blob: 041f405ca48bd8a5b2296b0f6b7ca18725b241ec [file] [log] [blame]
Philip Reamesd16a9b12015-02-20 01:06:44 +00001//===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Rewrite an existing set of gc.statepoints such that they make potential
11// relocations performed by the garbage collector explicit in the IR.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Pass.h"
16#include "llvm/Analysis/CFG.h"
17#include "llvm/ADT/SetOperations.h"
18#include "llvm/ADT/Statistic.h"
19#include "llvm/ADT/DenseSet.h"
20#include "llvm/IR/BasicBlock.h"
21#include "llvm/IR/CallSite.h"
22#include "llvm/IR/Dominators.h"
23#include "llvm/IR/Function.h"
24#include "llvm/IR/IRBuilder.h"
25#include "llvm/IR/InstIterator.h"
26#include "llvm/IR/Instructions.h"
27#include "llvm/IR/Intrinsics.h"
28#include "llvm/IR/IntrinsicInst.h"
29#include "llvm/IR/Module.h"
30#include "llvm/IR/Statepoint.h"
31#include "llvm/IR/Value.h"
32#include "llvm/IR/Verifier.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Transforms/Scalar.h"
36#include "llvm/Transforms/Utils/BasicBlockUtils.h"
37#include "llvm/Transforms/Utils/Cloning.h"
38#include "llvm/Transforms/Utils/Local.h"
39#include "llvm/Transforms/Utils/PromoteMemToReg.h"
40
41#define DEBUG_TYPE "rewrite-statepoints-for-gc"
42
43using namespace llvm;
44
45// Print tracing output
46static cl::opt<bool> TraceLSP("trace-rewrite-statepoints", cl::Hidden,
47 cl::init(false));
48
49// Print the liveset found at the insert location
50static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden,
51 cl::init(false));
52static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size",
53 cl::Hidden, cl::init(false));
54// Print out the base pointers for debugging
55static cl::opt<bool> PrintBasePointers("spp-print-base-pointers",
56 cl::Hidden, cl::init(false));
57
Benjamin Kramer6f665452015-02-20 14:00:58 +000058namespace {
Philip Reamesd16a9b12015-02-20 01:06:44 +000059struct RewriteStatepointsForGC : public FunctionPass {
60 static char ID; // Pass identification, replacement for typeid
61
62 RewriteStatepointsForGC() : FunctionPass(ID) {
63 initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry());
64 }
65 bool runOnFunction(Function &F) override;
66
67 void getAnalysisUsage(AnalysisUsage &AU) const override {
68 // We add and rewrite a bunch of instructions, but don't really do much
69 // else. We could in theory preserve a lot more analyses here.
70 AU.addRequired<DominatorTreeWrapperPass>();
71 }
72};
Benjamin Kramer6f665452015-02-20 14:00:58 +000073} // namespace
Philip Reamesd16a9b12015-02-20 01:06:44 +000074
75char RewriteStatepointsForGC::ID = 0;
76
77FunctionPass *llvm::createRewriteStatepointsForGCPass() {
78 return new RewriteStatepointsForGC();
79}
80
81INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
82 "Make relocations explicit at statepoints", false, false)
83INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
84INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc",
85 "Make relocations explicit at statepoints", false, false)
86
87namespace {
88// The type of the internal cache used inside the findBasePointers family
89// of functions. From the callers perspective, this is an opaque type and
90// should not be inspected.
91//
92// In the actual implementation this caches two relations:
93// - The base relation itself (i.e. this pointer is based on that one)
94// - The base defining value relation (i.e. before base_phi insertion)
95// Generally, after the execution of a full findBasePointer call, only the
96// base relation will remain. Internally, we add a mixture of the two
97// types, then update all the second type to the first type
98typedef std::map<Value *, Value *> DefiningValueMapTy;
Philip Reames860660e2015-02-20 22:05:18 +000099typedef std::set<llvm::Value *> StatepointLiveSetTy;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000100
Philip Reamesd16a9b12015-02-20 01:06:44 +0000101struct PartiallyConstructedSafepointRecord {
102 /// The set of values known to be live accross this safepoint
Philip Reames860660e2015-02-20 22:05:18 +0000103 StatepointLiveSetTy liveset;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000104
105 /// Mapping from live pointers to a base-defining-value
Philip Reamesf2041322015-02-20 19:26:04 +0000106 DenseMap<llvm::Value *, llvm::Value *> PointerToBase;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000107
108 /// Any new values which were added to the IR during base pointer analysis
109 /// for this safepoint
Philip Reamesf2041322015-02-20 19:26:04 +0000110 DenseSet<llvm::Value *> NewInsertedDefs;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000111
Philip Reames0a3240f2015-02-20 21:34:11 +0000112 /// The *new* gc.statepoint instruction itself. This produces the token
113 /// that normal path gc.relocates and the gc.result are tied to.
114 Instruction *StatepointToken;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000115
Philip Reamesf2041322015-02-20 19:26:04 +0000116 /// Instruction to which exceptional gc relocates are attached
117 /// Makes it easier to iterate through them during relocationViaAlloca.
118 Instruction *UnwindToken;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000119};
120}
121
122// TODO: Once we can get to the GCStrategy, this becomes
123// Optional<bool> isGCManagedPointer(const Value *V) const override {
124
125static bool isGCPointerType(const Type *T) {
126 if (const PointerType *PT = dyn_cast<PointerType>(T))
127 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
128 // GC managed heap. We know that a pointer into this heap needs to be
129 // updated and that no other pointer does.
130 return (1 == PT->getAddressSpace());
131 return false;
132}
133
134/// Return true if the Value is a gc reference type which is potentially used
135/// after the instruction 'loc'. This is only used with the edge reachability
136/// liveness code. Note: It is assumed the V dominates loc.
137static bool isLiveGCReferenceAt(Value &V, Instruction *loc, DominatorTree &DT,
138 LoopInfo *LI) {
139 if (!isGCPointerType(V.getType()))
140 return false;
141
142 if (V.use_empty())
143 return false;
144
145 // Given assumption that V dominates loc, this may be live
146 return true;
147}
Benjamin Kramerd4a3a552015-02-20 13:15:49 +0000148
149#ifndef NDEBUG
Philip Reamesd16a9b12015-02-20 01:06:44 +0000150static bool isAggWhichContainsGCPtrType(Type *Ty) {
151 if (VectorType *VT = dyn_cast<VectorType>(Ty))
152 return isGCPointerType(VT->getScalarType());
153 else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
154 return isGCPointerType(AT->getElementType()) ||
155 isAggWhichContainsGCPtrType(AT->getElementType());
156 } else if (StructType *ST = dyn_cast<StructType>(Ty)) {
157 bool UnsupportedType = false;
158 for (Type *SubType : ST->subtypes())
Benjamin Kramerd4a3a552015-02-20 13:15:49 +0000159 UnsupportedType |=
160 isGCPointerType(SubType) || isAggWhichContainsGCPtrType(SubType);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000161 return UnsupportedType;
162 } else
163 return false;
164}
Benjamin Kramerd4a3a552015-02-20 13:15:49 +0000165#endif
Philip Reamesd16a9b12015-02-20 01:06:44 +0000166
167// Conservatively identifies any definitions which might be live at the
168// given instruction. The analysis is performed immediately before the
169// given instruction. Values defined by that instruction are not considered
170// live. Values used by that instruction are considered live.
171//
172// preconditions: valid IR graph, term is either a terminator instruction or
173// a call instruction, pred is the basic block of term, DT, LI are valid
174//
175// side effects: none, does not mutate IR
176//
177// postconditions: populates liveValues as discussed above
178static void findLiveGCValuesAtInst(Instruction *term, BasicBlock *pred,
179 DominatorTree &DT, LoopInfo *LI,
180 std::set<llvm::Value *> &liveValues) {
181 liveValues.clear();
182
183 assert(isa<CallInst>(term) || isa<InvokeInst>(term) || term->isTerminator());
184
185 Function *F = pred->getParent();
186
187 auto is_live_gc_reference =
188 [&](Value &V) { return isLiveGCReferenceAt(V, term, DT, LI); };
189
190 // Are there any gc pointer arguments live over this point? This needs to be
191 // special cased since arguments aren't defined in basic blocks.
192 for (Argument &arg : F->args()) {
193 assert(!isAggWhichContainsGCPtrType(arg.getType()) &&
194 "support for FCA unimplemented");
195
196 if (is_live_gc_reference(arg)) {
197 liveValues.insert(&arg);
198 }
199 }
200
201 // Walk through all dominating blocks - the ones which can contain
202 // definitions used in this block - and check to see if any of the values
203 // they define are used in locations potentially reachable from the
204 // interesting instruction.
205 BasicBlock *BBI = pred;
206 while (true) {
207 if (TraceLSP) {
208 errs() << "[LSP] Looking at dominating block " << pred->getName() << "\n";
209 }
210 assert(DT.dominates(BBI, pred));
211 assert(isPotentiallyReachable(BBI, pred, &DT) &&
212 "dominated block must be reachable");
213
214 // Walk through the instructions in dominating blocks and keep any
215 // that have a use potentially reachable from the block we're
216 // considering putting the safepoint in
217 for (Instruction &inst : *BBI) {
218 if (TraceLSP) {
219 errs() << "[LSP] Looking at instruction ";
220 inst.dump();
221 }
222
223 if (pred == BBI && (&inst) == term) {
224 if (TraceLSP) {
225 errs() << "[LSP] stopped because we encountered the safepoint "
226 "instruction.\n";
227 }
228
229 // If we're in the block which defines the interesting instruction,
230 // we don't want to include any values as live which are defined
231 // _after_ the interesting line or as part of the line itself
232 // i.e. "term" is the call instruction for a call safepoint, the
233 // results of the call should not be considered live in that stackmap
234 break;
235 }
236
237 assert(!isAggWhichContainsGCPtrType(inst.getType()) &&
238 "support for FCA unimplemented");
239
240 if (is_live_gc_reference(inst)) {
241 if (TraceLSP) {
242 errs() << "[LSP] found live value for this safepoint ";
243 inst.dump();
244 term->dump();
245 }
246 liveValues.insert(&inst);
247 }
248 }
249 if (!DT.getNode(BBI)->getIDom()) {
250 assert(BBI == &F->getEntryBlock() &&
251 "failed to find a dominator for something other than "
252 "the entry block");
253 break;
254 }
255 BBI = DT.getNode(BBI)->getIDom()->getBlock();
256 }
257}
258
259static bool order_by_name(llvm::Value *a, llvm::Value *b) {
260 if (a->hasName() && b->hasName()) {
261 return -1 == a->getName().compare(b->getName());
262 } else if (a->hasName() && !b->hasName()) {
263 return true;
264 } else if (!a->hasName() && b->hasName()) {
265 return false;
266 } else {
267 // Better than nothing, but not stable
268 return a < b;
269 }
270}
271
272/// Find the initial live set. Note that due to base pointer
273/// insertion, the live set may be incomplete.
