blob: 7a3eac78c56fd3533e1c7d6835e1a81019a39b3a [file] [log] [blame]
Chris Lattnerf2836d12007-03-31 04:06:36 +00001//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass munges the code in the input function to better prepare it for
11// SelectionDAG-based code generation. This works around limitations in it's
12// basic-block-at-a-time approach. It should eventually be removed.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "codegenprepare"
17#include "llvm/Transforms/Scalar.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Function.h"
21#include "llvm/Instructions.h"
22#include "llvm/Pass.h"
Chris Lattnerf2836d12007-03-31 04:06:36 +000023#include "llvm/Target/TargetAsmInfo.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/Target/TargetLowering.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Chris Lattnerfeee64e2007-04-13 20:30:56 +000028#include "llvm/Transforms/Utils/Local.h"
29#include "llvm/ADT/DenseMap.h"
Chris Lattnerf2836d12007-03-31 04:06:36 +000030#include "llvm/ADT/SmallSet.h"
Chris Lattnerc3748562007-04-02 01:35:34 +000031#include "llvm/Support/Debug.h"
32#include "llvm/Support/Compiler.h"
Chris Lattnerfeee64e2007-04-13 20:30:56 +000033#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattnerf2836d12007-03-31 04:06:36 +000034using namespace llvm;
35
36namespace {
37 class VISIBILITY_HIDDEN CodeGenPrepare : public FunctionPass {
38 /// TLI - Keep a pointer of a TargetLowering to consult for determining
39 /// transformation profitability.
40 const TargetLowering *TLI;
41 public:
42 CodeGenPrepare(const TargetLowering *tli = 0) : TLI(tli) {}
43 bool runOnFunction(Function &F);
44
45 private:
Chris Lattnerc3748562007-04-02 01:35:34 +000046 bool EliminateMostlyEmptyBlocks(Function &F);
47 bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
48 void EliminateMostlyEmptyBlock(BasicBlock *BB);
Chris Lattnerf2836d12007-03-31 04:06:36 +000049 bool OptimizeBlock(BasicBlock &BB);
Chris Lattnerfeee64e2007-04-13 20:30:56 +000050 bool OptimizeLoadStoreInst(Instruction *I, Value *Addr,
51 const Type *AccessTy,
52 DenseMap<Value*,Value*> &SunkAddrs);
Chris Lattnerf2836d12007-03-31 04:06:36 +000053 };
54}
55static RegisterPass<CodeGenPrepare> X("codegenprepare",
56 "Optimize for code generation");
57
58FunctionPass *llvm::createCodeGenPreparePass(const TargetLowering *TLI) {
59 return new CodeGenPrepare(TLI);
60}
61
62
63bool CodeGenPrepare::runOnFunction(Function &F) {
Chris Lattnerf2836d12007-03-31 04:06:36 +000064 bool EverMadeChange = false;
Chris Lattnerc3748562007-04-02 01:35:34 +000065
66 // First pass, eliminate blocks that contain only PHI nodes and an
67 // unconditional branch.
68 EverMadeChange |= EliminateMostlyEmptyBlocks(F);
69
70 bool MadeChange = true;
Chris Lattnerf2836d12007-03-31 04:06:36 +000071 while (MadeChange) {
72 MadeChange = false;
73 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
74 MadeChange |= OptimizeBlock(*BB);
75 EverMadeChange |= MadeChange;
76 }
77 return EverMadeChange;
78}
79
Chris Lattnerc3748562007-04-02 01:35:34 +000080/// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes
81/// and an unconditional branch. Passes before isel (e.g. LSR/loopsimplify)
82/// often split edges in ways that are non-optimal for isel. Start by
83/// eliminating these blocks so we can split them the way we want them.
84bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) {
85 bool MadeChange = false;
86 // Note that this intentionally skips the entry block.
87 for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ) {
88 BasicBlock *BB = I++;
89
90 // If this block doesn't end with an uncond branch, ignore it.
91 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
92 if (!BI || !BI->isUnconditional())
93 continue;
94
95 // If the instruction before the branch isn't a phi node, then other stuff
96 // is happening here.
97 BasicBlock::iterator BBI = BI;
98 if (BBI != BB->begin()) {
99 --BBI;
100 if (!isa<PHINode>(BBI)) continue;
101 }
102
103 // Do not break infinite loops.
104 BasicBlock *DestBB = BI->getSuccessor(0);
105 if (DestBB == BB)
106 continue;
107
108 if (!CanMergeBlocks(BB, DestBB))
109 continue;
110
111 EliminateMostlyEmptyBlock(BB);
112 MadeChange = true;
113 }
114 return MadeChange;
115}
116
117/// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a
118/// single uncond branch between them, and BB contains no other non-phi
119/// instructions.
120bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB,
121 const BasicBlock *DestBB) const {
122 // We only want to eliminate blocks whose phi nodes are used by phi nodes in
123 // the successor. If there are more complex condition (e.g. preheaders),
124 // don't mess around with them.
125 BasicBlock::const_iterator BBI = BB->begin();
126 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
127 for (Value::use_const_iterator UI = PN->use_begin(), E = PN->use_end();
128 UI != E; ++UI) {
129 const Instruction *User = cast<Instruction>(*UI);
130 if (User->getParent() != DestBB || !isa<PHINode>(User))
131 return false;
Devang Pateld3208522007-04-25 00:37:04 +0000132 // If User is inside DestBB block and it is a PHINode then check
133 // incoming value. If incoming value is not from BB then this is
134 // a complex condition (e.g. preheaders) we want to avoid here.
135 if (User->getParent() == DestBB) {
136 if (const PHINode *UPN = dyn_cast<PHINode>(User))
137 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
138 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
139 if (Insn && Insn->getParent() == BB &&
140 Insn->getParent() != UPN->getIncomingBlock(I))
141 return false;
142 }
143 }
Chris Lattnerc3748562007-04-02 01:35:34 +0000144 }
145 }
146
147 // If BB and DestBB contain any common predecessors, then the phi nodes in BB
148 // and DestBB may have conflicting incoming values for the block. If so, we
149 // can't merge the block.
150 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
151 if (!DestBBPN) return true; // no conflict.
152
153 // Collect the preds of BB.
154 SmallPtrSet<BasicBlock*, 16> BBPreds;
155 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
156 // It is faster to get preds from a PHI than with pred_iterator.
157 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
158 BBPreds.insert(BBPN->getIncomingBlock(i));
159 } else {
160 BBPreds.insert(pred_begin(BB), pred_end(BB));
161 }
162
163 // Walk the preds of DestBB.
164 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
165 BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
166 if (BBPreds.count(Pred)) { // Common predecessor?
167 BBI = DestBB->begin();
168 while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
169 const Value *V1 = PN->getIncomingValueForBlock(Pred);
170 const Value *V2 = PN->getIncomingValueForBlock(BB);
171
172 // If V2 is a phi node in BB, look up what the mapped value will be.
173 if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
174 if (V2PN->getParent() == BB)
175 V2 = V2PN->getIncomingValueForBlock(Pred);
176
177 // If there is a conflict, bail out.
178 if (V1 != V2) return false;
179 }
180 }
181 }
182
183 return true;
184}
185
186
187/// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and
188/// an unconditional branch in it.
189void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
190 BranchInst *BI = cast<BranchInst>(BB->getTerminator());
191 BasicBlock *DestBB = BI->getSuccessor(0);
192
193 DOUT << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB;
194
195 // If the destination block has a single pred, then this is a trivial edge,
196 // just collapse it.
197 if (DestBB->getSinglePredecessor()) {
198 // If DestBB has single-entry PHI nodes, fold them.
199 while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
200 PN->replaceAllUsesWith(PN->getIncomingValue(0));
201 PN->eraseFromParent();
202 }
203
204 // Splice all the PHI nodes from BB over to DestBB.
205 DestBB->getInstList().splice(DestBB->begin(), BB->getInstList(),
206 BB->begin(), BI);
207
208 // Anything that branched to BB now branches to DestBB.
209 BB->replaceAllUsesWith(DestBB);
210
211 // Nuke BB.
212 BB->eraseFromParent();
213
214 DOUT << "AFTER:\n" << *DestBB << "\n\n\n";
215 return;
216 }
217
218 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB
219 // to handle the new incoming edges it is about to have.
220 PHINode *PN;
221 for (BasicBlock::iterator BBI = DestBB->begin();
222 (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
223 // Remove the incoming value for BB, and remember it.
224 Value *InVal = PN->removeIncomingValue(BB, false);
225
226 // Two options: either the InVal is a phi node defined in BB or it is some
227 // value that dominates BB.
228 PHINode *InValPhi = dyn_cast<PHINode>(InVal);
229 if (InValPhi && InValPhi->getParent() == BB) {
230 // Add all of the input values of the input PHI as inputs of this phi.
231 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
232 PN->addIncoming(InValPhi->getIncomingValue(i),
233 InValPhi->getIncomingBlock(i));
234 } else {
235 // Otherwise, add one instance of the dominating value for each edge that
236 // we will be adding.
237 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
238 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
239 PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
240 } else {
241 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
242 PN->addIncoming(InVal, *PI);
243 }
244 }
245 }
246
247 // The PHIs are now updated, change everything that refers to BB to use
248 // DestBB and remove BB.
