.
1994 SUnit *maxASAP = nullptr;
1995 for (SUnit *SU : Nodes) {
1996 if (maxASAP == nullptr || getASAP(SU) >= getASAP(maxASAP))
1997 maxASAP = SU;
1998 }
1999 R.insert(maxASAP);
2000 Order = BottomUp;
2001 DEBUG(dbgs() << " Bottom up (default) ");
2002 }
2003
2004 while (!R.empty()) {
2005 if (Order == TopDown) {
2006 // Choose the node with the maximum height. If more than one, choose
2007 // the node with the lowest MOV. If still more than one, check if there
2008 // is a dependence between the instructions.
2009 while (!R.empty()) {
2010 SUnit *maxHeight = nullptr;
2011 for (SUnit *I : R) {
2012 if (maxHeight == 0 || getHeight(I) > getHeight(maxHeight))
2013 maxHeight = I;
2014 else if (getHeight(I) == getHeight(maxHeight) &&
2015 getMOV(I) < getMOV(maxHeight) &&
2016 !hasDataDependence(maxHeight, I))
2017 maxHeight = I;
2018 else if (hasDataDependence(I, maxHeight))
2019 maxHeight = I;
2020 }
2021 NodeOrder.insert(maxHeight);
2022 DEBUG(dbgs() << maxHeight->NodeNum << " ");
2023 R.remove(maxHeight);
2024 for (const auto &I : maxHeight->Succs) {
2025 if (Nodes.count(I.getSUnit()) == 0)
2026 continue;
2027 if (NodeOrder.count(I.getSUnit()) != 0)
2028 continue;
2029 if (ignoreDependence(I, false))
2030 continue;
2031 R.insert(I.getSUnit());
2032 }
2033 // Back-edges are predecessors with an anti-dependence.
2034 for (const auto &I : maxHeight->Preds) {
2035 if (I.getKind() != SDep::Anti)
2036 continue;
2037 if (Nodes.count(I.getSUnit()) == 0)
2038 continue;
2039 if (NodeOrder.count(I.getSUnit()) != 0)
2040 continue;
2041 R.insert(I.getSUnit());
2042 }
2043 }
2044 Order = BottomUp;
2045 DEBUG(dbgs() << "\n Switching order to bottom up ");
2046 SmallSetVector<SUnit *, 8> N;
2047 if (pred_L(NodeOrder, N, &Nodes))
2048 R.insert(N.begin(), N.end());
2049 } else {
2050 // Choose the node with the maximum depth. If more than one, choose
2051 // the node with the lowest MOV. If there is still more than one, check
2052 // for a dependence between the instructions.
2053 while (!R.empty()) {
2054 SUnit *maxDepth = nullptr;
2055 for (SUnit *I : R) {
2056 if (maxDepth == 0 || getDepth(I) > getDepth(maxDepth))
2057 maxDepth = I;
2058 else if (getDepth(I) == getDepth(maxDepth) &&
2059 getMOV(I) < getMOV(maxDepth) &&
2060 !hasDataDependence(I, maxDepth))
2061 maxDepth = I;
2062 else if (hasDataDependence(maxDepth, I))
2063 maxDepth = I;
2064 }
2065 NodeOrder.insert(maxDepth);
2066 DEBUG(dbgs() << maxDepth->NodeNum << " ");
2067 R.remove(maxDepth);
2068 if (Nodes.isExceedSU(maxDepth)) {
2069 Order = TopDown;
2070 R.clear();
2071 R.insert(Nodes.getNode(0));
2072 break;
2073 }
2074 for (const auto &I : maxDepth->Preds) {
2075 if (Nodes.count(I.getSUnit()) == 0)
2076 continue;
2077 if (NodeOrder.count(I.getSUnit()) != 0)
2078 continue;
2079 if (I.getKind() == SDep::Anti)
2080 continue;
2081 R.insert(I.getSUnit());
2082 }
2083 // Back-edges are predecessors with an anti-dependence.
2084 for (const auto &I : maxDepth->Succs) {
2085 if (I.getKind() != SDep::Anti)
2086 continue;
2087 if (Nodes.count(I.getSUnit()) == 0)
2088 continue;
2089 if (NodeOrder.count(I.getSUnit()) != 0)
2090 continue;
2091 R.insert(I.getSUnit());
2092 }
2093 }
2094 Order = TopDown;
2095 DEBUG(dbgs() << "\n Switching order to top down ");
2096 SmallSetVector<SUnit *, 8> N;
2097 if (succ_L(NodeOrder, N, &Nodes))
2098 R.insert(N.begin(), N.end());
2099 }
2100 }
2101 DEBUG(dbgs() << "\nDone with Nodeset\n");
2102 }
2103
2104 DEBUG({
2105 dbgs() << "Node order: ";
2106 for (SUnit *I : NodeOrder)
2107 dbgs() << " " << I->NodeNum << " ";
2108 dbgs() << "\n";
2109 });
2110}
2111
2112/// Process the nodes in the computed order and create the pipelined schedule
2113/// of the instructions, if possible. Return true if a schedule is found.
2114bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) {
2115
2116 if (NodeOrder.size() == 0)
2117 return false;
2118
2119 bool scheduleFound = false;
2120 // Keep increasing II until a valid schedule is found.
2121 for (unsigned II = MII; II < MII + 10 && !scheduleFound; ++II) {
2122 Schedule.reset();
2123 Schedule.setInitiationInterval(II);
2124 DEBUG(dbgs() << "Try to schedule with " << II << "\n");
2125
2126 SetVector<SUnit *>::iterator NI = NodeOrder.begin();
2127 SetVector<SUnit *>::iterator NE = NodeOrder.end();
2128 do {
2129 SUnit *SU = *NI;
2130
2131 // Compute the schedule time for the instruction, which is based
2132 // upon the scheduled time for any predecessors/successors.
2133 int EarlyStart = INT_MIN;
2134 int LateStart = INT_MAX;
2135 // These values are set when the size of the schedule window is limited
2136 // due to chain dependences.
2137 int SchedEnd = INT_MAX;
2138 int SchedStart = INT_MIN;
2139 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart,
2140 II, this);
2141 DEBUG({
2142 dbgs() << "Inst (" << SU->NodeNum << ") ";
2143 SU->getInstr()->dump();
2144 dbgs() << "\n";
2145 });
2146 DEBUG({
2147 dbgs() << "\tes: " << EarlyStart << " ls: " << LateStart
2148 << " me: " << SchedEnd << " ms: " << SchedStart << "\n";
2149 });
2150
2151 if (EarlyStart > LateStart || SchedEnd < EarlyStart ||
2152 SchedStart > LateStart)
2153 scheduleFound = false;
2154 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) {
2155 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1);
2156 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2157 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) {
2158 SchedStart = std::max(SchedStart, LateStart - (int)II + 1);
2159 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II);
2160 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) {
2161 SchedEnd =
2162 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1));
2163 // When scheduling a Phi it is better to start at the late cycle and go
2164 // backwards. The default order may insert the Phi too far away from
2165 // its first dependence.
2166 if (SU->getInstr()->isPHI())
2167 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II);
2168 else
2169 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2170 } else {
2171 int FirstCycle = Schedule.getFirstCycle();
2172 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU),
2173 FirstCycle + getASAP(SU) + II - 1, II);
2174 }
2175 // Even if we find a schedule, make sure the schedule doesn't exceed the
2176 // allowable number of stages. We keep trying if this happens.
2177 if (scheduleFound)
2178 if (SwpMaxStages > -1 &&
2179 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages)
2180 scheduleFound = false;
2181
2182 DEBUG({
2183 if (!scheduleFound)
2184 dbgs() << "\tCan't schedule\n";
2185 });
2186 } while (++NI != NE && scheduleFound);
2187
2188 // If a schedule is found, check if it is a valid schedule too.
2189 if (scheduleFound)
2190 scheduleFound = Schedule.isValidSchedule(this);
2191 }
2192
2193 DEBUG(dbgs() << "Schedule Found? " << scheduleFound << "\n");
2194
2195 if (scheduleFound)
2196 Schedule.finalizeSchedule(this);
2197 else
2198 Schedule.reset();
2199
2200 return scheduleFound && Schedule.getMaxStageCount() > 0;
2201}
2202
2203/// Given a schedule for the loop, generate a new version of the loop,
2204/// and replace the old version. This function generates a prolog
2205/// that contains the initial iterations in the pipeline, and kernel
2206/// loop, and the epilogue that contains the code for the final
2207/// iterations.
2208void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) {
2209 // Create a new basic block for the kernel and add it to the CFG.
2210 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
2211
2212 unsigned MaxStageCount = Schedule.getMaxStageCount();
2213
2214 // Remember the registers that are used in different stages. The index is
2215 // the iteration, or stage, that the instruction is scheduled in. This is
2216 // a map between register names in the orignal block and the names created
2217 // in each stage of the pipelined loop.
2218 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
2219 InstrMapTy InstrMap;
2220
2221 SmallVector<MachineBasicBlock *, 4> PrologBBs;
2222 // Generate the prolog instructions that set up the pipeline.
2223 generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs);
2224 MF.insert(BB->getIterator(), KernelBB);
2225
2226 // Rearrange the instructions to generate the new, pipelined loop,
2227 // and update register names as needed.
2228 for (int Cycle = Schedule.getFirstCycle(),
2229 LastCycle = Schedule.getFinalCycle();
2230 Cycle <= LastCycle; ++Cycle) {
2231 std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle);
2232 // This inner loop schedules each instruction in the cycle.
