Justin Holewinski | 45df882 | 2013-03-30 16:41:14 +0000 | [diff] [blame] | 1 | ============================= |
| 2 | User Guide for NVPTX Back-end |
| 3 | ============================= |
| 4 | |
| 5 | .. contents:: |
| 6 | :local: |
| 7 | :depth: 3 |
| 8 | |
| 9 | |
| 10 | Introduction |
| 11 | ============ |
| 12 | |
| 13 | To support GPU programming, the NVPTX back-end supports a subset of LLVM IR |
| 14 | along with a defined set of conventions used to represent GPU programming |
| 15 | concepts. This document provides an overview of the general usage of the back- |
| 16 | end, including a description of the conventions used and the set of accepted |
| 17 | LLVM IR. |
| 18 | |
| 19 | .. note:: |
| 20 | |
| 21 | This document assumes a basic familiarity with CUDA and the PTX |
| 22 | assembly language. Information about the CUDA Driver API and the PTX assembly |
| 23 | language can be found in the `CUDA documentation |
| 24 | <http://docs.nvidia.com/cuda/index.html>`_. |
| 25 | |
| 26 | |
| 27 | |
| 28 | Conventions |
| 29 | =========== |
| 30 | |
| 31 | Marking Functions as Kernels |
| 32 | ---------------------------- |
| 33 | |
| 34 | In PTX, there are two types of functions: *device functions*, which are only |
| 35 | callable by device code, and *kernel functions*, which are callable by host |
| 36 | code. By default, the back-end will emit device functions. Metadata is used to |
| 37 | declare a function as a kernel function. This metadata is attached to the |
| 38 | ``nvvm.annotations`` named metadata object, and has the following format: |
| 39 | |
| 40 | .. code-block:: llvm |
| 41 | |
| 42 | !0 = metadata !{<function-ref>, metadata !"kernel", i32 1} |
| 43 | |
| 44 | The first parameter is a reference to the kernel function. The following |
| 45 | example shows a kernel function calling a device function in LLVM IR. The |
| 46 | function ``@my_kernel`` is callable from host code, but ``@my_fmad`` is not. |
| 47 | |
| 48 | .. code-block:: llvm |
| 49 | |
| 50 | define float @my_fmad(float %x, float %y, float %z) { |
| 51 | %mul = fmul float %x, %y |
| 52 | %add = fadd float %mul, %z |
| 53 | ret float %add |
| 54 | } |
| 55 | |
| 56 | define void @my_kernel(float* %ptr) { |
| 57 | %val = load float* %ptr |
| 58 | %ret = call float @my_fmad(float %val, float %val, float %val) |
| 59 | store float %ret, float* %ptr |
| 60 | ret void |
| 61 | } |
| 62 | |
| 63 | !nvvm.annotations = !{!1} |
| 64 | !1 = metadata !{void (float*)* @my_kernel, metadata !"kernel", i32 1} |
| 65 | |
| 66 | When compiled, the PTX kernel functions are callable by host-side code. |
| 67 | |
| 68 | |
Justin Holewinski | fb9bd75 | 2013-11-15 13:02:10 +0000 | [diff] [blame] | 69 | .. _address_spaces: |
| 70 | |
Justin Holewinski | 45df882 | 2013-03-30 16:41:14 +0000 | [diff] [blame] | 71 | Address Spaces |
| 72 | -------------- |
| 73 | |
| 74 | The NVPTX back-end uses the following address space mapping: |
| 75 | |
| 76 | ============= ====================== |
| 77 | Address Space Memory Space |
| 78 | ============= ====================== |
| 79 | 0 Generic |
| 80 | 1 Global |
| 81 | 2 Internal Use |
| 82 | 3 Shared |
| 83 | 4 Constant |
| 84 | 5 Local |
| 85 | ============= ====================== |
| 86 | |
| 87 | Every global variable and pointer type is assigned to one of these address |
| 88 | spaces, with 0 being the default address space. Intrinsics are provided which |
| 89 | can be used to convert pointers between the generic and non-generic address |
| 90 | spaces. |
| 91 | |
| 92 | As an example, the following IR will define an array ``@g`` that resides in |
| 93 | global device memory. |
| 94 | |
| 95 | .. code-block:: llvm |
| 96 | |
| 97 | @g = internal addrspace(1) global [4 x i32] [ i32 0, i32 1, i32 2, i32 3 ] |
| 98 | |
| 99 | LLVM IR functions can read and write to this array, and host-side code can |
| 100 | copy data to it by name with the CUDA Driver API. |
| 101 | |
| 102 | Note that since address space 0 is the generic space, it is illegal to have |
| 103 | global variables in address space 0. Address space 0 is the default address |
| 104 | space in LLVM, so the ``addrspace(N)`` annotation is *required* for global |
| 105 | variables. |
| 106 | |
| 107 | |
Justin Holewinski | fb9bd75 | 2013-11-15 13:02:10 +0000 | [diff] [blame] | 108 | Triples |
| 109 | ------- |
| 110 | |
| 111 | The NVPTX target uses the module triple to select between 32/64-bit code |
| 112 | generation and the driver-compiler interface to use. The triple architecture |
| 113 | can be one of ``nvptx`` (32-bit PTX) or ``nvptx64`` (64-bit PTX). The |
| 114 | operating system should be one of ``cuda`` or ``nvcl``, which determines the |
| 115 | interface used by the generated code to communicate with the driver. Most |