249 BB->replaceAllUsesWith(DestBB);
250 BB->eraseFromParent();
251
252 DOUT << "AFTER:\n" << *DestBB << "\n\n\n";
253}
254
255
Chris Lattnerf2836d12007-03-31 04:06:36 +0000256/// SplitEdgeNicely - Split the critical edge from TI to it's specified
257/// successor if it will improve codegen. We only do this if the successor has
258/// phi nodes (otherwise critical edges are ok). If there is already another
259/// predecessor of the succ that is empty (and thus has no phi nodes), use it
260/// instead of introducing a new block.
261static void SplitEdgeNicely(TerminatorInst *TI, unsigned SuccNum, Pass *P) {
262 BasicBlock *TIBB = TI->getParent();
263 BasicBlock *Dest = TI->getSuccessor(SuccNum);
264 assert(isa<PHINode>(Dest->begin()) &&
265 "This should only be called if Dest has a PHI!");
266
267 /// TIPHIValues - This array is lazily computed to determine the values of
268 /// PHIs in Dest that TI would provide.
269 std::vector<Value*> TIPHIValues;
270
271 // Check to see if Dest has any blocks that can be used as a split edge for
272 // this terminator.
273 for (pred_iterator PI = pred_begin(Dest), E = pred_end(Dest); PI != E; ++PI) {
274 BasicBlock *Pred = *PI;
275 // To be usable, the pred has to end with an uncond branch to the dest.
276 BranchInst *PredBr = dyn_cast<BranchInst>(Pred->getTerminator());
277 if (!PredBr || !PredBr->isUnconditional() ||
278 // Must be empty other than the branch.
279 &Pred->front() != PredBr)
280 continue;
281
282 // Finally, since we know that Dest has phi nodes in it, we have to make
283 // sure that jumping to Pred will have the same affect as going to Dest in
284 // terms of PHI values.
285 PHINode *PN;
286 unsigned PHINo = 0;
287 bool FoundMatch = true;
288 for (BasicBlock::iterator I = Dest->begin();
289 (PN = dyn_cast<PHINode>(I)); ++I, ++PHINo) {
290 if (PHINo == TIPHIValues.size())
291 TIPHIValues.push_back(PN->getIncomingValueForBlock(TIBB));
292
293 // If the PHI entry doesn't work, we can't use this pred.
294 if (TIPHIValues[PHINo] != PN->getIncomingValueForBlock(Pred)) {
295 FoundMatch = false;
296 break;
297 }
298 }
299
300 // If we found a workable predecessor, change TI to branch to Succ.
301 if (FoundMatch) {
302 Dest->removePredecessor(TIBB);
303 TI->setSuccessor(SuccNum, Pred);
304 return;
305 }
306 }
307
308 SplitCriticalEdge(TI, SuccNum, P, true);
309}
310
Chris Lattnerfeee64e2007-04-13 20:30:56 +0000311/// OptimizeNoopCopyExpression - If the specified cast instruction is a noop
312/// copy (e.g. it's casting from one pointer type to another, int->uint, or
313/// int->sbyte on PPC), sink it into user blocks to reduce the number of virtual
314/// registers that must be created and coallesced.
Chris Lattnerf2836d12007-03-31 04:06:36 +0000315///
316/// Return true if any changes are made.
Chris Lattnerfeee64e2007-04-13 20:30:56 +0000317static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){
318 // If this is a noop copy,
319 MVT::ValueType SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
320 MVT::ValueType DstVT = TLI.getValueType(CI->getType());
321
322 // This is an fp<->int conversion?
323 if (MVT::isInteger(SrcVT) != MVT::isInteger(DstVT))
324 return false;
325
326 // If this is an extension, it will be a zero or sign extension, which
327 // isn't a noop.
328 if (SrcVT < DstVT) return false;
329
330 // If these values will be promoted, find out what they will be promoted
331 // to. This helps us consider truncates on PPC as noop copies when they
332 // are.
333 if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote)
334 SrcVT = TLI.getTypeToTransformTo(SrcVT);
335 if (TLI.getTypeAction(DstVT) == TargetLowering::Promote)
336 DstVT = TLI.getTypeToTransformTo(DstVT);
337
338 // If, after promotion, these are the same types, this is a noop copy.
339 if (SrcVT != DstVT)
340 return false;
341
Chris Lattnerf2836d12007-03-31 04:06:36 +0000342 BasicBlock *DefBB = CI->getParent();
343
344 /// InsertedCasts - Only insert a cast in each block once.