274static void
275analyzeParsePointLiveness(DominatorTree &DT, const CallSite &CS,
276 PartiallyConstructedSafepointRecord &result) {
277 Instruction *inst = CS.getInstruction();
278
279 BasicBlock *BB = inst->getParent();
280 std::set<Value *> liveset;
281 findLiveGCValuesAtInst(inst, BB, DT, nullptr, liveset);
282
283 if (PrintLiveSet) {
284 // Note: This output is used by several of the test cases
285 // The order of elemtns in a set is not stable, put them in a vec and sort
286 // by name
Philip Reames860660e2015-02-20 22:05:18 +0000287 SmallVector<Value *, 64> temp;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000288 temp.insert(temp.end(), liveset.begin(), liveset.end());
289 std::sort(temp.begin(), temp.end(), order_by_name);
290 errs() << "Live Variables:\n";
291 for (Value *V : temp) {
292 errs() << " " << V->getName(); // no newline
293 V->dump();
294 }
295 }
296 if (PrintLiveSetSize) {
297 errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n";
298 errs() << "Number live values: " << liveset.size() << "\n";
299 }
300 result.liveset = liveset;
301}
302
303/// True iff this value is the null pointer constant (of any pointer type)
304static bool isNullConstant(Value *V) {
305 return isa<Constant>(V) && isa<PointerType>(V->getType()) &&
306 cast<Constant>(V)->isNullValue();
307}
308
309/// Helper function for findBasePointer - Will return a value which either a)
310/// defines the base pointer for the input or b) blocks the simple search
311/// (i.e. a PHI or Select of two derived pointers)
312static Value *findBaseDefiningValue(Value *I) {
313 assert(I->getType()->isPointerTy() &&
314 "Illegal to ask for the base pointer of a non-pointer type");
315
316 // There are instructions which can never return gc pointer values. Sanity
317 // check
318 // that this is actually true.
319 assert(!isa<InsertElementInst>(I) && !isa<ExtractElementInst>(I) &&
320 !isa<ShuffleVectorInst>(I) && "Vector types are not gc pointers");
321 assert((!isa<Instruction>(I) || isa<InvokeInst>(I) ||
322 !cast<Instruction>(I)->isTerminator()) &&
323 "With the exception of invoke terminators don't define values");
324 assert(!isa<StoreInst>(I) && !isa<FenceInst>(I) &&
325 "Can't be definitions to start with");
326 assert(!isa<ICmpInst>(I) && !isa<FCmpInst>(I) &&
327 "Comparisons don't give ops");
328 // There's a bunch of instructions which just don't make sense to apply to
329 // a pointer. The only valid reason for this would be pointer bit
330 // twiddling which we're just not going to support.
331 assert((!isa<Instruction>(I) || !cast<Instruction>(I)->isBinaryOp()) &&
332 "Binary ops on pointer values are meaningless. Unless your "
333 "bit-twiddling which we don't support");
334
335 if (Argument *Arg = dyn_cast<Argument>(I)) {
336 // An incoming argument to the function is a base pointer
337 // We should have never reached here if this argument isn't an gc value
338 assert(Arg->getType()->isPointerTy() &&
339 "Base for pointer must be another pointer");
340 return Arg;
341 }
342
343 if (GlobalVariable *global = dyn_cast<GlobalVariable>(I)) {
344 // base case
345 assert(global->getType()->isPointerTy() &&
346 "Base for pointer must be another pointer");
347 return global;
348 }
349
350 // inlining could possibly introduce phi node that contains
351 // undef if callee has multiple returns
352 if (UndefValue *undef = dyn_cast<UndefValue>(I)) {
353 assert(undef->getType()->isPointerTy() &&
354 "Base for pointer must be another pointer");
355 return undef; // utterly meaningless, but useful for dealing with
356 // partially optimized code.
357 }
358
359 // Due to inheritance, this must be _after_ the global variable and undef
360 // checks
361 if (Constant *con = dyn_cast<Constant>(I)) {
362 assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) &&
363 "order of checks wrong!");
364 // Note: Finding a constant base for something marked for relocation
365 // doesn't really make sense. The most likely case is either a) some
366 // screwed up the address space usage or b) your validating against
367 // compiled C++ code w/o the proper separation. The only real exception
368 // is a null pointer. You could have generic code written to index of
369 // off a potentially null value and have proven it null. We also use
370 // null pointers in dead paths of relocation phis (which we might later
371 // want to find a base pointer for).
372 assert(con->getType()->isPointerTy() &&
373 "Base for pointer must be another pointer");
374 assert(con->isNullValue() && "null is the only case which makes sense");
375 return con;
376 }
377
378 if (CastInst *CI = dyn_cast<CastInst>(I)) {
379 Value *def = CI->stripPointerCasts();
380 assert(def->getType()->isPointerTy() &&
381 "Base for pointer must be another pointer");
382 if (isa<CastInst>(def)) {
383 // If we find a cast instruction here, it means we've found a cast
384 // which is not simply a pointer cast (i.e. an inttoptr). We don't
385 // know how to handle int->ptr conversion.
386 llvm_unreachable("Can not find the base pointers for an inttoptr cast");
387 }
388 assert(!isa<CastInst>(def) && "shouldn't find another cast here");
389 return findBaseDefiningValue(def);
390 }
391
392 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
393 if (LI->getType()->isPointerTy()) {
394 Value *Op = LI->getOperand(0);
Nick Lewyckyeb3231e2015-02-20 07:14:02 +0000395 (void)Op;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000396 // Has to be a pointer to an gc object, or possibly an array of such?
397 assert(Op->getType()->isPointerTy());
398 return LI; // The value loaded is an gc base itself
399 }
400 }
401 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
402 Value *Op = GEP->getOperand(0);
403 if (Op->getType()->isPointerTy()) {
404 return findBaseDefiningValue(Op); // The base of this GEP is the base
405 }
406 }
407
408 if (AllocaInst *alloc = dyn_cast<AllocaInst>(I)) {
409 // An alloca represents a conceptual stack slot. It's the slot itself
410 // that the GC needs to know about, not the value in the slot.
411 assert(alloc->getType()->isPointerTy() &&
412 "Base for pointer must be another pointer");
413 return alloc;
414 }
415
416 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
417 switch (II->getIntrinsicID()) {
418 default:
419 // fall through to general call handling
420 break;
421 case Intrinsic::experimental_gc_statepoint:
422 case Intrinsic::experimental_gc_result_float:
423 case Intrinsic::experimental_gc_result_int:
424 llvm_unreachable("these don't produce pointers");
425 case Intrinsic::experimental_gc_result_ptr:
426 // This is just a special case of the CallInst check below to handle a
427 // statepoint with deopt args which hasn't been rewritten for GC yet.
428 // TODO: Assert that the statepoint isn't rewritten yet.
429 return II;
430 case Intrinsic::experimental_gc_relocate: {
431 // Rerunning safepoint insertion after safepoints are already
432 // inserted is not supported. It could probably be made to work,
433 // but why are you doing this? There's no good reason.
434 llvm_unreachable("repeat safepoint insertion is not supported");
435 }
436 case Intrinsic::gcroot:
437 // Currently, this mechanism hasn't been extended to work with gcroot.
438 // There's no reason it couldn't be, but I haven't thought about the
439 // implications much.
440 llvm_unreachable(
441 "interaction with the gcroot mechanism is not supported");
442 }
443 }
444 // We assume that functions in the source language only return base
445 // pointers. This should probably be generalized via attributes to support
446 // both source language and internal functions.
447 if (CallInst *call = dyn_cast<CallInst>(I)) {
448 assert(call->getType()->isPointerTy() &&
449 "Base for pointer must be another pointer");
450 return call;
451 }
452 if (InvokeInst *invoke = dyn_cast<InvokeInst>(I)) {
453 assert(invoke->getType()->isPointerTy() &&
454 "Base for pointer must be another pointer");
455 return invoke;
456 }
457
458 // I have absolutely no idea how to implement this part yet. It's not
459 // neccessarily hard, I just haven't really looked at it yet.
460 assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented");
461
462 if (AtomicCmpXchgInst *cas = dyn_cast<AtomicCmpXchgInst>(I)) {
463 // A CAS is effectively a atomic store and load combined under a
464 // predicate. From the perspective of base pointers, we just treat it
465 // like a load. We loaded a pointer from a address in memory, that value
466 // had better be a valid base pointer.
467 return cas->getPointerOperand();
468 }
469 if (AtomicRMWInst *atomic = dyn_cast<AtomicRMWInst>(I)) {
470 assert(AtomicRMWInst::Xchg == atomic->getOperation() &&
471 "All others are binary ops which don't apply to base pointers");
472 // semantically, a load, store pair. Treat it the same as a standard load
473 return atomic->getPointerOperand();
474 }
475
476 // The aggregate ops. Aggregates can either be in the heap or on the
477 // stack, but in either case, this is simply a field load. As a result,
478 // this is a defining definition of the base just like a load is.
479 if (ExtractValueInst *ev = dyn_cast<ExtractValueInst>(I)) {
480 return ev;
481 }
482
483 // We should never see an insert vector since that would require we be
484 // tracing back a struct value not a pointer value.
485 assert(!isa<InsertValueInst>(I) &&
486 "Base pointer for a struct is meaningless");
487
488 // The last two cases here don't return a base pointer. Instead, they
489 // return a value which dynamically selects from amoung several base
490 // derived pointers (each with it's own base potentially). It's the job of
491 // the caller to resolve these.
492 if (SelectInst *select = dyn_cast<SelectInst>(I)) {
493 return select;
494 }
495 if (PHINode *phi = dyn_cast<PHINode>(I)) {
496 return phi;
497 }
498
499 errs() << "unknown type: " << *I << "\n";
500 llvm_unreachable("unknown type");
501 return nullptr;
502}
503
504/// Returns the base defining value for this value.
Benjamin Kramer6f665452015-02-20 14:00:58 +0000505static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &cache) {
506 Value *&Cached = cache[I];
507 if (!Cached) {
508 Cached = findBaseDefiningValue(I);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000509 }
Benjamin Kramer6f665452015-02-20 14:00:58 +0000510 assert(cache[I] != nullptr);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000511
512 if (TraceLSP) {
Benjamin Kramer6f665452015-02-20 14:00:58 +0000513 errs() << "fBDV-cached: " << I->getName() << " -> " << Cached->getName()
Philip Reamesd16a9b12015-02-20 01:06:44 +0000514 << "\n";
515 }
Benjamin Kramer6f665452015-02-20 14:00:58 +0000516 return Cached;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000517}
518
519/// Return a base pointer for this value if known. Otherwise, return it's
520/// base defining value.