| 116 | users will want to use ``cuda`` as the operating system, which makes the |
| 117 | generated PTX compatible with the CUDA Driver API. |
| 118 | |
| 119 | Example: 32-bit PTX for CUDA Driver API: ``nvptx-nvidia-cuda`` |
| 120 | |
| 121 | Example: 64-bit PTX for CUDA Driver API: ``nvptx64-nvidia-cuda`` |
| 122 | |
| 123 | |
| 124 | |
| 125 | .. _nvptx_intrinsics: |
| 126 | |
Justin Holewinski | 45df882 | 2013-03-30 16:41:14 +0000 | [diff] [blame] | 127 | NVPTX Intrinsics |
| 128 | ================ |
| 129 | |
| 130 | Address Space Conversion |
| 131 | ------------------------ |
| 132 | |
| 133 | '``llvm.nvvm.ptr.*.to.gen``' Intrinsics |
| 134 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
| 135 | |
| 136 | Syntax: |
| 137 | """"""" |
| 138 | |
| 139 | These are overloaded intrinsics. You can use these on any pointer types. |
| 140 | |
| 141 | .. code-block:: llvm |
| 142 | |
| 143 | declare i8* @llvm.nvvm.ptr.global.to.gen.p0i8.p1i8(i8 addrspace(1)*) |
| 144 | declare i8* @llvm.nvvm.ptr.shared.to.gen.p0i8.p3i8(i8 addrspace(3)*) |
| 145 | declare i8* @llvm.nvvm.ptr.constant.to.gen.p0i8.p4i8(i8 addrspace(4)*) |
| 146 | declare i8* @llvm.nvvm.ptr.local.to.gen.p0i8.p5i8(i8 addrspace(5)*) |
| 147 | |
| 148 | Overview: |
| 149 | """"""""" |
| 150 | |
| 151 | The '``llvm.nvvm.ptr.*.to.gen``' intrinsics convert a pointer in a non-generic |
| 152 | address space to a generic address space pointer. |
| 153 | |
| 154 | Semantics: |
| 155 | """""""""" |
| 156 | |
| 157 | These intrinsics modify the pointer value to be a valid generic address space |
| 158 | pointer. |
| 159 | |
| 160 | |
| 161 | '``llvm.nvvm.ptr.gen.to.*``' Intrinsics |
| 162 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
| 163 | |
| 164 | Syntax: |
| 165 | """"""" |
| 166 | |
| 167 | These are overloaded intrinsics. You can use these on any pointer types. |
| 168 | |
| 169 | .. code-block:: llvm |
| 170 | |
| 171 | declare i8* @llvm.nvvm.ptr.gen.to.global.p1i8.p0i8(i8 addrspace(1)*) |
| 172 | declare i8* @llvm.nvvm.ptr.gen.to.shared.p3i8.p0i8(i8 addrspace(3)*) |
| 173 | declare i8* @llvm.nvvm.ptr.gen.to.constant.p4i8.p0i8(i8 addrspace(4)*) |
| 174 | declare i8* @llvm.nvvm.ptr.gen.to.local.p5i8.p0i8(i8 addrspace(5)*) |
| 175 | |
| 176 | Overview: |
| 177 | """"""""" |
| 178 | |
| 179 | The '``llvm.nvvm.ptr.gen.to.*``' intrinsics convert a pointer in the generic |
| 180 | address space to a pointer in the target address space. Note that these |
| 181 | intrinsics are only useful if the address space of the target address space of |
| 182 | the pointer is known. It is not legal to use address space conversion |
| 183 | intrinsics to convert a pointer from one non-generic address space to another |
| 184 | non-generic address space. |
| 185 | |
| 186 | Semantics: |
| 187 | """""""""" |
| 188 | |
| 189 | These intrinsics modify the pointer value to be a valid pointer in the target |
| 190 | non-generic address space. |
| 191 | |
| 192 | |
| 193 | Reading PTX Special Registers |
| 194 | ----------------------------- |
| 195 | |
| 196 | '``llvm.nvvm.read.ptx.sreg.*``' |
| 197 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
| 198 | |
| 199 | Syntax: |
| 200 | """"""" |
| 201 | |
| 202 | .. code-block:: llvm |
| 203 | |
| 204 | declare i32 @llvm.nvvm.read.ptx.sreg.tid.x() |
| 205 | declare i32 @llvm.nvvm.read.ptx.sreg.tid.y() |
| 206 | declare i32 @llvm.nvvm.read.ptx.sreg.tid.z() |
| 207 | declare i32 @llvm.nvvm.read.ptx.sreg.ntid.x() |
| 208 | declare i32 @llvm.nvvm.read.ptx.sreg.ntid.y() |
| 209 | declare i32 @llvm.nvvm.read.ptx.sreg.ntid.z() |
| 210 | declare i32 @llvm.nvvm.read.ptx.sreg.ctaid.x() |
| 211 | declare i32 @llvm.nvvm.read.ptx.sreg.ctaid.y() |
| 212 | declare i32 @llvm.nvvm.read.ptx.sreg.ctaid.z() |
| 213 | declare i32 @llvm.nvvm.read.ptx.sreg.nctaid.x() |
| 214 | declare i32 @llvm.nvvm.read.ptx.sreg.nctaid.y() |
| 215 | declare i32 @llvm.nvvm.read.ptx.sreg.nctaid.z() |
| 216 | declare i32 @llvm.nvvm.read.ptx.sreg.warpsize() |
| 217 | |
| 218 | Overview: |
| 219 | """"""""" |
| 220 | |
| 221 | The '``@llvm.nvvm.read.ptx.sreg.*``' intrinsics provide access to the PTX |
| 222 | special registers, in particular the kernel launch bounds. These registers |
| 223 | map in the following way to CUDA builtins: |
| 224 | |
| 225 | ============ ===================================== |
| 226 | CUDA Builtin PTX Special Register Intrinsic |
| 227 | ============ ===================================== |
| 228 | ``threadId`` ``@llvm.nvvm.read.ptx.sreg.tid.*`` |
| 229 | ``blockIdx`` ``@llvm.nvvm.read.ptx.sreg.ctaid.*`` |
| 230 | ``blockDim`` ``@llvm.nvvm.read.ptx.sreg.ntid.*`` |
| 231 | ``gridDim`` ``@llvm.nvvm.read.ptx.sreg.nctaid.*`` |
| 232 | ============ ===================================== |