345 std::map<BasicBlock*, CastInst*> InsertedCasts;
346
347 bool MadeChange = false;
348 for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
349 UI != E; ) {
350 Use &TheUse = UI.getUse();
351 Instruction *User = cast<Instruction>(*UI);
352
353 // Figure out which BB this cast is used in. For PHI's this is the
354 // appropriate predecessor block.
355 BasicBlock *UserBB = User->getParent();
356 if (PHINode *PN = dyn_cast<PHINode>(User)) {
357 unsigned OpVal = UI.getOperandNo()/2;
358 UserBB = PN->getIncomingBlock(OpVal);
359 }
360
361 // Preincrement use iterator so we don't invalidate it.
362 ++UI;
363
364 // If this user is in the same block as the cast, don't change the cast.
365 if (UserBB == DefBB) continue;
366
367 // If we have already inserted a cast into this block, use it.
368 CastInst *&InsertedCast = InsertedCasts[UserBB];
369
370 if (!InsertedCast) {
371 BasicBlock::iterator InsertPt = UserBB->begin();
372 while (isa<PHINode>(InsertPt)) ++InsertPt;
373
374 InsertedCast =
375 CastInst::create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "",
376 InsertPt);
377 MadeChange = true;
378 }
379
380 // Replace a use of the cast with a use of the new casat.
381 TheUse = InsertedCast;
382 }
383
384 // If we removed all uses, nuke the cast.
385 if (CI->use_empty())
386 CI->eraseFromParent();
387
388 return MadeChange;
389}
390
Chris Lattnerfeee64e2007-04-13 20:30:56 +0000391/// EraseDeadInstructions - Erase any dead instructions
392static void EraseDeadInstructions(Value *V) {
393 Instruction *I = dyn_cast<Instruction>(V);
394 if (!I || !I->use_empty()) return;
395
396 SmallPtrSet<Instruction*, 16> Insts;
397 Insts.insert(I);
398
399 while (!Insts.empty()) {
400 I = *Insts.begin();
401 Insts.erase(I);
402 if (isInstructionTriviallyDead(I)) {
403 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
404 if (Instruction *U = dyn_cast<Instruction>(I->getOperand(i)))
405 Insts.insert(U);
406 I->eraseFromParent();
407 }
408 }
409}
Chris Lattnerf2836d12007-03-31 04:06:36 +0000410
411
Chris Lattnerfeee64e2007-04-13 20:30:56 +0000412/// ExtAddrMode - This is an extended version of TargetLowering::AddrMode which
413/// holds actual Value*'s for register values.
414struct ExtAddrMode : public TargetLowering::AddrMode {
415 Value *BaseReg;
416 Value *ScaledReg;
417 ExtAddrMode() : BaseReg(0), ScaledReg(0) {}
418 void dump() const;
419};
420
421static std::ostream &operator<<(std::ostream &OS, const ExtAddrMode &AM) {
422 bool NeedPlus = false;
423 OS << "[";
424 if (AM.BaseGV)
425 OS << (NeedPlus ? " + " : "")
426 << "GV:%" << AM.BaseGV->getName(), NeedPlus = true;
427
428 if (AM.BaseOffs)
429 OS << (NeedPlus ? " + " : "") << AM.BaseOffs, NeedPlus = true;
430
431 if (AM.BaseReg)
432 OS << (NeedPlus ? " + " : "")
433 << "Base:%" << AM.BaseReg->getName(), NeedPlus = true;
434 if (AM.Scale)
435 OS << (NeedPlus ? " + " : "")
436 << AM.Scale << "*%" << AM.ScaledReg->getName(), NeedPlus = true;
437
438 return OS << "]";
439}
440
441void ExtAddrMode::dump() const {
442 cerr << *this << "\n";
443}
444
445static bool TryMatchingScaledValue(Value *ScaleReg, int64_t Scale,
446 const Type *AccessTy, ExtAddrMode &AddrMode,
447 SmallVector<Instruction*, 16> &AddrModeInsts,
448 const TargetLowering &TLI, unsigned Depth);
449
450/// FindMaximalLegalAddressingMode - If we can, try to merge the computation of
451/// Addr into the specified addressing mode. If Addr can't be added to AddrMode
452/// this returns false. This assumes that Addr is either a pointer type or
453/// intptr_t for the target.
454static bool FindMaximalLegalAddressingMode(Value *Addr, const Type *AccessTy,
455 ExtAddrMode &AddrMode,
456 SmallVector<Instruction*, 16> &AddrModeInsts,
457 const TargetLowering &TLI,
458 unsigned Depth) {
459
460 // If this is a global variable, fold it into the addressing mode if possible.