2233 for (SUnit *CI : CycleInstrs) {
2234 if (CI->getInstr()->isPHI())
2235 continue;
2236 unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr()));
2237 MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum);
2238 updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap);
2239 KernelBB->push_back(NewMI);
2240 InstrMap[NewMI] = CI->getInstr();
2241 }
2242 }
2243
2244 // Copy any terminator instructions to the new kernel, and update
2245 // names as needed.
2246 for (MachineBasicBlock::iterator I = BB->getFirstTerminator(),
2247 E = BB->instr_end();
2248 I != E; ++I) {
2249 MachineInstr *NewMI = MF.CloneMachineInstr(&*I);
2250 updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap);
2251 KernelBB->push_back(NewMI);
2252 InstrMap[NewMI] = &*I;
2253 }
2254
2255 KernelBB->transferSuccessors(BB);
2256 KernelBB->replaceSuccessor(BB, KernelBB);
2257
2258 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule,
2259 VRMap, InstrMap, MaxStageCount, MaxStageCount, false);
2260 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap,
2261 InstrMap, MaxStageCount, MaxStageCount, false);
2262
2263 DEBUG(dbgs() << "New block\n"; KernelBB->dump(););
2264
2265 SmallVector<MachineBasicBlock *, 4> EpilogBBs;
2266 // Generate the epilog instructions to complete the pipeline.
2267 generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs,
2268 PrologBBs);
2269
2270 // We need this step because the register allocation doesn't handle some
2271 // situations well, so we insert copies to help out.
2272 splitLifetimes(KernelBB, EpilogBBs, Schedule);
2273
2274 // Remove dead instructions due to loop induction variables.
2275 removeDeadInstructions(KernelBB, EpilogBBs);
2276
2277 // Add branches between prolog and epilog blocks.
2278 addBranches(PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap);
2279
2280 // Remove the original loop since it's no longer referenced.
2281 BB->clear();
2282 BB->eraseFromParent();
2283
2284 delete[] VRMap;
2285}
2286
2287/// Generate the pipeline prolog code.
2288void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage,
2289 MachineBasicBlock *KernelBB,
2290 ValueMapTy *VRMap,
2291 MBBVectorTy &PrologBBs) {
2292 MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader();
2293 assert(PreheaderBB != NULL &&
2294 "Need to add code to handle loops w/o preheader");
2295 MachineBasicBlock *PredBB = PreheaderBB;
2296 InstrMapTy InstrMap;
2297
2298 // Generate a basic block for each stage, not including the last stage,
2299 // which will be generated in the kernel. Each basic block may contain
2300 // instructions from multiple stages/iterations.
2301 for (unsigned i = 0; i < LastStage; ++i) {
2302 // Create and insert the prolog basic block prior to the original loop
2303 // basic block. The original loop is removed later.
2304 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
2305 PrologBBs.push_back(NewBB);
2306 MF.insert(BB->getIterator(), NewBB);
2307 NewBB->transferSuccessors(PredBB);
2308 PredBB->addSuccessor(NewBB);
2309 PredBB = NewBB;
2310
2311 // Generate instructions for each appropriate stage. Process instructions
2312 // in original program order.
2313 for (int StageNum = i; StageNum >= 0; --StageNum) {
2314 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
2315 BBE = BB->getFirstTerminator();
2316 BBI != BBE; ++BBI) {
2317 if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) {
2318 if (BBI->isPHI())
2319 continue;
2320 MachineInstr *NewMI =
2321 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule);
2322 updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule,
2323 VRMap);
2324 NewBB->push_back(NewMI);
2325 InstrMap[NewMI] = &*BBI;
2326 }
2327 }
2328 }
2329 rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap);
2330 DEBUG({
2331 dbgs() << "prolog:\n";
2332 NewBB->dump();
2333 });
2334 }
2335
2336 PredBB->replaceSuccessor(BB, KernelBB);
2337
2338 // Check if we need to remove the branch from the preheader to the original
2339 // loop, and replace it with a branch to the new loop.
2340 unsigned numBranches = TII->RemoveBranch(*PreheaderBB);
2341 if (numBranches) {
2342 SmallVector<MachineOperand, 0> Cond;
2343 TII->InsertBranch(*PreheaderBB, PrologBBs[0], 0, Cond, DebugLoc());
2344 }
2345}
2346
2347/// Generate the pipeline epilog code. The epilog code finishes the iterations
2348/// that were started in either the prolog or the kernel. We create a basic
2349/// block for each stage that needs to complete.
2350void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage,
2351 MachineBasicBlock *KernelBB,
2352 ValueMapTy *VRMap,
2353 MBBVectorTy &EpilogBBs,
2354 MBBVectorTy &PrologBBs) {
2355 // We need to change the branch from the kernel to the first epilog block, so
2356 // this call to analyze branch uses the kernel rather than the original BB.
2357 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
2358 SmallVector<MachineOperand, 4> Cond;
2359 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
2360 assert(!checkBranch && "generateEpilog must be able to analyze the branch");
2361 if (checkBranch)
2362 return;
2363
2364 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
2365 if (*LoopExitI == KernelBB)
2366 ++LoopExitI;
2367 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor");
2368 MachineBasicBlock *LoopExitBB = *LoopExitI;
2369
2370 MachineBasicBlock *PredBB = KernelBB;
2371 MachineBasicBlock *EpilogStart = LoopExitBB;
2372 InstrMapTy InstrMap;
2373
2374 // Generate a basic block for each stage, not including the last stage,
2375 // which was generated for the kernel. Each basic block may contain
2376 // instructions from multiple stages/iterations.
2377 int EpilogStage = LastStage + 1;
2378 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
2379 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
2380 EpilogBBs.push_back(NewBB);
2381 MF.insert(BB->getIterator(), NewBB);
2382
2383 PredBB->replaceSuccessor(LoopExitBB, NewBB);
2384 NewBB->addSuccessor(LoopExitBB);
2385
2386 if (EpilogStart == LoopExitBB)
2387 EpilogStart = NewBB;
2388
2389 // Add instructions to the epilog depending on the current block.
2390 // Process instructions in original program order.
2391 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
2392 for (auto &BBI : *BB) {
2393 if (BBI.isPHI())
2394 continue;
2395 MachineInstr *In = &BBI;
2396 if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) {
2397 MachineInstr *NewMI = cloneInstr(In, EpilogStage - LastStage, 0);
2398 updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap);
2399 NewBB->push_back(NewMI);
2400 InstrMap[NewMI] = In;
2401 }
2402 }
2403 }
2404 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule,
2405 VRMap, InstrMap, LastStage, EpilogStage, i == 1);
2406 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap,
2407 InstrMap, LastStage, EpilogStage, i == 1);
2408 PredBB = NewBB;
2409
2410 DEBUG({
2411 dbgs() << "epilog:\n";
2412 NewBB->dump();
2413 });
2414 }
2415
2416 // Fix any Phi nodes in the loop exit block.
2417 for (MachineInstr &MI : *LoopExitBB) {
2418 if (!MI.isPHI())
2419 break;
2420 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
2421 MachineOperand &MO = MI.getOperand(i);
2422 if (MO.getMBB() == BB)
2423 MO.setMBB(PredBB);
2424 }
2425 }
2426
2427 // Create a branch to the new epilog from the kernel.
2428 // Remove the original branch and add a new branch to the epilog.
2429 TII->RemoveBranch(*KernelBB);
2430 TII->InsertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
2431 // Add a branch to the loop exit.
2432 if (EpilogBBs.size() > 0) {
2433 MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
2434 SmallVector<MachineOperand, 4> Cond1;
2435 TII->InsertBranch(*LastEpilogBB, LoopExitBB, 0, Cond1, DebugLoc());
2436 }
2437}
2438
2439/// Replace all uses of FromReg that appear outside the specified
2440/// basic block with ToReg.
2441static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
2442 MachineBasicBlock *MBB,
2443 MachineRegisterInfo &MRI,
2444 LiveIntervals &LIS) {
2445 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg),
2446 E = MRI.use_end();
2447 I != E;) {
2448 MachineOperand &O = *I;
2449 ++I;
2450 if (O.getParent()->getParent() != MBB)
2451 O.setReg(ToReg);
2452 }
2453 if (!LIS.hasInterval(ToReg))
2454 LIS.createEmptyInterval(ToReg);
2455}
2456
2457/// Return true if the register has a use that occurs outside the
2458/// specified loop.
2459static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
2460 MachineRegisterInfo &MRI) {
2461 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg),
2462 E = MRI.use_end();
2463 I != E; ++I)
2464 if (I->getParent()->getParent() != BB)
2465 return true;
2466 return false;
2467}
2468
2469/// Generate Phis for the specific block in the generated pipelined code.
2470/// This function looks at the Phis from the original code to guide the
2471/// creation of new Phis.
2472void SwingSchedulerDAG::generateExistingPhis(
2473 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
2474 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
2475 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
2476 bool IsLast) {
2477 // Compute the stage number for the inital value of the Phi, which
2478 // comes from the prolog. The prolog to use depends on to which kernel/
2479 // epilog that we're adding the Phi.
