Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1 | //===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // Rewrite an existing set of gc.statepoints such that they make potential |
| 11 | // relocations performed by the garbage collector explicit in the IR. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "llvm/Pass.h" |
| 16 | #include "llvm/Analysis/CFG.h" |
| 17 | #include "llvm/ADT/SetOperations.h" |
| 18 | #include "llvm/ADT/Statistic.h" |
| 19 | #include "llvm/ADT/DenseSet.h" |
| 20 | #include "llvm/IR/BasicBlock.h" |
| 21 | #include "llvm/IR/CallSite.h" |
| 22 | #include "llvm/IR/Dominators.h" |
| 23 | #include "llvm/IR/Function.h" |
| 24 | #include "llvm/IR/IRBuilder.h" |
| 25 | #include "llvm/IR/InstIterator.h" |
| 26 | #include "llvm/IR/Instructions.h" |
| 27 | #include "llvm/IR/Intrinsics.h" |
| 28 | #include "llvm/IR/IntrinsicInst.h" |
| 29 | #include "llvm/IR/Module.h" |
| 30 | #include "llvm/IR/Statepoint.h" |
| 31 | #include "llvm/IR/Value.h" |
| 32 | #include "llvm/IR/Verifier.h" |
| 33 | #include "llvm/Support/Debug.h" |
| 34 | #include "llvm/Support/CommandLine.h" |
| 35 | #include "llvm/Transforms/Scalar.h" |
| 36 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 37 | #include "llvm/Transforms/Utils/Cloning.h" |
| 38 | #include "llvm/Transforms/Utils/Local.h" |
| 39 | #include "llvm/Transforms/Utils/PromoteMemToReg.h" |
| 40 | |
| 41 | #define DEBUG_TYPE "rewrite-statepoints-for-gc" |
| 42 | |
| 43 | using namespace llvm; |
| 44 | |
| 45 | // Print tracing output |
| 46 | static cl::opt<bool> TraceLSP("trace-rewrite-statepoints", cl::Hidden, |
| 47 | cl::init(false)); |
| 48 | |
| 49 | // Print the liveset found at the insert location |
| 50 | static cl::opt<bool> PrintLiveSet("spp-print-liveset", cl::Hidden, |
| 51 | cl::init(false)); |
| 52 | static cl::opt<bool> PrintLiveSetSize("spp-print-liveset-size", |
| 53 | cl::Hidden, cl::init(false)); |
| 54 | // Print out the base pointers for debugging |
| 55 | static cl::opt<bool> PrintBasePointers("spp-print-base-pointers", |
| 56 | cl::Hidden, cl::init(false)); |
| 57 | |
Benjamin Kramer | 6f66545 | 2015-02-20 14:00:58 +0000 | [diff] [blame] | 58 | namespace { |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 59 | struct RewriteStatepointsForGC : public FunctionPass { |
| 60 | static char ID; // Pass identification, replacement for typeid |
| 61 | |
| 62 | RewriteStatepointsForGC() : FunctionPass(ID) { |
| 63 | initializeRewriteStatepointsForGCPass(*PassRegistry::getPassRegistry()); |
| 64 | } |
| 65 | bool runOnFunction(Function &F) override; |
| 66 | |
| 67 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 68 | // We add and rewrite a bunch of instructions, but don't really do much |
| 69 | // else. We could in theory preserve a lot more analyses here. |
| 70 | AU.addRequired<DominatorTreeWrapperPass>(); |
| 71 | } |
| 72 | }; |
Benjamin Kramer | 6f66545 | 2015-02-20 14:00:58 +0000 | [diff] [blame] | 73 | } // namespace |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 74 | |
| 75 | char RewriteStatepointsForGC::ID = 0; |
| 76 | |
| 77 | FunctionPass *llvm::createRewriteStatepointsForGCPass() { |
| 78 | return new RewriteStatepointsForGC(); |
| 79 | } |
| 80 | |
| 81 | INITIALIZE_PASS_BEGIN(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", |
| 82 | "Make relocations explicit at statepoints", false, false) |
| 83 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| 84 | INITIALIZE_PASS_END(RewriteStatepointsForGC, "rewrite-statepoints-for-gc", |
| 85 | "Make relocations explicit at statepoints", false, false) |
| 86 | |
| 87 | namespace { |
| 88 | // The type of the internal cache used inside the findBasePointers family |
| 89 | // of functions. From the callers perspective, this is an opaque type and |
| 90 | // should not be inspected. |
| 91 | // |
| 92 | // In the actual implementation this caches two relations: |
| 93 | // - The base relation itself (i.e. this pointer is based on that one) |
| 94 | // - The base defining value relation (i.e. before base_phi insertion) |
| 95 | // Generally, after the execution of a full findBasePointer call, only the |
| 96 | // base relation will remain. Internally, we add a mixture of the two |
| 97 | // types, then update all the second type to the first type |
| 98 | typedef std::map<Value *, Value *> DefiningValueMapTy; |
Philip Reames | 860660e | 2015-02-20 22:05:18 +0000 | [diff] [blame] | 99 | typedef std::set<llvm::Value *> StatepointLiveSetTy; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 100 | |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 101 | struct PartiallyConstructedSafepointRecord { |
| 102 | /// The set of values known to be live accross this safepoint |
Philip Reames | 860660e | 2015-02-20 22:05:18 +0000 | [diff] [blame] | 103 | StatepointLiveSetTy liveset; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 104 | |
| 105 | /// Mapping from live pointers to a base-defining-value |
Philip Reames | f204132 | 2015-02-20 19:26:04 +0000 | [diff] [blame] | 106 | DenseMap<llvm::Value *, llvm::Value *> PointerToBase; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 107 | |
| 108 | /// Any new values which were added to the IR during base pointer analysis |
| 109 | /// for this safepoint |
Philip Reames | f204132 | 2015-02-20 19:26:04 +0000 | [diff] [blame] | 110 | DenseSet<llvm::Value *> NewInsertedDefs; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 111 | |
Philip Reames | 0a3240f | 2015-02-20 21:34:11 +0000 | [diff] [blame] | 112 | /// The *new* gc.statepoint instruction itself. This produces the token |
| 113 | /// that normal path gc.relocates and the gc.result are tied to. |
| 114 | Instruction *StatepointToken; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 115 | |
Philip Reames | f204132 | 2015-02-20 19:26:04 +0000 | [diff] [blame] | 116 | /// Instruction to which exceptional gc relocates are attached |
| 117 | /// Makes it easier to iterate through them during relocationViaAlloca. |
| 118 | Instruction *UnwindToken; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 119 | }; |
| 120 | } |
| 121 | |
| 122 | // TODO: Once we can get to the GCStrategy, this becomes |
| 123 | // Optional<bool> isGCManagedPointer(const Value *V) const override { |
| 124 | |
| 125 | static bool isGCPointerType(const Type *T) { |
| 126 | if (const PointerType *PT = dyn_cast<PointerType>(T)) |
| 127 | // For the sake of this example GC, we arbitrarily pick addrspace(1) as our |
| 128 | // GC managed heap. We know that a pointer into this heap needs to be |
| 129 | // updated and that no other pointer does. |
| 130 | return (1 == PT->getAddressSpace()); |
| 131 | return false; |
| 132 | } |
| 133 | |
| 134 | /// Return true if the Value is a gc reference type which is potentially used |
| 135 | /// after the instruction 'loc'. This is only used with the edge reachability |
| 136 | /// liveness code. Note: It is assumed the V dominates loc. |
| 137 | static bool isLiveGCReferenceAt(Value &V, Instruction *loc, DominatorTree &DT, |
| 138 | LoopInfo *LI) { |
| 139 | if (!isGCPointerType(V.getType())) |
| 140 | return false; |
| 141 | |
| 142 | if (V.use_empty()) |
| 143 | return false; |
| 144 | |
| 145 | // Given assumption that V dominates loc, this may be live |
| 146 | return true; |
| 147 | } |
Benjamin Kramer | d4a3a55 | 2015-02-20 13:15:49 +0000 | [diff] [blame] | 148 | |
| 149 | #ifndef NDEBUG |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 150 | static bool isAggWhichContainsGCPtrType(Type *Ty) { |
| 151 | if (VectorType *VT = dyn_cast<VectorType>(Ty)) |
| 152 | return isGCPointerType(VT->getScalarType()); |
| 153 | else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { |
| 154 | return isGCPointerType(AT->getElementType()) || |
| 155 | isAggWhichContainsGCPtrType(AT->getElementType()); |
| 156 | } else if (StructType *ST = dyn_cast<StructType>(Ty)) { |
| 157 | bool UnsupportedType = false; |
| 158 | for (Type *SubType : ST->subtypes()) |
Benjamin Kramer | d4a3a55 | 2015-02-20 13:15:49 +0000 | [diff] [blame] | 159 | UnsupportedType |= |
| 160 | isGCPointerType(SubType) || isAggWhichContainsGCPtrType(SubType); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 161 | return UnsupportedType; |
| 162 | } else |
| 163 | return false; |
| 164 | } |
Benjamin Kramer | d4a3a55 | 2015-02-20 13:15:49 +0000 | [diff] [blame] | 165 | #endif |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 166 | |
| 167 | // Conservatively identifies any definitions which might be live at the |
| 168 | // given instruction. The analysis is performed immediately before the |
| 169 | // given instruction. Values defined by that instruction are not considered |
| 170 | // live. Values used by that instruction are considered live. |
| 171 | // |
| 172 | // preconditions: valid IR graph, term is either a terminator instruction or |
| 173 | // a call instruction, pred is the basic block of term, DT, LI are valid |
| 174 | // |
| 175 | // side effects: none, does not mutate IR |
| 176 | // |
| 177 | // postconditions: populates liveValues as discussed above |
| 178 | static void findLiveGCValuesAtInst(Instruction *term, BasicBlock *pred, |
| 179 | DominatorTree &DT, LoopInfo *LI, |
| 180 | std::set<llvm::Value *> &liveValues) { |
| 181 | liveValues.clear(); |
| 182 | |
| 183 | assert(isa<CallInst>(term) || isa<InvokeInst>(term) || term->isTerminator()); |
| 184 | |
| 185 | Function *F = pred->getParent(); |
| 186 | |
| 187 | auto is_live_gc_reference = |
| 188 | [&](Value &V) { return isLiveGCReferenceAt(V, term, DT, LI); }; |
| 189 | |
| 190 | // Are there any gc pointer arguments live over this point? This needs to be |
| 191 | // special cased since arguments aren't defined in basic blocks. |
| 192 | for (Argument &arg : F->args()) { |
| 193 | assert(!isAggWhichContainsGCPtrType(arg.getType()) && |
| 194 | "support for FCA unimplemented"); |
| 195 | |
| 196 | if (is_live_gc_reference(arg)) { |
| 197 | liveValues.insert(&arg); |
| 198 | } |
| 199 | } |
| 200 | |
| 201 | // Walk through all dominating blocks - the ones which can contain |
| 202 | // definitions used in this block - and check to see if any of the values |
| 203 | // they define are used in locations potentially reachable from the |
| 204 | // interesting instruction. |
| 205 | BasicBlock *BBI = pred; |
| 206 | while (true) { |
| 207 | if (TraceLSP) { |
| 208 | errs() << "[LSP] Looking at dominating block " << pred->getName() << "\n"; |
| 209 | } |
| 210 | assert(DT.dominates(BBI, pred)); |
| 211 | assert(isPotentiallyReachable(BBI, pred, &DT) && |
| 212 | "dominated block must be reachable"); |
| 213 | |
| 214 | // Walk through the instructions in dominating blocks and keep any |
| 215 | // that have a use potentially reachable from the block we're |
| 216 | // considering putting the safepoint in |
| 217 | for (Instruction &inst : *BBI) { |
| 218 | if (TraceLSP) { |
| 219 | errs() << "[LSP] Looking at instruction "; |
| 220 | inst.dump(); |
| 221 | } |
| 222 | |
| 223 | if (pred == BBI && (&inst) == term) { |
| 224 | if (TraceLSP) { |
| 225 | errs() << "[LSP] stopped because we encountered the safepoint " |
| 226 | "instruction.\n"; |
| 227 | } |
| 228 | |
| 229 | // If we're in the block which defines the interesting instruction, |
| 230 | // we don't want to include any values as live which are defined |
| 231 | // _after_ the interesting line or as part of the line itself |
| 232 | // i.e. "term" is the call instruction for a call safepoint, the |
| 233 | // results of the call should not be considered live in that stackmap |
| 234 | break; |
| 235 | } |
| 236 | |
| 237 | assert(!isAggWhichContainsGCPtrType(inst.getType()) && |
| 238 | "support for FCA unimplemented"); |
| 239 | |
| 240 | if (is_live_gc_reference(inst)) { |
| 241 | if (TraceLSP) { |
| 242 | errs() << "[LSP] found live value for this safepoint "; |
| 243 | inst.dump(); |
| 244 | term->dump(); |
| 245 | } |
| 246 | liveValues.insert(&inst); |
| 247 | } |
| 248 | } |
| 249 | if (!DT.getNode(BBI)->getIDom()) { |
| 250 | assert(BBI == &F->getEntryBlock() && |
| 251 | "failed to find a dominator for something other than " |
| 252 | "the entry block"); |
| 253 | break; |