461 if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
462 if (AddrMode.BaseGV == 0) {
463 AddrMode.BaseGV = GV;
464 if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
465 return true;
466 AddrMode.BaseGV = 0;
467 }
468 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
469 AddrMode.BaseOffs += CI->getSExtValue();
470 if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
471 return true;
472 AddrMode.BaseOffs -= CI->getSExtValue();
473 } else if (isa<ConstantPointerNull>(Addr)) {
474 return true;
475 }
476
477 // Look through constant exprs and instructions.
478 unsigned Opcode = ~0U;
479 User *AddrInst = 0;
480 if (Instruction *I = dyn_cast<Instruction>(Addr)) {
481 Opcode = I->getOpcode();
482 AddrInst = I;
483 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
484 Opcode = CE->getOpcode();
485 AddrInst = CE;
486 }
487
488 // Limit recursion to avoid exponential behavior.
489 if (Depth == 5) { AddrInst = 0; Opcode = ~0U; }
490
491 // If this is really an instruction, add it to our list of related
492 // instructions.
493 if (Instruction *I = dyn_cast_or_null<Instruction>(AddrInst))
494 AddrModeInsts.push_back(I);
495
496 switch (Opcode) {
497 case Instruction::PtrToInt:
498 // PtrToInt is always a noop, as we know that the int type is pointer sized.
499 if (FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
500 AddrMode, AddrModeInsts, TLI, Depth))
501 return true;
502 break;
503 case Instruction::IntToPtr:
504 // This inttoptr is a no-op if the integer type is pointer sized.
505 if (TLI.getValueType(AddrInst->getOperand(0)->getType()) ==
506 TLI.getPointerTy()) {
507 if (FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
508 AddrMode, AddrModeInsts, TLI, Depth))
509 return true;
510 }
511 break;
512 case Instruction::Add: {
513 // Check to see if we can merge in the RHS then the LHS. If so, we win.
514 ExtAddrMode BackupAddrMode = AddrMode;
515 unsigned OldSize = AddrModeInsts.size();
516 if (FindMaximalLegalAddressingMode(AddrInst->getOperand(1), AccessTy,
517 AddrMode, AddrModeInsts, TLI, Depth+1) &&
518 FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
519 AddrMode, AddrModeInsts, TLI, Depth+1))
520 return true;
521
522 // Restore the old addr mode info.
523 AddrMode = BackupAddrMode;
524 AddrModeInsts.resize(OldSize);
525
526 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS.
527 if (FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
528 AddrMode, AddrModeInsts, TLI, Depth+1) &&
529 FindMaximalLegalAddressingMode(AddrInst->getOperand(1), AccessTy,
530 AddrMode, AddrModeInsts, TLI, Depth+1))
531 return true;
532
533 // Otherwise we definitely can't merge the ADD in.
534 AddrMode = BackupAddrMode;
535 AddrModeInsts.resize(OldSize);
536 break;
537 }
538 case Instruction::Or: {
539 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
540 if (!RHS) break;
541 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
542 break;
543 }
544 case Instruction::Mul:
545 case Instruction::Shl: {
546 // Can only handle X*C and X << C, and can only handle this when the scale
547 // field is available.
548 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
549 if (!RHS) break;
550 int64_t Scale = RHS->getSExtValue();
551 if (Opcode == Instruction::Shl)
552 Scale = 1 << Scale;
553
554 if (TryMatchingScaledValue(AddrInst->getOperand(0), Scale, AccessTy,
555 AddrMode, AddrModeInsts, TLI, Depth))
556 return true;
557 break;
558 }
559 case Instruction::GetElementPtr: {
560 // Scan the GEP. We check it if it contains constant offsets and at most
561 // one variable offset.
562 int VariableOperand = -1;
563 unsigned VariableScale = 0;
564
565 int64_t ConstantOffset = 0;
566 const TargetData *TD = TLI.getTargetData();
567 gep_type_iterator GTI = gep_type_begin(AddrInst);
568 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
569 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
570 const StructLayout *SL = TD->getStructLayout(STy);
571 unsigned Idx =
572 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
573 ConstantOffset += SL->getElementOffset(Idx);
574 } else {
575 uint64_t TypeSize = TD->getTypeSize(GTI.getIndexedType());
576 if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
577 ConstantOffset += CI->getSExtValue()*TypeSize;
578 } else if (TypeSize) { // Scales of zero don't do anything.
579 // We only allow one variable index at the moment.
580 if (VariableOperand != -1) {
581 VariableOperand = -2;
582 break;
583 }
584
585 // Remember the variable index.
586 VariableOperand = i;
587 VariableScale = TypeSize;
588 }
589 }
590 }
591
592 // If the GEP had multiple variable indices, punt.
593 if (VariableOperand == -2)
594 break;
595
596 // A common case is for the GEP to only do a constant offset. In this case,
597 // just add it to the disp field and check validity.