2480 unsigned PrologStage = 0;
2481 unsigned PrevStage = 0;
2482 bool InKernel = (LastStageNum == CurStageNum);
2483 if (InKernel) {
2484 PrologStage = LastStageNum - 1;
2485 PrevStage = CurStageNum;
2486 } else {
2487 PrologStage = LastStageNum - (CurStageNum - LastStageNum);
2488 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
2489 }
2490
2491 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
2492 BBE = BB->getFirstNonPHI();
2493 BBI != BBE; ++BBI) {
2494 unsigned Def = BBI->getOperand(0).getReg();
2495
2496 unsigned InitVal = 0;
2497 unsigned LoopVal = 0;
2498 getPhiRegs(*BBI, BB, InitVal, LoopVal);
2499
2500 unsigned PhiOp1 = 0;
2501 // The Phi value from the loop body typically is defined in the loop, but
2502 // not always. So, we need to check if the value is defined in the loop.
2503 unsigned PhiOp2 = LoopVal;
2504 if (VRMap[LastStageNum].count(LoopVal))
2505 PhiOp2 = VRMap[LastStageNum][LoopVal];
2506
2507 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
2508 int LoopValStage =
2509 Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
2510 unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum);
2511 if (NumStages == 0) {
2512 // We don't need to generate a Phi anymore, but we need to rename any uses
2513 // of the Phi value.
2514 unsigned NewReg = VRMap[PrevStage][LoopVal];
2515 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI,
2516 Def, NewReg);
2517 if (VRMap[CurStageNum].count(LoopVal))
2518 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
2519 }
2520 // Adjust the number of Phis needed depending on the number of prologs left,
2521 // and the distance from where the Phi is first scheduled.
2522 unsigned NumPhis = NumStages;
2523 if (!InKernel && (int)PrologStage < LoopValStage)
2524 // The NumPhis is the maximum number of new Phis needed during the steady
2525 // state. If the Phi has not been scheduled in current prolog, then we
2526 // need to generate less Phis.
2527 NumPhis = std::max((int)NumPhis - (int)(LoopValStage - PrologStage), 1);
2528 // The number of Phis cannot exceed the number of prolog stages. Each
2529 // stage can potentially define two values.
2530 NumPhis = std::min(NumPhis, PrologStage + 2);
2531
2532 unsigned NewReg = 0;
2533
2534 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
2535 // In the epilog, we may need to look back one stage to get the correct
2536 // Phi name because the epilog and prolog blocks execute the same stage.
2537 // The correct name is from the previous block only when the Phi has
2538 // been completely scheduled prior to the epilog, and Phi value is not
2539 // needed in multiple stages.
2540 int StageDiff = 0;
2541 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
2542 NumPhis == 1)
2543 StageDiff = 1;
2544 // Adjust the computations below when the phi and the loop definition
2545 // are scheduled in different stages.
2546 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
2547 StageDiff = StageScheduled - LoopValStage;
2548 for (unsigned np = 0; np < NumPhis; ++np) {
2549 // If the Phi hasn't been scheduled, then use the initial Phi operand
2550 // value. Otherwise, use the scheduled version of the instruction. This
2551 // is a little complicated when a Phi references another Phi.
2552 if (np > PrologStage || StageScheduled >= (int)LastStageNum)
2553 PhiOp1 = InitVal;
2554 // Check if the Phi has already been scheduled in a prolog stage.
2555 else if (PrologStage >= AccessStage + StageDiff + np &&
2556 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
2557 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
2558 // Check if the Phi has already been scheduled, but the loop intruction
2559 // is either another Phi, or doesn't occur in the loop.
2560 else if (PrologStage >= AccessStage + StageDiff + np) {
2561 // If the Phi references another Phi, we need to examine the other
2562 // Phi to get the correct value.
2563 PhiOp1 = LoopVal;
2564 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
2565 int Indirects = 1;
2566 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
2567 int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1));
2568 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
2569 PhiOp1 = getInitPhiReg(*InstOp1, BB);
2570 else
2571 PhiOp1 = getLoopPhiReg(*InstOp1, BB);
2572 InstOp1 = MRI.getVRegDef(PhiOp1);
2573 int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1));
2574 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
2575 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
2576 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
2577 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
2578 break;
2579 }
2580 ++Indirects;
2581 }
2582 } else
2583 PhiOp1 = InitVal;
2584 // If this references a generated Phi in the kernel, get the Phi operand
2585 // from the incoming block.
2586 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
2587 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
2588 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
2589
2590 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
2591 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
2592 // In the epilog, a map lookup is needed to get the value from the kernel,
2593 // or previous epilog block. How is does this depends on if the
2594 // instruction is scheduled in the previous block.
2595 if (!InKernel) {
2596 int StageDiffAdj = 0;
2597 if (LoopValStage != -1 && StageScheduled > LoopValStage)
2598 StageDiffAdj = StageScheduled - LoopValStage;
2599 // Use the loop value defined in the kernel, unless the kernel
2600 // contains the last definition of the Phi.
2601 if (np == 0 && PrevStage == LastStageNum &&
2602 (StageScheduled != 0 || LoopValStage != 0) &&
2603 VRMap[PrevStage - StageDiffAdj].count(LoopVal))
2604 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
2605 // Use the value defined by the Phi. We add one because we switch
2606 // from looking at the loop value to the Phi definition.
2607 else if (np > 0 && PrevStage == LastStageNum &&
2608 VRMap[PrevStage - np + 1].count(Def))
2609 PhiOp2 = VRMap[PrevStage - np + 1][Def];
2610 // Use the loop value defined in the kernel.
2611 else if ((unsigned)LoopValStage + StageDiffAdj > PrologStage + 1 &&
2612 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
2613 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
2614 // Use the value defined by the Phi, unless we're generating the first
2615 // epilog and the Phi refers to a Phi in a different stage.
2616 else if (VRMap[PrevStage - np].count(Def) &&
2617 (!LoopDefIsPhi || PrevStage != LastStageNum))
2618 PhiOp2 = VRMap[PrevStage - np][Def];
2619 }
2620
2621 // Check if we can reuse an existing Phi. This occurs when a Phi
2622 // references another Phi, and the other Phi is scheduled in an
2623 // earlier stage. We can try to reuse an existing Phi up until the last
2624 // stage of the current Phi.
2625 if (LoopDefIsPhi && VRMap[CurStageNum].count(LoopVal) &&
2626 LoopValStage >= (int)(CurStageNum - LastStageNum)) {
2627 int LVNumStages = Schedule.getStagesForPhi(LoopVal);
2628 int StageDiff = (StageScheduled - LoopValStage);
2629 LVNumStages -= StageDiff;
2630 if (LVNumStages > (int)np) {
2631 NewReg = PhiOp2;
2632 unsigned ReuseStage = CurStageNum;
2633 if (Schedule.isLoopCarried(this, *PhiInst))
2634 ReuseStage -= LVNumStages;
2635 // Check if the Phi to reuse has been generated yet. If not, then
2636 // there is nothing to reuse.
2637 if (VRMap[ReuseStage].count(LoopVal)) {
2638 NewReg = VRMap[ReuseStage][LoopVal];
2639
2640 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2641 &*BBI, Def, NewReg);
2642 // Update the map with the new Phi name.
2643 VRMap[CurStageNum - np][Def] = NewReg;
2644 PhiOp2 = NewReg;
2645 if (VRMap[LastStageNum - np - 1].count(LoopVal))
2646 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];
2647
2648 if (IsLast && np == NumPhis - 1)
2649 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2650 continue;
2651 }
2652 } else if (StageDiff > 0 &&
2653 VRMap[CurStageNum - StageDiff - np].count(LoopVal))
2654 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
2655 }
2656
2657 const TargetRegisterClass *RC = MRI.getRegClass(Def);
2658 NewReg = MRI.createVirtualRegister(RC);
2659
2660 MachineInstrBuilder NewPhi =
2661 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
2662 TII->get(TargetOpcode::PHI), NewReg);
2663 NewPhi.addReg(PhiOp1).addMBB(BB1);
2664 NewPhi.addReg(PhiOp2).addMBB(BB2);
2665 if (np == 0)
2666 InstrMap[NewPhi] = &*BBI;
2667
2668 // We define the Phis after creating the new pipelined code, so
2669 // we need to rename the Phi values in scheduled instructions.
2670
2671 unsigned PrevReg = 0;
2672 if (InKernel && VRMap[PrevStage - np].count(LoopVal))
2673 PrevReg = VRMap[PrevStage - np][LoopVal];
2674 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
2675 Def, NewReg, PrevReg);
2676 // If the Phi has been scheduled, use the new name for rewriting.
2677 if (VRMap[CurStageNum - np].count(Def)) {
2678 unsigned R = VRMap[CurStageNum - np][Def];
2679 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
2680 R, NewReg);
2681 }
2682
2683 // Check if we need to rename any uses that occurs after the loop. The
2684 // register to replace depends on whether the Phi is scheduled in the
2685 // epilog.
2686 if (IsLast && np == NumPhis - 1)
2687 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2688
2689 // In the kernel, a dependent Phi uses the value from this Phi.
2690 if (InKernel)
2691 PhiOp2 = NewReg;
2692
2693 // Update the map with the new Phi name.
2694 VRMap[CurStageNum - np][Def] = NewReg;
2695 }
2696
2697 while (NumPhis++ < NumStages) {
2698 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis,
2699 &*BBI, Def, NewReg, 0);
2700 }
2701
2702 // Check if we need to rename a Phi that has been eliminated due to
2703 // scheduling.
2704 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
2705 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
2706 }
2707}
2708
2709/// Generate Phis for the specified block in the generated pipelined code.
2710/// These are new Phis needed because the definition is scheduled after the
2711/// use in the pipelened sequence.