521static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &cache) {
522 Value *def = findBaseDefiningValueCached(I, cache);
Benjamin Kramer6f665452015-02-20 14:00:58 +0000523 auto Found = cache.find(def);
524 if (Found != cache.end()) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000525 // Either a base-of relation, or a self reference. Caller must check.
Benjamin Kramer6f665452015-02-20 14:00:58 +0000526 return Found->second;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000527 }
528 // Only a BDV available
529 return def;
530}
531
532/// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV,
533/// is it known to be a base pointer? Or do we need to continue searching.
534static bool isKnownBaseResult(Value *v) {
535 if (!isa<PHINode>(v) && !isa<SelectInst>(v)) {
536 // no recursion possible
537 return true;
538 }
539 if (cast<Instruction>(v)->getMetadata("is_base_value")) {
540 // This is a previously inserted base phi or select. We know
541 // that this is a base value.
542 return true;
543 }
544
545 // We need to keep searching
546 return false;
547}
548
549// TODO: find a better name for this
550namespace {
551class PhiState {
552public:
553 enum Status { Unknown, Base, Conflict };
554
555 PhiState(Status s, Value *b = nullptr) : status(s), base(b) {
556 assert(status != Base || b);
557 }
558 PhiState(Value *b) : status(Base), base(b) {}
559 PhiState() : status(Unknown), base(nullptr) {}
560 PhiState(const PhiState &other) : status(other.status), base(other.base) {
561 assert(status != Base || base);
562 }
563
564 Status getStatus() const { return status; }
565 Value *getBase() const { return base; }
566
567 bool isBase() const { return getStatus() == Base; }
568 bool isUnknown() const { return getStatus() == Unknown; }
569 bool isConflict() const { return getStatus() == Conflict; }
570
571 bool operator==(const PhiState &other) const {
572 return base == other.base && status == other.status;
573 }
574
575 bool operator!=(const PhiState &other) const { return !(*this == other); }
576
577 void dump() {
578 errs() << status << " (" << base << " - "
579 << (base ? base->getName() : "nullptr") << "): ";
580 }
581
582private:
583 Status status;
584 Value *base; // non null only if status == base
585};
586
Philip Reames860660e2015-02-20 22:05:18 +0000587typedef std::map<Value *, PhiState> ConflictStateMapTy;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000588// Values of type PhiState form a lattice, and this is a helper
589// class that implementes the meet operation. The meat of the meet
590// operation is implemented in MeetPhiStates::pureMeet
591class MeetPhiStates {
592public:
593 // phiStates is a mapping from PHINodes and SelectInst's to PhiStates.
Philip Reames860660e2015-02-20 22:05:18 +0000594 explicit MeetPhiStates(const ConflictStateMapTy &phiStates)
Philip Reamesd16a9b12015-02-20 01:06:44 +0000595 : phiStates(phiStates) {}
596
597 // Destructively meet the current result with the base V. V can
598 // either be a merge instruction (SelectInst / PHINode), in which
599 // case its status is looked up in the phiStates map; or a regular
600 // SSA value, in which case it is assumed to be a base.
601 void meetWith(Value *V) {
602 PhiState otherState = getStateForBDV(V);
603 assert((MeetPhiStates::pureMeet(otherState, currentResult) ==
604 MeetPhiStates::pureMeet(currentResult, otherState)) &&
605 "math is wrong: meet does not commute!");
606 currentResult = MeetPhiStates::pureMeet(otherState, currentResult);
607 }
608
609 PhiState getResult() const { return currentResult; }
610
611private:
Philip Reames860660e2015-02-20 22:05:18 +0000612 const ConflictStateMapTy &phiStates;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000613 PhiState currentResult;
614
615 /// Return a phi state for a base defining value. We'll generate a new
616 /// base state for known bases and expect to find a cached state otherwise
617 PhiState getStateForBDV(Value *baseValue) {
618 if (isKnownBaseResult(baseValue)) {
619 return PhiState(baseValue);
620 } else {
621 return lookupFromMap(baseValue);
622 }
623 }
624
625 PhiState lookupFromMap(Value *V) {
626 auto I = phiStates.find(V);
627 assert(I != phiStates.end() && "lookup failed!");
628 return I->second;
629 }
630
631 static PhiState pureMeet(const PhiState &stateA, const PhiState &stateB) {
632 switch (stateA.getStatus()) {
633 case PhiState::Unknown:
634 return stateB;
635
636 case PhiState::Base:
637 assert(stateA.getBase() && "can't be null");
638 if (stateB.isUnknown()) {
639 return stateA;
640 } else if (stateB.isBase()) {
641 if (stateA.getBase() == stateB.getBase()) {
642 assert(stateA == stateB && "equality broken!");
643 return stateA;
644 }
645 return PhiState(PhiState::Conflict);
646 } else {
647 assert(stateB.isConflict() && "only three states!");
648 return PhiState(PhiState::Conflict);
649 }
650
651 case PhiState::Conflict:
652 return stateA;
653 }
Reid Klecknera070ee52015-02-20 19:46:02 +0000654 llvm_unreachable("only three states!");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000655 }
656};
657}
658/// For a given value or instruction, figure out what base ptr it's derived
659/// from. For gc objects, this is simply itself. On success, returns a value
660/// which is the base pointer. (This is reliable and can be used for
661/// relocation.) On failure, returns nullptr.
662static Value *findBasePointer(Value *I, DefiningValueMapTy &cache,
Philip Reamesf2041322015-02-20 19:26:04 +0000663 DenseSet<llvm::Value *> &NewInsertedDefs) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000664 Value *def = findBaseOrBDV(I, cache);
665
666 if (isKnownBaseResult(def)) {
667 return def;
668 }
669
670 // Here's the rough algorithm:
671 // - For every SSA value, construct a mapping to either an actual base
672 // pointer or a PHI which obscures the base pointer.
673 // - Construct a mapping from PHI to unknown TOP state. Use an
674 // optimistic algorithm to propagate base pointer information. Lattice
675 // looks like:
676 // UNKNOWN
677 // b1 b2 b3 b4
678 // CONFLICT
679 // When algorithm terminates, all PHIs will either have a single concrete
680 // base or be in a conflict state.
681 // - For every conflict, insert a dummy PHI node without arguments. Add
682 // these to the base[Instruction] = BasePtr mapping. For every
683 // non-conflict, add the actual base.
684 // - For every conflict, add arguments for the base[a] of each input
685 // arguments.
686 //
687 // Note: A simpler form of this would be to add the conflict form of all
688 // PHIs without running the optimistic algorithm. This would be
689 // analougous to pessimistic data flow and would likely lead to an
690 // overall worse solution.
691
Philip Reames860660e2015-02-20 22:05:18 +0000692 ConflictStateMapTy states;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000693 states[def] = PhiState();
694 // Recursively fill in all phis & selects reachable from the initial one
695 // for which we don't already know a definite base value for
696 // PERF: Yes, this is as horribly inefficient as it looks.
697 bool done = false;
698 while (!done) {
699 done = true;
700 for (auto Pair : states) {
701 Value *v = Pair.first;
702 assert(!isKnownBaseResult(v) && "why did it get added?");
703 if (PHINode *phi = dyn_cast<PHINode>(v)) {
704 unsigned NumPHIValues = phi->getNumIncomingValues();
705 assert(NumPHIValues > 0 && "zero input phis are illegal");
706 for (unsigned i = 0; i != NumPHIValues; ++i) {
707 Value *InVal = phi->getIncomingValue(i);
708 Value *local = findBaseOrBDV(InVal, cache);
709 if (!isKnownBaseResult(local) && states.find(local) == states.end()) {
710 states[local] = PhiState();
711 done = false;
712 }
713 }
714 } else if (SelectInst *sel = dyn_cast<SelectInst>(v)) {
715 Value *local = findBaseOrBDV(sel->getTrueValue(), cache);
716 if (!isKnownBaseResult(local) && states.find(local) == states.end()) {
717 states[local] = PhiState();
718 done = false;
719 }
720 local = findBaseOrBDV(sel->getFalseValue(), cache);
721 if (!isKnownBaseResult(local) && states.find(local) == states.end()) {
722 states[local] = PhiState();
723 done = false;
724 }
725 }
726 }
727 }
728
729 if (TraceLSP) {
730 errs() << "States after initialization:\n";
731 for (auto Pair : states) {
732 Instruction *v = cast<Instruction>(Pair.first);
733 PhiState state = Pair.second;
734 state.dump();
735 v->dump();
736 }
737 }
738
739 // TODO: come back and revisit the state transitions around inputs which
740 // have reached conflict state. The current version seems too conservative.