598 if (VariableOperand == -1) {
599 AddrMode.BaseOffs += ConstantOffset;
600 if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){
601 // Check to see if we can fold the base pointer in too.
602 if (FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
603 AddrMode, AddrModeInsts, TLI,
604 Depth+1))
605 return true;
606 }
607 AddrMode.BaseOffs -= ConstantOffset;
608 } else {
609 // Check that this has no base reg yet. If so, we won't have a place to
610 // put the base of the GEP (assuming it is not a null ptr).
611 bool SetBaseReg = false;
612 if (AddrMode.HasBaseReg) {
613 if (!isa<ConstantPointerNull>(AddrInst->getOperand(0)))
614 break;
615 } else {
616 AddrMode.HasBaseReg = true;
617 AddrMode.BaseReg = AddrInst->getOperand(0);
618 SetBaseReg = true;
619 }
620
621 // See if the scale amount is valid for this target.
622 AddrMode.BaseOffs += ConstantOffset;
623 if (TryMatchingScaledValue(AddrInst->getOperand(VariableOperand),
624 VariableScale, AccessTy, AddrMode,
625 AddrModeInsts, TLI, Depth)) {
626 if (!SetBaseReg) return true;
627
628 // If this match succeeded, we know that we can form an address with the
629 // GepBase as the basereg. See if we can match *more*.
630 AddrMode.HasBaseReg = false;
631 AddrMode.BaseReg = 0;
632 if (FindMaximalLegalAddressingMode(AddrInst->getOperand(0), AccessTy,
633 AddrMode, AddrModeInsts, TLI,
634 Depth+1))
635 return true;
636 // Strange, shouldn't happen. Restore the base reg and succeed the easy
637 // way.
638 AddrMode.HasBaseReg = true;
639 AddrMode.BaseReg = AddrInst->getOperand(0);
640 return true;
641 }
642
643 AddrMode.BaseOffs -= ConstantOffset;
644 if (SetBaseReg) {
645 AddrMode.HasBaseReg = false;
646 AddrMode.BaseReg = 0;
647 }
648 }
649 break;
650 }
651 }
652
653 if (Instruction *I = dyn_cast_or_null<Instruction>(AddrInst)) {
654 assert(AddrModeInsts.back() == I && "Stack imbalance");
655 AddrModeInsts.pop_back();
656 }
657
658 // Worse case, the target should support [reg] addressing modes. :)
659 if (!AddrMode.HasBaseReg) {
660 AddrMode.HasBaseReg = true;
661 // Still check for legality in case the target supports [imm] but not [i+r].
662 if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) {
663 AddrMode.BaseReg = Addr;
664 return true;
665 }
666 AddrMode.HasBaseReg = false;
667 }
668
669 // If the base register is already taken, see if we can do [r+r].
670 if (AddrMode.Scale == 0) {
671 AddrMode.Scale = 1;
672 if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) {
673 AddrMode.ScaledReg = Addr;
674 return true;
675 }
676 AddrMode.Scale = 0;
677 }
678 // Couldn't match.
679 return false;
680}
681
682/// TryMatchingScaledValue - Try adding ScaleReg*Scale to the specified
683/// addressing mode. Return true if this addr mode is legal for the target,
684/// false if not.
685static bool TryMatchingScaledValue(Value *ScaleReg, int64_t Scale,
686 const Type *AccessTy, ExtAddrMode &AddrMode,
687 SmallVector<Instruction*, 16> &AddrModeInsts,
688 const TargetLowering &TLI, unsigned Depth) {
689 // If we already have a scale of this value, we can add to it, otherwise, we
690 // need an available scale field.
691 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
692 return false;
693
694 ExtAddrMode InputAddrMode = AddrMode;
695
696 // Add scale to turn X*4+X*3 -> X*7. This could also do things like
697 // [A+B + A*7] -> [B+A*8].
698 AddrMode.Scale += Scale;
699 AddrMode.ScaledReg = ScaleReg;
700
701 if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) {
702 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now
703 // to see if ScaleReg is actually X+C. If so, we can turn this into adding
704 // X*Scale + C*Scale to addr mode.
705 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(ScaleReg);
706 if (BinOp && BinOp->getOpcode() == Instruction::Add &&
707 isa<ConstantInt>(BinOp->getOperand(1)) && InputAddrMode.ScaledReg ==0) {
708
709 InputAddrMode.Scale = Scale;
710 InputAddrMode.ScaledReg = BinOp->getOperand(0);
711 InputAddrMode.BaseOffs +=
712 cast<ConstantInt>(BinOp->getOperand(1))->getSExtValue()*Scale;
713 if (TLI.isLegalAddressingMode(InputAddrMode, AccessTy)) {
714 AddrModeInsts.push_back(BinOp);
715 AddrMode = InputAddrMode;
716 return true;
717 }
718 }
719
720 // Otherwise, not (x+c)*scale, just return what we have.