2712void SwingSchedulerDAG::generatePhis(
2713 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
2714 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
2715 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
2716 bool IsLast) {
2717 // Compute the stage number that contains the initial Phi value, and
2718 // the Phi from the previous stage.
2719 unsigned PrologStage = 0;
2720 unsigned PrevStage = 0;
2721 unsigned StageDiff = CurStageNum - LastStageNum;
2722 bool InKernel = (StageDiff == 0);
2723 if (InKernel) {
2724 PrologStage = LastStageNum - 1;
2725 PrevStage = CurStageNum;
2726 } else {
2727 PrologStage = LastStageNum - StageDiff;
2728 PrevStage = LastStageNum + StageDiff - 1;
2729 }
2730
2731 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
2732 BBE = BB->instr_end();
2733 BBI != BBE; ++BBI) {
2734 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
2735 MachineOperand &MO = BBI->getOperand(i);
2736 if (!MO.isReg() || !MO.isDef() ||
2737 !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
2738 continue;
2739
2740 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
2741 assert(StageScheduled != -1 && "Expecting scheduled instruction.");
2742 unsigned Def = MO.getReg();
2743 unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum);
2744 // An instruction scheduled in stage 0 and is used after the loop
2745 // requires a phi in the epilog for the last definition from either
2746 // the kernel or prolog.
2747 if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
2748 hasUseAfterLoop(Def, BB, MRI))
2749 NumPhis = 1;
2750 if (!InKernel && (unsigned)StageScheduled > PrologStage)
2751 continue;
2752
2753 unsigned PhiOp2 = VRMap[PrevStage][Def];
2754 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
2755 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
2756 PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
2757 // The number of Phis can't exceed the number of prolog stages. The
2758 // prolog stage number is zero based.
2759 if (NumPhis > PrologStage + 1 - StageScheduled)
2760 NumPhis = PrologStage + 1 - StageScheduled;
2761 for (unsigned np = 0; np < NumPhis; ++np) {
2762 unsigned PhiOp1 = VRMap[PrologStage][Def];
2763 if (np <= PrologStage)
2764 PhiOp1 = VRMap[PrologStage - np][Def];
2765 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) {
2766 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
2767 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
2768 if (InstOp1->isPHI() && InstOp1->getParent() == NewBB)
2769 PhiOp1 = getInitPhiReg(*InstOp1, NewBB);
2770 }
2771 if (!InKernel)
2772 PhiOp2 = VRMap[PrevStage - np][Def];
2773
2774 const TargetRegisterClass *RC = MRI.getRegClass(Def);
2775 unsigned NewReg = MRI.createVirtualRegister(RC);
2776
2777 MachineInstrBuilder NewPhi =
2778 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
2779 TII->get(TargetOpcode::PHI), NewReg);
2780 NewPhi.addReg(PhiOp1).addMBB(BB1);
2781 NewPhi.addReg(PhiOp2).addMBB(BB2);
2782 if (np == 0)
2783 InstrMap[NewPhi] = &*BBI;
2784
2785 // Rewrite uses and update the map. The actions depend upon whether
2786 // we generating code for the kernel or epilog blocks.
2787 if (InKernel) {
2788 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2789 &*BBI, PhiOp1, NewReg);
2790 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2791 &*BBI, PhiOp2, NewReg);
2792
2793 PhiOp2 = NewReg;
2794 VRMap[PrevStage - np - 1][Def] = NewReg;
2795 } else {
2796 VRMap[CurStageNum - np][Def] = NewReg;
2797 if (np == NumPhis - 1)
2798 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2799 &*BBI, Def, NewReg);
2800 }
2801 if (IsLast && np == NumPhis - 1)
2802 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2803 }
2804 }
2805 }
2806}
2807
2808/// Remove instructions that generate values with no uses.
2809/// Typically, these are induction variable operations that generate values
2810/// used in the loop itself. A dead instruction has a definition with
2811/// no uses, or uses that occur in the original loop only.
2812void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB,
2813 MBBVectorTy &EpilogBBs) {
2814 // For each epilog block, check that the value defined by each instruction
2815 // is used. If not, delete it.
2816 for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(),
2817 MBE = EpilogBBs.rend();
2818 MBB != MBE; ++MBB)
2819 for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(),
2820 ME = (*MBB)->instr_rend();
2821 MI != ME;) {
2822 // From DeadMachineInstructionElem. Don't delete inline assembly.
2823 if (MI->isInlineAsm()) {
2824 ++MI;
2825 continue;
2826 }
2827 bool SawStore = false;
2828 // Check if it's safe to remove the instruction due to side effects.
2829 // We can, and want to, remove Phis here.
2830 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) {
2831 ++MI;
2832 continue;
2833 }
2834 bool used = true;
2835 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
2836 MOE = MI->operands_end();
2837 MOI != MOE; ++MOI) {
2838 if (!MOI->isReg() || !MOI->isDef())
2839 continue;
2840 unsigned reg = MOI->getReg();
2841 unsigned realUses = 0;
2842 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg),
2843 EI = MRI.use_end();
2844 UI != EI; ++UI) {
2845 // Check if there are any uses that occur only in the original
2846 // loop. If so, that's not a real use.
2847 if (UI->getParent()->getParent() != BB) {
2848 realUses++;
2849 used = true;
2850 break;
2851 }
2852 }
2853 if (realUses > 0)
2854 break;
2855 used = false;
2856 }
2857 if (!used) {
2858 MI->eraseFromParent();
2859 ME = (*MBB)->instr_rend();
2860 continue;
2861 }
2862 ++MI;
2863 }
2864 // In the kernel block, check if we can remove a Phi that generates a value
2865 // used in an instruction removed in the epilog block.
2866 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(),
2867 BBE = KernelBB->getFirstNonPHI();
2868 BBI != BBE;) {
2869 MachineInstr *MI = &*BBI;
2870 ++BBI;
2871 unsigned reg = MI->getOperand(0).getReg();
2872 if (MRI.use_begin(reg) == MRI.use_end()) {
2873 MI->eraseFromParent();
2874 }
2875 }
2876}
2877
2878/// For loop carried definitions, we split the lifetime of a virtual register
2879/// that has uses past the definition in the next iteration. A copy with a new
2880/// virtual register is inserted before the definition, which helps with
2881/// generating a better register assignment.
2882///
2883/// v1 = phi(a, v2) v1 = phi(a, v2)
2884/// v2 = phi(b, v3) v2 = phi(b, v3)
2885/// v3 = .. v4 = copy v1
2886/// .. = V1 v3 = ..
2887/// .. = v4
2888void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB,
2889 MBBVectorTy &EpilogBBs,
2890 SMSchedule &Schedule) {
2891 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2892 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(),
2893 BBF = KernelBB->getFirstNonPHI();
2894 BBI != BBF; ++BBI) {
2895 unsigned Def = BBI->getOperand(0).getReg();
2896 // Check for any Phi definition that used as an operand of another Phi
2897 // in the same block.
2898 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
2899 E = MRI.use_instr_end();
2900 I != E; ++I) {
2901 if (I->isPHI() && I->getParent() == KernelBB) {
2902 // Get the loop carried definition.
2903 unsigned LCDef = getLoopPhiReg(*BBI, KernelBB);
2904 if (!LCDef)
2905 continue;
2906 MachineInstr *MI = MRI.getVRegDef(LCDef);
2907 if (!MI || MI->getParent() != KernelBB || MI->isPHI())
2908 continue;
2909 // Search through the rest of the block looking for uses of the Phi
2910 // definition. If one occurs, then split the lifetime.
2911 unsigned SplitReg = 0;
2912 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
2913 KernelBB->instr_end()))
2914 if (BBJ.readsRegister(Def)) {
2915 // We split the lifetime when we find the first use.
2916 if (SplitReg == 0) {
2917 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
2918 BuildMI(*KernelBB, MI, MI->getDebugLoc(),
2919 TII->get(TargetOpcode::COPY), SplitReg)
2920 .addReg(Def);
2921 }
2922 BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
2923 }
2924 if (!SplitReg)
2925 continue;
2926 // Search through each of the epilog blocks for any uses to be renamed.
2927 for (auto &Epilog : EpilogBBs)
2928 for (auto &I : *Epilog)
2929 if (I.readsRegister(Def))
2930 I.substituteRegister(Def, SplitReg, 0, *TRI);
2931 break;
2932 }
2933 }
2934 }
2935}
2936
2937/// Remove the incoming block from the Phis in a basic block.
2938static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
2939 for (MachineInstr &MI : *BB) {
2940 if (!MI.isPHI())
2941 break;
2942 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
2943 if (MI.getOperand(i + 1).getMBB() == Incoming) {
2944 MI.RemoveOperand(i + 1);
2945 MI.RemoveOperand(i);
2946 break;
2947 }
2948 }
2949}
2950
2951/// Create branches from each prolog basic block to the appropriate epilog
2952/// block. These edges are needed if the loop ends before reaching the
2953/// kernel.
2954void SwingSchedulerDAG::addBranches(MBBVectorTy &PrologBBs,
2955 MachineBasicBlock *KernelBB,
2956 MBBVectorTy &EpilogBBs,
2957 SMSchedule &Schedule, ValueMapTy *VRMap) {
2958 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch");
2959 MachineInstr *IndVar = Pass.LI.LoopInductionVar;
2960 MachineInstr *Cmp = Pass.LI.LoopCompare;
2961 MachineBasicBlock *LastPro = KernelBB;
2962 MachineBasicBlock *LastEpi = KernelBB;
2963
2964 // Start from the blocks connected to the kernel and work "out"
2965 // to the first prolog and the last epilog blocks.