| 233 | |
| 234 | |
| 235 | Barriers |
| 236 | -------- |
| 237 | |
| 238 | '``llvm.nvvm.barrier0``' |
| 239 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
| 240 | |
| 241 | Syntax: |
| 242 | """"""" |
| 243 | |
| 244 | .. code-block:: llvm |
| 245 | |
| 246 | declare void @llvm.nvvm.barrier0() |
| 247 | |
| 248 | Overview: |
| 249 | """"""""" |
| 250 | |
| 251 | The '``@llvm.nvvm.barrier0()``' intrinsic emits a PTX ``bar.sync 0`` |
| 252 | instruction, equivalent to the ``__syncthreads()`` call in CUDA. |
| 253 | |
| 254 | |
| 255 | Other Intrinsics |
| 256 | ---------------- |
| 257 | |
| 258 | For the full set of NVPTX intrinsics, please see the |
| 259 | ``include/llvm/IR/IntrinsicsNVVM.td`` file in the LLVM source tree. |
| 260 | |
| 261 | |
Justin Holewinski | fb9bd75 | 2013-11-15 13:02:10 +0000 | [diff] [blame] | 262 | .. _libdevice: |
| 263 | |
| 264 | Linking with Libdevice |
| 265 | ====================== |
| 266 | |
| 267 | The CUDA Toolkit comes with an LLVM bitcode library called ``libdevice`` that |
| 268 | implements many common mathematical functions. This library can be used as a |
| 269 | high-performance math library for any compilers using the LLVM NVPTX target. |
| 270 | The library can be found under ``nvvm/libdevice/`` in the CUDA Toolkit and |
| 271 | there is a separate version for each compute architecture. |
| 272 | |
| 273 | For a list of all math functions implemented in libdevice, see |
| 274 | `libdevice Users Guide <http://docs.nvidia.com/cuda/libdevice-users-guide/index.html>`_. |
| 275 | |
Alp Toker | 171b0c3 | 2013-12-20 00:33:39 +0000 | [diff] [blame] | 276 | To accommodate various math-related compiler flags that can affect code |
Justin Holewinski | fb9bd75 | 2013-11-15 13:02:10 +0000 | [diff] [blame] | 277 | generation of libdevice code, the library code depends on a special LLVM IR |
| 278 | pass (``NVVMReflect``) to handle conditional compilation within LLVM IR. This |
| 279 | pass looks for calls to the ``@__nvvm_reflect`` function and replaces them |
| 280 | with constants based on the defined reflection parameters. Such conditional |
| 281 | code often follows a pattern: |
| 282 | |
| 283 | .. code-block:: c++ |
| 284 | |
| 285 | float my_function(float a) { |
| 286 | if (__nvvm_reflect("FASTMATH")) |
| 287 | return my_function_fast(a); |
| 288 | else |
| 289 | return my_function_precise(a); |
| 290 | } |
| 291 | |
| 292 | The default value for all unspecified reflection parameters is zero. |
| 293 | |
| 294 | The ``NVVMReflect`` pass should be executed early in the optimization |
| 295 | pipeline, immediately after the link stage. The ``internalize`` pass is also |
| 296 | recommended to remove unused math functions from the resulting PTX. For an |
| 297 | input IR module ``module.bc``, the following compilation flow is recommended: |
| 298 | |
| 299 | 1. Save list of external functions in ``module.bc`` |
| 300 | 2. Link ``module.bc`` with ``libdevice.compute_XX.YY.bc`` |
| 301 | 3. Internalize all functions not in list from (1) |
| 302 | 4. Eliminate all unused internal functions |
| 303 | 5. Run ``NVVMReflect`` pass |
| 304 | 6. Run standard optimization pipeline |
| 305 | |
| 306 | .. note:: |
| 307 | |
| 308 | ``linkonce`` and ``linkonce_odr`` linkage types are not suitable for the |
| 309 | libdevice functions. It is possible to link two IR modules that have been |
| 310 | linked against libdevice using different reflection variables. |
| 311 | |
| 312 | Since the ``NVVMReflect`` pass replaces conditionals with constants, it will |
| 313 | often leave behind dead code of the form: |
| 314 | |
| 315 | .. code-block:: llvm |
| 316 | |
| 317 | entry: |
| 318 | .. |
| 319 | br i1 true, label %foo, label %bar |
| 320 | foo: |
| 321 | .. |
| 322 | bar: |
| 323 | ; Dead code |
| 324 | .. |
| 325 | |
| 326 | Therefore, it is recommended that ``NVVMReflect`` is executed early in the |
| 327 | optimization pipeline before dead-code elimination. |
| 328 | |
| 329 | |
| 330 | Reflection Parameters |
| 331 | --------------------- |
| 332 | |
| 333 | The libdevice library currently uses the following reflection parameters to |
| 334 | control code generation: |
| 335 | |
| 336 | ==================== ====================================================== |
| 337 | Flag Description |
| 338 | ==================== ====================================================== |
| 339 | ``__CUDA_FTZ=[0,1]`` Use optimized code paths that flush subnormals to zero |
| 340 | ==================== ====================================================== |
| 341 | |
| 342 | |
| 343 | Invoking NVVMReflect |
| 344 | -------------------- |
| 345 | |
| 346 | To ensure that all dead code caused by the reflection pass is eliminated, it |