741
742 bool progress = true;
743 size_t oldSize = 0;
744 while (progress) {
745 oldSize = states.size();
746 progress = false;
747 for (auto Pair : states) {
748 MeetPhiStates calculateMeet(states);
749 Value *v = Pair.first;
750 assert(!isKnownBaseResult(v) && "why did it get added?");
751 assert(isa<SelectInst>(v) || isa<PHINode>(v));
752 if (SelectInst *select = dyn_cast<SelectInst>(v)) {
753 calculateMeet.meetWith(findBaseOrBDV(select->getTrueValue(), cache));
754 calculateMeet.meetWith(findBaseOrBDV(select->getFalseValue(), cache));
755 } else if (PHINode *phi = dyn_cast<PHINode>(v)) {
756 for (unsigned i = 0; i < phi->getNumIncomingValues(); i++) {
757 calculateMeet.meetWith(
758 findBaseOrBDV(phi->getIncomingValue(i), cache));
759 }
760 } else {
761 llvm_unreachable("no such state expected");
762 }
763
764 PhiState oldState = states[v];
765 PhiState newState = calculateMeet.getResult();
766 if (oldState != newState) {
767 progress = true;
768 states[v] = newState;
769 }
770 }
771
772 assert(oldSize <= states.size());
773 assert(oldSize == states.size() || progress);
774 }
775
776 if (TraceLSP) {
777 errs() << "States after meet iteration:\n";
778 for (auto Pair : states) {
779 Instruction *v = cast<Instruction>(Pair.first);
780 PhiState state = Pair.second;
781 state.dump();
782 v->dump();
783 }
784 }
785
786 // Insert Phis for all conflicts
787 for (auto Pair : states) {
788 Instruction *v = cast<Instruction>(Pair.first);
789 PhiState state = Pair.second;
790 assert(!isKnownBaseResult(v) && "why did it get added?");
791 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!");
792 if (state.isConflict()) {
793 if (isa<PHINode>(v)) {
794 int num_preds =
795 std::distance(pred_begin(v->getParent()), pred_end(v->getParent()));
796 assert(num_preds > 0 && "how did we reach here");
797 PHINode *phi = PHINode::Create(v->getType(), num_preds, "base_phi", v);
Philip Reamesf2041322015-02-20 19:26:04 +0000798 NewInsertedDefs.insert(phi);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000799 // Add metadata marking this as a base value
800 auto *const_1 = ConstantInt::get(
801 Type::getInt32Ty(
802 v->getParent()->getParent()->getParent()->getContext()),
803 1);
804 auto MDConst = ConstantAsMetadata::get(const_1);
805 MDNode *md = MDNode::get(
806 v->getParent()->getParent()->getParent()->getContext(), MDConst);
807 phi->setMetadata("is_base_value", md);
808 states[v] = PhiState(PhiState::Conflict, phi);
809 } else if (SelectInst *sel = dyn_cast<SelectInst>(v)) {
810 // The undef will be replaced later
811 UndefValue *undef = UndefValue::get(sel->getType());
812 SelectInst *basesel = SelectInst::Create(sel->getCondition(), undef,
813 undef, "base_select", sel);
Philip Reamesf2041322015-02-20 19:26:04 +0000814 NewInsertedDefs.insert(basesel);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000815 // Add metadata marking this as a base value
816 auto *const_1 = ConstantInt::get(
817 Type::getInt32Ty(
818 v->getParent()->getParent()->getParent()->getContext()),
819 1);
820 auto MDConst = ConstantAsMetadata::get(const_1);
821 MDNode *md = MDNode::get(
822 v->getParent()->getParent()->getParent()->getContext(), MDConst);
823 basesel->setMetadata("is_base_value", md);
824 states[v] = PhiState(PhiState::Conflict, basesel);
Philip Reames860660e2015-02-20 22:05:18 +0000825 } else
826 llvm_unreachable("unknown conflict type");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000827 }
828 }
829
830 // Fixup all the inputs of the new PHIs
831 for (auto Pair : states) {
832 Instruction *v = cast<Instruction>(Pair.first);
833 PhiState state = Pair.second;
834
835 assert(!isKnownBaseResult(v) && "why did it get added?");
836 assert(!state.isUnknown() && "Optimistic algorithm didn't complete!");
837 if (state.isConflict()) {
838 if (PHINode *basephi = dyn_cast<PHINode>(state.getBase())) {
839 PHINode *phi = cast<PHINode>(v);
840 unsigned NumPHIValues = phi->getNumIncomingValues();
841 for (unsigned i = 0; i < NumPHIValues; i++) {
842 Value *InVal = phi->getIncomingValue(i);
843 BasicBlock *InBB = phi->getIncomingBlock(i);
844
845 // If we've already seen InBB, add the same incoming value
846 // we added for it earlier. The IR verifier requires phi
847 // nodes with multiple entries from the same basic block
848 // to have the same incoming value for each of those
849 // entries. If we don't do this check here and basephi
850 // has a different type than base, we'll end up adding two
851 // bitcasts (and hence two distinct values) as incoming
852 // values for the same basic block.
853
854 int blockIndex = basephi->getBasicBlockIndex(InBB);
855 if (blockIndex != -1) {
856 Value *oldBase = basephi->getIncomingValue(blockIndex);
857 basephi->addIncoming(oldBase, InBB);
858#ifndef NDEBUG
859 Value *base = findBaseOrBDV(InVal, cache);
860 if (!isKnownBaseResult(base)) {
861 // Either conflict or base.
862 assert(states.count(base));
863 base = states[base].getBase();
864 assert(base != nullptr && "unknown PhiState!");
Philip Reamesf2041322015-02-20 19:26:04 +0000865 assert(NewInsertedDefs.count(base) &&
Philip Reamesd16a9b12015-02-20 01:06:44 +0000866 "should have already added this in a prev. iteration!");
867 }
868
869 // In essense this assert states: the only way two
870 // values incoming from the same basic block may be
871 // different is by being different bitcasts of the same
872 // value. A cleanup that remains TODO is changing
873 // findBaseOrBDV to return an llvm::Value of the correct
874 // type (and still remain pure). This will remove the
875 // need to add bitcasts.
876 assert(base->stripPointerCasts() == oldBase->stripPointerCasts() &&
877 "sanity -- findBaseOrBDV should be pure!");
878#endif
879 continue;
880 }
881
882 // Find either the defining value for the PHI or the normal base for
883 // a non-phi node
884 Value *base = findBaseOrBDV(InVal, cache);
885 if (!isKnownBaseResult(base)) {
886 // Either conflict or base.
887 assert(states.count(base));
888 base = states[base].getBase();
889 assert(base != nullptr && "unknown PhiState!");
890 }
891 assert(base && "can't be null");
892 // Must use original input BB since base may not be Instruction
893 // The cast is needed since base traversal may strip away bitcasts
894 if (base->getType() != basephi->getType()) {
895 base = new BitCastInst(base, basephi->getType(), "cast",
896 InBB->getTerminator());
Philip Reamesf2041322015-02-20 19:26:04 +0000897 NewInsertedDefs.insert(base);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000898 }
899 basephi->addIncoming(base, InBB);
900 }
901 assert(basephi->getNumIncomingValues() == NumPHIValues);
902 } else if (SelectInst *basesel = dyn_cast<SelectInst>(state.getBase())) {
903 SelectInst *sel = cast<SelectInst>(v);
904 // Operand 1 & 2 are true, false path respectively. TODO: refactor to
905 // something more safe and less hacky.
906 for (int i = 1; i <= 2; i++) {
907 Value *InVal = sel->getOperand(i);
908 // Find either the defining value for the PHI or the normal base for
909 // a non-phi node
910 Value *base = findBaseOrBDV(InVal, cache);
911 if (!isKnownBaseResult(base)) {
912 // Either conflict or base.
913 assert(states.count(base));
914 base = states[base].getBase();
915 assert(base != nullptr && "unknown PhiState!");
916 }
917 assert(base && "can't be null");
918 // Must use original input BB since base may not be Instruction
919 // The cast is needed since base traversal may strip away bitcasts
920 if (base->getType() != basesel->getType()) {
921 base = new BitCastInst(base, basesel->getType(), "cast", basesel);
Philip Reamesf2041322015-02-20 19:26:04 +0000922 NewInsertedDefs.insert(base);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000923 }
924 basesel->setOperand(i, base);
925 }
Philip Reames860660e2015-02-20 22:05:18 +0000926 } else
927 llvm_unreachable("unexpected conflict type");
Philip Reamesd16a9b12015-02-20 01:06:44 +0000928 }
929 }
930
931 // Cache all of our results so we can cheaply reuse them
932 // NOTE: This is actually two caches: one of the base defining value
933 // relation and one of the base pointer relation! FIXME
934 for (auto item : states) {
935 Value *v = item.first;
936 Value *base = item.second.getBase();
937 assert(v && base);
938 assert(!isKnownBaseResult(v) && "why did it get added?");
939
940 if (TraceLSP) {
941 std::string fromstr =
942 cache.count(v) ? (cache[v]->hasName() ? cache[v]->getName() : "")
943 : "none";
944 errs() << "Updating base value cache"
945 << " for: " << (v->hasName() ? v->getName() : "")
946 << " from: " << fromstr
947 << " to: " << (base->hasName() ? base->getName() : "") << "\n";
948 }
949
950 assert(isKnownBaseResult(base) &&
951 "must be something we 'know' is a base pointer");
952 if (cache.count(v)) {
953 // Once we transition from the BDV relation being store in the cache to
954 // the base relation being stored, it must be stable
955 assert((!isKnownBaseResult(cache[v]) || cache[v] == base) &&
956 "base relation should be stable");
957 }
958 cache[v] = base;
959 }
960 assert(cache.find(def) != cache.end());
961 return cache[def];
962}
963
964// For a set of live pointers (base and/or derived), identify the base
965// pointer of the object which they are derived from. This routine will
966// mutate the IR graph as needed to make the 'base' pointer live at the
967// definition site of 'derived'. This ensures that any use of 'derived' can
968// also use 'base'. This may involve the insertion of a number of
969// additional PHI nodes.
970//
971// preconditions: live is a set of pointer type Values
972//
973// side effects: may insert PHI nodes into the existing CFG, will preserve
974// CFG, will not remove or mutate any existing nodes
975//
Philip Reamesf2041322015-02-20 19:26:04 +0000976// post condition: PointerToBase contains one (derived, base) pair for every
Philip Reamesd16a9b12015-02-20 01:06:44 +0000977// pointer in live. Note that derived can be equal to base if the original
978// pointer was a base pointer.
979static void findBasePointers(const std::set<llvm::Value *> &live,
Philip Reamesf2041322015-02-20 19:26:04 +0000980 DenseMap<llvm::Value *, llvm::Value *> &PointerToBase,
Philip Reamesd16a9b12015-02-20 01:06:44 +0000981 DominatorTree *DT, DefiningValueMapTy &DVCache,
Philip Reamesf2041322015-02-20 19:26:04 +0000982 DenseSet<llvm::Value *> &NewInsertedDefs) {
Philip Reamesd16a9b12015-02-20 01:06:44 +0000983 for (Value *ptr : live) {
Philip Reamesf2041322015-02-20 19:26:04 +0000984 Value *base = findBasePointer(ptr, DVCache, NewInsertedDefs);
Philip Reamesd16a9b12015-02-20 01:06:44 +0000985 assert(base && "failed to find base pointer");
Philip Reamesf2041322015-02-20 19:26:04 +0000986 PointerToBase[ptr] = base;
Philip Reamesd16a9b12015-02-20 01:06:44 +0000987 assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) ||
988 DT->dominates(cast<Instruction>(base)->getParent(),
989 cast<Instruction>(ptr)->getParent())) &&
990 "The base we found better dominate the derived pointer");
991
992 if (isNullConstant(base))
993 // If you see this trip and like to live really dangerously, the code
994 // should be correct, just with idioms the verifier can't handle. You
995 // can try disabling the verifier at your own substaintial risk.
996 llvm_unreachable("the relocation code needs adjustment to handle the"
997 "relocation of a null pointer constant without causing"
998 "false positives in the safepoint ir verifier.");
999 }
1000}
1001
1002/// Find the required based pointers (and adjust the live set) for the given
1003/// parse point.