| 254 | } |
| 255 | BBI = DT.getNode(BBI)->getIDom()->getBlock(); |
| 256 | } |
| 257 | } |
| 258 | |
| 259 | static bool order_by_name(llvm::Value *a, llvm::Value *b) { |
| 260 | if (a->hasName() && b->hasName()) { |
| 261 | return -1 == a->getName().compare(b->getName()); |
| 262 | } else if (a->hasName() && !b->hasName()) { |
| 263 | return true; |
| 264 | } else if (!a->hasName() && b->hasName()) { |
| 265 | return false; |
| 266 | } else { |
| 267 | // Better than nothing, but not stable |
| 268 | return a < b; |
| 269 | } |
| 270 | } |
| 271 | |
| 272 | /// Find the initial live set. Note that due to base pointer |
| 273 | /// insertion, the live set may be incomplete. |
| 274 | static void |
| 275 | analyzeParsePointLiveness(DominatorTree &DT, const CallSite &CS, |
| 276 | PartiallyConstructedSafepointRecord &result) { |
| 277 | Instruction *inst = CS.getInstruction(); |
| 278 | |
| 279 | BasicBlock *BB = inst->getParent(); |
| 280 | std::set<Value *> liveset; |
| 281 | findLiveGCValuesAtInst(inst, BB, DT, nullptr, liveset); |
| 282 | |
| 283 | if (PrintLiveSet) { |
| 284 | // Note: This output is used by several of the test cases |
| 285 | // The order of elemtns in a set is not stable, put them in a vec and sort |
| 286 | // by name |
Philip Reames | 860660e | 2015-02-20 22:05:18 +0000 | [diff] [blame] | 287 | SmallVector<Value *, 64> temp; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 288 | temp.insert(temp.end(), liveset.begin(), liveset.end()); |
| 289 | std::sort(temp.begin(), temp.end(), order_by_name); |
| 290 | errs() << "Live Variables:\n"; |
| 291 | for (Value *V : temp) { |
| 292 | errs() << " " << V->getName(); // no newline |
| 293 | V->dump(); |
| 294 | } |
| 295 | } |
| 296 | if (PrintLiveSetSize) { |
| 297 | errs() << "Safepoint For: " << CS.getCalledValue()->getName() << "\n"; |
| 298 | errs() << "Number live values: " << liveset.size() << "\n"; |
| 299 | } |
| 300 | result.liveset = liveset; |
| 301 | } |
| 302 | |
| 303 | /// True iff this value is the null pointer constant (of any pointer type) |
| 304 | static bool isNullConstant(Value *V) { |
| 305 | return isa<Constant>(V) && isa<PointerType>(V->getType()) && |
| 306 | cast<Constant>(V)->isNullValue(); |
| 307 | } |
| 308 | |
| 309 | /// Helper function for findBasePointer - Will return a value which either a) |
| 310 | /// defines the base pointer for the input or b) blocks the simple search |
| 311 | /// (i.e. a PHI or Select of two derived pointers) |
| 312 | static Value *findBaseDefiningValue(Value *I) { |
| 313 | assert(I->getType()->isPointerTy() && |
| 314 | "Illegal to ask for the base pointer of a non-pointer type"); |
| 315 | |
| 316 | // There are instructions which can never return gc pointer values. Sanity |
| 317 | // check |
| 318 | // that this is actually true. |
| 319 | assert(!isa<InsertElementInst>(I) && !isa<ExtractElementInst>(I) && |
| 320 | !isa<ShuffleVectorInst>(I) && "Vector types are not gc pointers"); |
| 321 | assert((!isa<Instruction>(I) || isa<InvokeInst>(I) || |
| 322 | !cast<Instruction>(I)->isTerminator()) && |
| 323 | "With the exception of invoke terminators don't define values"); |
| 324 | assert(!isa<StoreInst>(I) && !isa<FenceInst>(I) && |
| 325 | "Can't be definitions to start with"); |
| 326 | assert(!isa<ICmpInst>(I) && !isa<FCmpInst>(I) && |
| 327 | "Comparisons don't give ops"); |
| 328 | // There's a bunch of instructions which just don't make sense to apply to |
| 329 | // a pointer. The only valid reason for this would be pointer bit |
| 330 | // twiddling which we're just not going to support. |
| 331 | assert((!isa<Instruction>(I) || !cast<Instruction>(I)->isBinaryOp()) && |
| 332 | "Binary ops on pointer values are meaningless. Unless your " |
| 333 | "bit-twiddling which we don't support"); |
| 334 | |
| 335 | if (Argument *Arg = dyn_cast<Argument>(I)) { |
| 336 | // An incoming argument to the function is a base pointer |
| 337 | // We should have never reached here if this argument isn't an gc value |
| 338 | assert(Arg->getType()->isPointerTy() && |
| 339 | "Base for pointer must be another pointer"); |
| 340 | return Arg; |
| 341 | } |
| 342 | |
| 343 | if (GlobalVariable *global = dyn_cast<GlobalVariable>(I)) { |
| 344 | // base case |
| 345 | assert(global->getType()->isPointerTy() && |
| 346 | "Base for pointer must be another pointer"); |
| 347 | return global; |
| 348 | } |
| 349 | |
| 350 | // inlining could possibly introduce phi node that contains |
| 351 | // undef if callee has multiple returns |
| 352 | if (UndefValue *undef = dyn_cast<UndefValue>(I)) { |
| 353 | assert(undef->getType()->isPointerTy() && |
| 354 | "Base for pointer must be another pointer"); |
| 355 | return undef; // utterly meaningless, but useful for dealing with |
| 356 | // partially optimized code. |
| 357 | } |
| 358 | |
| 359 | // Due to inheritance, this must be _after_ the global variable and undef |
| 360 | // checks |
| 361 | if (Constant *con = dyn_cast<Constant>(I)) { |
| 362 | assert(!isa<GlobalVariable>(I) && !isa<UndefValue>(I) && |
| 363 | "order of checks wrong!"); |
| 364 | // Note: Finding a constant base for something marked for relocation |
| 365 | // doesn't really make sense. The most likely case is either a) some |
| 366 | // screwed up the address space usage or b) your validating against |
| 367 | // compiled C++ code w/o the proper separation. The only real exception |
| 368 | // is a null pointer. You could have generic code written to index of |
| 369 | // off a potentially null value and have proven it null. We also use |
| 370 | // null pointers in dead paths of relocation phis (which we might later |
| 371 | // want to find a base pointer for). |
| 372 | assert(con->getType()->isPointerTy() && |
| 373 | "Base for pointer must be another pointer"); |
| 374 | assert(con->isNullValue() && "null is the only case which makes sense"); |
| 375 | return con; |
| 376 | } |
| 377 | |
| 378 | if (CastInst *CI = dyn_cast<CastInst>(I)) { |
| 379 | Value *def = CI->stripPointerCasts(); |
| 380 | assert(def->getType()->isPointerTy() && |
| 381 | "Base for pointer must be another pointer"); |
| 382 | if (isa<CastInst>(def)) { |
| 383 | // If we find a cast instruction here, it means we've found a cast |
| 384 | // which is not simply a pointer cast (i.e. an inttoptr). We don't |
| 385 | // know how to handle int->ptr conversion. |
| 386 | llvm_unreachable("Can not find the base pointers for an inttoptr cast"); |
| 387 | } |
| 388 | assert(!isa<CastInst>(def) && "shouldn't find another cast here"); |
| 389 | return findBaseDefiningValue(def); |
| 390 | } |
| 391 | |
| 392 | if (LoadInst *LI = dyn_cast<LoadInst>(I)) { |
| 393 | if (LI->getType()->isPointerTy()) { |
| 394 | Value *Op = LI->getOperand(0); |
Nick Lewycky | eb3231e | 2015-02-20 07:14:02 +0000 | [diff] [blame] | 395 | (void)Op; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 396 | // Has to be a pointer to an gc object, or possibly an array of such? |
| 397 | assert(Op->getType()->isPointerTy()); |
| 398 | return LI; // The value loaded is an gc base itself |
| 399 | } |
| 400 | } |
| 401 | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { |
| 402 | Value *Op = GEP->getOperand(0); |
| 403 | if (Op->getType()->isPointerTy()) { |
| 404 | return findBaseDefiningValue(Op); // The base of this GEP is the base |
| 405 | } |
| 406 | } |
| 407 | |
| 408 | if (AllocaInst *alloc = dyn_cast<AllocaInst>(I)) { |
| 409 | // An alloca represents a conceptual stack slot. It's the slot itself |
| 410 | // that the GC needs to know about, not the value in the slot. |
| 411 | assert(alloc->getType()->isPointerTy() && |
| 412 | "Base for pointer must be another pointer"); |
| 413 | return alloc; |
| 414 | } |
| 415 | |
| 416 | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { |
| 417 | switch (II->getIntrinsicID()) { |
| 418 | default: |
| 419 | // fall through to general call handling |
| 420 | break; |
| 421 | case Intrinsic::experimental_gc_statepoint: |
| 422 | case Intrinsic::experimental_gc_result_float: |
| 423 | case Intrinsic::experimental_gc_result_int: |
| 424 | llvm_unreachable("these don't produce pointers"); |
| 425 | case Intrinsic::experimental_gc_result_ptr: |
| 426 | // This is just a special case of the CallInst check below to handle a |
| 427 | // statepoint with deopt args which hasn't been rewritten for GC yet. |
| 428 | // TODO: Assert that the statepoint isn't rewritten yet. |
| 429 | return II; |
| 430 | case Intrinsic::experimental_gc_relocate: { |
| 431 | // Rerunning safepoint insertion after safepoints are already |
| 432 | // inserted is not supported. It could probably be made to work, |
| 433 | // but why are you doing this? There's no good reason. |
| 434 | llvm_unreachable("repeat safepoint insertion is not supported"); |
| 435 | } |
| 436 | case Intrinsic::gcroot: |
| 437 | // Currently, this mechanism hasn't been extended to work with gcroot. |
| 438 | // There's no reason it couldn't be, but I haven't thought about the |
| 439 | // implications much. |
| 440 | llvm_unreachable( |
| 441 | "interaction with the gcroot mechanism is not supported"); |
| 442 | } |
| 443 | } |
| 444 | // We assume that functions in the source language only return base |
| 445 | // pointers. This should probably be generalized via attributes to support |
| 446 | // both source language and internal functions. |
| 447 | if (CallInst *call = dyn_cast<CallInst>(I)) { |
| 448 | assert(call->getType()->isPointerTy() && |
| 449 | "Base for pointer must be another pointer"); |
| 450 | return call; |
| 451 | } |
| 452 | if (InvokeInst *invoke = dyn_cast<InvokeInst>(I)) { |
| 453 | assert(invoke->getType()->isPointerTy() && |
| 454 | "Base for pointer must be another pointer"); |
| 455 | return invoke; |
| 456 | } |
| 457 | |
| 458 | // I have absolutely no idea how to implement this part yet. It's not |
| 459 | // neccessarily hard, I just haven't really looked at it yet. |
| 460 | assert(!isa<LandingPadInst>(I) && "Landing Pad is unimplemented"); |
| 461 | |
| 462 | if (AtomicCmpXchgInst *cas = dyn_cast<AtomicCmpXchgInst>(I)) { |
| 463 | // A CAS is effectively a atomic store and load combined under a |
| 464 | // predicate. From the perspective of base pointers, we just treat it |
| 465 | // like a load. We loaded a pointer from a address in memory, that value |
| 466 | // had better be a valid base pointer. |
| 467 | return cas->getPointerOperand(); |
| 468 | } |
| 469 | if (AtomicRMWInst *atomic = dyn_cast<AtomicRMWInst>(I)) { |
| 470 | assert(AtomicRMWInst::Xchg == atomic->getOperation() && |
| 471 | "All others are binary ops which don't apply to base pointers"); |
| 472 | // semantically, a load, store pair. Treat it the same as a standard load |
| 473 | return atomic->getPointerOperand(); |
| 474 | } |
| 475 | |
| 476 | // The aggregate ops. Aggregates can either be in the heap or on the |
| 477 | // stack, but in either case, this is simply a field load. As a result, |
| 478 | // this is a defining definition of the base just like a load is. |
| 479 | if (ExtractValueInst *ev = dyn_cast<ExtractValueInst>(I)) { |
| 480 | return ev; |
| 481 | } |
| 482 | |
| 483 | // We should never see an insert vector since that would require we be |
| 484 | // tracing back a struct value not a pointer value. |
| 485 | assert(!isa<InsertValueInst>(I) && |
| 486 | "Base pointer for a struct is meaningless"); |
| 487 | |
| 488 | // The last two cases here don't return a base pointer. Instead, they |
| 489 | // return a value which dynamically selects from amoung several base |
| 490 | // derived pointers (each with it's own base potentially). It's the job of |
| 491 | // the caller to resolve these. |
| 492 | if (SelectInst *select = dyn_cast<SelectInst>(I)) { |
| 493 | return select; |
| 494 | } |
| 495 | if (PHINode *phi = dyn_cast<PHINode>(I)) { |
| 496 | return phi; |
| 497 | } |
| 498 | |
| 499 | errs() << "unknown type: " << *I << "\n"; |
| 500 | llvm_unreachable("unknown type"); |
| 501 | return nullptr; |
| 502 | } |
| 503 | |
| 504 | /// Returns the base defining value for this value. |
Benjamin Kramer | 6f66545 | 2015-02-20 14:00:58 +0000 | [diff] [blame] | 505 | static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &cache) { |