| 347 | is recommended that the reflection pass is executed early in the LLVM IR |
| 348 | optimization pipeline. The pass takes an optional mapping of reflection |
| 349 | parameter name to an integer value. This mapping can be specified as either a |
| 350 | command-line option to ``opt`` or as an LLVM ``StringMap<int>`` object when |
| 351 | programmatically creating a pass pipeline. |
| 352 | |
| 353 | With ``opt``: |
| 354 | |
| 355 | .. code-block:: text |
| 356 | |
| 357 | # opt -nvvm-reflect -nvvm-reflect-list=<var>=<value>,<var>=<value> module.bc -o module.reflect.bc |
| 358 | |
| 359 | |
| 360 | With programmatic pass pipeline: |
| 361 | |
| 362 | .. code-block:: c++ |
| 363 | |
| 364 | extern ModulePass *llvm::createNVVMReflectPass(const StringMap<int>& Mapping); |
| 365 | |
| 366 | StringMap<int> ReflectParams; |
| 367 | ReflectParams["__CUDA_FTZ"] = 1; |
| 368 | Passes.add(createNVVMReflectPass(ReflectParams)); |
| 369 | |
| 370 | |
| 371 | |
Justin Holewinski | 45df882 | 2013-03-30 16:41:14 +0000 | [diff] [blame] | 372 | Executing PTX |
| 373 | ============= |
| 374 | |
| 375 | The most common way to execute PTX assembly on a GPU device is to use the CUDA |
| 376 | Driver API. This API is a low-level interface to the GPU driver and allows for |
| 377 | JIT compilation of PTX code to native GPU machine code. |
| 378 | |
| 379 | Initializing the Driver API: |
| 380 | |
| 381 | .. code-block:: c++ |
| 382 | |
| 383 | CUdevice device; |
| 384 | CUcontext context; |
| 385 | |
| 386 | // Initialize the driver API |
| 387 | cuInit(0); |
| 388 | // Get a handle to the first compute device |
| 389 | cuDeviceGet(&device, 0); |
| 390 | // Create a compute device context |
| 391 | cuCtxCreate(&context, 0, device); |
| 392 | |
| 393 | JIT compiling a PTX string to a device binary: |
| 394 | |
| 395 | .. code-block:: c++ |
| 396 | |
| 397 | CUmodule module; |
| 398 | CUfunction funcion; |
| 399 | |
| 400 | // JIT compile a null-terminated PTX string |
| 401 | cuModuleLoadData(&module, (void*)PTXString); |
| 402 | |
| 403 | // Get a handle to the "myfunction" kernel function |
| 404 | cuModuleGetFunction(&function, module, "myfunction"); |
| 405 | |
| 406 | For full examples of executing PTX assembly, please see the `CUDA Samples |
| 407 | <https://developer.nvidia.com/cuda-downloads>`_ distribution. |
Justin Holewinski | fb9bd75 | 2013-11-15 13:02:10 +0000 | [diff] [blame] | 408 | |
| 409 | |
| 410 | Common Issues |
| 411 | ============= |
| 412 | |
| 413 | ptxas complains of undefined function: __nvvm_reflect |
| 414 | ----------------------------------------------------- |
| 415 | |
| 416 | When linking with libdevice, the ``NVVMReflect`` pass must be used. See |
| 417 | :ref:`libdevice` for more information. |
| 418 | |
| 419 | |
| 420 | Tutorial: A Simple Compute Kernel |
| 421 | ================================= |
| 422 | |
| 423 | To start, let us take a look at a simple compute kernel written directly in |
| 424 | LLVM IR. The kernel implements vector addition, where each thread computes one |
| 425 | element of the output vector C from the input vectors A and B. To make this |
| 426 | easier, we also assume that only a single CTA (thread block) will be launched, |
| 427 | and that it will be one dimensional. |
| 428 | |
| 429 | |
| 430 | The Kernel |
| 431 | ---------- |
| 432 | |
| 433 | .. code-block:: llvm |
| 434 | |
| 435 | target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64" |
| 436 | target triple = "nvptx64-nvidia-cuda" |
| 437 | |
| 438 | ; Intrinsic to read X component of thread ID |
| 439 | declare i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind |
| 440 | |
| 441 | define void @kernel(float addrspace(1)* %A, |
| 442 | float addrspace(1)* %B, |
| 443 | float addrspace(1)* %C) { |
| 444 | entry: |
| 445 | ; What is my ID? |
| 446 | %id = tail call i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind |
| 447 | |
| 448 | ; Compute pointers into A, B, and C |
| 449 | %ptrA = getelementptr float addrspace(1)* %A, i32 %id |
| 450 | %ptrB = getelementptr float addrspace(1)* %B, i32 %id |
| 451 | %ptrC = getelementptr float addrspace(1)* %C, i32 %id |
| 452 | |
| 453 | ; Read A, B |
| 454 | %valA = load float addrspace(1)* %ptrA, align 4 |
| 455 | %valB = load float addrspace(1)* %ptrB, align 4 |
| 456 | |
| 457 | ; Compute C = A + B |
| 458 | %valC = fadd float %valA, %valB |
| 459 | |
| 460 | ; Store back to C |
| 461 | store float %valC, float addrspace(1)* %ptrC, align 4 |
| 462 | |
| 463 | ret void |
| 464 | } |
| 465 | |
| 466 | !nvvm.annotations = !{!0} |
| 467 | !0 = metadata !{void (float addrspace(1)*, |
| 468 | float addrspace(1)*, |
| 469 | float addrspace(1)*)* @kernel, metadata !"kernel", i32 1} |
| 470 | |