721 return true;
722 }
723
724 // Otherwise, back this attempt out.
725 AddrMode.Scale -= Scale;
726 if (AddrMode.Scale == 0) AddrMode.ScaledReg = 0;
727
728 return false;
729}
730
731
732/// IsNonLocalValue - Return true if the specified values are defined in a
733/// different basic block than BB.
734static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
735 if (Instruction *I = dyn_cast<Instruction>(V))
736 return I->getParent() != BB;
737 return false;
738}
739
740/// OptimizeLoadStoreInst - Load and Store Instructions have often have
741/// addressing modes that can do significant amounts of computation. As such,
742/// instruction selection will try to get the load or store to do as much
743/// computation as possible for the program. The problem is that isel can only
744/// see within a single block. As such, we sink as much legal addressing mode
745/// stuff into the block as possible.
746bool CodeGenPrepare::OptimizeLoadStoreInst(Instruction *LdStInst, Value *Addr,
747 const Type *AccessTy,
748 DenseMap<Value*,Value*> &SunkAddrs) {
749 // Figure out what addressing mode will be built up for this operation.
750 SmallVector<Instruction*, 16> AddrModeInsts;
751 ExtAddrMode AddrMode;
752 bool Success = FindMaximalLegalAddressingMode(Addr, AccessTy, AddrMode,
753 AddrModeInsts, *TLI, 0);
754 Success = Success; assert(Success && "Couldn't select *anything*?");
755
756 // Check to see if any of the instructions supersumed by this addr mode are
757 // non-local to I's BB.
758 bool AnyNonLocal = false;
759 for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) {
760 if (IsNonLocalValue(AddrModeInsts[i], LdStInst->getParent())) {
761 AnyNonLocal = true;
762 break;
763 }
764 }
765
766 // If all the instructions matched are already in this BB, don't do anything.
767 if (!AnyNonLocal) {
768 DEBUG(cerr << "CGP: Found local addrmode: " << AddrMode << "\n");
769 return false;
770 }
771
772 // Insert this computation right after this user. Since our caller is
773 // scanning from the top of the BB to the bottom, reuse of the expr are
774 // guaranteed to happen later.
775 BasicBlock::iterator InsertPt = LdStInst;
776
777 // Now that we determined the addressing expression we want to use and know
778 // that we have to sink it into this block. Check to see if we have already
779 // done this for some other load/store instr in this block. If so, reuse the
780 // computation.
781 Value *&SunkAddr = SunkAddrs[Addr];
782 if (SunkAddr) {
783 DEBUG(cerr << "CGP: Reusing nonlocal addrmode: " << AddrMode << "\n");
784 if (SunkAddr->getType() != Addr->getType())
785 SunkAddr = new BitCastInst(SunkAddr, Addr->getType(), "tmp", InsertPt);
786 } else {
787 DEBUG(cerr << "CGP: SINKING nonlocal addrmode: " << AddrMode << "\n");
788 const Type *IntPtrTy = TLI->getTargetData()->getIntPtrType();
789
790 Value *Result = 0;
791 // Start with the scale value.
792 if (AddrMode.Scale) {
793 Value *V = AddrMode.ScaledReg;
794 if (V->getType() == IntPtrTy) {
795 // done.
796 } else if (isa<PointerType>(V->getType())) {
797 V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt);
798 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
799 cast<IntegerType>(V->getType())->getBitWidth()) {
800 V = new TruncInst(V, IntPtrTy, "sunkaddr", InsertPt);
801 } else {
802 V = new SExtInst(V, IntPtrTy, "sunkaddr", InsertPt);
803 }
804 if (AddrMode.Scale != 1)
805 V = BinaryOperator::createMul(V, ConstantInt::get(IntPtrTy,
806 AddrMode.Scale),
807 "sunkaddr", InsertPt);
808 Result = V;
809 }
810
811 // Add in the base register.
812 if (AddrMode.BaseReg) {
813 Value *V = AddrMode.BaseReg;
814 if (V->getType() != IntPtrTy)
815 V = new PtrToIntInst(V, IntPtrTy, "sunkaddr", InsertPt);
816 if (Result)
817 Result = BinaryOperator::createAdd(Result, V, "sunkaddr", InsertPt);
818 else
819 Result = V;
820 }
821
822 // Add in the BaseGV if present.