2966 SmallVector<MachineInstr *, 4> PrevInsts;
2967 unsigned MaxIter = PrologBBs.size() - 1;
2968 unsigned LC = UINT_MAX;
2969 unsigned LCMin = UINT_MAX;
2970 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
2971 // Add branches to the prolog that go to the corresponding
2972 // epilog, and the fall-thru prolog/kernel block.
2973 MachineBasicBlock *Prolog = PrologBBs[j];
2974 MachineBasicBlock *Epilog = EpilogBBs[i];
2975 // We've executed one iteration, so decrement the loop count and check for
2976 // the loop end.
2977 SmallVector<MachineOperand, 4> Cond;
2978 // Check if the LOOP0 has already been removed. If so, then there is no need
2979 // to reduce the trip count.
2980 if (LC != 0)
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00002981 LC = TII->reduceLoopCount(*Prolog, IndVar, *Cmp, Cond, PrevInsts, j,
Brendon Cahoon254f8892016-07-29 16:44:44 +00002982 MaxIter);
2983
2984 // Record the value of the first trip count, which is used to determine if
2985 // branches and blocks can be removed for constant trip counts.
2986 if (LCMin == UINT_MAX)
2987 LCMin = LC;
2988
2989 unsigned numAdded = 0;
2990 if (TargetRegisterInfo::isVirtualRegister(LC)) {
2991 Prolog->addSuccessor(Epilog);
2992 numAdded = TII->InsertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
2993 } else if (j >= LCMin) {
2994 Prolog->addSuccessor(Epilog);
2995 Prolog->removeSuccessor(LastPro);
2996 LastEpi->removeSuccessor(Epilog);
2997 numAdded = TII->InsertBranch(*Prolog, Epilog, 0, Cond, DebugLoc());
2998 removePhis(Epilog, LastEpi);
2999 // Remove the blocks that are no longer referenced.
3000 if (LastPro != LastEpi) {
3001 LastEpi->clear();
3002 LastEpi->eraseFromParent();
3003 }
3004 LastPro->clear();
3005 LastPro->eraseFromParent();
3006 } else {
3007 numAdded = TII->InsertBranch(*Prolog, LastPro, 0, Cond, DebugLoc());
3008 removePhis(Epilog, Prolog);
3009 }
3010 LastPro = Prolog;
3011 LastEpi = Epilog;
3012 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
3013 E = Prolog->instr_rend();
3014 I != E && numAdded > 0; ++I, --numAdded)
3015 updateInstruction(&*I, false, j, 0, Schedule, VRMap);
3016 }
3017}
3018
3019/// Return true if we can compute the amount the instruction changes
3020/// during each iteration. Set Delta to the amount of the change.
3021bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) {
3022 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3023 unsigned BaseReg;
3024 int64_t Offset;
3025 if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI))
3026 return false;
3027
3028 MachineRegisterInfo &MRI = MF.getRegInfo();
3029 // Check if there is a Phi. If so, get the definition in the loop.
3030 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
3031 if (BaseDef && BaseDef->isPHI()) {
3032 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
3033 BaseDef = MRI.getVRegDef(BaseReg);
3034 }
3035 if (!BaseDef)
3036 return false;
3037
3038 int D = 0;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003039 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
Brendon Cahoon254f8892016-07-29 16:44:44 +00003040 return false;
3041
3042 Delta = D;
3043 return true;
3044}
3045
3046/// Update the memory operand with a new offset when the pipeliner
3047/// generate a new copy of the instruction that refers to a
3048/// different memory location.
3049void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI,
3050 MachineInstr &OldMI, unsigned Num) {
3051 if (Num == 0)
3052 return;
3053 // If the instruction has memory operands, then adjust the offset
3054 // when the instruction appears in different stages.
3055 unsigned NumRefs = NewMI.memoperands_end() - NewMI.memoperands_begin();
3056 if (NumRefs == 0)
3057 return;
3058 MachineInstr::mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NumRefs);
3059 unsigned Refs = 0;
3060 for (MachineInstr::mmo_iterator I = NewMI.memoperands_begin(),
3061 E = NewMI.memoperands_end();
3062 I != E; ++I) {
3063 if ((*I)->isVolatile() || (*I)->isInvariant() || (!(*I)->getValue())) {
3064 NewMemRefs[Refs++] = *I;
3065 continue;
3066 }
3067 unsigned Delta;
3068 if (computeDelta(OldMI, Delta)) {
3069 int64_t AdjOffset = Delta * Num;
3070 NewMemRefs[Refs++] =
3071 MF.getMachineMemOperand(*I, AdjOffset, (*I)->getSize());
3072 } else
3073 NewMemRefs[Refs++] = MF.getMachineMemOperand(*I, 0, UINT64_MAX);
3074 }
3075 NewMI.setMemRefs(NewMemRefs, NewMemRefs + NumRefs);
3076}
3077
3078/// Clone the instruction for the new pipelined loop and update the
3079/// memory operands, if needed.
3080MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI,
3081 unsigned CurStageNum,
3082 unsigned InstStageNum) {
3083 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
3084 // Check for tied operands in inline asm instructions. This should be handled
3085 // elsewhere, but I'm not sure of the best solution.
3086 if (OldMI->isInlineAsm())
3087 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
3088 const auto &MO = OldMI->getOperand(i);
3089 if (MO.isReg() && MO.isUse())
3090 break;
3091 unsigned UseIdx;
3092 if (OldMI->isRegTiedToUseOperand(i, &UseIdx))
3093 NewMI->tieOperands(i, UseIdx);
3094 }
3095 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
3096 return NewMI;
3097}
3098
3099/// Clone the instruction for the new pipelined loop. If needed, this
3100/// function updates the instruction using the values saved in the
3101/// InstrChanges structure.
3102MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI,
3103 unsigned CurStageNum,
3104 unsigned InstStageNum,
3105 SMSchedule &Schedule) {
3106 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
3107 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
3108 InstrChanges.find(getSUnit(OldMI));
3109 if (It != InstrChanges.end()) {
3110 std::pair<unsigned, int64_t> RegAndOffset = It->second;
3111 unsigned BasePos, OffsetPos;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003112 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003113 return nullptr;
3114 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
3115 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
3116 if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum)
3117 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
3118 NewMI->getOperand(OffsetPos).setImm(NewOffset);
3119 }
3120 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
3121 return NewMI;
3122}
3123
3124/// Update the machine instruction with new virtual registers. This
3125/// function may change the defintions and/or uses.
3126void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef,
3127 unsigned CurStageNum,
3128 unsigned InstrStageNum,
3129 SMSchedule &Schedule,
3130 ValueMapTy *VRMap) {
3131 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
3132 MachineOperand &MO = NewMI->getOperand(i);
3133 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
3134 continue;
3135 unsigned reg = MO.getReg();
3136 if (MO.isDef()) {
3137 // Create a new virtual register for the definition.
3138 const TargetRegisterClass *RC = MRI.getRegClass(reg);
3139 unsigned NewReg = MRI.createVirtualRegister(RC);
3140 MO.setReg(NewReg);
3141 VRMap[CurStageNum][reg] = NewReg;
3142 if (LastDef)
3143 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
3144 } else if (MO.isUse()) {
3145 MachineInstr *Def = MRI.getVRegDef(reg);
3146 // Compute the stage that contains the last definition for instruction.
3147 int DefStageNum = Schedule.stageScheduled(getSUnit(Def));
3148 unsigned StageNum = CurStageNum;
3149 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
3150 // Compute the difference in stages between the defintion and the use.
3151 unsigned StageDiff = (InstrStageNum - DefStageNum);
3152 // Make an adjustment to get the last definition.
3153 StageNum -= StageDiff;
3154 }
3155 if (VRMap[StageNum].count(reg))
3156 MO.setReg(VRMap[StageNum][reg]);
3157 }
3158 }
3159}
3160
3161/// Return the instruction in the loop that defines the register.
3162/// If the definition is a Phi, then follow the Phi operand to
3163/// the instruction in the loop.
3164MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) {
3165 SmallPtrSet<MachineInstr *, 8> Visited;
3166 MachineInstr *Def = MRI.getVRegDef(Reg);
3167 while (Def->isPHI()) {
3168 if (!Visited.insert(Def).second)
3169 break;
3170 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
3171 if (Def->getOperand(i + 1).getMBB() == BB) {
3172 Def = MRI.getVRegDef(Def->getOperand(i).getReg());
3173 break;
3174 }
3175 }
3176 return Def;
3177}
3178
3179/// Return the new name for the value from the previous stage.
3180unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage,
3181 unsigned LoopVal, unsigned LoopStage,
3182 ValueMapTy *VRMap,
3183 MachineBasicBlock *BB) {
3184 unsigned PrevVal = 0;
3185 if (StageNum > PhiStage) {
3186 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
3187 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
3188 // The name is defined in the previous stage.
3189 PrevVal = VRMap[StageNum - 1][LoopVal];
3190 else if (VRMap[StageNum].count(LoopVal))
3191 // The previous name is defined in the current stage when the instruction
3192 // order is swapped.
3193 PrevVal = VRMap[StageNum][LoopVal];
3194 else if (!LoopInst->isPHI())
3195 // The loop value hasn't yet been scheduled.
3196 PrevVal = LoopVal;
3197 else if (StageNum == PhiStage + 1)
3198 // The loop value is another phi, which has not been scheduled.