| 471 | |
| 472 | We can use the LLVM ``llc`` tool to directly run the NVPTX code generator: |
| 473 | |
| 474 | .. code-block:: text |
| 475 | |
| 476 | # llc -mcpu=sm_20 kernel.ll -o kernel.ptx |
| 477 | |
| 478 | |
| 479 | .. note:: |
| 480 | |
| 481 | If you want to generate 32-bit code, change ``p:64:64:64`` to ``p:32:32:32`` |
Justin Holewinski | f4919c5 | 2013-11-15 16:08:49 +0000 | [diff] [blame] | 482 | in the module data layout string and use ``nvptx-nvidia-cuda`` as the |
Justin Holewinski | fb9bd75 | 2013-11-15 13:02:10 +0000 | [diff] [blame] | 483 | target triple. |
| 484 | |
| 485 | |
| 486 | The output we get from ``llc`` (as of LLVM 3.4): |
| 487 | |
| 488 | .. code-block:: text |
| 489 | |
| 490 | // |
| 491 | // Generated by LLVM NVPTX Back-End |
| 492 | // |
| 493 | |
| 494 | .version 3.1 |
| 495 | .target sm_20 |
| 496 | .address_size 64 |
| 497 | |
| 498 | // .globl kernel |
| 499 | // @kernel |
| 500 | .visible .entry kernel( |
| 501 | .param .u64 kernel_param_0, |
| 502 | .param .u64 kernel_param_1, |
| 503 | .param .u64 kernel_param_2 |
| 504 | ) |
| 505 | { |
| 506 | .reg .f32 %f<4>; |
| 507 | .reg .s32 %r<2>; |
| 508 | .reg .s64 %rl<8>; |
| 509 | |
| 510 | // BB#0: // %entry |
| 511 | ld.param.u64 %rl1, [kernel_param_0]; |
| 512 | mov.u32 %r1, %tid.x; |
| 513 | mul.wide.s32 %rl2, %r1, 4; |
| 514 | add.s64 %rl3, %rl1, %rl2; |
| 515 | ld.param.u64 %rl4, [kernel_param_1]; |
| 516 | add.s64 %rl5, %rl4, %rl2; |
| 517 | ld.param.u64 %rl6, [kernel_param_2]; |
| 518 | add.s64 %rl7, %rl6, %rl2; |
| 519 | ld.global.f32 %f1, [%rl3]; |
| 520 | ld.global.f32 %f2, [%rl5]; |
| 521 | add.f32 %f3, %f1, %f2; |
| 522 | st.global.f32 [%rl7], %f3; |
| 523 | ret; |
| 524 | } |
| 525 | |
| 526 | |
| 527 | Dissecting the Kernel |
| 528 | --------------------- |
| 529 | |
| 530 | Now let us dissect the LLVM IR that makes up this kernel. |
| 531 | |
| 532 | Data Layout |
| 533 | ^^^^^^^^^^^ |
| 534 | |
| 535 | The data layout string determines the size in bits of common data types, their |
| 536 | ABI alignment, and their storage size. For NVPTX, you should use one of the |
| 537 | following: |
| 538 | |
| 539 | 32-bit PTX: |
| 540 | |
| 541 | .. code-block:: llvm |
| 542 | |
| 543 | target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64" |
| 544 | |
| 545 | 64-bit PTX: |
| 546 | |
| 547 | .. code-block:: llvm |
| 548 | |
| 549 | target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64" |
| 550 | |
| 551 | |
| 552 | Target Intrinsics |
| 553 | ^^^^^^^^^^^^^^^^^ |
| 554 | |
| 555 | In this example, we use the ``@llvm.nvvm.read.ptx.sreg.tid.x`` intrinsic to |
| 556 | read the X component of the current thread's ID, which corresponds to a read |
| 557 | of register ``%tid.x`` in PTX. The NVPTX back-end supports a large set of |
| 558 | intrinsics. A short list is shown below; please see |
| 559 | ``include/llvm/IR/IntrinsicsNVVM.td`` for the full list. |
| 560 | |
| 561 | |
| 562 | ================================================ ==================== |
| 563 | Intrinsic CUDA Equivalent |
| 564 | ================================================ ==================== |
| 565 | ``i32 @llvm.nvvm.read.ptx.sreg.tid.{x,y,z}`` threadIdx.{x,y,z} |
| 566 | ``i32 @llvm.nvvm.read.ptx.sreg.ctaid.{x,y,z}`` blockIdx.{x,y,z} |
| 567 | ``i32 @llvm.nvvm.read.ptx.sreg.ntid.{x,y,z}`` blockDim.{x,y,z} |
| 568 | ``i32 @llvm.nvvm.read.ptx.sreg.nctaid.{x,y,z}`` gridDim.{x,y,z} |
| 569 | ``void @llvm.cuda.syncthreads()`` __syncthreads() |
| 570 | ================================================ ==================== |
| 571 | |
| 572 | |
| 573 | Address Spaces |
| 574 | ^^^^^^^^^^^^^^ |
| 575 | |
| 576 | You may have noticed that all of the pointer types in the LLVM IR example had |
| 577 | an explicit address space specifier. What is address space 1? NVIDIA GPU |
| 578 | devices (generally) have four types of memory: |
| 579 | |
| 580 | - Global: Large, off-chip memory |
| 581 | - Shared: Small, on-chip memory shared among all threads in a CTA |
| 582 | - Local: Per-thread, private memory |
| 583 | - Constant: Read-only memory shared across all threads |
| 584 | |
| 585 | These different types of memory are represented in LLVM IR as address spaces. |
| 586 | There is also a fifth address space used by the NVPTX code generator that |
| 587 | corresponds to the "generic" address space. This address space can represent |
| 588 | addresses in any other address space (with a few exceptions). This allows |
| 589 | users to write IR functions that can load/store memory using the same |
| 590 | instructions. Intrinsics are provided to convert pointers between the generic |
| 591 | and non-generic address spaces. |
| 592 | |
| 593 | See :ref:`address_spaces` and :ref:`nvptx_intrinsics` for more information. |