823 if (AddrMode.BaseGV) {
824 Value *V = new PtrToIntInst(AddrMode.BaseGV, IntPtrTy, "sunkaddr",
825 InsertPt);
826 if (Result)
827 Result = BinaryOperator::createAdd(Result, V, "sunkaddr", InsertPt);
828 else
829 Result = V;
830 }
831
832 // Add in the Base Offset if present.
833 if (AddrMode.BaseOffs) {
834 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
835 if (Result)
836 Result = BinaryOperator::createAdd(Result, V, "sunkaddr", InsertPt);
837 else
838 Result = V;
839 }
840
841 if (Result == 0)
842 SunkAddr = Constant::getNullValue(Addr->getType());
843 else
844 SunkAddr = new IntToPtrInst(Result, Addr->getType(), "sunkaddr",InsertPt);
845 }
846
847 LdStInst->replaceUsesOfWith(Addr, SunkAddr);
848
849 if (Addr->use_empty())
850 EraseDeadInstructions(Addr);
851 return true;
852}
853
Chris Lattnerf2836d12007-03-31 04:06:36 +0000854// In this pass we look for GEP and cast instructions that are used
855// across basic blocks and rewrite them to improve basic-block-at-a-time
856// selection.
857bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) {
858 bool MadeChange = false;
859
860 // Split all critical edges where the dest block has a PHI and where the phi
861 // has shared immediate operands.
862 TerminatorInst *BBTI = BB.getTerminator();
863 if (BBTI->getNumSuccessors() > 1) {
864 for (unsigned i = 0, e = BBTI->getNumSuccessors(); i != e; ++i)
865 if (isa<PHINode>(BBTI->getSuccessor(i)->begin()) &&
866 isCriticalEdge(BBTI, i, true))
867 SplitEdgeNicely(BBTI, i, this);
868 }
869
870
Chris Lattnerfeee64e2007-04-13 20:30:56 +0000871 // Keep track of non-local addresses that have been sunk into this block.
872 // This allows us to avoid inserting duplicate code for blocks with multiple
873 // load/stores of the same address.
874 DenseMap<Value*, Value*> SunkAddrs;
875
Chris Lattnerf2836d12007-03-31 04:06:36 +0000876 for (BasicBlock::iterator BBI = BB.begin(), E = BB.end(); BBI != E; ) {
877 Instruction *I = BBI++;
878
Chris Lattnerfeee64e2007-04-13 20:30:56 +0000879 if (CastInst *CI = dyn_cast<CastInst>(I)) {
Chris Lattnerf2836d12007-03-31 04:06:36 +0000880 // If the source of the cast is a constant, then this should have
881 // already been constant folded. The only reason NOT to constant fold
882 // it is if something (e.g. LSR) was careful to place the constant
883 // evaluation in a block other than then one that uses it (e.g. to hoist
884 // the address of globals out of a loop). If this is the case, we don't
885 // want to forward-subst the cast.
886 if (isa<Constant>(CI->getOperand(0)))
887 continue;
888
Chris Lattnerf2836d12007-03-31 04:06:36 +0000889 if (TLI)
Chris Lattnerfeee64e2007-04-13 20:30:56 +0000890 MadeChange |= OptimizeNoopCopyExpression(CI, *TLI);
891 } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
892 if (TLI)
893 MadeChange |= OptimizeLoadStoreInst(I, I->getOperand(0), LI->getType(),
894 SunkAddrs);
895 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
896 if (TLI)
897 MadeChange |= OptimizeLoadStoreInst(I, SI->getOperand(1),
898 SI->getOperand(0)->getType(),
899 SunkAddrs);
900 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
Chris Lattner164b7652007-04-14 00:17:39 +0000901 if (GEPI->hasAllZeroIndices()) {
Chris Lattnerfeee64e2007-04-13 20:30:56 +0000902 /// The GEP operand must be a pointer, so must its result -> BitCast
903 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
904 GEPI->getName(), GEPI);
905 GEPI->replaceAllUsesWith(NC);
906 GEPI->eraseFromParent();
907 MadeChange = true;
908 BBI = NC;
909 }
910 } else if (CallInst *CI = dyn_cast<CallInst>(I)) {
911 // If we found an inline asm expession, and if the target knows how to
912 // lower it to normal LLVM code, do so now.
913 if (TLI && isa<InlineAsm>(CI->getCalledValue()))
914 if (const TargetAsmInfo *TAI =
915 TLI->getTargetMachine().getTargetAsmInfo()) {
916 if (TAI->ExpandInlineAsm(CI))
917 BBI = BB.begin();
918 }
Chris Lattnerf2836d12007-03-31 04:06:36 +0000919 }
920 }
Chris Lattnerfeee64e2007-04-13 20:30:56 +0000921
Chris Lattnerf2836d12007-03-31 04:06:36 +0000922 return MadeChange;
923}
924