3199 PrevVal = getInitPhiReg(*LoopInst, BB);
3200 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
3201 // The loop value is another phi, which has been scheduled.
3202 PrevVal =
3203 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
3204 LoopStage, VRMap, BB);
3205 }
3206 return PrevVal;
3207}
3208
3209/// Rewrite the Phi values in the specified block to use the mappings
3210/// from the initial operand. Once the Phi is scheduled, we switch
3211/// to using the loop value instead of the Phi value, so those names
3212/// do not need to be rewritten.
3213void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB,
3214 unsigned StageNum,
3215 SMSchedule &Schedule,
3216 ValueMapTy *VRMap,
3217 InstrMapTy &InstrMap) {
3218 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
3219 BBE = BB->getFirstNonPHI();
3220 BBI != BBE; ++BBI) {
3221 unsigned InitVal = 0;
3222 unsigned LoopVal = 0;
3223 getPhiRegs(*BBI, BB, InitVal, LoopVal);
3224 unsigned PhiDef = BBI->getOperand(0).getReg();
3225
3226 unsigned PhiStage =
3227 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef)));
3228 unsigned LoopStage =
3229 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
3230 unsigned NumPhis = Schedule.getStagesForPhi(PhiDef);
3231 if (NumPhis > StageNum)
3232 NumPhis = StageNum;
3233 for (unsigned np = 0; np <= NumPhis; ++np) {
3234 unsigned NewVal =
3235 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
3236 if (!NewVal)
3237 NewVal = InitVal;
3238 rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &*BBI,
3239 PhiDef, NewVal);
3240 }
3241 }
3242}
3243
3244/// Rewrite a previously scheduled instruction to use the register value
3245/// from the new instruction. Make sure the instruction occurs in the
3246/// basic block, and we don't change the uses in the new instruction.
3247void SwingSchedulerDAG::rewriteScheduledInstr(
3248 MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap,
3249 unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg,
3250 unsigned NewReg, unsigned PrevReg) {
3251 bool InProlog = (CurStageNum < Schedule.getMaxStageCount());
3252 int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum;
3253 // Rewrite uses that have been scheduled already to use the new
3254 // Phi register.
3255 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg),
3256 EI = MRI.use_end();
3257 UI != EI;) {
3258 MachineOperand &UseOp = *UI;
3259 MachineInstr *UseMI = UseOp.getParent();
3260 ++UI;
3261 if (UseMI->getParent() != BB)
3262 continue;
3263 if (UseMI->isPHI()) {
3264 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
3265 continue;
3266 if (getLoopPhiReg(*UseMI, BB) != OldReg)
3267 continue;
3268 }
3269 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
3270 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.");
3271 SUnit *OrigMISU = getSUnit(OrigInstr->second);
3272 int StageSched = Schedule.stageScheduled(OrigMISU);
3273 int CycleSched = Schedule.cycleScheduled(OrigMISU);
3274 unsigned ReplaceReg = 0;
3275 // This is the stage for the scheduled instruction.
3276 if (StagePhi == StageSched && Phi->isPHI()) {
3277 int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi));
3278 if (PrevReg && InProlog)
3279 ReplaceReg = PrevReg;
3280 else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) &&
3281 (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI()))
3282 ReplaceReg = PrevReg;
3283 else
3284 ReplaceReg = NewReg;
3285 }
3286 // The scheduled instruction occurs before the scheduled Phi, and the
3287 // Phi is not loop carried.
3288 if (!InProlog && StagePhi + 1 == StageSched &&
3289 !Schedule.isLoopCarried(this, *Phi))
3290 ReplaceReg = NewReg;
3291 if (StagePhi > StageSched && Phi->isPHI())
3292 ReplaceReg = NewReg;
3293 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
3294 ReplaceReg = NewReg;
3295 if (ReplaceReg) {
3296 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
3297 UseOp.setReg(ReplaceReg);
3298 }
3299 }
3300}
3301
3302/// Check if we can change the instruction to use an offset value from the
3303/// previous iteration. If so, return true and set the base and offset values
3304/// so that we can rewrite the load, if necessary.
3305/// v1 = Phi(v0, v3)
3306/// v2 = load v1, 0
3307/// v3 = post_store v1, 4, x
3308/// This function enables the load to be rewritten as v2 = load v3, 4.
3309bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI,
3310 unsigned &BasePos,
3311 unsigned &OffsetPos,
3312 unsigned &NewBase,
3313 int64_t &Offset) {
3314 // Get the load instruction.
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003315 if (TII->isPostIncrement(*MI))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003316 return false;
3317 unsigned BasePosLd, OffsetPosLd;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003318 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003319 return false;
3320 unsigned BaseReg = MI->getOperand(BasePosLd).getReg();
3321
3322 // Look for the Phi instruction.
3323 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
3324 MachineInstr *Phi = MRI.getVRegDef(BaseReg);
3325 if (!Phi || !Phi->isPHI())
3326 return false;
3327 // Get the register defined in the loop block.
3328 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent());
3329 if (!PrevReg)
3330 return false;
3331
3332 // Check for the post-increment load/store instruction.
3333 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg);
3334 if (!PrevDef || PrevDef == MI)
3335 return false;
3336
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003337 if (!TII->isPostIncrement(*PrevDef))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003338 return false;
3339
3340 unsigned BasePos1 = 0, OffsetPos1 = 0;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003341 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003342 return false;
3343
3344 // Make sure offset values are both positive or both negative.
3345 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm();
3346 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm();
3347 if ((LoadOffset >= 0) != (StoreOffset >= 0))
3348 return false;
3349
3350 // Set the return value once we determine that we return true.
3351 BasePos = BasePosLd;
3352 OffsetPos = OffsetPosLd;
3353 NewBase = PrevReg;
3354 Offset = StoreOffset;
3355 return true;
3356}
3357
3358/// Apply changes to the instruction if needed. The changes are need
3359/// to improve the scheduling and depend up on the final schedule.
3360MachineInstr *SwingSchedulerDAG::applyInstrChange(MachineInstr *MI,
3361 SMSchedule &Schedule,
3362 bool UpdateDAG) {
3363 SUnit *SU = getSUnit(MI);
3364 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
3365 InstrChanges.find(SU);
3366 if (It != InstrChanges.end()) {
3367 std::pair<unsigned, int64_t> RegAndOffset = It->second;
3368 unsigned BasePos, OffsetPos;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003369 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003370 return nullptr;
3371 unsigned BaseReg = MI->getOperand(BasePos).getReg();
3372 MachineInstr *LoopDef = findDefInLoop(BaseReg);
3373 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef));
3374 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef));
3375 int BaseStageNum = Schedule.stageScheduled(SU);
3376 int BaseCycleNum = Schedule.cycleScheduled(SU);
3377 if (BaseStageNum < DefStageNum) {
3378 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
3379 int OffsetDiff = DefStageNum - BaseStageNum;
3380 if (DefCycleNum < BaseCycleNum) {
3381 NewMI->getOperand(BasePos).setReg(RegAndOffset.first);
3382 if (OffsetDiff > 0)
3383 --OffsetDiff;
3384 }
3385 int64_t NewOffset =
3386 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff;
3387 NewMI->getOperand(OffsetPos).setImm(NewOffset);
3388 if (UpdateDAG) {
3389 SU->setInstr(NewMI);
3390 MISUnitMap[NewMI] = SU;
3391 }
3392 NewMIs.insert(NewMI);
3393 return NewMI;
3394 }
3395 }
3396 return nullptr;
3397}
3398
3399/// Return true for an order dependence that is loop carried potentially.
3400/// An order dependence is loop carried if the destination defines a value
3401/// that may be used by the source in a subsequent iteration.
3402bool SwingSchedulerDAG::isLoopCarriedOrder(SUnit *Source, const SDep &Dep,
3403 bool isSucc) {
3404 if (!isOrder(Source, Dep) || Dep.isArtificial())
3405 return false;
3406
3407 if (!SwpPruneLoopCarried)
3408 return true;
3409
3410 MachineInstr *SI = Source->getInstr();
3411 MachineInstr *DI = Dep.getSUnit()->getInstr();
3412 if (!isSucc)
3413 std::swap(SI, DI);
3414 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.");
3415
3416 // Assume ordered loads and stores may have a loop carried dependence.
3417 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() ||
3418 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef())
3419 return true;
3420
3421 // Only chain dependences between a load and store can be loop carried.
3422 if (!DI->mayStore() || !SI->mayLoad())
3423 return false;
3424
3425 unsigned DeltaS, DeltaD;
3426 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD))
3427 return true;
3428
3429 unsigned BaseRegS, BaseRegD;
3430 int64_t OffsetS, OffsetD;
3431 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3432 if (!TII->getMemOpBaseRegImmOfs(*SI, BaseRegS, OffsetS, TRI) ||
3433 !TII->getMemOpBaseRegImmOfs(*DI, BaseRegD, OffsetD, TRI))
3434 return true;
3435
3436 if (BaseRegS != BaseRegD)
3437 return true;
3438
3439 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize();
3440 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize();
3441
3442 // This is the main test, which checks the offset values and the loop
3443 // increment value to determine if the accesses may be loop carried.