1004static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache,
1005 const CallSite &CS,
1006 PartiallyConstructedSafepointRecord &result) {
Philip Reamesf2041322015-02-20 19:26:04 +00001007 DenseMap<llvm::Value *, llvm::Value *> PointerToBase;
1008 DenseSet<llvm::Value *> NewInsertedDefs;
1009 findBasePointers(result.liveset, PointerToBase, &DT, DVCache, NewInsertedDefs);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001010
1011 if (PrintBasePointers) {
1012 errs() << "Base Pairs (w/o Relocation):\n";
Philip Reamesf2041322015-02-20 19:26:04 +00001013 for (auto Pair : PointerToBase) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001014 errs() << " derived %" << Pair.first->getName() << " base %"
1015 << Pair.second->getName() << "\n";
1016 }
1017 }
1018
Philip Reamesf2041322015-02-20 19:26:04 +00001019 result.PointerToBase = PointerToBase;
1020 result.NewInsertedDefs = NewInsertedDefs;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001021}
1022
1023/// Check for liveness of items in the insert defs and add them to the live
1024/// and base pointer sets
1025static void fixupLiveness(DominatorTree &DT, const CallSite &CS,
1026 const std::set<Value *> &allInsertedDefs,
1027 PartiallyConstructedSafepointRecord &result) {
1028 Instruction *inst = CS.getInstruction();
1029
Philip Reamesf2041322015-02-20 19:26:04 +00001030 auto liveset = result.liveset;
1031 auto PointerToBase = result.PointerToBase;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001032
1033 auto is_live_gc_reference =
1034 [&](Value &V) { return isLiveGCReferenceAt(V, inst, DT, nullptr); };
1035
1036 // For each new definition, check to see if a) the definition dominates the
1037 // instruction we're interested in, and b) one of the uses of that definition
1038 // is edge-reachable from the instruction we're interested in. This is the
1039 // same definition of liveness we used in the intial liveness analysis
1040 for (Value *newDef : allInsertedDefs) {
1041 if (liveset.count(newDef)) {
1042 // already live, no action needed
1043 continue;
1044 }
1045
1046 // PERF: Use DT to check instruction domination might not be good for
1047 // compilation time, and we could change to optimal solution if this
1048 // turn to be a issue
1049 if (!DT.dominates(cast<Instruction>(newDef), inst)) {
1050 // can't possibly be live at inst
1051 continue;
1052 }
1053
1054 if (is_live_gc_reference(*newDef)) {
Philip Reamesf2041322015-02-20 19:26:04 +00001055 // Add the live new defs into liveset and PointerToBase
Philip Reamesd16a9b12015-02-20 01:06:44 +00001056 liveset.insert(newDef);
Philip Reamesf2041322015-02-20 19:26:04 +00001057 PointerToBase[newDef] = newDef;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001058 }
1059 }
1060
1061 result.liveset = liveset;
Philip Reamesf2041322015-02-20 19:26:04 +00001062 result.PointerToBase = PointerToBase;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001063}
1064
1065static void fixupLiveReferences(
1066 Function &F, DominatorTree &DT, Pass *P,
1067 const std::set<llvm::Value *> &allInsertedDefs,
Philip Reamesd2b66462015-02-20 22:39:41 +00001068 ArrayRef<CallSite> toUpdate,
1069 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001070 for (size_t i = 0; i < records.size(); i++) {
1071 struct PartiallyConstructedSafepointRecord &info = records[i];
Philip Reamesd2b66462015-02-20 22:39:41 +00001072 const CallSite &CS = toUpdate[i];
Philip Reamesd16a9b12015-02-20 01:06:44 +00001073 fixupLiveness(DT, CS, allInsertedDefs, info);
1074 }
1075}
1076
1077// Normalize basic block to make it ready to be target of invoke statepoint.
1078// It means spliting it to have single predecessor. Return newly created BB
1079// ready to be successor of invoke statepoint.
1080static BasicBlock *normalizeBBForInvokeSafepoint(BasicBlock *BB,
1081 BasicBlock *InvokeParent,
1082 Pass *P) {
1083 BasicBlock *ret = BB;
1084
1085 if (!BB->getUniquePredecessor()) {
1086 ret = SplitBlockPredecessors(BB, InvokeParent, "");
1087 }
1088
1089 // Another requirement for such basic blocks is to not have any phi nodes.
1090 // Since we just ensured that new BB will have single predecessor,
1091 // all phi nodes in it will have one value. Here it would be naturall place
1092 // to
1093 // remove them all. But we can not do this because we are risking to remove
1094 // one of the values stored in liveset of another statepoint. We will do it
1095 // later after placing all safepoints.
1096
1097 return ret;
1098}
1099
Philip Reamesd2b66462015-02-20 22:39:41 +00001100static int find_index(ArrayRef<Value *> livevec, Value *val) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001101 auto itr = std::find(livevec.begin(), livevec.end(), val);
1102 assert(livevec.end() != itr);
1103 size_t index = std::distance(livevec.begin(), itr);
1104 assert(index < livevec.size());
1105 return index;
1106}
1107
1108// Create new attribute set containing only attributes which can be transfered
1109// from original call to the safepoint.
1110static AttributeSet legalizeCallAttributes(AttributeSet AS) {
1111 AttributeSet ret;
1112
1113 for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) {
1114 unsigned index = AS.getSlotIndex(Slot);
1115
1116 if (index == AttributeSet::ReturnIndex ||
1117 index == AttributeSet::FunctionIndex) {
1118
1119 for (auto it = AS.begin(Slot), it_end = AS.end(Slot); it != it_end;
1120 ++it) {
1121 Attribute attr = *it;
1122
1123 // Do not allow certain attributes - just skip them
1124 // Safepoint can not be read only or read none.
1125 if (attr.hasAttribute(Attribute::ReadNone) ||
1126 attr.hasAttribute(Attribute::ReadOnly))
1127 continue;
1128
1129 ret = ret.addAttributes(
1130 AS.getContext(), index,
1131 AttributeSet::get(AS.getContext(), index, AttrBuilder(attr)));
1132 }
1133 }
1134
1135 // Just skip parameter attributes for now
1136 }
1137
1138 return ret;
1139}
1140
1141/// Helper function to place all gc relocates necessary for the given
1142/// statepoint.
1143/// Inputs:
1144/// liveVariables - list of variables to be relocated.
1145/// liveStart - index of the first live variable.
1146/// basePtrs - base pointers.
1147/// statepointToken - statepoint instruction to which relocates should be
1148/// bound.
1149/// Builder - Llvm IR builder to be used to construct new calls.
Philip Reamesd2b66462015-02-20 22:39:41 +00001150void CreateGCRelocates(ArrayRef<llvm::Value *> liveVariables,
1151 const int liveStart,
1152 ArrayRef<llvm::Value *> basePtrs,
1153 Instruction *statepointToken, IRBuilder<> Builder) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001154
Philip Reamesd2b66462015-02-20 22:39:41 +00001155 SmallVector<Instruction *, 64> NewDefs;
1156 NewDefs.reserve(liveVariables.size());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001157
1158 Module *M = statepointToken->getParent()->getParent()->getParent();
1159
1160 for (unsigned i = 0; i < liveVariables.size(); i++) {
1161 // We generate a (potentially) unique declaration for every pointer type
1162 // combination. This results is some blow up the function declarations in
1163 // the IR, but removes the need for argument bitcasts which shrinks the IR
1164 // greatly and makes it much more readable.
Philip Reamesd2b66462015-02-20 22:39:41 +00001165 SmallVector<Type *, 1> types; // one per 'any' type
Philip Reamesd16a9b12015-02-20 01:06:44 +00001166 types.push_back(liveVariables[i]->getType()); // result type
1167 Value *gc_relocate_decl = Intrinsic::getDeclaration(
1168 M, Intrinsic::experimental_gc_relocate, types);
1169
1170 // Generate the gc.relocate call and save the result
1171 Value *baseIdx =
1172 ConstantInt::get(Type::getInt32Ty(M->getContext()),
1173 liveStart + find_index(liveVariables, basePtrs[i]));
1174 Value *liveIdx = ConstantInt::get(
1175 Type::getInt32Ty(M->getContext()),
1176 liveStart + find_index(liveVariables, liveVariables[i]));
1177
1178 // only specify a debug name if we can give a useful one
1179 Value *reloc = Builder.CreateCall3(
1180 gc_relocate_decl, statepointToken, baseIdx, liveIdx,
1181 liveVariables[i]->hasName() ? liveVariables[i]->getName() + ".relocated"
1182 : "");
1183 // Trick CodeGen into thinking there are lots of free registers at this
1184 // fake call.
1185 cast<CallInst>(reloc)->setCallingConv(CallingConv::Cold);
1186
Philip Reamesd2b66462015-02-20 22:39:41 +00001187 NewDefs.push_back(cast<Instruction>(reloc));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001188 }
Philip Reamesd2b66462015-02-20 22:39:41 +00001189 assert(NewDefs.size() == liveVariables.size() &&
Philip Reamesd16a9b12015-02-20 01:06:44 +00001190 "missing or extra redefinition at safepoint");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001191}
1192
1193static void
1194makeStatepointExplicitImpl(const CallSite &CS, /* to replace */
1195 const SmallVectorImpl<llvm::Value *> &basePtrs,
1196 const SmallVectorImpl<llvm::Value *> &liveVariables,
1197 Pass *P,
1198 PartiallyConstructedSafepointRecord &result) {
1199 assert(basePtrs.size() == liveVariables.size());
1200 assert(isStatepoint(CS) &&
1201 "This method expects to be rewriting a statepoint");
1202
1203 BasicBlock *BB = CS.getInstruction()->getParent();
1204 assert(BB);
1205 Function *F = BB->getParent();
1206 assert(F && "must be set");
1207 Module *M = F->getParent();
Nick Lewyckyeb3231e2015-02-20 07:14:02 +00001208 (void)M;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001209 assert(M && "must be set");
1210
1211 // We're not changing the function signature of the statepoint since the gc
1212 // arguments go into the var args section.
1213 Function *gc_statepoint_decl = CS.getCalledFunction();
1214
1215 // Then go ahead and use the builder do actually do the inserts. We insert
1216 // immediately before the previous instruction under the assumption that all
1217 // arguments will be available here. We can't insert afterwards since we may
1218 // be replacing a terminator.
1219 Instruction *insertBefore = CS.getInstruction();
1220 IRBuilder<> Builder(insertBefore);
1221 // Copy all of the arguments from the original statepoint - this includes the
1222 // target, call args, and deopt args
Philip Reamesd2b66462015-02-20 22:39:41 +00001223 SmallVector<llvm::Value *, 64> args;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001224 args.insert(args.end(), CS.arg_begin(), CS.arg_end());
1225 // TODO: Clear the 'needs rewrite' flag
1226
1227 // add all the pointers to be relocated (gc arguments)
1228 // Capture the start of the live variable list for use in the gc_relocates
1229 const int live_start = args.size();
1230 args.insert(args.end(), liveVariables.begin(), liveVariables.end());
1231
1232 // Create the statepoint given all the arguments
1233 Instruction *token = nullptr;
1234 AttributeSet return_attributes;
1235 if (CS.isCall()) {
1236 CallInst *toReplace = cast<CallInst>(CS.getInstruction());
1237 CallInst *call =
1238 Builder.CreateCall(gc_statepoint_decl, args, "safepoint_token");
1239 call->setTailCall(toReplace->isTailCall());
1240 call->setCallingConv(toReplace->getCallingConv());
1241
1242 // Currently we will fail on parameter attributes and on certain
1243 // function attributes.