| 506 | Value *&Cached = cache[I]; |
| 507 | if (!Cached) { |
| 508 | Cached = findBaseDefiningValue(I); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 509 | } |
Benjamin Kramer | 6f66545 | 2015-02-20 14:00:58 +0000 | [diff] [blame] | 510 | assert(cache[I] != nullptr); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 511 | |
| 512 | if (TraceLSP) { |
Benjamin Kramer | 6f66545 | 2015-02-20 14:00:58 +0000 | [diff] [blame] | 513 | errs() << "fBDV-cached: " << I->getName() << " -> " << Cached->getName() |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 514 | << "\n"; |
| 515 | } |
Benjamin Kramer | 6f66545 | 2015-02-20 14:00:58 +0000 | [diff] [blame] | 516 | return Cached; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 517 | } |
| 518 | |
| 519 | /// Return a base pointer for this value if known. Otherwise, return it's |
| 520 | /// base defining value. |
| 521 | static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &cache) { |
| 522 | Value *def = findBaseDefiningValueCached(I, cache); |
Benjamin Kramer | 6f66545 | 2015-02-20 14:00:58 +0000 | [diff] [blame] | 523 | auto Found = cache.find(def); |
| 524 | if (Found != cache.end()) { |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 525 | // Either a base-of relation, or a self reference. Caller must check. |
Benjamin Kramer | 6f66545 | 2015-02-20 14:00:58 +0000 | [diff] [blame] | 526 | return Found->second; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 527 | } |
| 528 | // Only a BDV available |
| 529 | return def; |
| 530 | } |
| 531 | |
| 532 | /// Given the result of a call to findBaseDefiningValue, or findBaseOrBDV, |
| 533 | /// is it known to be a base pointer? Or do we need to continue searching. |
| 534 | static bool isKnownBaseResult(Value *v) { |
| 535 | if (!isa<PHINode>(v) && !isa<SelectInst>(v)) { |
| 536 | // no recursion possible |
| 537 | return true; |
| 538 | } |
| 539 | if (cast<Instruction>(v)->getMetadata("is_base_value")) { |
| 540 | // This is a previously inserted base phi or select. We know |
| 541 | // that this is a base value. |
| 542 | return true; |
| 543 | } |
| 544 | |
| 545 | // We need to keep searching |
| 546 | return false; |
| 547 | } |
| 548 | |
| 549 | // TODO: find a better name for this |
| 550 | namespace { |
| 551 | class PhiState { |
| 552 | public: |
| 553 | enum Status { Unknown, Base, Conflict }; |
| 554 | |
| 555 | PhiState(Status s, Value *b = nullptr) : status(s), base(b) { |
| 556 | assert(status != Base || b); |
| 557 | } |
| 558 | PhiState(Value *b) : status(Base), base(b) {} |
| 559 | PhiState() : status(Unknown), base(nullptr) {} |
| 560 | PhiState(const PhiState &other) : status(other.status), base(other.base) { |
| 561 | assert(status != Base || base); |
| 562 | } |
| 563 | |
| 564 | Status getStatus() const { return status; } |
| 565 | Value *getBase() const { return base; } |
| 566 | |
| 567 | bool isBase() const { return getStatus() == Base; } |
| 568 | bool isUnknown() const { return getStatus() == Unknown; } |
| 569 | bool isConflict() const { return getStatus() == Conflict; } |
| 570 | |
| 571 | bool operator==(const PhiState &other) const { |
| 572 | return base == other.base && status == other.status; |
| 573 | } |
| 574 | |
| 575 | bool operator!=(const PhiState &other) const { return !(*this == other); } |
| 576 | |
| 577 | void dump() { |
| 578 | errs() << status << " (" << base << " - " |
| 579 | << (base ? base->getName() : "nullptr") << "): "; |
| 580 | } |
| 581 | |
| 582 | private: |
| 583 | Status status; |
| 584 | Value *base; // non null only if status == base |
| 585 | }; |
| 586 | |
Philip Reames | 860660e | 2015-02-20 22:05:18 +0000 | [diff] [blame] | 587 | typedef std::map<Value *, PhiState> ConflictStateMapTy; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 588 | // Values of type PhiState form a lattice, and this is a helper |
| 589 | // class that implementes the meet operation. The meat of the meet |
| 590 | // operation is implemented in MeetPhiStates::pureMeet |
| 591 | class MeetPhiStates { |
| 592 | public: |
| 593 | // phiStates is a mapping from PHINodes and SelectInst's to PhiStates. |
Philip Reames | 860660e | 2015-02-20 22:05:18 +0000 | [diff] [blame] | 594 | explicit MeetPhiStates(const ConflictStateMapTy &phiStates) |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 595 | : phiStates(phiStates) {} |
| 596 | |
| 597 | // Destructively meet the current result with the base V. V can |
| 598 | // either be a merge instruction (SelectInst / PHINode), in which |
| 599 | // case its status is looked up in the phiStates map; or a regular |
| 600 | // SSA value, in which case it is assumed to be a base. |
| 601 | void meetWith(Value *V) { |
| 602 | PhiState otherState = getStateForBDV(V); |
| 603 | assert((MeetPhiStates::pureMeet(otherState, currentResult) == |
| 604 | MeetPhiStates::pureMeet(currentResult, otherState)) && |
| 605 | "math is wrong: meet does not commute!"); |
| 606 | currentResult = MeetPhiStates::pureMeet(otherState, currentResult); |
| 607 | } |
| 608 | |
| 609 | PhiState getResult() const { return currentResult; } |
| 610 | |
| 611 | private: |
Philip Reames | 860660e | 2015-02-20 22:05:18 +0000 | [diff] [blame] | 612 | const ConflictStateMapTy &phiStates; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 613 | PhiState currentResult; |
| 614 | |
| 615 | /// Return a phi state for a base defining value. We'll generate a new |
| 616 | /// base state for known bases and expect to find a cached state otherwise |
| 617 | PhiState getStateForBDV(Value *baseValue) { |
| 618 | if (isKnownBaseResult(baseValue)) { |
| 619 | return PhiState(baseValue); |
| 620 | } else { |
| 621 | return lookupFromMap(baseValue); |
| 622 | } |
| 623 | } |
| 624 | |
| 625 | PhiState lookupFromMap(Value *V) { |
| 626 | auto I = phiStates.find(V); |
| 627 | assert(I != phiStates.end() && "lookup failed!"); |
| 628 | return I->second; |
| 629 | } |
| 630 | |
| 631 | static PhiState pureMeet(const PhiState &stateA, const PhiState &stateB) { |
| 632 | switch (stateA.getStatus()) { |
| 633 | case PhiState::Unknown: |
| 634 | return stateB; |
| 635 | |
| 636 | case PhiState::Base: |
| 637 | assert(stateA.getBase() && "can't be null"); |
| 638 | if (stateB.isUnknown()) { |
| 639 | return stateA; |
| 640 | } else if (stateB.isBase()) { |
| 641 | if (stateA.getBase() == stateB.getBase()) { |
| 642 | assert(stateA == stateB && "equality broken!"); |
| 643 | return stateA; |
| 644 | } |
| 645 | return PhiState(PhiState::Conflict); |
| 646 | } else { |
| 647 | assert(stateB.isConflict() && "only three states!"); |
| 648 | return PhiState(PhiState::Conflict); |
| 649 | } |
| 650 | |
| 651 | case PhiState::Conflict: |
| 652 | return stateA; |
| 653 | } |
Reid Kleckner | a070ee5 | 2015-02-20 19:46:02 +0000 | [diff] [blame] | 654 | llvm_unreachable("only three states!"); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 655 | } |
| 656 | }; |
| 657 | } |
| 658 | /// For a given value or instruction, figure out what base ptr it's derived |
| 659 | /// from. For gc objects, this is simply itself. On success, returns a value |
| 660 | /// which is the base pointer. (This is reliable and can be used for |
| 661 | /// relocation.) On failure, returns nullptr. |
| 662 | static Value *findBasePointer(Value *I, DefiningValueMapTy &cache, |
Philip Reames | f204132 | 2015-02-20 19:26:04 +0000 | [diff] [blame] | 663 | DenseSet<llvm::Value *> &NewInsertedDefs) { |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 664 | Value *def = findBaseOrBDV(I, cache); |
| 665 | |
| 666 | if (isKnownBaseResult(def)) { |
| 667 | return def; |
| 668 | } |
| 669 | |
| 670 | // Here's the rough algorithm: |
| 671 | // - For every SSA value, construct a mapping to either an actual base |
| 672 | // pointer or a PHI which obscures the base pointer. |
| 673 | // - Construct a mapping from PHI to unknown TOP state. Use an |
| 674 | // optimistic algorithm to propagate base pointer information. Lattice |
| 675 | // looks like: |
| 676 | // UNKNOWN |
| 677 | // b1 b2 b3 b4 |
| 678 | // CONFLICT |
| 679 | // When algorithm terminates, all PHIs will either have a single concrete |
| 680 | // base or be in a conflict state. |
| 681 | // - For every conflict, insert a dummy PHI node without arguments. Add |
| 682 | // these to the base[Instruction] = BasePtr mapping. For every |
| 683 | // non-conflict, add the actual base. |
| 684 | // - For every conflict, add arguments for the base[a] of each input |
| 685 | // arguments. |
| 686 | // |
| 687 | // Note: A simpler form of this would be to add the conflict form of all |
| 688 | // PHIs without running the optimistic algorithm. This would be |
| 689 | // analougous to pessimistic data flow and would likely lead to an |
| 690 | // overall worse solution. |
| 691 | |
Philip Reames | 860660e | 2015-02-20 22:05:18 +0000 | [diff] [blame] | 692 | ConflictStateMapTy states; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 693 | states[def] = PhiState(); |
| 694 | // Recursively fill in all phis & selects reachable from the initial one |
| 695 | // for which we don't already know a definite base value for |
| 696 | // PERF: Yes, this is as horribly inefficient as it looks. |
| 697 | bool done = false; |
| 698 | while (!done) { |
| 699 | done = true; |
| 700 | for (auto Pair : states) { |
| 701 | Value *v = Pair.first; |
| 702 | assert(!isKnownBaseResult(v) && "why did it get added?"); |
| 703 | if (PHINode *phi = dyn_cast<PHINode>(v)) { |
| 704 | unsigned NumPHIValues = phi->getNumIncomingValues(); |
| 705 | assert(NumPHIValues > 0 && "zero input phis are illegal"); |
| 706 | for (unsigned i = 0; i != NumPHIValues; ++i) { |
| 707 | Value *InVal = phi->getIncomingValue(i); |
| 708 | Value *local = findBaseOrBDV(InVal, cache); |
| 709 | if (!isKnownBaseResult(local) && states.find(local) == states.end()) { |
| 710 | states[local] = PhiState(); |
| 711 | done = false; |
| 712 | } |
| 713 | } |
| 714 | } else if (SelectInst *sel = dyn_cast<SelectInst>(v)) { |
| 715 | Value *local = findBaseOrBDV(sel->getTrueValue(), cache); |
| 716 | if (!isKnownBaseResult(local) && states.find(local) == states.end()) { |
| 717 | states[local] = PhiState(); |
| 718 | done = false; |
| 719 | } |
| 720 | local = findBaseOrBDV(sel->getFalseValue(), cache); |
| 721 | if (!isKnownBaseResult(local) && states.find(local) == states.end()) { |
| 722 | states[local] = PhiState(); |
| 723 | done = false; |
| 724 | } |
| 725 | } |
| 726 | } |
| 727 | } |
| 728 | |
| 729 | if (TraceLSP) { |
| 730 | errs() << "States after initialization:\n"; |
| 731 | for (auto Pair : states) { |
| 732 | Instruction *v = cast<Instruction>(Pair.first); |
| 733 | PhiState state = Pair.second; |
| 734 | state.dump(); |
| 735 | v->dump(); |
| 736 | } |
| 737 | } |
| 738 | |
| 739 | // TODO: come back and revisit the state transitions around inputs which |
| 740 | // have reached conflict state. The current version seems too conservative. |
| 741 | |
| 742 | bool progress = true; |
| 743 | size_t oldSize = 0; |
| 744 | while (progress) { |
| 745 | oldSize = states.size(); |
| 746 | progress = false; |
| 747 | for (auto Pair : states) { |
| 748 | MeetPhiStates calculateMeet(states); |
| 749 | Value *v = Pair.first; |
| 750 | assert(!isKnownBaseResult(v) && "why did it get added?"); |
| 751 | assert(isa<SelectInst>(v) || isa<PHINode>(v)); |
| 752 | if (SelectInst *select = dyn_cast<SelectInst>(v)) { |
| 753 | calculateMeet.meetWith(findBaseOrBDV(select->getTrueValue(), cache)); |
| 754 | calculateMeet.meetWith(findBaseOrBDV(select->getFalseValue(), cache)); |
| 755 | } else if (PHINode *phi = dyn_cast<PHINode>(v)) { |
| 756 | for (unsigned i = 0; i < phi->getNumIncomingValues(); i++) { |
| 757 | calculateMeet.meetWith( |
| 758 | findBaseOrBDV(phi->getIncomingValue(i), cache)); |
| 759 | } |
| 760 | } else { |
| 761 | llvm_unreachable("no such state expected"); |
| 762 | } |
| 763 | |
| 764 | PhiState oldState = states[v]; |
| 765 | PhiState newState = calculateMeet.getResult(); |
| 766 | if (oldState != newState) { |
| 767 | progress = true; |
| 768 | states[v] = newState; |
| 769 | } |
| 770 | } |