3444 if (OffsetS >= OffsetD)
3445 return OffsetS + AccessSizeS > DeltaS;
3446 else if (OffsetS < OffsetD)
3447 return OffsetD + AccessSizeD > DeltaD;
3448
3449 return true;
3450}
3451
3452/// Try to schedule the node at the specified StartCycle and continue
3453/// until the node is schedule or the EndCycle is reached. This function
3454/// returns true if the node is scheduled. This routine may search either
3455/// forward or backward for a place to insert the instruction based upon
3456/// the relative values of StartCycle and EndCycle.
3457bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) {
3458 bool forward = true;
3459 if (StartCycle > EndCycle)
3460 forward = false;
3461
3462 // The terminating condition depends on the direction.
3463 int termCycle = forward ? EndCycle + 1 : EndCycle - 1;
3464 for (int curCycle = StartCycle; curCycle != termCycle;
3465 forward ? ++curCycle : --curCycle) {
3466
3467 // Add the already scheduled instructions at the specified cycle to the DFA.
3468 Resources->clearResources();
3469 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II);
3470 checkCycle <= LastCycle; checkCycle += II) {
3471 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle];
3472
3473 for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(),
3474 E = cycleInstrs.end();
3475 I != E; ++I) {
3476 if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode()))
3477 continue;
3478 assert(Resources->canReserveResources(*(*I)->getInstr()) &&
3479 "These instructions have already been scheduled.");
3480 Resources->reserveResources(*(*I)->getInstr());
3481 }
3482 }
3483 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) ||
3484 Resources->canReserveResources(*SU->getInstr())) {
3485 DEBUG({
3486 dbgs() << "\tinsert at cycle " << curCycle << " ";
3487 SU->getInstr()->dump();
3488 });
3489
3490 ScheduledInstrs[curCycle].push_back(SU);
3491 InstrToCycle.insert(std::make_pair(SU, curCycle));
3492 if (curCycle > LastCycle)
3493 LastCycle = curCycle;
3494 if (curCycle < FirstCycle)
3495 FirstCycle = curCycle;
3496 return true;
3497 }
3498 DEBUG({
3499 dbgs() << "\tfailed to insert at cycle " << curCycle << " ";
3500 SU->getInstr()->dump();
3501 });
3502 }
3503 return false;
3504}
3505
3506// Return the cycle of the earliest scheduled instruction in the chain.
3507int SMSchedule::earliestCycleInChain(const SDep &Dep) {
3508 SmallPtrSet<SUnit *, 8> Visited;
3509 SmallVector<SDep, 8> Worklist;
3510 Worklist.push_back(Dep);
3511 int EarlyCycle = INT_MAX;
3512 while (!Worklist.empty()) {
3513 const SDep &Cur = Worklist.pop_back_val();
3514 SUnit *PrevSU = Cur.getSUnit();
3515 if (Visited.count(PrevSU))
3516 continue;
3517 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU);
3518 if (it == InstrToCycle.end())
3519 continue;
3520 EarlyCycle = std::min(EarlyCycle, it->second);
3521 for (const auto &PI : PrevSU->Preds)
3522 if (SwingSchedulerDAG::isOrder(PrevSU, PI))
3523 Worklist.push_back(PI);
3524 Visited.insert(PrevSU);
3525 }
3526 return EarlyCycle;
3527}
3528
3529// Return the cycle of the latest scheduled instruction in the chain.
3530int SMSchedule::latestCycleInChain(const SDep &Dep) {
3531 SmallPtrSet<SUnit *, 8> Visited;
3532 SmallVector<SDep, 8> Worklist;
3533 Worklist.push_back(Dep);
3534 int LateCycle = INT_MIN;
3535 while (!Worklist.empty()) {
3536 const SDep &Cur = Worklist.pop_back_val();
3537 SUnit *SuccSU = Cur.getSUnit();
3538 if (Visited.count(SuccSU))
3539 continue;
3540 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU);
3541 if (it == InstrToCycle.end())
3542 continue;
3543 LateCycle = std::max(LateCycle, it->second);
3544 for (const auto &SI : SuccSU->Succs)
3545 if (SwingSchedulerDAG::isOrder(SuccSU, SI))
3546 Worklist.push_back(SI);
3547 Visited.insert(SuccSU);
3548 }
3549 return LateCycle;
3550}
3551
3552/// If an instruction has a use that spans multiple iterations, then
3553/// return true. These instructions are characterized by having a back-ege
3554/// to a Phi, which contains a reference to another Phi.
3555static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) {
3556 for (auto &P : SU->Preds)
3557 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI())
3558 for (auto &S : P.getSUnit()->Succs)
3559 if (S.getKind() == SDep::Order && S.getSUnit()->getInstr()->isPHI())
3560 return P.getSUnit();
3561 return nullptr;
3562}
3563
3564/// Compute the scheduling start slot for the instruction. The start slot
3565/// depends on any predecessor or successor nodes scheduled already.
3566void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
3567 int *MinEnd, int *MaxStart, int II,
3568 SwingSchedulerDAG *DAG) {
3569 // Iterate over each instruction that has been scheduled already. The start
3570 // slot computuation depends on whether the previously scheduled instruction
3571 // is a predecessor or successor of the specified instruction.
3572 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) {
3573
3574 // Iterate over each instruction in the current cycle.
3575 for (SUnit *I : getInstructions(cycle)) {
3576 // Because we're processing a DAG for the dependences, we recognize
3577 // the back-edge in recurrences by anti dependences.
3578 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) {
3579 const SDep &Dep = SU->Preds[i];
3580 if (Dep.getSUnit() == I) {
3581 if (!DAG->isBackedge(SU, Dep)) {
3582 int EarlyStart = cycle + DAG->getLatency(SU, Dep) -
3583 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
3584 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
3585 if (DAG->isLoopCarriedOrder(SU, Dep, false)) {
3586 int End = earliestCycleInChain(Dep) + (II - 1);
3587 *MinEnd = std::min(*MinEnd, End);
3588 }
3589 } else {
3590 int LateStart = cycle - DAG->getLatency(SU, Dep) +
3591 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
3592 *MinLateStart = std::min(*MinLateStart, LateStart);
3593 }
3594 }
3595 // For instruction that requires multiple iterations, make sure that
3596 // the dependent instruction is not scheduled past the definition.
3597 SUnit *BE = multipleIterations(I, DAG);
3598 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() &&
3599 !SU->isPred(I))
3600 *MinLateStart = std::min(*MinLateStart, cycle);
3601 }
3602 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i)
3603 if (SU->Succs[i].getSUnit() == I) {
3604 const SDep &Dep = SU->Succs[i];
3605 if (!DAG->isBackedge(SU, Dep)) {
3606 int LateStart = cycle - DAG->getLatency(SU, Dep) +
3607 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
3608 *MinLateStart = std::min(*MinLateStart, LateStart);
3609 if (DAG->isLoopCarriedOrder(SU, Dep)) {
3610 int Start = latestCycleInChain(Dep) + 1 - II;
3611 *MaxStart = std::max(*MaxStart, Start);
3612 }
3613 } else {
3614 int EarlyStart = cycle + DAG->getLatency(SU, Dep) -
3615 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
3616 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
3617 }
3618 }
3619 }
3620 }
3621}
3622
3623/// Order the instructions within a cycle so that the definitions occur
3624/// before the uses. Returns true if the instruction is added to the start
3625/// of the list, or false if added to the end.
3626bool SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
3627 std::deque<SUnit *> &Insts) {
3628 MachineInstr *MI = SU->getInstr();
3629 bool OrderBeforeUse = false;
3630 bool OrderAfterDef = false;
3631 bool OrderBeforeDef = false;
3632 unsigned MoveDef = 0;
3633 unsigned MoveUse = 0;
3634 int StageInst1 = stageScheduled(SU);
3635
3636 unsigned Pos = 0;
3637 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E;
3638 ++I, ++Pos) {
3639 // Relative order of Phis does not matter.
3640 if (MI->isPHI() && (*I)->getInstr()->isPHI())
3641 continue;
3642 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
3643 MachineOperand &MO = MI->getOperand(i);
3644 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
3645 continue;
3646 unsigned Reg = MO.getReg();
3647 unsigned BasePos, OffsetPos;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003648 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003649 if (MI->getOperand(BasePos).getReg() == Reg)
3650 if (unsigned NewReg = SSD->getInstrBaseReg(SU))
3651 Reg = NewReg;
3652 bool Reads, Writes;
3653 std::tie(Reads, Writes) =
3654 (*I)->getInstr()->readsWritesVirtualRegister(Reg);
3655 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) {
3656 OrderBeforeUse = true;
3657 MoveUse = Pos;
3658 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) {
3659 // Add the instruction after the scheduled instruction.
3660 OrderAfterDef = true;
3661 MoveDef = Pos;
3662 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) {
3663 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) {
3664 OrderBeforeUse = true;
3665 MoveUse = Pos;
3666 } else {
3667 OrderAfterDef = true;
3668 MoveDef = Pos;
3669 }
3670 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) {
3671 OrderBeforeUse = true;
3672 MoveUse = Pos;
3673 if (MoveUse != 0) {
3674 OrderAfterDef = true;
3675 MoveDef = Pos - 1;
3676 }
3677 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) {
3678 // Add the instruction before the scheduled instruction.
3679 OrderBeforeUse = true;
3680 MoveUse = Pos;
3681 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 &&
3682 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) {
3683 OrderBeforeDef = true;
3684 MoveUse = Pos;
3685 }
3686 }
3687 // Check for order dependences between instructions. Make sure the source
3688 // is ordered before the destination.