1244 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes());
1245 // In case if we can handle this set of sttributes - set up function attrs
1246 // directly on statepoint and return attrs later for gc_result intrinsic.
1247 call->setAttributes(new_attrs.getFnAttributes());
1248 return_attributes = new_attrs.getRetAttributes();
1249
1250 token = call;
1251
1252 // Put the following gc_result and gc_relocate calls immediately after the
1253 // the old call (which we're about to delete)
1254 BasicBlock::iterator next(toReplace);
1255 assert(BB->end() != next && "not a terminator, must have next");
1256 next++;
1257 Instruction *IP = &*(next);
1258 Builder.SetInsertPoint(IP);
1259 Builder.SetCurrentDebugLocation(IP->getDebugLoc());
1260
1261 } else if (CS.isInvoke()) {
1262 InvokeInst *toReplace = cast<InvokeInst>(CS.getInstruction());
1263
1264 // Insert the new invoke into the old block. We'll remove the old one in a
1265 // moment at which point this will become the new terminator for the
1266 // original block.
1267 InvokeInst *invoke = InvokeInst::Create(
1268 gc_statepoint_decl, toReplace->getNormalDest(),
1269 toReplace->getUnwindDest(), args, "", toReplace->getParent());
1270 invoke->setCallingConv(toReplace->getCallingConv());
1271
1272 // Currently we will fail on parameter attributes and on certain
1273 // function attributes.
1274 AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes());
1275 // In case if we can handle this set of sttributes - set up function attrs
1276 // directly on statepoint and return attrs later for gc_result intrinsic.
1277 invoke->setAttributes(new_attrs.getFnAttributes());
1278 return_attributes = new_attrs.getRetAttributes();
1279
1280 token = invoke;
1281
1282 // Generate gc relocates in exceptional path
1283 BasicBlock *unwindBlock = normalizeBBForInvokeSafepoint(
1284 toReplace->getUnwindDest(), invoke->getParent(), P);
1285
1286 Instruction *IP = &*(unwindBlock->getFirstInsertionPt());
1287 Builder.SetInsertPoint(IP);
1288 Builder.SetCurrentDebugLocation(toReplace->getDebugLoc());
1289
1290 // Extract second element from landingpad return value. We will attach
1291 // exceptional gc relocates to it.
1292 const unsigned idx = 1;
1293 Instruction *exceptional_token =
1294 cast<Instruction>(Builder.CreateExtractValue(
1295 unwindBlock->getLandingPadInst(), idx, "relocate_token"));
Philip Reamesf2041322015-02-20 19:26:04 +00001296 result.UnwindToken = exceptional_token;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001297
1298 // Just throw away return value. We will use the one we got for normal
1299 // block.
1300 (void)CreateGCRelocates(liveVariables, live_start, basePtrs,
1301 exceptional_token, Builder);
1302
1303 // Generate gc relocates and returns for normal block
1304 BasicBlock *normalDest = normalizeBBForInvokeSafepoint(
1305 toReplace->getNormalDest(), invoke->getParent(), P);
1306
1307 IP = &*(normalDest->getFirstInsertionPt());
1308 Builder.SetInsertPoint(IP);
1309
1310 // gc relocates will be generated later as if it were regular call
1311 // statepoint
1312 } else {
1313 llvm_unreachable("unexpect type of CallSite");
1314 }
1315 assert(token);
1316
1317 // Take the name of the original value call if it had one.
1318 token->takeName(CS.getInstruction());
1319
1320 // The GCResult is already inserted, we just need to find it
Philip Reamesd16a9b12015-02-20 01:06:44 +00001321 /* scope */ {
1322 Instruction *toReplace = CS.getInstruction();
1323 assert((toReplace->hasNUses(0) || toReplace->hasNUses(1)) &&
1324 "only valid use before rewrite is gc.result");
1325 if (toReplace->hasOneUse()) {
1326 Instruction *GCResult = cast<Instruction>(*toReplace->user_begin());
1327 assert(isGCResult(GCResult));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001328 }
1329 }
1330
1331 // Update the gc.result of the original statepoint (if any) to use the newly
1332 // inserted statepoint. This is safe to do here since the token can't be
1333 // considered a live reference.
1334 CS.getInstruction()->replaceAllUsesWith(token);
1335
Philip Reames0a3240f2015-02-20 21:34:11 +00001336 result.StatepointToken = token;
1337
Philip Reamesd16a9b12015-02-20 01:06:44 +00001338 // Second, create a gc.relocate for every live variable
Philip Reames0a3240f2015-02-20 21:34:11 +00001339 CreateGCRelocates(liveVariables, live_start, basePtrs, token, Builder);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001340
Philip Reamesd16a9b12015-02-20 01:06:44 +00001341}
1342
1343namespace {
1344struct name_ordering {
1345 Value *base;
1346 Value *derived;
1347 bool operator()(name_ordering const &a, name_ordering const &b) {
1348 return -1 == a.derived->getName().compare(b.derived->getName());
1349 }
1350};
1351}
1352static void stablize_order(SmallVectorImpl<Value *> &basevec,
1353 SmallVectorImpl<Value *> &livevec) {
1354 assert(basevec.size() == livevec.size());
1355
Philip Reames860660e2015-02-20 22:05:18 +00001356 SmallVector<name_ordering, 64> temp;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001357 for (size_t i = 0; i < basevec.size(); i++) {
1358 name_ordering v;
1359 v.base = basevec[i];
1360 v.derived = livevec[i];
1361 temp.push_back(v);
1362 }
1363 std::sort(temp.begin(), temp.end(), name_ordering());
1364 for (size_t i = 0; i < basevec.size(); i++) {
1365 basevec[i] = temp[i].base;
1366 livevec[i] = temp[i].derived;
1367 }
1368}
1369
1370// Replace an existing gc.statepoint with a new one and a set of gc.relocates
1371// which make the relocations happening at this safepoint explicit.
1372//
1373// WARNING: Does not do any fixup to adjust users of the original live
1374// values. That's the callers responsibility.
1375static void
1376makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, Pass *P,
1377 PartiallyConstructedSafepointRecord &result) {
Philip Reamesf2041322015-02-20 19:26:04 +00001378 auto liveset = result.liveset;
1379 auto PointerToBase = result.PointerToBase;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001380
1381 // Convert to vector for efficient cross referencing.
1382 SmallVector<Value *, 64> basevec, livevec;
1383 livevec.reserve(liveset.size());
1384 basevec.reserve(liveset.size());
1385 for (Value *L : liveset) {
1386 livevec.push_back(L);
1387
Philip Reamesf2041322015-02-20 19:26:04 +00001388 assert(PointerToBase.find(L) != PointerToBase.end());
1389 Value *base = PointerToBase[L];
Philip Reamesd16a9b12015-02-20 01:06:44 +00001390 basevec.push_back(base);
1391 }
1392 assert(livevec.size() == basevec.size());
1393
1394 // To make the output IR slightly more stable (for use in diffs), ensure a
1395 // fixed order of the values in the safepoint (by sorting the value name).
1396 // The order is otherwise meaningless.
1397 stablize_order(basevec, livevec);
1398
1399 // Do the actual rewriting and delete the old statepoint
1400 makeStatepointExplicitImpl(CS, basevec, livevec, P, result);
1401 CS.getInstruction()->eraseFromParent();
1402}
1403
1404// Helper function for the relocationViaAlloca.
1405// It receives iterator to the statepoint gc relocates and emits store to the
1406// assigned
1407// location (via allocaMap) for the each one of them.
1408// Add visited values into the visitedLiveValues set we will later use them
1409// for sanity check.
1410static void
1411insertRelocationStores(iterator_range<Value::user_iterator> gcRelocs,
1412 DenseMap<Value *, Value *> &allocaMap,
1413 DenseSet<Value *> &visitedLiveValues) {
1414
1415 for (User *U : gcRelocs) {
1416 if (!isa<IntrinsicInst>(U))
1417 continue;
1418
1419 IntrinsicInst *relocatedValue = cast<IntrinsicInst>(U);
1420
1421 // We only care about relocates
1422 if (relocatedValue->getIntrinsicID() !=
1423 Intrinsic::experimental_gc_relocate) {
1424 continue;
1425 }
1426
1427 GCRelocateOperands relocateOperands(relocatedValue);
1428 Value *originalValue = const_cast<Value *>(relocateOperands.derivedPtr());
1429 assert(allocaMap.count(originalValue));
1430 Value *alloca = allocaMap[originalValue];
1431
1432 // Emit store into the related alloca
1433 StoreInst *store = new StoreInst(relocatedValue, alloca);
1434 store->insertAfter(relocatedValue);
1435
1436#ifndef NDEBUG
1437 visitedLiveValues.insert(originalValue);
1438#endif
1439 }
1440}
1441
1442/// do all the relocation update via allocas and mem2reg
1443static void relocationViaAlloca(
Philip Reamesd2b66462015-02-20 22:39:41 +00001444 Function &F, DominatorTree &DT, ArrayRef<Value *> live,
1445 ArrayRef<struct PartiallyConstructedSafepointRecord> records) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001446#ifndef NDEBUG
1447 int initialAllocaNum = 0;
1448
1449 // record initial number of allocas
1450 for (inst_iterator itr = inst_begin(F), end = inst_end(F); itr != end;
1451 itr++) {
1452 if (isa<AllocaInst>(*itr))
1453 initialAllocaNum++;
1454 }
1455#endif
1456
1457 // TODO-PERF: change data structures, reserve
1458 DenseMap<Value *, Value *> allocaMap;
1459 SmallVector<AllocaInst *, 200> PromotableAllocas;
1460 PromotableAllocas.reserve(live.size());
1461
1462 // emit alloca for each live gc pointer
1463 for (unsigned i = 0; i < live.size(); i++) {
1464 Value *liveValue = live[i];
1465 AllocaInst *alloca = new AllocaInst(liveValue->getType(), "",
1466 F.getEntryBlock().getFirstNonPHI());
1467 allocaMap[liveValue] = alloca;
1468 PromotableAllocas.push_back(alloca);
1469 }
1470
1471 // The next two loops are part of the same conceptual operation. We need to
1472 // insert a store to the alloca after the original def and at each
1473 // redefinition. We need to insert a load before each use. These are split
1474 // into distinct loops for performance reasons.
1475
1476 // update gc pointer after each statepoint
1477 // either store a relocated value or null (if no relocated value found for
1478 // this gc pointer and it is not a gc_result)
1479 // this must happen before we update the statepoint with load of alloca
1480 // otherwise we lose the link between statepoint and old def
1481 for (size_t i = 0; i < records.size(); i++) {
1482 const struct PartiallyConstructedSafepointRecord &info = records[i];
Philip Reames0a3240f2015-02-20 21:34:11 +00001483 Value *Statepoint = info.StatepointToken;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001484
1485 // This will be used for consistency check
1486 DenseSet<Value *> visitedLiveValues;
1487
1488 // Insert stores for normal statepoint gc relocates
Philip Reames0a3240f2015-02-20 21:34:11 +00001489 insertRelocationStores(Statepoint->users(), allocaMap, visitedLiveValues);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001490
1491 // In case if it was invoke statepoint
1492 // we will insert stores for exceptional path gc relocates.