| 771 | |
| 772 | assert(oldSize <= states.size()); |
| 773 | assert(oldSize == states.size() || progress); |
| 774 | } |
| 775 | |
| 776 | if (TraceLSP) { |
| 777 | errs() << "States after meet iteration:\n"; |
| 778 | for (auto Pair : states) { |
| 779 | Instruction *v = cast<Instruction>(Pair.first); |
| 780 | PhiState state = Pair.second; |
| 781 | state.dump(); |
| 782 | v->dump(); |
| 783 | } |
| 784 | } |
| 785 | |
| 786 | // Insert Phis for all conflicts |
| 787 | for (auto Pair : states) { |
| 788 | Instruction *v = cast<Instruction>(Pair.first); |
| 789 | PhiState state = Pair.second; |
| 790 | assert(!isKnownBaseResult(v) && "why did it get added?"); |
| 791 | assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); |
| 792 | if (state.isConflict()) { |
| 793 | if (isa<PHINode>(v)) { |
| 794 | int num_preds = |
| 795 | std::distance(pred_begin(v->getParent()), pred_end(v->getParent())); |
| 796 | assert(num_preds > 0 && "how did we reach here"); |
| 797 | PHINode *phi = PHINode::Create(v->getType(), num_preds, "base_phi", v); |
Philip Reames | f204132 | 2015-02-20 19:26:04 +0000 | [diff] [blame] | 798 | NewInsertedDefs.insert(phi); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 799 | // Add metadata marking this as a base value |
| 800 | auto *const_1 = ConstantInt::get( |
| 801 | Type::getInt32Ty( |
| 802 | v->getParent()->getParent()->getParent()->getContext()), |
| 803 | 1); |
| 804 | auto MDConst = ConstantAsMetadata::get(const_1); |
| 805 | MDNode *md = MDNode::get( |
| 806 | v->getParent()->getParent()->getParent()->getContext(), MDConst); |
| 807 | phi->setMetadata("is_base_value", md); |
| 808 | states[v] = PhiState(PhiState::Conflict, phi); |
| 809 | } else if (SelectInst *sel = dyn_cast<SelectInst>(v)) { |
| 810 | // The undef will be replaced later |
| 811 | UndefValue *undef = UndefValue::get(sel->getType()); |
| 812 | SelectInst *basesel = SelectInst::Create(sel->getCondition(), undef, |
| 813 | undef, "base_select", sel); |
Philip Reames | f204132 | 2015-02-20 19:26:04 +0000 | [diff] [blame] | 814 | NewInsertedDefs.insert(basesel); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 815 | // Add metadata marking this as a base value |
| 816 | auto *const_1 = ConstantInt::get( |
| 817 | Type::getInt32Ty( |
| 818 | v->getParent()->getParent()->getParent()->getContext()), |
| 819 | 1); |
| 820 | auto MDConst = ConstantAsMetadata::get(const_1); |
| 821 | MDNode *md = MDNode::get( |
| 822 | v->getParent()->getParent()->getParent()->getContext(), MDConst); |
| 823 | basesel->setMetadata("is_base_value", md); |
| 824 | states[v] = PhiState(PhiState::Conflict, basesel); |
Philip Reames | 860660e | 2015-02-20 22:05:18 +0000 | [diff] [blame] | 825 | } else |
| 826 | llvm_unreachable("unknown conflict type"); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 827 | } |
| 828 | } |
| 829 | |
| 830 | // Fixup all the inputs of the new PHIs |
| 831 | for (auto Pair : states) { |
| 832 | Instruction *v = cast<Instruction>(Pair.first); |
| 833 | PhiState state = Pair.second; |
| 834 | |
| 835 | assert(!isKnownBaseResult(v) && "why did it get added?"); |
| 836 | assert(!state.isUnknown() && "Optimistic algorithm didn't complete!"); |
| 837 | if (state.isConflict()) { |
| 838 | if (PHINode *basephi = dyn_cast<PHINode>(state.getBase())) { |
| 839 | PHINode *phi = cast<PHINode>(v); |
| 840 | unsigned NumPHIValues = phi->getNumIncomingValues(); |
| 841 | for (unsigned i = 0; i < NumPHIValues; i++) { |
| 842 | Value *InVal = phi->getIncomingValue(i); |
| 843 | BasicBlock *InBB = phi->getIncomingBlock(i); |
| 844 | |
| 845 | // If we've already seen InBB, add the same incoming value |
| 846 | // we added for it earlier. The IR verifier requires phi |
| 847 | // nodes with multiple entries from the same basic block |
| 848 | // to have the same incoming value for each of those |
| 849 | // entries. If we don't do this check here and basephi |
| 850 | // has a different type than base, we'll end up adding two |
| 851 | // bitcasts (and hence two distinct values) as incoming |
| 852 | // values for the same basic block. |
| 853 | |
| 854 | int blockIndex = basephi->getBasicBlockIndex(InBB); |
| 855 | if (blockIndex != -1) { |
| 856 | Value *oldBase = basephi->getIncomingValue(blockIndex); |
| 857 | basephi->addIncoming(oldBase, InBB); |
| 858 | #ifndef NDEBUG |
| 859 | Value *base = findBaseOrBDV(InVal, cache); |
| 860 | if (!isKnownBaseResult(base)) { |
| 861 | // Either conflict or base. |
| 862 | assert(states.count(base)); |
| 863 | base = states[base].getBase(); |
| 864 | assert(base != nullptr && "unknown PhiState!"); |
Philip Reames | f204132 | 2015-02-20 19:26:04 +0000 | [diff] [blame] | 865 | assert(NewInsertedDefs.count(base) && |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 866 | "should have already added this in a prev. iteration!"); |
| 867 | } |
| 868 | |
| 869 | // In essense this assert states: the only way two |
| 870 | // values incoming from the same basic block may be |
| 871 | // different is by being different bitcasts of the same |
| 872 | // value. A cleanup that remains TODO is changing |
| 873 | // findBaseOrBDV to return an llvm::Value of the correct |
| 874 | // type (and still remain pure). This will remove the |
| 875 | // need to add bitcasts. |
| 876 | assert(base->stripPointerCasts() == oldBase->stripPointerCasts() && |
| 877 | "sanity -- findBaseOrBDV should be pure!"); |
| 878 | #endif |
| 879 | continue; |
| 880 | } |
| 881 | |
| 882 | // Find either the defining value for the PHI or the normal base for |
| 883 | // a non-phi node |
| 884 | Value *base = findBaseOrBDV(InVal, cache); |
| 885 | if (!isKnownBaseResult(base)) { |
| 886 | // Either conflict or base. |
| 887 | assert(states.count(base)); |
| 888 | base = states[base].getBase(); |
| 889 | assert(base != nullptr && "unknown PhiState!"); |
| 890 | } |
| 891 | assert(base && "can't be null"); |
| 892 | // Must use original input BB since base may not be Instruction |
| 893 | // The cast is needed since base traversal may strip away bitcasts |
| 894 | if (base->getType() != basephi->getType()) { |
| 895 | base = new BitCastInst(base, basephi->getType(), "cast", |
| 896 | InBB->getTerminator()); |
Philip Reames | f204132 | 2015-02-20 19:26:04 +0000 | [diff] [blame] | 897 | NewInsertedDefs.insert(base); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 898 | } |
| 899 | basephi->addIncoming(base, InBB); |
| 900 | } |
| 901 | assert(basephi->getNumIncomingValues() == NumPHIValues); |
| 902 | } else if (SelectInst *basesel = dyn_cast<SelectInst>(state.getBase())) { |
| 903 | SelectInst *sel = cast<SelectInst>(v); |
| 904 | // Operand 1 & 2 are true, false path respectively. TODO: refactor to |
| 905 | // something more safe and less hacky. |
| 906 | for (int i = 1; i <= 2; i++) { |
| 907 | Value *InVal = sel->getOperand(i); |
| 908 | // Find either the defining value for the PHI or the normal base for |
| 909 | // a non-phi node |
| 910 | Value *base = findBaseOrBDV(InVal, cache); |
| 911 | if (!isKnownBaseResult(base)) { |
| 912 | // Either conflict or base. |
| 913 | assert(states.count(base)); |
| 914 | base = states[base].getBase(); |
| 915 | assert(base != nullptr && "unknown PhiState!"); |
| 916 | } |
| 917 | assert(base && "can't be null"); |
| 918 | // Must use original input BB since base may not be Instruction |
| 919 | // The cast is needed since base traversal may strip away bitcasts |
| 920 | if (base->getType() != basesel->getType()) { |
| 921 | base = new BitCastInst(base, basesel->getType(), "cast", basesel); |
Philip Reames | f204132 | 2015-02-20 19:26:04 +0000 | [diff] [blame] | 922 | NewInsertedDefs.insert(base); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 923 | } |
| 924 | basesel->setOperand(i, base); |
| 925 | } |
Philip Reames | 860660e | 2015-02-20 22:05:18 +0000 | [diff] [blame] | 926 | } else |
| 927 | llvm_unreachable("unexpected conflict type"); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 928 | } |
| 929 | } |
| 930 | |
| 931 | // Cache all of our results so we can cheaply reuse them |
| 932 | // NOTE: This is actually two caches: one of the base defining value |
| 933 | // relation and one of the base pointer relation! FIXME |
| 934 | for (auto item : states) { |
| 935 | Value *v = item.first; |
| 936 | Value *base = item.second.getBase(); |
| 937 | assert(v && base); |
| 938 | assert(!isKnownBaseResult(v) && "why did it get added?"); |
| 939 | |
| 940 | if (TraceLSP) { |
| 941 | std::string fromstr = |
| 942 | cache.count(v) ? (cache[v]->hasName() ? cache[v]->getName() : "") |
| 943 | : "none"; |
| 944 | errs() << "Updating base value cache" |
| 945 | << " for: " << (v->hasName() ? v->getName() : "") |
| 946 | << " from: " << fromstr |
| 947 | << " to: " << (base->hasName() ? base->getName() : "") << "\n"; |
| 948 | } |
| 949 | |
| 950 | assert(isKnownBaseResult(base) && |
| 951 | "must be something we 'know' is a base pointer"); |
| 952 | if (cache.count(v)) { |
| 953 | // Once we transition from the BDV relation being store in the cache to |
| 954 | // the base relation being stored, it must be stable |
| 955 | assert((!isKnownBaseResult(cache[v]) || cache[v] == base) && |
| 956 | "base relation should be stable"); |
| 957 | } |
| 958 | cache[v] = base; |
| 959 | } |
| 960 | assert(cache.find(def) != cache.end()); |
| 961 | return cache[def]; |
| 962 | } |
| 963 | |
| 964 | // For a set of live pointers (base and/or derived), identify the base |
| 965 | // pointer of the object which they are derived from. This routine will |
| 966 | // mutate the IR graph as needed to make the 'base' pointer live at the |
| 967 | // definition site of 'derived'. This ensures that any use of 'derived' can |
| 968 | // also use 'base'. This may involve the insertion of a number of |
| 969 | // additional PHI nodes. |
| 970 | // |
| 971 | // preconditions: live is a set of pointer type Values |
| 972 | // |
| 973 | // side effects: may insert PHI nodes into the existing CFG, will preserve |
| 974 | // CFG, will not remove or mutate any existing nodes |
| 975 | // |
Philip Reames | f204132 | 2015-02-20 19:26:04 +0000 | [diff] [blame] | 976 | // post condition: PointerToBase contains one (derived, base) pair for every |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 977 | // pointer in live. Note that derived can be equal to base if the original |
| 978 | // pointer was a base pointer. |
| 979 | static void findBasePointers(const std::set<llvm::Value *> &live, |
Philip Reames | f204132 | 2015-02-20 19:26:04 +0000 | [diff] [blame] | 980 | DenseMap<llvm::Value *, llvm::Value *> &PointerToBase, |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 981 | DominatorTree *DT, DefiningValueMapTy &DVCache, |
Philip Reames | f204132 | 2015-02-20 19:26:04 +0000 | [diff] [blame] | 982 | DenseSet<llvm::Value *> &NewInsertedDefs) { |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 983 | for (Value *ptr : live) { |
Philip Reames | f204132 | 2015-02-20 19:26:04 +0000 | [diff] [blame] | 984 | Value *base = findBasePointer(ptr, DVCache, NewInsertedDefs); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 985 | assert(base && "failed to find base pointer"); |
Philip Reames | f204132 | 2015-02-20 19:26:04 +0000 | [diff] [blame] | 986 | PointerToBase[ptr] = base; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 987 | assert((!isa<Instruction>(base) || !isa<Instruction>(ptr) || |
| 988 | DT->dominates(cast<Instruction>(base)->getParent(), |
| 989 | cast<Instruction>(ptr)->getParent())) && |
| 990 | "The base we found better dominate the derived pointer"); |
| 991 | |
| 992 | if (isNullConstant(base)) |
| 993 | // If you see this trip and like to live really dangerously, the code |
| 994 | // should be correct, just with idioms the verifier can't handle. You |
| 995 | // can try disabling the verifier at your own substaintial risk. |
| 996 | llvm_unreachable("the relocation code needs adjustment to handle the" |
| 997 | "relocation of a null pointer constant without causing" |
| 998 | "false positives in the safepoint ir verifier."); |
| 999 | } |
| 1000 | } |
| 1001 | |
| 1002 | /// Find the required based pointers (and adjust the live set) for the given |