3689 for (auto &S : SU->Succs)
3690 if (S.getKind() == SDep::Order) {
3691 if (S.getSUnit() == *I && stageScheduled(*I) == StageInst1) {
3692 OrderBeforeUse = true;
3693 MoveUse = Pos;
3694 }
3695 } else if (TargetRegisterInfo::isPhysicalRegister(S.getReg())) {
3696 if (cycleScheduled(SU) != cycleScheduled(S.getSUnit())) {
3697 if (S.isAssignedRegDep()) {
3698 OrderAfterDef = true;
3699 MoveDef = Pos;
3700 }
3701 } else {
3702 OrderBeforeUse = true;
3703 MoveUse = Pos;
3704 }
3705 }
3706 for (auto &P : SU->Preds)
3707 if (P.getKind() == SDep::Order) {
3708 if (P.getSUnit() == *I && stageScheduled(*I) == StageInst1) {
3709 OrderAfterDef = true;
3710 MoveDef = Pos;
3711 }
3712 } else if (TargetRegisterInfo::isPhysicalRegister(P.getReg())) {
3713 if (cycleScheduled(SU) != cycleScheduled(P.getSUnit())) {
3714 if (P.isAssignedRegDep()) {
3715 OrderBeforeUse = true;
3716 MoveUse = Pos;
3717 }
3718 } else {
3719 OrderAfterDef = true;
3720 MoveDef = Pos;
3721 }
3722 }
3723 }
3724
3725 // A circular dependence.
3726 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef)
3727 OrderBeforeUse = false;
3728
3729 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due
3730 // to a loop-carried dependence.
3731 if (OrderBeforeDef)
3732 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef);
3733
3734 // The uncommon case when the instruction order needs to be updated because
3735 // there is both a use and def.
3736 if (OrderBeforeUse && OrderAfterDef) {
3737 SUnit *UseSU = Insts.at(MoveUse);
3738 SUnit *DefSU = Insts.at(MoveDef);
3739 if (MoveUse > MoveDef) {
3740 Insts.erase(Insts.begin() + MoveUse);
3741 Insts.erase(Insts.begin() + MoveDef);
3742 } else {
3743 Insts.erase(Insts.begin() + MoveDef);
3744 Insts.erase(Insts.begin() + MoveUse);
3745 }
3746 if (orderDependence(SSD, UseSU, Insts)) {
3747 Insts.push_front(SU);
3748 orderDependence(SSD, DefSU, Insts);
3749 return true;
3750 }
3751 Insts.pop_back();
3752 Insts.push_back(SU);
3753 Insts.push_back(UseSU);
3754 orderDependence(SSD, DefSU, Insts);
3755 return false;
3756 }
3757 // Put the new instruction first if there is a use in the list. Otherwise,
3758 // put it at the end of the list.
3759 if (OrderBeforeUse)
3760 Insts.push_front(SU);
3761 else
3762 Insts.push_back(SU);
3763 return OrderBeforeUse;
3764}
3765
3766/// Return true if the scheduled Phi has a loop carried operand.
3767bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) {
3768 if (!Phi.isPHI())
3769 return false;
3770 assert(Phi.isPHI() && "Expecing a Phi.");
3771 SUnit *DefSU = SSD->getSUnit(&Phi);
3772 unsigned DefCycle = cycleScheduled(DefSU);
3773 int DefStage = stageScheduled(DefSU);
3774
3775 unsigned InitVal = 0;
3776 unsigned LoopVal = 0;
3777 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
3778 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal));
3779 if (!UseSU)
3780 return true;
3781 if (UseSU->getInstr()->isPHI())
3782 return true;
3783 unsigned LoopCycle = cycleScheduled(UseSU);
3784 int LoopStage = stageScheduled(UseSU);
3785 return LoopCycle > DefCycle ||
3786 (LoopCycle <= DefCycle && LoopStage <= DefStage);
3787}
3788
3789/// Return true if the instruction is a definition that is loop carried
3790/// and defines the use on the next iteration.
3791/// v1 = phi(v2, v3)
3792/// (Def) v3 = op v1
3793/// (MO) = v1
3794/// If MO appears before Def, then then v1 and v3 may get assigned to the same
3795/// register.
3796bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD,
3797 MachineInstr *Def, MachineOperand &MO) {
3798 if (!MO.isReg())
3799 return false;
3800 if (Def->isPHI())
3801 return false;
3802 MachineInstr *Phi = MRI.getVRegDef(MO.getReg());
3803 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent())
3804 return false;
3805 if (!isLoopCarried(SSD, *Phi))
3806 return false;
3807 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent());
3808 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) {
3809 MachineOperand &DMO = Def->getOperand(i);
3810 if (!DMO.isReg() || !DMO.isDef())
3811 continue;
3812 if (DMO.getReg() == LoopReg)
3813 return true;
3814 }
3815 return false;
3816}
3817
3818// Check if the generated schedule is valid. This function checks if
3819// an instruction that uses a physical register is scheduled in a
3820// different stage than the definition. The pipeliner does not handle
3821// physical register values that may cross a basic block boundary.
3822bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003823 for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) {
3824 SUnit &SU = SSD->SUnits[i];
3825 if (!SU.hasPhysRegDefs)
3826 continue;
3827 int StageDef = stageScheduled(&SU);
3828 assert(StageDef != -1 && "Instruction should have been scheduled.");
3829 for (auto &SI : SU.Succs)
3830 if (SI.isAssignedRegDep())
Simon Pilgrimb39236b2016-07-29 18:57:32 +00003831 if (ST.getRegisterInfo()->isPhysicalRegister(SI.getReg()))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003832 if (stageScheduled(SI.getSUnit()) != StageDef)
3833 return false;
3834 }
3835 return true;
3836}
3837
3838/// After the schedule has been formed, call this function to combine
3839/// the instructions from the different stages/cycles. That is, this
3840/// function creates a schedule that represents a single iteration.
3841void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) {
3842 // Move all instructions to the first stage from later stages.
3843 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
3844 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage;
3845 ++stage) {
3846 std::deque<SUnit *> &cycleInstrs =
3847 ScheduledInstrs[cycle + (stage * InitiationInterval)];
3848 for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(),
3849 E = cycleInstrs.rend();
3850 I != E; ++I)
3851 ScheduledInstrs[cycle].push_front(*I);
3852 }
3853 }
3854 // Iterate over the definitions in each instruction, and compute the
3855 // stage difference for each use. Keep the maximum value.
3856 for (auto &I : InstrToCycle) {
3857 int DefStage = stageScheduled(I.first);
3858 MachineInstr *MI = I.first->getInstr();
3859 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
3860 MachineOperand &Op = MI->getOperand(i);
3861 if (!Op.isReg() || !Op.isDef())
3862 continue;
3863
3864 unsigned Reg = Op.getReg();
3865 unsigned MaxDiff = 0;
3866 bool PhiIsSwapped = false;
3867 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg),
3868 EI = MRI.use_end();
3869 UI != EI; ++UI) {
3870 MachineOperand &UseOp = *UI;
3871 MachineInstr *UseMI = UseOp.getParent();
3872 SUnit *SUnitUse = SSD->getSUnit(UseMI);
3873 int UseStage = stageScheduled(SUnitUse);
3874 unsigned Diff = 0;
3875 if (UseStage != -1 && UseStage >= DefStage)
3876 Diff = UseStage - DefStage;
3877 if (MI->isPHI()) {
3878 if (isLoopCarried(SSD, *MI))
3879 ++Diff;
3880 else
3881 PhiIsSwapped = true;
3882 }
3883 MaxDiff = std::max(Diff, MaxDiff);
3884 }
3885 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
3886 }
3887 }
3888
3889 // Erase all the elements in the later stages. Only one iteration should
3890 // remain in the scheduled list, and it contains all the instructions.
3891 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle)
3892 ScheduledInstrs.erase(cycle);
3893
3894 // Change the registers in instruction as specified in the InstrChanges
3895 // map. We need to use the new registers to create the correct order.
3896 for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) {
3897 SUnit *SU = &SSD->SUnits[i];
3898 SSD->applyInstrChange(SU->getInstr(), *this, true);
3899 }
3900
3901 // Reorder the instructions in each cycle to fix and improve the
3902 // generated code.
3903 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) {
3904 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle];
3905 std::deque<SUnit *> newOrderZC;
3906 // Put the zero-cost, pseudo instructions at the start of the cycle.
3907 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
3908 SUnit *SU = cycleInstrs[i];
3909 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()))
3910 orderDependence(SSD, SU, newOrderZC);
3911 }
3912 std::deque<SUnit *> newOrderI;
3913 // Then, add the regular instructions back.
3914 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
3915 SUnit *SU = cycleInstrs[i];
3916 if (!ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()))
3917 orderDependence(SSD, SU, newOrderI);
3918 }
3919 // Replace the old order with the new order.
3920 cycleInstrs.swap(newOrderZC);
3921 cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end());
3922 }
3923
3924 DEBUG(dump(););
3925}
3926
3927/// Print the schedule information to the given output.
3928void SMSchedule::print(raw_ostream &os) const {
3929 // Iterate over each cycle.
3930 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
3931 // Iterate over each instruction in the cycle.
3932 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle);
3933 for (SUnit *CI : cycleInstrs->second) {
3934 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") ";
3935 os << "(" << CI->NodeNum << ") ";
3936 CI->getInstr()->print(os);
3937 os << "\n";
3938 }
3939 }
3940}
3941
3942/// Utility function used for debugging to print the schedule.
3943void SMSchedule::dump() const { print(dbgs()); }