Philip Reames0a3240f2015-02-20 21:34:11 +00001493 if (isa<InvokeInst>(Statepoint)) {
Philip Reamesf2041322015-02-20 19:26:04 +00001494 insertRelocationStores(info.UnwindToken->users(),
Philip Reamesd16a9b12015-02-20 01:06:44 +00001495 allocaMap, visitedLiveValues);
1496 }
1497
1498#ifndef NDEBUG
Philip Reamesf2041322015-02-20 19:26:04 +00001499 // As a debuging aid, pretend that an unrelocated pointer becomes null at
1500 // the gc.statepoint. This will turn some subtle GC problems into slightly
Philip Reamesfa2fcf172015-02-20 19:51:56 +00001501 // easier to debug SEGVs
1502 SmallVector<AllocaInst *, 64> ToClobber;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001503 for (auto Pair : allocaMap) {
Philip Reamesfa2fcf172015-02-20 19:51:56 +00001504 Value *Def = Pair.first;
1505 AllocaInst *Alloca = cast<AllocaInst>(Pair.second);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001506
1507 // This value was relocated
Philip Reamesfa2fcf172015-02-20 19:51:56 +00001508 if (visitedLiveValues.count(Def)) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001509 continue;
1510 }
Philip Reamesfa2fcf172015-02-20 19:51:56 +00001511 ToClobber.push_back(Alloca);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001512 }
Philip Reamesfa2fcf172015-02-20 19:51:56 +00001513
Philip Reamesfa2fcf172015-02-20 19:51:56 +00001514 auto InsertClobbersAt = [&](Instruction *IP) {
1515 for (auto *AI : ToClobber) {
1516 auto AIType = cast<PointerType>(AI->getType());
1517 auto PT = cast<PointerType>(AIType->getElementType());
1518 Constant *CPN = ConstantPointerNull::get(PT);
1519 StoreInst *store = new StoreInst(CPN, AI);
1520 store->insertBefore(IP);
1521 }
1522 };
1523
1524 // Insert the clobbering stores. These may get intermixed with the
1525 // gc.results and gc.relocates, but that's fine.
1526 if (auto II = dyn_cast<InvokeInst>(Statepoint)) {
1527 InsertClobbersAt(II->getNormalDest()->getFirstInsertionPt());
1528 InsertClobbersAt(II->getUnwindDest()->getFirstInsertionPt());
1529 } else if (auto CI = dyn_cast<CallInst>(Statepoint)) {
1530 BasicBlock::iterator Next(CI);
1531 Next++;
1532 InsertClobbersAt(Next);
1533 } else
1534 llvm_unreachable("illegal statepoint instruction type?");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001535#endif
1536 }
1537 // update use with load allocas and add store for gc_relocated
1538 for (auto Pair : allocaMap) {
1539 Value *def = Pair.first;
1540 Value *alloca = Pair.second;
1541
1542 // we pre-record the uses of allocas so that we dont have to worry about
1543 // later update
1544 // that change the user information.
1545 SmallVector<Instruction *, 20> uses;
1546 // PERF: trade a linear scan for repeated reallocation
1547 uses.reserve(std::distance(def->user_begin(), def->user_end()));
1548 for (User *U : def->users()) {
1549 if (!isa<ConstantExpr>(U)) {
1550 // If the def has a ConstantExpr use, then the def is either a
1551 // ConstantExpr use itself or null. In either case
1552 // (recursively in the first, directly in the second), the oop
1553 // it is ultimately dependent on is null and this particular
1554 // use does not need to be fixed up.
1555 uses.push_back(cast<Instruction>(U));
1556 }
1557 }
1558
1559 std::sort(uses.begin(), uses.end());
1560 auto last = std::unique(uses.begin(), uses.end());
1561 uses.erase(last, uses.end());
1562
1563 for (Instruction *use : uses) {
1564 if (isa<PHINode>(use)) {
1565 PHINode *phi = cast<PHINode>(use);
1566 for (unsigned i = 0; i < phi->getNumIncomingValues(); i++) {
1567 if (def == phi->getIncomingValue(i)) {
1568 LoadInst *load = new LoadInst(
1569 alloca, "", phi->getIncomingBlock(i)->getTerminator());
1570 phi->setIncomingValue(i, load);
1571 }
1572 }
1573 } else {
1574 LoadInst *load = new LoadInst(alloca, "", use);
1575 use->replaceUsesOfWith(def, load);
1576 }
1577 }
1578
1579 // emit store for the initial gc value
1580 // store must be inserted after load, otherwise store will be in alloca's
1581 // use list and an extra load will be inserted before it
1582 StoreInst *store = new StoreInst(def, alloca);
1583 if (isa<Instruction>(def)) {
1584 store->insertAfter(cast<Instruction>(def));
1585 } else {
1586 assert((isa<Argument>(def) || isa<GlobalVariable>(def) ||
1587 (isa<Constant>(def) && cast<Constant>(def)->isNullValue())) &&
1588 "Must be argument or global");
1589 store->insertAfter(cast<Instruction>(alloca));
1590 }
1591 }
1592
1593 assert(PromotableAllocas.size() == live.size() &&
1594 "we must have the same allocas with lives");
1595 if (!PromotableAllocas.empty()) {
1596 // apply mem2reg to promote alloca to SSA
1597 PromoteMemToReg(PromotableAllocas, DT);
1598 }
1599
1600#ifndef NDEBUG
1601 for (inst_iterator itr = inst_begin(F), end = inst_end(F); itr != end;
1602 itr++) {
1603 if (isa<AllocaInst>(*itr))
1604 initialAllocaNum--;
1605 }
1606 assert(initialAllocaNum == 0 && "We must not introduce any extra allocas");
1607#endif
1608}
1609
1610/// Implement a unique function which doesn't require we sort the input
1611/// vector. Doing so has the effect of changing the output of a couple of
1612/// tests in ways which make them less useful in testing fused safepoints.
Philip Reamesd2b66462015-02-20 22:39:41 +00001613template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) {
1614 DenseSet<T> Seen;
1615 SmallVector<T, 128> TempVec;
1616 TempVec.reserve(Vec.size());
1617 for (auto Element : Vec)
1618 TempVec.push_back(Element);
1619 Vec.clear();
1620 for (auto V : TempVec) {
1621 if (Seen.insert(V).second) {
1622 Vec.push_back(V);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001623 }
1624 }
1625}
1626
1627static Function *getUseHolder(Module &M) {
1628 FunctionType *ftype =
1629 FunctionType::get(Type::getVoidTy(M.getContext()), true);
1630 Function *Func = cast<Function>(M.getOrInsertFunction("__tmp_use", ftype));
1631 return Func;
1632}
1633
1634/// Insert holders so that each Value is obviously live through the entire
1635/// liftetime of the call.
1636static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values,
Philip Reamesd2b66462015-02-20 22:39:41 +00001637 SmallVectorImpl<CallInst *> &holders) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001638 Module *M = CS.getInstruction()->getParent()->getParent()->getParent();
1639 Function *Func = getUseHolder(*M);
1640 if (CS.isCall()) {
1641 // For call safepoints insert dummy calls right after safepoint
1642 BasicBlock::iterator next(CS.getInstruction());
1643 next++;
1644 CallInst *base_holder = CallInst::Create(Func, Values, "", next);
1645 holders.push_back(base_holder);
1646 } else if (CS.isInvoke()) {
1647 // For invoke safepooints insert dummy calls both in normal and
1648 // exceptional destination blocks
1649 InvokeInst *invoke = cast<InvokeInst>(CS.getInstruction());
1650 CallInst *normal_holder = CallInst::Create(
1651 Func, Values, "", invoke->getNormalDest()->getFirstInsertionPt());
1652 CallInst *unwind_holder = CallInst::Create(
1653 Func, Values, "", invoke->getUnwindDest()->getFirstInsertionPt());
1654 holders.push_back(normal_holder);
1655 holders.push_back(unwind_holder);
Philip Reames860660e2015-02-20 22:05:18 +00001656 } else
1657 llvm_unreachable("unsupported call type");
Philip Reamesd16a9b12015-02-20 01:06:44 +00001658}
1659
1660static void findLiveReferences(
Philip Reamesd2b66462015-02-20 22:39:41 +00001661 Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate,
1662 MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001663 for (size_t i = 0; i < records.size(); i++) {
1664 struct PartiallyConstructedSafepointRecord &info = records[i];
Philip Reamesd2b66462015-02-20 22:39:41 +00001665 const CallSite &CS = toUpdate[i];
Philip Reamesd16a9b12015-02-20 01:06:44 +00001666 analyzeParsePointLiveness(DT, CS, info);
1667 }
1668}
1669
1670static void addBasesAsLiveValues(std::set<Value *> &liveset,
Philip Reamesf2041322015-02-20 19:26:04 +00001671 DenseMap<Value *, Value *> &PointerToBase) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001672 // Identify any base pointers which are used in this safepoint, but not
1673 // themselves relocated. We need to relocate them so that later inserted
1674 // safepoints can get the properly relocated base register.
1675 DenseSet<Value *> missing;
1676 for (Value *L : liveset) {
Philip Reamesf2041322015-02-20 19:26:04 +00001677 assert(PointerToBase.find(L) != PointerToBase.end());
1678 Value *base = PointerToBase[L];
Philip Reamesd16a9b12015-02-20 01:06:44 +00001679 assert(base);
1680 if (liveset.find(base) == liveset.end()) {
Philip Reamesf2041322015-02-20 19:26:04 +00001681 assert(PointerToBase.find(base) == PointerToBase.end());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001682 // uniqued by set insert
1683 missing.insert(base);
1684 }
1685 }
1686
1687 // Note that we want these at the end of the list, otherwise
1688 // register placement gets screwed up once we lower to STATEPOINT
1689 // instructions. This is an utter hack, but there doesn't seem to be a
1690 // better one.
1691 for (Value *base : missing) {
1692 assert(base);
1693 liveset.insert(base);
Philip Reamesf2041322015-02-20 19:26:04 +00001694 PointerToBase[base] = base;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001695 }
Philip Reamesf2041322015-02-20 19:26:04 +00001696 assert(liveset.size() == PointerToBase.size());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001697}
1698
1699static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P,
Philip Reamesd2b66462015-02-20 22:39:41 +00001700 SmallVectorImpl<CallSite> &toUpdate) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001701#ifndef NDEBUG
1702 // sanity check the input
1703 std::set<CallSite> uniqued;
1704 uniqued.insert(toUpdate.begin(), toUpdate.end());
1705 assert(uniqued.size() == toUpdate.size() && "no duplicates please!");
1706
1707 for (size_t i = 0; i < toUpdate.size(); i++) {
1708 CallSite &CS = toUpdate[i];
1709 assert(CS.getInstruction()->getParent()->getParent() == &F);
1710 assert(isStatepoint(CS) && "expected to already be a deopt statepoint");
1711 }
1712#endif
1713
1714 // A list of dummy calls added to the IR to keep various values obviously
1715 // live in the IR. We'll remove all of these when done.