| 1003 | /// parse point. |
| 1004 | static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, |
| 1005 | const CallSite &CS, |
| 1006 | PartiallyConstructedSafepointRecord &result) { |
Philip Reames | f204132 | 2015-02-20 19:26:04 +0000 | [diff] [blame] | 1007 | DenseMap<llvm::Value *, llvm::Value *> PointerToBase; |
| 1008 | DenseSet<llvm::Value *> NewInsertedDefs; |
| 1009 | findBasePointers(result.liveset, PointerToBase, &DT, DVCache, NewInsertedDefs); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1010 | |
| 1011 | if (PrintBasePointers) { |
| 1012 | errs() << "Base Pairs (w/o Relocation):\n"; |
Philip Reames | f204132 | 2015-02-20 19:26:04 +0000 | [diff] [blame] | 1013 | for (auto Pair : PointerToBase) { |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1014 | errs() << " derived %" << Pair.first->getName() << " base %" |
| 1015 | << Pair.second->getName() << "\n"; |
| 1016 | } |
| 1017 | } |
| 1018 | |
Philip Reames | f204132 | 2015-02-20 19:26:04 +0000 | [diff] [blame] | 1019 | result.PointerToBase = PointerToBase; |
| 1020 | result.NewInsertedDefs = NewInsertedDefs; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1021 | } |
| 1022 | |
| 1023 | /// Check for liveness of items in the insert defs and add them to the live |
| 1024 | /// and base pointer sets |
| 1025 | static void fixupLiveness(DominatorTree &DT, const CallSite &CS, |
| 1026 | const std::set<Value *> &allInsertedDefs, |
| 1027 | PartiallyConstructedSafepointRecord &result) { |
| 1028 | Instruction *inst = CS.getInstruction(); |
| 1029 | |
Philip Reames | f204132 | 2015-02-20 19:26:04 +0000 | [diff] [blame] | 1030 | auto liveset = result.liveset; |
| 1031 | auto PointerToBase = result.PointerToBase; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1032 | |
| 1033 | auto is_live_gc_reference = |
| 1034 | [&](Value &V) { return isLiveGCReferenceAt(V, inst, DT, nullptr); }; |
| 1035 | |
| 1036 | // For each new definition, check to see if a) the definition dominates the |
| 1037 | // instruction we're interested in, and b) one of the uses of that definition |
| 1038 | // is edge-reachable from the instruction we're interested in. This is the |
| 1039 | // same definition of liveness we used in the intial liveness analysis |
| 1040 | for (Value *newDef : allInsertedDefs) { |
| 1041 | if (liveset.count(newDef)) { |
| 1042 | // already live, no action needed |
| 1043 | continue; |
| 1044 | } |
| 1045 | |
| 1046 | // PERF: Use DT to check instruction domination might not be good for |
| 1047 | // compilation time, and we could change to optimal solution if this |
| 1048 | // turn to be a issue |
| 1049 | if (!DT.dominates(cast<Instruction>(newDef), inst)) { |
| 1050 | // can't possibly be live at inst |
| 1051 | continue; |
| 1052 | } |
| 1053 | |
| 1054 | if (is_live_gc_reference(*newDef)) { |
Philip Reames | f204132 | 2015-02-20 19:26:04 +0000 | [diff] [blame] | 1055 | // Add the live new defs into liveset and PointerToBase |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1056 | liveset.insert(newDef); |
Philip Reames | f204132 | 2015-02-20 19:26:04 +0000 | [diff] [blame] | 1057 | PointerToBase[newDef] = newDef; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1058 | } |
| 1059 | } |
| 1060 | |
| 1061 | result.liveset = liveset; |
Philip Reames | f204132 | 2015-02-20 19:26:04 +0000 | [diff] [blame] | 1062 | result.PointerToBase = PointerToBase; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1063 | } |
| 1064 | |
| 1065 | static void fixupLiveReferences( |
| 1066 | Function &F, DominatorTree &DT, Pass *P, |
| 1067 | const std::set<llvm::Value *> &allInsertedDefs, |
Philip Reames | d2b6646 | 2015-02-20 22:39:41 +0000 | [diff] [blame^] | 1068 | ArrayRef<CallSite> toUpdate, |
| 1069 | MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1070 | for (size_t i = 0; i < records.size(); i++) { |
| 1071 | struct PartiallyConstructedSafepointRecord &info = records[i]; |
Philip Reames | d2b6646 | 2015-02-20 22:39:41 +0000 | [diff] [blame^] | 1072 | const CallSite &CS = toUpdate[i]; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1073 | fixupLiveness(DT, CS, allInsertedDefs, info); |
| 1074 | } |
| 1075 | } |
| 1076 | |
| 1077 | // Normalize basic block to make it ready to be target of invoke statepoint. |
| 1078 | // It means spliting it to have single predecessor. Return newly created BB |
| 1079 | // ready to be successor of invoke statepoint. |
| 1080 | static BasicBlock *normalizeBBForInvokeSafepoint(BasicBlock *BB, |
| 1081 | BasicBlock *InvokeParent, |
| 1082 | Pass *P) { |
| 1083 | BasicBlock *ret = BB; |
| 1084 | |
| 1085 | if (!BB->getUniquePredecessor()) { |
| 1086 | ret = SplitBlockPredecessors(BB, InvokeParent, ""); |
| 1087 | } |
| 1088 | |
| 1089 | // Another requirement for such basic blocks is to not have any phi nodes. |
| 1090 | // Since we just ensured that new BB will have single predecessor, |
| 1091 | // all phi nodes in it will have one value. Here it would be naturall place |
| 1092 | // to |
| 1093 | // remove them all. But we can not do this because we are risking to remove |
| 1094 | // one of the values stored in liveset of another statepoint. We will do it |
| 1095 | // later after placing all safepoints. |
| 1096 | |
| 1097 | return ret; |
| 1098 | } |
| 1099 | |
Philip Reames | d2b6646 | 2015-02-20 22:39:41 +0000 | [diff] [blame^] | 1100 | static int find_index(ArrayRef<Value *> livevec, Value *val) { |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1101 | auto itr = std::find(livevec.begin(), livevec.end(), val); |
| 1102 | assert(livevec.end() != itr); |
| 1103 | size_t index = std::distance(livevec.begin(), itr); |
| 1104 | assert(index < livevec.size()); |
| 1105 | return index; |
| 1106 | } |
| 1107 | |
| 1108 | // Create new attribute set containing only attributes which can be transfered |
| 1109 | // from original call to the safepoint. |
| 1110 | static AttributeSet legalizeCallAttributes(AttributeSet AS) { |
| 1111 | AttributeSet ret; |
| 1112 | |
| 1113 | for (unsigned Slot = 0; Slot < AS.getNumSlots(); Slot++) { |
| 1114 | unsigned index = AS.getSlotIndex(Slot); |
| 1115 | |
| 1116 | if (index == AttributeSet::ReturnIndex || |
| 1117 | index == AttributeSet::FunctionIndex) { |
| 1118 | |
| 1119 | for (auto it = AS.begin(Slot), it_end = AS.end(Slot); it != it_end; |
| 1120 | ++it) { |
| 1121 | Attribute attr = *it; |
| 1122 | |
| 1123 | // Do not allow certain attributes - just skip them |
| 1124 | // Safepoint can not be read only or read none. |
| 1125 | if (attr.hasAttribute(Attribute::ReadNone) || |
| 1126 | attr.hasAttribute(Attribute::ReadOnly)) |
| 1127 | continue; |
| 1128 | |
| 1129 | ret = ret.addAttributes( |
| 1130 | AS.getContext(), index, |
| 1131 | AttributeSet::get(AS.getContext(), index, AttrBuilder(attr))); |
| 1132 | } |
| 1133 | } |
| 1134 | |
| 1135 | // Just skip parameter attributes for now |
| 1136 | } |
| 1137 | |
| 1138 | return ret; |
| 1139 | } |
| 1140 | |
| 1141 | /// Helper function to place all gc relocates necessary for the given |
| 1142 | /// statepoint. |
| 1143 | /// Inputs: |
| 1144 | /// liveVariables - list of variables to be relocated. |
| 1145 | /// liveStart - index of the first live variable. |
| 1146 | /// basePtrs - base pointers. |
| 1147 | /// statepointToken - statepoint instruction to which relocates should be |
| 1148 | /// bound. |
| 1149 | /// Builder - Llvm IR builder to be used to construct new calls. |
Philip Reames | d2b6646 | 2015-02-20 22:39:41 +0000 | [diff] [blame^] | 1150 | void CreateGCRelocates(ArrayRef<llvm::Value *> liveVariables, |
| 1151 | const int liveStart, |
| 1152 | ArrayRef<llvm::Value *> basePtrs, |
| 1153 | Instruction *statepointToken, IRBuilder<> Builder) { |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1154 | |
Philip Reames | d2b6646 | 2015-02-20 22:39:41 +0000 | [diff] [blame^] | 1155 | SmallVector<Instruction *, 64> NewDefs; |
| 1156 | NewDefs.reserve(liveVariables.size()); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1157 | |
| 1158 | Module *M = statepointToken->getParent()->getParent()->getParent(); |
| 1159 | |
| 1160 | for (unsigned i = 0; i < liveVariables.size(); i++) { |
| 1161 | // We generate a (potentially) unique declaration for every pointer type |
| 1162 | // combination. This results is some blow up the function declarations in |
| 1163 | // the IR, but removes the need for argument bitcasts which shrinks the IR |
| 1164 | // greatly and makes it much more readable. |
Philip Reames | d2b6646 | 2015-02-20 22:39:41 +0000 | [diff] [blame^] | 1165 | SmallVector<Type *, 1> types; // one per 'any' type |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1166 | types.push_back(liveVariables[i]->getType()); // result type |
| 1167 | Value *gc_relocate_decl = Intrinsic::getDeclaration( |
| 1168 | M, Intrinsic::experimental_gc_relocate, types); |
| 1169 | |
| 1170 | // Generate the gc.relocate call and save the result |
| 1171 | Value *baseIdx = |
| 1172 | ConstantInt::get(Type::getInt32Ty(M->getContext()), |
| 1173 | liveStart + find_index(liveVariables, basePtrs[i])); |
| 1174 | Value *liveIdx = ConstantInt::get( |
| 1175 | Type::getInt32Ty(M->getContext()), |
| 1176 | liveStart + find_index(liveVariables, liveVariables[i])); |
| 1177 | |
| 1178 | // only specify a debug name if we can give a useful one |
| 1179 | Value *reloc = Builder.CreateCall3( |
| 1180 | gc_relocate_decl, statepointToken, baseIdx, liveIdx, |
| 1181 | liveVariables[i]->hasName() ? liveVariables[i]->getName() + ".relocated" |
| 1182 | : ""); |
| 1183 | // Trick CodeGen into thinking there are lots of free registers at this |
| 1184 | // fake call. |
| 1185 | cast<CallInst>(reloc)->setCallingConv(CallingConv::Cold); |
| 1186 | |
Philip Reames | d2b6646 | 2015-02-20 22:39:41 +0000 | [diff] [blame^] | 1187 | NewDefs.push_back(cast<Instruction>(reloc)); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1188 | } |
Philip Reames | d2b6646 | 2015-02-20 22:39:41 +0000 | [diff] [blame^] | 1189 | assert(NewDefs.size() == liveVariables.size() && |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1190 | "missing or extra redefinition at safepoint"); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1191 | } |
| 1192 | |
| 1193 | static void |
| 1194 | makeStatepointExplicitImpl(const CallSite &CS, /* to replace */ |
| 1195 | const SmallVectorImpl<llvm::Value *> &basePtrs, |
| 1196 | const SmallVectorImpl<llvm::Value *> &liveVariables, |
| 1197 | Pass *P, |
| 1198 | PartiallyConstructedSafepointRecord &result) { |
| 1199 | assert(basePtrs.size() == liveVariables.size()); |
| 1200 | assert(isStatepoint(CS) && |
| 1201 | "This method expects to be rewriting a statepoint"); |
| 1202 | |
| 1203 | BasicBlock *BB = CS.getInstruction()->getParent(); |
| 1204 | assert(BB); |
| 1205 | Function *F = BB->getParent(); |
| 1206 | assert(F && "must be set"); |
| 1207 | Module *M = F->getParent(); |
Nick Lewycky | eb3231e | 2015-02-20 07:14:02 +0000 | [diff] [blame] | 1208 | (void)M; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1209 | assert(M && "must be set"); |
| 1210 | |
| 1211 | // We're not changing the function signature of the statepoint since the gc |
| 1212 | // arguments go into the var args section. |
| 1213 | Function *gc_statepoint_decl = CS.getCalledFunction(); |
| 1214 | |
| 1215 | // Then go ahead and use the builder do actually do the inserts. We insert |
| 1216 | // immediately before the previous instruction under the assumption that all |
| 1217 | // arguments will be available here. We can't insert afterwards since we may |
| 1218 | // be replacing a terminator. |
| 1219 | Instruction *insertBefore = CS.getInstruction(); |
| 1220 | IRBuilder<> Builder(insertBefore); |
| 1221 | // Copy all of the arguments from the original statepoint - this includes the |
| 1222 | // target, call args, and deopt args |
Philip Reames | d2b6646 | 2015-02-20 22:39:41 +0000 | [diff] [blame^] | 1223 | SmallVector<llvm::Value *, 64> args; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1224 | args.insert(args.end(), CS.arg_begin(), CS.arg_end()); |
| 1225 | // TODO: Clear the 'needs rewrite' flag |
| 1226 | |