| 594 | |
| 595 | |
| 596 | Kernel Metadata |
| 597 | ^^^^^^^^^^^^^^^ |
| 598 | |
| 599 | In PTX, a function can be either a `kernel` function (callable from the host |
| 600 | program), or a `device` function (callable only from GPU code). You can think |
| 601 | of `kernel` functions as entry-points in the GPU program. To mark an LLVM IR |
| 602 | function as a `kernel` function, we make use of special LLVM metadata. The |
| 603 | NVPTX back-end will look for a named metadata node called |
| 604 | ``nvvm.annotations``. This named metadata must contain a list of metadata that |
| 605 | describe the IR. For our purposes, we need to declare a metadata node that |
| 606 | assigns the "kernel" attribute to the LLVM IR function that should be emitted |
| 607 | as a PTX `kernel` function. These metadata nodes take the form: |
| 608 | |
| 609 | .. code-block:: text |
| 610 | |
| 611 | metadata !{<function ref>, metadata !"kernel", i32 1} |
| 612 | |
| 613 | For the previous example, we have: |
| 614 | |
| 615 | .. code-block:: llvm |
| 616 | |
| 617 | !nvvm.annotations = !{!0} |
| 618 | !0 = metadata !{void (float addrspace(1)*, |
| 619 | float addrspace(1)*, |
| 620 | float addrspace(1)*)* @kernel, metadata !"kernel", i32 1} |
| 621 | |
| 622 | Here, we have a single metadata declaration in ``nvvm.annotations``. This |
| 623 | metadata annotates our ``@kernel`` function with the ``kernel`` attribute. |
| 624 | |
| 625 | |
| 626 | Running the Kernel |
| 627 | ------------------ |
| 628 | |
| 629 | Generating PTX from LLVM IR is all well and good, but how do we execute it on |
| 630 | a real GPU device? The CUDA Driver API provides a convenient mechanism for |
| 631 | loading and JIT compiling PTX to a native GPU device, and launching a kernel. |
| 632 | The API is similar to OpenCL. A simple example showing how to load and |
| 633 | execute our vector addition code is shown below. Note that for brevity this |
| 634 | code does not perform much error checking! |
| 635 | |
| 636 | .. note:: |
| 637 | |
| 638 | You can also use the ``ptxas`` tool provided by the CUDA Toolkit to offline |
| 639 | compile PTX to machine code (SASS) for a specific GPU architecture. Such |
| 640 | binaries can be loaded by the CUDA Driver API in the same way as PTX. This |
| 641 | can be useful for reducing startup time by precompiling the PTX kernels. |
| 642 | |
| 643 | |
| 644 | .. code-block:: c++ |
| 645 | |
| 646 | #include <iostream> |
| 647 | #include <fstream> |
| 648 | #include <cassert> |
| 649 | #include "cuda.h" |
| 650 | |
| 651 | |
| 652 | void checkCudaErrors(CUresult err) { |
| 653 | assert(err == CUDA_SUCCESS); |
| 654 | } |
| 655 | |
| 656 | /// main - Program entry point |
| 657 | int main(int argc, char **argv) { |
| 658 | CUdevice device; |
| 659 | CUmodule cudaModule; |
| 660 | CUcontext context; |
| 661 | CUfunction function; |
| 662 | CUlinkState linker; |
| 663 | int devCount; |
| 664 | |
| 665 | // CUDA initialization |
| 666 | checkCudaErrors(cuInit(0)); |
| 667 | checkCudaErrors(cuDeviceGetCount(&devCount)); |
| 668 | checkCudaErrors(cuDeviceGet(&device, 0)); |
| 669 | |
| 670 | char name[128]; |
| 671 | checkCudaErrors(cuDeviceGetName(name, 128, device)); |
| 672 | std::cout << "Using CUDA Device [0]: " << name << "\n"; |
| 673 | |
| 674 | int devMajor, devMinor; |
| 675 | checkCudaErrors(cuDeviceComputeCapability(&devMajor, &devMinor, device)); |
| 676 | std::cout << "Device Compute Capability: " |
| 677 | << devMajor << "." << devMinor << "\n"; |
| 678 | if (devMajor < 2) { |
| 679 | std::cerr << "ERROR: Device 0 is not SM 2.0 or greater\n"; |
| 680 | return 1; |
| 681 | } |
| 682 | |
| 683 | std::ifstream t("kernel.ptx"); |
| 684 | if (!t.is_open()) { |
| 685 | std::cerr << "kernel.ptx not found\n"; |
| 686 | return 1; |
| 687 | } |
| 688 | std::string str((std::istreambuf_iterator<char>(t)), |
| 689 | std::istreambuf_iterator<char>()); |
| 690 | |
| 691 | // Create driver context |
| 692 | checkCudaErrors(cuCtxCreate(&context, 0, device)); |
| 693 | |
| 694 | // Create module for object |
| 695 | checkCudaErrors(cuModuleLoadDataEx(&cudaModule, str.c_str(), 0, 0, 0)); |
| 696 | |
| 697 | // Get kernel function |
| 698 | checkCudaErrors(cuModuleGetFunction(&function, cudaModule, "kernel")); |
| 699 | |
| 700 | // Device data |
| 701 | CUdeviceptr devBufferA; |
| 702 | CUdeviceptr devBufferB; |
| 703 | CUdeviceptr devBufferC; |
| 704 | |
| 705 | checkCudaErrors(cuMemAlloc(&devBufferA, sizeof(float)*16)); |
| 706 | checkCudaErrors(cuMemAlloc(&devBufferB, sizeof(float)*16)); |
| 707 | checkCudaErrors(cuMemAlloc(&devBufferC, sizeof(float)*16)); |
| 708 | |
| 709 | float* hostA = new float[16]; |
| 710 | float* hostB = new float[16]; |