Philip Reamesd2b66462015-02-20 22:39:41 +00001716 SmallVector<CallInst *, 64> holders;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001717
1718 // Insert a dummy call with all of the arguments to the vm_state we'll need
1719 // for the actual safepoint insertion. This ensures reference arguments in
1720 // the deopt argument list are considered live through the safepoint (and
1721 // thus makes sure they get relocated.)
1722 for (size_t i = 0; i < toUpdate.size(); i++) {
1723 CallSite &CS = toUpdate[i];
1724 Statepoint StatepointCS(CS);
1725
1726 SmallVector<Value *, 64> DeoptValues;
1727 for (Use &U : StatepointCS.vm_state_args()) {
1728 Value *Arg = cast<Value>(&U);
1729 if (isGCPointerType(Arg->getType()))
1730 DeoptValues.push_back(Arg);
1731 }
1732 insertUseHolderAfter(CS, DeoptValues, holders);
1733 }
1734
Philip Reamesd2b66462015-02-20 22:39:41 +00001735 SmallVector<struct PartiallyConstructedSafepointRecord, 64> records;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001736 records.reserve(toUpdate.size());
1737 for (size_t i = 0; i < toUpdate.size(); i++) {
1738 struct PartiallyConstructedSafepointRecord info;
1739 records.push_back(info);
1740 }
1741 assert(records.size() == toUpdate.size());
1742
1743 // A) Identify all gc pointers which are staticly live at the given call
1744 // site.
1745 findLiveReferences(F, DT, P, toUpdate, records);
1746
1747 // B) Find the base pointers for each live pointer
1748 /* scope for caching */ {
1749 // Cache the 'defining value' relation used in the computation and
1750 // insertion of base phis and selects. This ensures that we don't insert
1751 // large numbers of duplicate base_phis.
1752 DefiningValueMapTy DVCache;
1753
1754 for (size_t i = 0; i < records.size(); i++) {
1755 struct PartiallyConstructedSafepointRecord &info = records[i];
1756 CallSite &CS = toUpdate[i];
1757 findBasePointers(DT, DVCache, CS, info);
1758 }
1759 } // end of cache scope
1760
1761 // The base phi insertion logic (for any safepoint) may have inserted new
1762 // instructions which are now live at some safepoint. The simplest such
1763 // example is:
1764 // loop:
1765 // phi a <-- will be a new base_phi here
1766 // safepoint 1 <-- that needs to be live here
1767 // gep a + 1
1768 // safepoint 2
1769 // br loop
1770 std::set<llvm::Value *> allInsertedDefs;
1771 for (size_t i = 0; i < records.size(); i++) {
1772 struct PartiallyConstructedSafepointRecord &info = records[i];
Philip Reamesf2041322015-02-20 19:26:04 +00001773 allInsertedDefs.insert(info.NewInsertedDefs.begin(),
1774 info.NewInsertedDefs.end());
Philip Reamesd16a9b12015-02-20 01:06:44 +00001775 }
1776
1777 // We insert some dummy calls after each safepoint to definitely hold live
1778 // the base pointers which were identified for that safepoint. We'll then
1779 // ask liveness for _every_ base inserted to see what is now live. Then we
1780 // remove the dummy calls.
1781 holders.reserve(holders.size() + records.size());
1782 for (size_t i = 0; i < records.size(); i++) {
1783 struct PartiallyConstructedSafepointRecord &info = records[i];
1784 CallSite &CS = toUpdate[i];
1785
1786 SmallVector<Value *, 128> Bases;
Philip Reamesf2041322015-02-20 19:26:04 +00001787 for (auto Pair : info.PointerToBase) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001788 Bases.push_back(Pair.second);
1789 }
1790 insertUseHolderAfter(CS, Bases, holders);
1791 }
1792
1793 // Add the bases explicitly to the live vector set. This may result in a few
1794 // extra relocations, but the base has to be available whenever a pointer
1795 // derived from it is used. Thus, we need it to be part of the statepoint's
1796 // gc arguments list. TODO: Introduce an explicit notion (in the following
1797 // code) of the GC argument list as seperate from the live Values at a
1798 // given statepoint.
1799 for (size_t i = 0; i < records.size(); i++) {
1800 struct PartiallyConstructedSafepointRecord &info = records[i];
Philip Reamesf2041322015-02-20 19:26:04 +00001801 addBasesAsLiveValues(info.liveset, info.PointerToBase);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001802 }
1803
1804 // If we inserted any new values, we need to adjust our notion of what is
1805 // live at a particular safepoint.
1806 if (!allInsertedDefs.empty()) {
1807 fixupLiveReferences(F, DT, P, allInsertedDefs, toUpdate, records);
1808 }
1809 if (PrintBasePointers) {
1810 for (size_t i = 0; i < records.size(); i++) {
1811 struct PartiallyConstructedSafepointRecord &info = records[i];
1812 errs() << "Base Pairs: (w/Relocation)\n";
Philip Reamesf2041322015-02-20 19:26:04 +00001813 for (auto Pair : info.PointerToBase) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001814 errs() << " derived %" << Pair.first->getName() << " base %"
1815 << Pair.second->getName() << "\n";
1816 }
1817 }
1818 }
1819 for (size_t i = 0; i < holders.size(); i++) {
1820 holders[i]->eraseFromParent();
1821 holders[i] = nullptr;
1822 }
1823 holders.clear();
1824
1825 // Now run through and replace the existing statepoints with new ones with
1826 // the live variables listed. We do not yet update uses of the values being
1827 // relocated. We have references to live variables that need to
1828 // survive to the last iteration of this loop. (By construction, the
1829 // previous statepoint can not be a live variable, thus we can and remove
1830 // the old statepoint calls as we go.)
1831 for (size_t i = 0; i < records.size(); i++) {
1832 struct PartiallyConstructedSafepointRecord &info = records[i];
1833 CallSite &CS = toUpdate[i];
1834 makeStatepointExplicit(DT, CS, P, info);
1835 }
1836 toUpdate.clear(); // prevent accident use of invalid CallSites
1837
1838 // In case if we inserted relocates in a different basic block than the
1839 // original safepoint (this can happen for invokes). We need to be sure that
1840 // original values were not used in any of the phi nodes at the
1841 // beginning of basic block containing them. Because we know that all such
1842 // blocks will have single predecessor we can safely assume that all phi
1843 // nodes have single entry (because of normalizeBBForInvokeSafepoint).
1844 // Just remove them all here.
1845 for (size_t i = 0; i < records.size(); i++) {
Philip Reames0a3240f2015-02-20 21:34:11 +00001846 Instruction *I = records[i].StatepointToken;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001847
1848 if (InvokeInst *invoke = dyn_cast<InvokeInst>(I)) {
1849 FoldSingleEntryPHINodes(invoke->getNormalDest());
1850 assert(!isa<PHINode>(invoke->getNormalDest()->begin()));
1851
1852 FoldSingleEntryPHINodes(invoke->getUnwindDest());
1853 assert(!isa<PHINode>(invoke->getUnwindDest()->begin()));
1854 }
1855 }
1856
1857 // Do all the fixups of the original live variables to their relocated selves
Philip Reamesd2b66462015-02-20 22:39:41 +00001858 SmallVector<Value *, 128> live;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001859 for (size_t i = 0; i < records.size(); i++) {
1860 struct PartiallyConstructedSafepointRecord &info = records[i];
1861 // We can't simply save the live set from the original insertion. One of
1862 // the live values might be the result of a call which needs a safepoint.
1863 // That Value* no longer exists and we need to use the new gc_result.
1864 // Thankfully, the liveset is embedded in the statepoint (and updated), so
1865 // we just grab that.
Philip Reames0a3240f2015-02-20 21:34:11 +00001866 Statepoint statepoint(info.StatepointToken);
Philip Reamesd16a9b12015-02-20 01:06:44 +00001867 live.insert(live.end(), statepoint.gc_args_begin(),
1868 statepoint.gc_args_end());
1869 }
1870 unique_unsorted(live);
1871
Nick Lewyckyeb3231e2015-02-20 07:14:02 +00001872#ifndef NDEBUG
Philip Reamesd16a9b12015-02-20 01:06:44 +00001873 // sanity check
1874 for (auto ptr : live) {
1875 assert(isGCPointerType(ptr->getType()) && "must be a gc pointer type");
1876 }
Nick Lewyckyeb3231e2015-02-20 07:14:02 +00001877#endif
Philip Reamesd16a9b12015-02-20 01:06:44 +00001878
1879 relocationViaAlloca(F, DT, live, records);
1880 return !records.empty();
1881}
1882
1883/// Returns true if this function should be rewritten by this pass. The main
1884/// point of this function is as an extension point for custom logic.
1885static bool shouldRewriteStatepointsIn(Function &F) {
1886 // TODO: This should check the GCStrategy
Philip Reames2ef029c2015-02-20 18:56:14 +00001887 if (F.hasGC()) {
1888 const std::string StatepointExampleName("statepoint-example");
1889 return StatepointExampleName == F.getGC();
1890 } else
1891 return false;
Philip Reamesd16a9b12015-02-20 01:06:44 +00001892}
1893
1894bool RewriteStatepointsForGC::runOnFunction(Function &F) {
1895 // Nothing to do for declarations.
1896 if (F.isDeclaration() || F.empty())
1897 return false;
1898
1899 // Policy choice says not to rewrite - the most common reason is that we're
1900 // compiling code without a GCStrategy.
1901 if (!shouldRewriteStatepointsIn(F))
1902 return false;
1903
1904 // Gather all the statepoints which need rewritten.
Philip Reamesd2b66462015-02-20 22:39:41 +00001905 SmallVector<CallSite, 64> ParsePointNeeded;
1906 for (Instruction &I : inst_range(F)) {
Philip Reamesd16a9b12015-02-20 01:06:44 +00001907 // TODO: only the ones with the flag set!
Philip Reamesd2b66462015-02-20 22:39:41 +00001908 if (isStatepoint(I))
1909 ParsePointNeeded.push_back(CallSite(&I));
Philip Reamesd16a9b12015-02-20 01:06:44 +00001910 }
1911
1912 // Return early if no work to do.
1913 if (ParsePointNeeded.empty())
1914 return false;
1915
1916 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1917 return insertParsePoints(F, DT, this, ParsePointNeeded);
1918}