| 1227 | // add all the pointers to be relocated (gc arguments) |
| 1228 | // Capture the start of the live variable list for use in the gc_relocates |
| 1229 | const int live_start = args.size(); |
| 1230 | args.insert(args.end(), liveVariables.begin(), liveVariables.end()); |
| 1231 | |
| 1232 | // Create the statepoint given all the arguments |
| 1233 | Instruction *token = nullptr; |
| 1234 | AttributeSet return_attributes; |
| 1235 | if (CS.isCall()) { |
| 1236 | CallInst *toReplace = cast<CallInst>(CS.getInstruction()); |
| 1237 | CallInst *call = |
| 1238 | Builder.CreateCall(gc_statepoint_decl, args, "safepoint_token"); |
| 1239 | call->setTailCall(toReplace->isTailCall()); |
| 1240 | call->setCallingConv(toReplace->getCallingConv()); |
| 1241 | |
| 1242 | // Currently we will fail on parameter attributes and on certain |
| 1243 | // function attributes. |
| 1244 | AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); |
| 1245 | // In case if we can handle this set of sttributes - set up function attrs |
| 1246 | // directly on statepoint and return attrs later for gc_result intrinsic. |
| 1247 | call->setAttributes(new_attrs.getFnAttributes()); |
| 1248 | return_attributes = new_attrs.getRetAttributes(); |
| 1249 | |
| 1250 | token = call; |
| 1251 | |
| 1252 | // Put the following gc_result and gc_relocate calls immediately after the |
| 1253 | // the old call (which we're about to delete) |
| 1254 | BasicBlock::iterator next(toReplace); |
| 1255 | assert(BB->end() != next && "not a terminator, must have next"); |
| 1256 | next++; |
| 1257 | Instruction *IP = &*(next); |
| 1258 | Builder.SetInsertPoint(IP); |
| 1259 | Builder.SetCurrentDebugLocation(IP->getDebugLoc()); |
| 1260 | |
| 1261 | } else if (CS.isInvoke()) { |
| 1262 | InvokeInst *toReplace = cast<InvokeInst>(CS.getInstruction()); |
| 1263 | |
| 1264 | // Insert the new invoke into the old block. We'll remove the old one in a |
| 1265 | // moment at which point this will become the new terminator for the |
| 1266 | // original block. |
| 1267 | InvokeInst *invoke = InvokeInst::Create( |
| 1268 | gc_statepoint_decl, toReplace->getNormalDest(), |
| 1269 | toReplace->getUnwindDest(), args, "", toReplace->getParent()); |
| 1270 | invoke->setCallingConv(toReplace->getCallingConv()); |
| 1271 | |
| 1272 | // Currently we will fail on parameter attributes and on certain |
| 1273 | // function attributes. |
| 1274 | AttributeSet new_attrs = legalizeCallAttributes(toReplace->getAttributes()); |
| 1275 | // In case if we can handle this set of sttributes - set up function attrs |
| 1276 | // directly on statepoint and return attrs later for gc_result intrinsic. |
| 1277 | invoke->setAttributes(new_attrs.getFnAttributes()); |
| 1278 | return_attributes = new_attrs.getRetAttributes(); |
| 1279 | |
| 1280 | token = invoke; |
| 1281 | |
| 1282 | // Generate gc relocates in exceptional path |
| 1283 | BasicBlock *unwindBlock = normalizeBBForInvokeSafepoint( |
| 1284 | toReplace->getUnwindDest(), invoke->getParent(), P); |
| 1285 | |
| 1286 | Instruction *IP = &*(unwindBlock->getFirstInsertionPt()); |
| 1287 | Builder.SetInsertPoint(IP); |
| 1288 | Builder.SetCurrentDebugLocation(toReplace->getDebugLoc()); |
| 1289 | |
| 1290 | // Extract second element from landingpad return value. We will attach |
| 1291 | // exceptional gc relocates to it. |
| 1292 | const unsigned idx = 1; |
| 1293 | Instruction *exceptional_token = |
| 1294 | cast<Instruction>(Builder.CreateExtractValue( |
| 1295 | unwindBlock->getLandingPadInst(), idx, "relocate_token")); |
Philip Reames | f204132 | 2015-02-20 19:26:04 +0000 | [diff] [blame] | 1296 | result.UnwindToken = exceptional_token; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1297 | |
| 1298 | // Just throw away return value. We will use the one we got for normal |
| 1299 | // block. |
| 1300 | (void)CreateGCRelocates(liveVariables, live_start, basePtrs, |
| 1301 | exceptional_token, Builder); |
| 1302 | |
| 1303 | // Generate gc relocates and returns for normal block |
| 1304 | BasicBlock *normalDest = normalizeBBForInvokeSafepoint( |
| 1305 | toReplace->getNormalDest(), invoke->getParent(), P); |
| 1306 | |
| 1307 | IP = &*(normalDest->getFirstInsertionPt()); |
| 1308 | Builder.SetInsertPoint(IP); |
| 1309 | |
| 1310 | // gc relocates will be generated later as if it were regular call |
| 1311 | // statepoint |
| 1312 | } else { |
| 1313 | llvm_unreachable("unexpect type of CallSite"); |
| 1314 | } |
| 1315 | assert(token); |
| 1316 | |
| 1317 | // Take the name of the original value call if it had one. |
| 1318 | token->takeName(CS.getInstruction()); |
| 1319 | |
| 1320 | // The GCResult is already inserted, we just need to find it |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1321 | /* scope */ { |
| 1322 | Instruction *toReplace = CS.getInstruction(); |
| 1323 | assert((toReplace->hasNUses(0) || toReplace->hasNUses(1)) && |
| 1324 | "only valid use before rewrite is gc.result"); |
| 1325 | if (toReplace->hasOneUse()) { |
| 1326 | Instruction *GCResult = cast<Instruction>(*toReplace->user_begin()); |
| 1327 | assert(isGCResult(GCResult)); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1328 | } |
| 1329 | } |
| 1330 | |
| 1331 | // Update the gc.result of the original statepoint (if any) to use the newly |
| 1332 | // inserted statepoint. This is safe to do here since the token can't be |
| 1333 | // considered a live reference. |
| 1334 | CS.getInstruction()->replaceAllUsesWith(token); |
| 1335 | |
Philip Reames | 0a3240f | 2015-02-20 21:34:11 +0000 | [diff] [blame] | 1336 | result.StatepointToken = token; |
| 1337 | |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1338 | // Second, create a gc.relocate for every live variable |
Philip Reames | 0a3240f | 2015-02-20 21:34:11 +0000 | [diff] [blame] | 1339 | CreateGCRelocates(liveVariables, live_start, basePtrs, token, Builder); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1340 | |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1341 | } |
| 1342 | |
| 1343 | namespace { |
| 1344 | struct name_ordering { |
| 1345 | Value *base; |
| 1346 | Value *derived; |
| 1347 | bool operator()(name_ordering const &a, name_ordering const &b) { |
| 1348 | return -1 == a.derived->getName().compare(b.derived->getName()); |
| 1349 | } |
| 1350 | }; |
| 1351 | } |
| 1352 | static void stablize_order(SmallVectorImpl<Value *> &basevec, |
| 1353 | SmallVectorImpl<Value *> &livevec) { |
| 1354 | assert(basevec.size() == livevec.size()); |
| 1355 | |
Philip Reames | 860660e | 2015-02-20 22:05:18 +0000 | [diff] [blame] | 1356 | SmallVector<name_ordering, 64> temp; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1357 | for (size_t i = 0; i < basevec.size(); i++) { |
| 1358 | name_ordering v; |
| 1359 | v.base = basevec[i]; |
| 1360 | v.derived = livevec[i]; |
| 1361 | temp.push_back(v); |
| 1362 | } |
| 1363 | std::sort(temp.begin(), temp.end(), name_ordering()); |
| 1364 | for (size_t i = 0; i < basevec.size(); i++) { |
| 1365 | basevec[i] = temp[i].base; |
| 1366 | livevec[i] = temp[i].derived; |
| 1367 | } |
| 1368 | } |
| 1369 | |
| 1370 | // Replace an existing gc.statepoint with a new one and a set of gc.relocates |
| 1371 | // which make the relocations happening at this safepoint explicit. |
| 1372 | // |
| 1373 | // WARNING: Does not do any fixup to adjust users of the original live |
| 1374 | // values. That's the callers responsibility. |
| 1375 | static void |
| 1376 | makeStatepointExplicit(DominatorTree &DT, const CallSite &CS, Pass *P, |
| 1377 | PartiallyConstructedSafepointRecord &result) { |
Philip Reames | f204132 | 2015-02-20 19:26:04 +0000 | [diff] [blame] | 1378 | auto liveset = result.liveset; |
| 1379 | auto PointerToBase = result.PointerToBase; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1380 | |
| 1381 | // Convert to vector for efficient cross referencing. |
| 1382 | SmallVector<Value *, 64> basevec, livevec; |
| 1383 | livevec.reserve(liveset.size()); |
| 1384 | basevec.reserve(liveset.size()); |
| 1385 | for (Value *L : liveset) { |
| 1386 | livevec.push_back(L); |
| 1387 | |
Philip Reames | f204132 | 2015-02-20 19:26:04 +0000 | [diff] [blame] | 1388 | assert(PointerToBase.find(L) != PointerToBase.end()); |
| 1389 | Value *base = PointerToBase[L]; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1390 | basevec.push_back(base); |
| 1391 | } |
| 1392 | assert(livevec.size() == basevec.size()); |
| 1393 | |
| 1394 | // To make the output IR slightly more stable (for use in diffs), ensure a |
| 1395 | // fixed order of the values in the safepoint (by sorting the value name). |
| 1396 | // The order is otherwise meaningless. |
| 1397 | stablize_order(basevec, livevec); |
| 1398 | |
| 1399 | // Do the actual rewriting and delete the old statepoint |
| 1400 | makeStatepointExplicitImpl(CS, basevec, livevec, P, result); |
| 1401 | CS.getInstruction()->eraseFromParent(); |
| 1402 | } |
| 1403 | |
| 1404 | // Helper function for the relocationViaAlloca. |
| 1405 | // It receives iterator to the statepoint gc relocates and emits store to the |
| 1406 | // assigned |
| 1407 | // location (via allocaMap) for the each one of them. |
| 1408 | // Add visited values into the visitedLiveValues set we will later use them |
| 1409 | // for sanity check. |
| 1410 | static void |
| 1411 | insertRelocationStores(iterator_range<Value::user_iterator> gcRelocs, |
| 1412 | DenseMap<Value *, Value *> &allocaMap, |
| 1413 | DenseSet<Value *> &visitedLiveValues) { |
| 1414 | |
| 1415 | for (User *U : gcRelocs) { |
| 1416 | if (!isa<IntrinsicInst>(U)) |
| 1417 | continue; |
| 1418 | |
| 1419 | IntrinsicInst *relocatedValue = cast<IntrinsicInst>(U); |
| 1420 | |
| 1421 | // We only care about relocates |
| 1422 | if (relocatedValue->getIntrinsicID() != |
| 1423 | Intrinsic::experimental_gc_relocate) { |
| 1424 | continue; |
| 1425 | } |
| 1426 | |
| 1427 | GCRelocateOperands relocateOperands(relocatedValue); |
| 1428 | Value *originalValue = const_cast<Value *>(relocateOperands.derivedPtr()); |
| 1429 | assert(allocaMap.count(originalValue)); |
| 1430 | Value *alloca = allocaMap[originalValue]; |
| 1431 | |
| 1432 | // Emit store into the related alloca |
| 1433 | StoreInst *store = new StoreInst(relocatedValue, alloca); |
| 1434 | store->insertAfter(relocatedValue); |
| 1435 | |
| 1436 | #ifndef NDEBUG |
| 1437 | visitedLiveValues.insert(originalValue); |
| 1438 | #endif |
| 1439 | } |
| 1440 | } |
| 1441 | |
| 1442 | /// do all the relocation update via allocas and mem2reg |
| 1443 | static void relocationViaAlloca( |
Philip Reames | d2b6646 | 2015-02-20 22:39:41 +0000 | [diff] [blame^] | 1444 | Function &F, DominatorTree &DT, ArrayRef<Value *> live, |
| 1445 | ArrayRef<struct PartiallyConstructedSafepointRecord> records) { |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1446 | #ifndef NDEBUG |
| 1447 | int initialAllocaNum = 0; |
| 1448 | |
| 1449 | // record initial number of allocas |
| 1450 | for (inst_iterator itr = inst_begin(F), end = inst_end(F); itr != end; |
| 1451 | itr++) { |
| 1452 | if (isa<AllocaInst>(*itr)) |
| 1453 | initialAllocaNum++; |
| 1454 | } |
| 1455 | #endif |
| 1456 | |
| 1457 | // TODO-PERF: change data structures, reserve |
| 1458 | DenseMap<Value *, Value *> allocaMap; |
| 1459 | SmallVector<AllocaInst *, 200> PromotableAllocas; |
| 1460 | PromotableAllocas.reserve(live.size()); |
| 1461 | |
| 1462 | // emit alloca for each live gc pointer |
| 1463 | for (unsigned i = 0; i < live.size(); i++) { |
| 1464 | Value *liveValue = live[i]; |
| 1465 | AllocaInst *alloca = new AllocaInst(liveValue->getType(), "", |
| 1466 | F.getEntryBlock().getFirstNonPHI()); |
| 1467 | allocaMap[liveValue] = alloca; |
| 1468 | PromotableAllocas.push_back(alloca); |
| 1469 | } |
| 1470 | |
| 1471 | // The next two loops are part of the same conceptual operation. We need to |
| 1472 | // insert a store to the alloca after the original def and at each |
| 1473 | // redefinition. We need to insert a load before each use. These are split |
| 1474 | // into distinct loops for performance reasons. |
| 1475 | |
| 1476 | // update gc pointer after each statepoint |
| 1477 | // either store a relocated value or null (if no relocated value found for |