| 711 | float* hostC = new float[16]; |
| 712 | |
| 713 | // Populate input |
| 714 | for (unsigned i = 0; i != 16; ++i) { |
| 715 | hostA[i] = (float)i; |
| 716 | hostB[i] = (float)(2*i); |
| 717 | hostC[i] = 0.0f; |
| 718 | } |
| 719 | |
| 720 | checkCudaErrors(cuMemcpyHtoD(devBufferA, &hostA[0], sizeof(float)*16)); |
| 721 | checkCudaErrors(cuMemcpyHtoD(devBufferB, &hostB[0], sizeof(float)*16)); |
| 722 | |
| 723 | |
| 724 | unsigned blockSizeX = 16; |
| 725 | unsigned blockSizeY = 1; |
| 726 | unsigned blockSizeZ = 1; |
| 727 | unsigned gridSizeX = 1; |
| 728 | unsigned gridSizeY = 1; |
| 729 | unsigned gridSizeZ = 1; |
| 730 | |
| 731 | // Kernel parameters |
| 732 | void *KernelParams[] = { &devBufferA, &devBufferB, &devBufferC }; |
| 733 | |
| 734 | std::cout << "Launching kernel\n"; |
| 735 | |
| 736 | // Kernel launch |
| 737 | checkCudaErrors(cuLaunchKernel(function, gridSizeX, gridSizeY, gridSizeZ, |
| 738 | blockSizeX, blockSizeY, blockSizeZ, |
| 739 | 0, NULL, KernelParams, NULL)); |
| 740 | |
| 741 | // Retrieve device data |
| 742 | checkCudaErrors(cuMemcpyDtoH(&hostC[0], devBufferC, sizeof(float)*16)); |
| 743 | |
| 744 | |
| 745 | std::cout << "Results:\n"; |
| 746 | for (unsigned i = 0; i != 16; ++i) { |
| 747 | std::cout << hostA[i] << " + " << hostB[i] << " = " << hostC[i] << "\n"; |
| 748 | } |
| 749 | |
| 750 | |
| 751 | // Clean up after ourselves |
| 752 | delete [] hostA; |
| 753 | delete [] hostB; |
| 754 | delete [] hostC; |
| 755 | |
| 756 | // Clean-up |
| 757 | checkCudaErrors(cuMemFree(devBufferA)); |
| 758 | checkCudaErrors(cuMemFree(devBufferB)); |
| 759 | checkCudaErrors(cuMemFree(devBufferC)); |
| 760 | checkCudaErrors(cuModuleUnload(cudaModule)); |
| 761 | checkCudaErrors(cuCtxDestroy(context)); |
| 762 | |
| 763 | return 0; |
| 764 | } |
| 765 | |
| 766 | |
| 767 | You will need to link with the CUDA driver and specify the path to cuda.h. |
| 768 | |
| 769 | .. code-block:: text |
| 770 | |
| 771 | # clang++ sample.cpp -o sample -O2 -g -I/usr/local/cuda-5.5/include -lcuda |
| 772 | |
| 773 | We don't need to specify a path to ``libcuda.so`` since this is installed in a |
| 774 | system location by the driver, not the CUDA toolkit. |
| 775 | |
| 776 | If everything goes as planned, you should see the following output when |
| 777 | running the compiled program: |
| 778 | |
| 779 | .. code-block:: text |
| 780 | |
| 781 | Using CUDA Device [0]: GeForce GTX 680 |
| 782 | Device Compute Capability: 3.0 |
| 783 | Launching kernel |
| 784 | Results: |
| 785 | 0 + 0 = 0 |
| 786 | 1 + 2 = 3 |
| 787 | 2 + 4 = 6 |
| 788 | 3 + 6 = 9 |
| 789 | 4 + 8 = 12 |
| 790 | 5 + 10 = 15 |
| 791 | 6 + 12 = 18 |
| 792 | 7 + 14 = 21 |
| 793 | 8 + 16 = 24 |
| 794 | 9 + 18 = 27 |
| 795 | 10 + 20 = 30 |
| 796 | 11 + 22 = 33 |
| 797 | 12 + 24 = 36 |
| 798 | 13 + 26 = 39 |
| 799 | 14 + 28 = 42 |
| 800 | 15 + 30 = 45 |
| 801 | |
| 802 | .. note:: |
| 803 | |
| 804 | You will likely see a different device identifier based on your hardware |
| 805 | |
| 806 | |
| 807 | Tutorial: Linking with Libdevice |
| 808 | ================================ |
| 809 | |
| 810 | In this tutorial, we show a simple example of linking LLVM IR with the |
| 811 | libdevice library. We will use the same kernel as the previous tutorial, |
| 812 | except that we will compute ``C = pow(A, B)`` instead of ``C = A + B``. |
| 813 | Libdevice provides an ``__nv_powf`` function that we will use. |
| 814 | |
| 815 | .. code-block:: llvm |
| 816 | |
| 817 | target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64" |
| 818 | target triple = "nvptx64-nvidia-cuda" |
| 819 | |
| 820 | ; Intrinsic to read X component of thread ID |
| 821 | declare i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind |
| 822 | ; libdevice function |
| 823 | declare float @__nv_powf(float, float) |
| 824 | |
| 825 | define void @kernel(float addrspace(1)* %A, |
| 826 | float addrspace(1)* %B, |
| 827 | float addrspace(1)* %C) { |
| 828 | entry: |
| 829 | ; What is my ID? |
| 830 | %id = tail call i32 @llvm.nvvm.read.ptx.sreg.tid.x() readnone nounwind |
| 831 | |
| 832 | ; Compute pointers into A, B, and C |
| 833 | %ptrA = getelementptr float addrspace(1)* %A, i32 %id |
| 834 | %ptrB = getelementptr float addrspace(1)* %B, i32 %id |
| 835 | %ptrC = getelementptr float addrspace(1)* %C, i32 %id |
| 836 | |
| 837 | ; Read A, B |
| 838 | %valA = load float addrspace(1)* %ptrA, align 4 |
| 839 | %valB = load float addrspace(1)* %ptrB, align 4 |
| 840 | |
| 841 | ; Compute C = pow(A, B) |
Eli Bendersky | b512b96 | 2013-12-17 14:14:15 +0000 | [diff] [blame] | 842 | %valC = call float @__nv_powf(float %valA, float %valB) |
Justin Holewinski | fb9bd75 | 2013-11-15 13:02:10 +0000 | [diff] [blame] | 843 | |
| 844 | ; Store back to C |