| 1478 | // this gc pointer and it is not a gc_result) |
| 1479 | // this must happen before we update the statepoint with load of alloca |
| 1480 | // otherwise we lose the link between statepoint and old def |
| 1481 | for (size_t i = 0; i < records.size(); i++) { |
| 1482 | const struct PartiallyConstructedSafepointRecord &info = records[i]; |
Philip Reames | 0a3240f | 2015-02-20 21:34:11 +0000 | [diff] [blame] | 1483 | Value *Statepoint = info.StatepointToken; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1484 | |
| 1485 | // This will be used for consistency check |
| 1486 | DenseSet<Value *> visitedLiveValues; |
| 1487 | |
| 1488 | // Insert stores for normal statepoint gc relocates |
Philip Reames | 0a3240f | 2015-02-20 21:34:11 +0000 | [diff] [blame] | 1489 | insertRelocationStores(Statepoint->users(), allocaMap, visitedLiveValues); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1490 | |
| 1491 | // In case if it was invoke statepoint |
| 1492 | // we will insert stores for exceptional path gc relocates. |
Philip Reames | 0a3240f | 2015-02-20 21:34:11 +0000 | [diff] [blame] | 1493 | if (isa<InvokeInst>(Statepoint)) { |
Philip Reames | f204132 | 2015-02-20 19:26:04 +0000 | [diff] [blame] | 1494 | insertRelocationStores(info.UnwindToken->users(), |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1495 | allocaMap, visitedLiveValues); |
| 1496 | } |
| 1497 | |
| 1498 | #ifndef NDEBUG |
Philip Reames | f204132 | 2015-02-20 19:26:04 +0000 | [diff] [blame] | 1499 | // As a debuging aid, pretend that an unrelocated pointer becomes null at |
| 1500 | // the gc.statepoint. This will turn some subtle GC problems into slightly |
Philip Reames | fa2fcf17 | 2015-02-20 19:51:56 +0000 | [diff] [blame] | 1501 | // easier to debug SEGVs |
| 1502 | SmallVector<AllocaInst *, 64> ToClobber; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1503 | for (auto Pair : allocaMap) { |
Philip Reames | fa2fcf17 | 2015-02-20 19:51:56 +0000 | [diff] [blame] | 1504 | Value *Def = Pair.first; |
| 1505 | AllocaInst *Alloca = cast<AllocaInst>(Pair.second); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1506 | |
| 1507 | // This value was relocated |
Philip Reames | fa2fcf17 | 2015-02-20 19:51:56 +0000 | [diff] [blame] | 1508 | if (visitedLiveValues.count(Def)) { |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1509 | continue; |
| 1510 | } |
Philip Reames | fa2fcf17 | 2015-02-20 19:51:56 +0000 | [diff] [blame] | 1511 | ToClobber.push_back(Alloca); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1512 | } |
Philip Reames | fa2fcf17 | 2015-02-20 19:51:56 +0000 | [diff] [blame] | 1513 | |
Philip Reames | fa2fcf17 | 2015-02-20 19:51:56 +0000 | [diff] [blame] | 1514 | auto InsertClobbersAt = [&](Instruction *IP) { |
| 1515 | for (auto *AI : ToClobber) { |
| 1516 | auto AIType = cast<PointerType>(AI->getType()); |
| 1517 | auto PT = cast<PointerType>(AIType->getElementType()); |
| 1518 | Constant *CPN = ConstantPointerNull::get(PT); |
| 1519 | StoreInst *store = new StoreInst(CPN, AI); |
| 1520 | store->insertBefore(IP); |
| 1521 | } |
| 1522 | }; |
| 1523 | |
| 1524 | // Insert the clobbering stores. These may get intermixed with the |
| 1525 | // gc.results and gc.relocates, but that's fine. |
| 1526 | if (auto II = dyn_cast<InvokeInst>(Statepoint)) { |
| 1527 | InsertClobbersAt(II->getNormalDest()->getFirstInsertionPt()); |
| 1528 | InsertClobbersAt(II->getUnwindDest()->getFirstInsertionPt()); |
| 1529 | } else if (auto CI = dyn_cast<CallInst>(Statepoint)) { |
| 1530 | BasicBlock::iterator Next(CI); |
| 1531 | Next++; |
| 1532 | InsertClobbersAt(Next); |
| 1533 | } else |
| 1534 | llvm_unreachable("illegal statepoint instruction type?"); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1535 | #endif |
| 1536 | } |
| 1537 | // update use with load allocas and add store for gc_relocated |
| 1538 | for (auto Pair : allocaMap) { |
| 1539 | Value *def = Pair.first; |
| 1540 | Value *alloca = Pair.second; |
| 1541 | |
| 1542 | // we pre-record the uses of allocas so that we dont have to worry about |
| 1543 | // later update |
| 1544 | // that change the user information. |
| 1545 | SmallVector<Instruction *, 20> uses; |
| 1546 | // PERF: trade a linear scan for repeated reallocation |
| 1547 | uses.reserve(std::distance(def->user_begin(), def->user_end())); |
| 1548 | for (User *U : def->users()) { |
| 1549 | if (!isa<ConstantExpr>(U)) { |
| 1550 | // If the def has a ConstantExpr use, then the def is either a |
| 1551 | // ConstantExpr use itself or null. In either case |
| 1552 | // (recursively in the first, directly in the second), the oop |
| 1553 | // it is ultimately dependent on is null and this particular |
| 1554 | // use does not need to be fixed up. |
| 1555 | uses.push_back(cast<Instruction>(U)); |
| 1556 | } |
| 1557 | } |
| 1558 | |
| 1559 | std::sort(uses.begin(), uses.end()); |
| 1560 | auto last = std::unique(uses.begin(), uses.end()); |
| 1561 | uses.erase(last, uses.end()); |
| 1562 | |
| 1563 | for (Instruction *use : uses) { |
| 1564 | if (isa<PHINode>(use)) { |
| 1565 | PHINode *phi = cast<PHINode>(use); |
| 1566 | for (unsigned i = 0; i < phi->getNumIncomingValues(); i++) { |
| 1567 | if (def == phi->getIncomingValue(i)) { |
| 1568 | LoadInst *load = new LoadInst( |
| 1569 | alloca, "", phi->getIncomingBlock(i)->getTerminator()); |
| 1570 | phi->setIncomingValue(i, load); |
| 1571 | } |
| 1572 | } |
| 1573 | } else { |
| 1574 | LoadInst *load = new LoadInst(alloca, "", use); |
| 1575 | use->replaceUsesOfWith(def, load); |
| 1576 | } |
| 1577 | } |
| 1578 | |
| 1579 | // emit store for the initial gc value |
| 1580 | // store must be inserted after load, otherwise store will be in alloca's |
| 1581 | // use list and an extra load will be inserted before it |
| 1582 | StoreInst *store = new StoreInst(def, alloca); |
| 1583 | if (isa<Instruction>(def)) { |
| 1584 | store->insertAfter(cast<Instruction>(def)); |
| 1585 | } else { |
| 1586 | assert((isa<Argument>(def) || isa<GlobalVariable>(def) || |
| 1587 | (isa<Constant>(def) && cast<Constant>(def)->isNullValue())) && |
| 1588 | "Must be argument or global"); |
| 1589 | store->insertAfter(cast<Instruction>(alloca)); |
| 1590 | } |
| 1591 | } |
| 1592 | |
| 1593 | assert(PromotableAllocas.size() == live.size() && |
| 1594 | "we must have the same allocas with lives"); |
| 1595 | if (!PromotableAllocas.empty()) { |
| 1596 | // apply mem2reg to promote alloca to SSA |
| 1597 | PromoteMemToReg(PromotableAllocas, DT); |
| 1598 | } |
| 1599 | |
| 1600 | #ifndef NDEBUG |
| 1601 | for (inst_iterator itr = inst_begin(F), end = inst_end(F); itr != end; |
| 1602 | itr++) { |
| 1603 | if (isa<AllocaInst>(*itr)) |
| 1604 | initialAllocaNum--; |
| 1605 | } |
| 1606 | assert(initialAllocaNum == 0 && "We must not introduce any extra allocas"); |
| 1607 | #endif |
| 1608 | } |
| 1609 | |
| 1610 | /// Implement a unique function which doesn't require we sort the input |
| 1611 | /// vector. Doing so has the effect of changing the output of a couple of |
| 1612 | /// tests in ways which make them less useful in testing fused safepoints. |
Philip Reames | d2b6646 | 2015-02-20 22:39:41 +0000 | [diff] [blame^] | 1613 | template <typename T> static void unique_unsorted(SmallVectorImpl<T> &Vec) { |
| 1614 | DenseSet<T> Seen; |
| 1615 | SmallVector<T, 128> TempVec; |
| 1616 | TempVec.reserve(Vec.size()); |
| 1617 | for (auto Element : Vec) |
| 1618 | TempVec.push_back(Element); |
| 1619 | Vec.clear(); |
| 1620 | for (auto V : TempVec) { |
| 1621 | if (Seen.insert(V).second) { |
| 1622 | Vec.push_back(V); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1623 | } |
| 1624 | } |
| 1625 | } |
| 1626 | |
| 1627 | static Function *getUseHolder(Module &M) { |
| 1628 | FunctionType *ftype = |
| 1629 | FunctionType::get(Type::getVoidTy(M.getContext()), true); |
| 1630 | Function *Func = cast<Function>(M.getOrInsertFunction("__tmp_use", ftype)); |
| 1631 | return Func; |
| 1632 | } |
| 1633 | |
| 1634 | /// Insert holders so that each Value is obviously live through the entire |
| 1635 | /// liftetime of the call. |
| 1636 | static void insertUseHolderAfter(CallSite &CS, const ArrayRef<Value *> Values, |
Philip Reames | d2b6646 | 2015-02-20 22:39:41 +0000 | [diff] [blame^] | 1637 | SmallVectorImpl<CallInst *> &holders) { |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1638 | Module *M = CS.getInstruction()->getParent()->getParent()->getParent(); |
| 1639 | Function *Func = getUseHolder(*M); |
| 1640 | if (CS.isCall()) { |
| 1641 | // For call safepoints insert dummy calls right after safepoint |
| 1642 | BasicBlock::iterator next(CS.getInstruction()); |
| 1643 | next++; |
| 1644 | CallInst *base_holder = CallInst::Create(Func, Values, "", next); |
| 1645 | holders.push_back(base_holder); |
| 1646 | } else if (CS.isInvoke()) { |
| 1647 | // For invoke safepooints insert dummy calls both in normal and |
| 1648 | // exceptional destination blocks |
| 1649 | InvokeInst *invoke = cast<InvokeInst>(CS.getInstruction()); |
| 1650 | CallInst *normal_holder = CallInst::Create( |
| 1651 | Func, Values, "", invoke->getNormalDest()->getFirstInsertionPt()); |
| 1652 | CallInst *unwind_holder = CallInst::Create( |
| 1653 | Func, Values, "", invoke->getUnwindDest()->getFirstInsertionPt()); |
| 1654 | holders.push_back(normal_holder); |
| 1655 | holders.push_back(unwind_holder); |
Philip Reames | 860660e | 2015-02-20 22:05:18 +0000 | [diff] [blame] | 1656 | } else |
| 1657 | llvm_unreachable("unsupported call type"); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1658 | } |
| 1659 | |
| 1660 | static void findLiveReferences( |
Philip Reames | d2b6646 | 2015-02-20 22:39:41 +0000 | [diff] [blame^] | 1661 | Function &F, DominatorTree &DT, Pass *P, ArrayRef<CallSite> toUpdate, |
| 1662 | MutableArrayRef<struct PartiallyConstructedSafepointRecord> records) { |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1663 | for (size_t i = 0; i < records.size(); i++) { |
| 1664 | struct PartiallyConstructedSafepointRecord &info = records[i]; |
Philip Reames | d2b6646 | 2015-02-20 22:39:41 +0000 | [diff] [blame^] | 1665 | const CallSite &CS = toUpdate[i]; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1666 | analyzeParsePointLiveness(DT, CS, info); |
| 1667 | } |
| 1668 | } |
| 1669 | |
| 1670 | static void addBasesAsLiveValues(std::set<Value *> &liveset, |
Philip Reames | f204132 | 2015-02-20 19:26:04 +0000 | [diff] [blame] | 1671 | DenseMap<Value *, Value *> &PointerToBase) { |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1672 | // Identify any base pointers which are used in this safepoint, but not |
| 1673 | // themselves relocated. We need to relocate them so that later inserted |
| 1674 | // safepoints can get the properly relocated base register. |
| 1675 | DenseSet<Value *> missing; |
| 1676 | for (Value *L : liveset) { |
Philip Reames | f204132 | 2015-02-20 19:26:04 +0000 | [diff] [blame] | 1677 | assert(PointerToBase.find(L) != PointerToBase.end()); |
| 1678 | Value *base = PointerToBase[L]; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1679 | assert(base); |
| 1680 | if (liveset.find(base) == liveset.end()) { |
Philip Reames | f204132 | 2015-02-20 19:26:04 +0000 | [diff] [blame] | 1681 | assert(PointerToBase.find(base) == PointerToBase.end()); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1682 | // uniqued by set insert |
| 1683 | missing.insert(base); |
| 1684 | } |
| 1685 | } |
| 1686 | |
| 1687 | // Note that we want these at the end of the list, otherwise |
| 1688 | // register placement gets screwed up once we lower to STATEPOINT |
| 1689 | // instructions. This is an utter hack, but there doesn't seem to be a |
| 1690 | // better one. |
| 1691 | for (Value *base : missing) { |
| 1692 | assert(base); |
| 1693 | liveset.insert(base); |
Philip Reames | f204132 | 2015-02-20 19:26:04 +0000 | [diff] [blame] | 1694 | PointerToBase[base] = base; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1695 | } |
Philip Reames | f204132 | 2015-02-20 19:26:04 +0000 | [diff] [blame] | 1696 | assert(liveset.size() == PointerToBase.size()); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1697 | } |
| 1698 | |
| 1699 | static bool insertParsePoints(Function &F, DominatorTree &DT, Pass *P, |
Philip Reames | d2b6646 | 2015-02-20 22:39:41 +0000 | [diff] [blame^] | 1700 | SmallVectorImpl<CallSite> &toUpdate) { |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1701 | #ifndef NDEBUG |
| 1702 | // sanity check the input |
| 1703 | std::set<CallSite> uniqued; |
| 1704 | uniqued.insert(toUpdate.begin(), toUpdate.end()); |
| 1705 | assert(uniqued.size() == toUpdate.size() && "no duplicates please!"); |
| 1706 | |
| 1707 | for (size_t i = 0; i < toUpdate.size(); i++) { |
| 1708 | CallSite &CS = toUpdate[i]; |
| 1709 | assert(CS.getInstruction()->getParent()->getParent() == &F); |
| 1710 | assert(isStatepoint(CS) && "expected to already be a deopt statepoint"); |
| 1711 | } |
| 1712 | #endif |
| 1713 | |
| 1714 | // A list of dummy calls added to the IR to keep various values obviously |
| 1715 | // live in the IR. We'll remove all of these when done. |
Philip Reames | d2b6646 | 2015-02-20 22:39:41 +0000 | [diff] [blame^] | 1716 | SmallVector<CallInst *, 64> holders; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1717 | |
| 1718 | // Insert a dummy call with all of the arguments to the vm_state we'll need |
| 1719 | // for the actual safepoint insertion. This ensures reference arguments in |
| 1720 | // the deopt argument list are considered live through the safepoint (and |
| 1721 | // thus makes sure they get relocated.) |
| 1722 | for (size_t i = 0; i < toUpdate.size(); i++) { |
| 1723 | CallSite &CS = toUpdate[i]; |
| 1724 | Statepoint StatepointCS(CS); |
| 1725 | |
| 1726 | SmallVector<Value *, 64> DeoptValues; |
| 1727 | for (Use &U : StatepointCS.vm_state_args()) { |
| 1728 | Value *Arg = cast<Value>(&U); |
| 1729 | if (isGCPointerType(Arg->getType())) |
| 1730 | DeoptValues.push_back(Arg); |
| 1731 | } |
| 1732 | insertUseHolderAfter(CS, DeoptValues, holders); |
| 1733 | } |
| 1734 | |
Philip Reames | d2b6646 | 2015-02-20 22:39:41 +0000 | [diff] [blame^] | 1735 | SmallVector<struct PartiallyConstructedSafepointRecord, 64> records; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1736 | records.reserve(toUpdate.size()); |
| 1737 | for (size_t i = 0; i < toUpdate.size(); i++) { |
| 1738 | struct PartiallyConstructedSafepointRecord info; |
| 1739 | records.push_back(info); |
| 1740 | } |
| 1741 | assert(records.size() == toUpdate.size()); |
| 1742 | |
| 1743 | // A) Identify all gc pointers which are staticly live at the given call |
| 1744 | // site. |
| 1745 | findLiveReferences(F, DT, P, toUpdate, records); |
| 1746 | |
| 1747 | // B) Find the base pointers for each live pointer |
| 1748 | /* scope for caching */ { |
| 1749 | // Cache the 'defining value' relation used in the computation and |
| 1750 | // insertion of base phis and selects. This ensures that we don't insert |
| 1751 | // large numbers of duplicate base_phis. |
| 1752 | DefiningValueMapTy DVCache; |
| 1753 | |
| 1754 | for (size_t i = 0; i < records.size(); i++) { |
| 1755 | struct PartiallyConstructedSafepointRecord &info = records[i]; |
| 1756 | CallSite &CS = toUpdate[i]; |
| 1757 | findBasePointers(DT, DVCache, CS, info); |
| 1758 | } |
| 1759 | } // end of cache scope |
| 1760 | |
| 1761 | // The base phi insertion logic (for any safepoint) may have inserted new |
| 1762 | // instructions which are now live at some safepoint. The simplest such |
| 1763 | // example is: |
| 1764 | // loop: |
| 1765 | // phi a <-- will be a new base_phi here |
| 1766 | // safepoint 1 <-- that needs to be live here |
| 1767 | // gep a + 1 |
| 1768 | // safepoint 2 |
| 1769 | // br loop |
| 1770 | std::set<llvm::Value *> allInsertedDefs; |
| 1771 | for (size_t i = 0; i < records.size(); i++) { |
| 1772 | struct PartiallyConstructedSafepointRecord &info = records[i]; |
Philip Reames | f204132 | 2015-02-20 19:26:04 +0000 | [diff] [blame] | 1773 | allInsertedDefs.insert(info.NewInsertedDefs.begin(), |
| 1774 | info.NewInsertedDefs.end()); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1775 | } |
| 1776 | |
| 1777 | // We insert some dummy calls after each safepoint to definitely hold live |
| 1778 | // the base pointers which were identified for that safepoint. We'll then |
| 1779 | // ask liveness for _every_ base inserted to see what is now live. Then we |
| 1780 | // remove the dummy calls. |
| 1781 | holders.reserve(holders.size() + records.size()); |
| 1782 | for (size_t i = 0; i < records.size(); i++) { |
| 1783 | struct PartiallyConstructedSafepointRecord &info = records[i]; |
| 1784 | CallSite &CS = toUpdate[i]; |
| 1785 | |
| 1786 | SmallVector<Value *, 128> Bases; |
Philip Reames | f204132 | 2015-02-20 19:26:04 +0000 | [diff] [blame] | 1787 | for (auto Pair : info.PointerToBase) { |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1788 | Bases.push_back(Pair.second); |
| 1789 | } |
| 1790 | insertUseHolderAfter(CS, Bases, holders); |
| 1791 | } |
| 1792 | |
| 1793 | // Add the bases explicitly to the live vector set. This may result in a few |
| 1794 | // extra relocations, but the base has to be available whenever a pointer |
| 1795 | // derived from it is used. Thus, we need it to be part of the statepoint's |
| 1796 | // gc arguments list. TODO: Introduce an explicit notion (in the following |
| 1797 | // code) of the GC argument list as seperate from the live Values at a |
| 1798 | // given statepoint. |
| 1799 | for (size_t i = 0; i < records.size(); i++) { |
| 1800 | struct PartiallyConstructedSafepointRecord &info = records[i]; |
Philip Reames | f204132 | 2015-02-20 19:26:04 +0000 | [diff] [blame] | 1801 | addBasesAsLiveValues(info.liveset, info.PointerToBase); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1802 | } |
| 1803 | |
| 1804 | // If we inserted any new values, we need to adjust our notion of what is |
| 1805 | // live at a particular safepoint. |
| 1806 | if (!allInsertedDefs.empty()) { |
| 1807 | fixupLiveReferences(F, DT, P, allInsertedDefs, toUpdate, records); |
| 1808 | } |
| 1809 | if (PrintBasePointers) { |
| 1810 | for (size_t i = 0; i < records.size(); i++) { |
| 1811 | struct PartiallyConstructedSafepointRecord &info = records[i]; |
| 1812 | errs() << "Base Pairs: (w/Relocation)\n"; |
Philip Reames | f204132 | 2015-02-20 19:26:04 +0000 | [diff] [blame] | 1813 | for (auto Pair : info.PointerToBase) { |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1814 | errs() << " derived %" << Pair.first->getName() << " base %" |
| 1815 | << Pair.second->getName() << "\n"; |
| 1816 | } |
| 1817 | } |
| 1818 | } |
| 1819 | for (size_t i = 0; i < holders.size(); i++) { |
| 1820 | holders[i]->eraseFromParent(); |
| 1821 | holders[i] = nullptr; |
| 1822 | } |
| 1823 | holders.clear(); |
| 1824 | |
| 1825 | // Now run through and replace the existing statepoints with new ones with |
| 1826 | // the live variables listed. We do not yet update uses of the values being |
| 1827 | // relocated. We have references to live variables that need to |
| 1828 | // survive to the last iteration of this loop. (By construction, the |
| 1829 | // previous statepoint can not be a live variable, thus we can and remove |
| 1830 | // the old statepoint calls as we go.) |
| 1831 | for (size_t i = 0; i < records.size(); i++) { |
| 1832 | struct PartiallyConstructedSafepointRecord &info = records[i]; |
| 1833 | CallSite &CS = toUpdate[i]; |
| 1834 | makeStatepointExplicit(DT, CS, P, info); |
| 1835 | } |
| 1836 | toUpdate.clear(); // prevent accident use of invalid CallSites |
| 1837 | |
| 1838 | // In case if we inserted relocates in a different basic block than the |
| 1839 | // original safepoint (this can happen for invokes). We need to be sure that |
| 1840 | // original values were not used in any of the phi nodes at the |
| 1841 | // beginning of basic block containing them. Because we know that all such |
| 1842 | // blocks will have single predecessor we can safely assume that all phi |
| 1843 | // nodes have single entry (because of normalizeBBForInvokeSafepoint). |
| 1844 | // Just remove them all here. |
| 1845 | for (size_t i = 0; i < records.size(); i++) { |
Philip Reames | 0a3240f | 2015-02-20 21:34:11 +0000 | [diff] [blame] | 1846 | Instruction *I = records[i].StatepointToken; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1847 | |
| 1848 | if (InvokeInst *invoke = dyn_cast<InvokeInst>(I)) { |
| 1849 | FoldSingleEntryPHINodes(invoke->getNormalDest()); |
| 1850 | assert(!isa<PHINode>(invoke->getNormalDest()->begin())); |
| 1851 | |
| 1852 | FoldSingleEntryPHINodes(invoke->getUnwindDest()); |
| 1853 | assert(!isa<PHINode>(invoke->getUnwindDest()->begin())); |
| 1854 | } |
| 1855 | } |
| 1856 | |
| 1857 | // Do all the fixups of the original live variables to their relocated selves |
Philip Reames | d2b6646 | 2015-02-20 22:39:41 +0000 | [diff] [blame^] | 1858 | SmallVector<Value *, 128> live; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1859 | for (size_t i = 0; i < records.size(); i++) { |
| 1860 | struct PartiallyConstructedSafepointRecord &info = records[i]; |
| 1861 | // We can't simply save the live set from the original insertion. One of |
| 1862 | // the live values might be the result of a call which needs a safepoint. |
| 1863 | // That Value* no longer exists and we need to use the new gc_result. |
| 1864 | // Thankfully, the liveset is embedded in the statepoint (and updated), so |
| 1865 | // we just grab that. |
Philip Reames | 0a3240f | 2015-02-20 21:34:11 +0000 | [diff] [blame] | 1866 | Statepoint statepoint(info.StatepointToken); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1867 | live.insert(live.end(), statepoint.gc_args_begin(), |
| 1868 | statepoint.gc_args_end()); |
| 1869 | } |
| 1870 | unique_unsorted(live); |
| 1871 | |
Nick Lewycky | eb3231e | 2015-02-20 07:14:02 +0000 | [diff] [blame] | 1872 | #ifndef NDEBUG |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1873 | // sanity check |
| 1874 | for (auto ptr : live) { |
| 1875 | assert(isGCPointerType(ptr->getType()) && "must be a gc pointer type"); |
| 1876 | } |
Nick Lewycky | eb3231e | 2015-02-20 07:14:02 +0000 | [diff] [blame] | 1877 | #endif |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1878 | |
| 1879 | relocationViaAlloca(F, DT, live, records); |
| 1880 | return !records.empty(); |
| 1881 | } |
| 1882 | |
| 1883 | /// Returns true if this function should be rewritten by this pass. The main |
| 1884 | /// point of this function is as an extension point for custom logic. |
| 1885 | static bool shouldRewriteStatepointsIn(Function &F) { |
| 1886 | // TODO: This should check the GCStrategy |
Philip Reames | 2ef029c | 2015-02-20 18:56:14 +0000 | [diff] [blame] | 1887 | if (F.hasGC()) { |
| 1888 | const std::string StatepointExampleName("statepoint-example"); |
| 1889 | return StatepointExampleName == F.getGC(); |
| 1890 | } else |
| 1891 | return false; |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1892 | } |
| 1893 | |
| 1894 | bool RewriteStatepointsForGC::runOnFunction(Function &F) { |
| 1895 | // Nothing to do for declarations. |
| 1896 | if (F.isDeclaration() || F.empty()) |
| 1897 | return false; |
| 1898 | |
| 1899 | // Policy choice says not to rewrite - the most common reason is that we're |
| 1900 | // compiling code without a GCStrategy. |
| 1901 | if (!shouldRewriteStatepointsIn(F)) |
| 1902 | return false; |
| 1903 | |
| 1904 | // Gather all the statepoints which need rewritten. |
Philip Reames | d2b6646 | 2015-02-20 22:39:41 +0000 | [diff] [blame^] | 1905 | SmallVector<CallSite, 64> ParsePointNeeded; |
| 1906 | for (Instruction &I : inst_range(F)) { |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1907 | // TODO: only the ones with the flag set! |
Philip Reames | d2b6646 | 2015-02-20 22:39:41 +0000 | [diff] [blame^] | 1908 | if (isStatepoint(I)) |
| 1909 | ParsePointNeeded.push_back(CallSite(&I)); |
Philip Reames | d16a9b1 | 2015-02-20 01:06:44 +0000 | [diff] [blame] | 1910 | } |
| 1911 | |
| 1912 | // Return early if no work to do. |
| 1913 | if (ParsePointNeeded.empty()) |
| 1914 | return false; |
| 1915 | |
| 1916 | DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| 1917 | return insertParsePoints(F, DT, this, ParsePointNeeded); |
| 1918 | } |