| 845 | store float %valC, float addrspace(1)* %ptrC, align 4 |
| 846 | |
| 847 | ret void |
| 848 | } |
| 849 | |
| 850 | !nvvm.annotations = !{!0} |
| 851 | !0 = metadata !{void (float addrspace(1)*, |
| 852 | float addrspace(1)*, |
Eli Bendersky | b512b96 | 2013-12-17 14:14:15 +0000 | [diff] [blame] | 853 | float addrspace(1)*)* @kernel, metadata !"kernel", i32 1} |
Justin Holewinski | fb9bd75 | 2013-11-15 13:02:10 +0000 | [diff] [blame] | 854 | |
| 855 | |
| 856 | To compile this kernel, we perform the following steps: |
| 857 | |
| 858 | 1. Link with libdevice |
| 859 | 2. Internalize all but the public kernel function |
| 860 | 3. Run ``NVVMReflect`` and set ``__CUDA_FTZ`` to 0 |
| 861 | 4. Optimize the linked module |
| 862 | 5. Codegen the module |
| 863 | |
| 864 | |
| 865 | These steps can be performed by the LLVM ``llvm-link``, ``opt``, and ``llc`` |
| 866 | tools. In a complete compiler, these steps can also be performed entirely |
| 867 | programmatically by setting up an appropriate pass configuration (see |
| 868 | :ref:`libdevice`). |
| 869 | |
| 870 | .. code-block:: text |
| 871 | |
| 872 | # llvm-link t2.bc libdevice.compute_20.10.bc -o t2.linked.bc |
| 873 | # opt -internalize -internalize-public-api-list=kernel -nvvm-reflect-list=__CUDA_FTZ=0 -nvvm-reflect -O3 t2.linked.bc -o t2.opt.bc |
| 874 | # llc -mcpu=sm_20 t2.opt.bc -o t2.ptx |
| 875 | |
| 876 | .. note:: |
| 877 | |
| 878 | The ``-nvvm-reflect-list=_CUDA_FTZ=0`` is not strictly required, as any |
| 879 | undefined variables will default to zero. It is shown here for evaluation |
| 880 | purposes. |
| 881 | |
| 882 | |
| 883 | This gives us the following PTX (excerpt): |
| 884 | |
| 885 | .. code-block:: text |
| 886 | |
| 887 | // |
| 888 | // Generated by LLVM NVPTX Back-End |
| 889 | // |
| 890 | |
| 891 | .version 3.1 |
| 892 | .target sm_20 |
| 893 | .address_size 64 |
| 894 | |
| 895 | // .globl kernel |
| 896 | // @kernel |
| 897 | .visible .entry kernel( |
| 898 | .param .u64 kernel_param_0, |
| 899 | .param .u64 kernel_param_1, |
| 900 | .param .u64 kernel_param_2 |
| 901 | ) |
| 902 | { |
| 903 | .reg .pred %p<30>; |
| 904 | .reg .f32 %f<111>; |
| 905 | .reg .s32 %r<21>; |
| 906 | .reg .s64 %rl<8>; |
| 907 | |
| 908 | // BB#0: // %entry |
| 909 | ld.param.u64 %rl2, [kernel_param_0]; |
| 910 | mov.u32 %r3, %tid.x; |
| 911 | ld.param.u64 %rl3, [kernel_param_1]; |
| 912 | mul.wide.s32 %rl4, %r3, 4; |
| 913 | add.s64 %rl5, %rl2, %rl4; |
| 914 | ld.param.u64 %rl6, [kernel_param_2]; |
| 915 | add.s64 %rl7, %rl3, %rl4; |
| 916 | add.s64 %rl1, %rl6, %rl4; |
| 917 | ld.global.f32 %f1, [%rl5]; |
| 918 | ld.global.f32 %f2, [%rl7]; |
| 919 | setp.eq.f32 %p1, %f1, 0f3F800000; |
| 920 | setp.eq.f32 %p2, %f2, 0f00000000; |
| 921 | or.pred %p3, %p1, %p2; |
| 922 | @%p3 bra BB0_1; |
| 923 | bra.uni BB0_2; |
| 924 | BB0_1: |
| 925 | mov.f32 %f110, 0f3F800000; |
| 926 | st.global.f32 [%rl1], %f110; |
| 927 | ret; |
| 928 | BB0_2: // %__nv_isnanf.exit.i |
| 929 | abs.f32 %f4, %f1; |
| 930 | setp.gtu.f32 %p4, %f4, 0f7F800000; |
| 931 | @%p4 bra BB0_4; |
| 932 | // BB#3: // %__nv_isnanf.exit5.i |
| 933 | abs.f32 %f5, %f2; |
| 934 | setp.le.f32 %p5, %f5, 0f7F800000; |
| 935 | @%p5 bra BB0_5; |
| 936 | BB0_4: // %.critedge1.i |
| 937 | add.f32 %f110, %f1, %f2; |
| 938 | st.global.f32 [%rl1], %f110; |
| 939 | ret; |
| 940 | BB0_5: // %__nv_isinff.exit.i |
| 941 | |
| 942 | ... |
| 943 | |
| 944 | BB0_26: // %__nv_truncf.exit.i.i.i.i.i |
| 945 | mul.f32 %f90, %f107, 0f3FB8AA3B; |
| 946 | cvt.rzi.f32.f32 %f91, %f90; |
| 947 | mov.f32 %f92, 0fBF317200; |
| 948 | fma.rn.f32 %f93, %f91, %f92, %f107; |
| 949 | mov.f32 %f94, 0fB5BFBE8E; |
| 950 | fma.rn.f32 %f95, %f91, %f94, %f93; |
| 951 | mul.f32 %f89, %f95, 0f3FB8AA3B; |
| 952 | // inline asm |
| 953 | ex2.approx.ftz.f32 %f88,%f89; |
| 954 | // inline asm |
| 955 | add.f32 %f96, %f91, 0f00000000; |
| 956 | ex2.approx.f32 %f97, %f96; |
| 957 | mul.f32 %f98, %f88, %f97; |
| 958 | setp.lt.f32 %p15, %f107, 0fC2D20000; |
| 959 | selp.f32 %f99, 0f00000000, %f98, %p15; |
| 960 | setp.gt.f32 %p16, %f107, 0f42D20000; |
| 961 | selp.f32 %f110, 0f7F800000, %f99, %p16; |
| 962 | setp.eq.f32 %p17, %f110, 0f7F800000; |
| 963 | @%p17 bra BB0_28; |
| 964 | // BB#27: |
| 965 | fma.rn.f32 %f110, %f110, %f108, %f110; |
| 966 | BB0_28: // %__internal_accurate_powf.exit.i |
| 967 | setp.lt.f32 %p18, %f1, 0f00000000; |
| 968 | setp.eq.f32 %p19, %f3, 0f3F800000; |
| 969 | and.pred %p20, %p18, %p19; |
| 970 | @!%p20 bra BB0_30; |
| 971 | bra.uni BB0_29; |
| 972 | BB0_29: |
| 973 | mov.b32 %r9, %f110; |
| 974 | xor.b32 %r10, %r9, -2147483648; |
| 975 | mov.b32 %f110, %r10; |
| 976 | BB0_30: // %__nv_powf.exit |
| 977 | st.global.f32 [%rl1], %f110; |
| 978 | ret; |
| 979 | } |
| 980 | |