Evan Cheng | d38c22b | 2006-05-11 23:55:42 +0000 | [diff] [blame^] | 1 | //===----- ScheduleDAGList.cpp - Reg pressure reduction list scheduler ----===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file was developed by Evan Cheng and is distributed under the |
| 6 | // University of Illinois Open Source License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This implements bottom-up and top-down register pressure reduction list |
| 11 | // schedulers, using standard algorithms. The basic approach uses a priority |
| 12 | // queue of available nodes to schedule. One at a time, nodes are taken from |
| 13 | // the priority queue (thus in priority order), checked for legality to |
| 14 | // schedule, and emitted if legal. |
| 15 | // |
| 16 | //===----------------------------------------------------------------------===// |
| 17 | |
| 18 | #define DEBUG_TYPE "sched" |
| 19 | #include "llvm/CodeGen/ScheduleDAG.h" |
| 20 | #include "llvm/CodeGen/SSARegMap.h" |
| 21 | #include "llvm/Target/MRegisterInfo.h" |
| 22 | #include "llvm/Target/TargetMachine.h" |
| 23 | #include "llvm/Target/TargetInstrInfo.h" |
| 24 | #include "llvm/Support/Debug.h" |
| 25 | #include "llvm/ADT/Statistic.h" |
| 26 | #include <climits> |
| 27 | #include <iostream> |
| 28 | #include <queue> |
| 29 | #include "llvm/Support/CommandLine.h" |
| 30 | using namespace llvm; |
| 31 | |
| 32 | namespace { |
| 33 | cl::opt<bool> SchedLowerDefNUse("sched-lower-defnuse", cl::Hidden); |
| 34 | } |
| 35 | |
| 36 | namespace { |
| 37 | //===----------------------------------------------------------------------===// |
| 38 | /// ScheduleDAGRRList - The actual register reduction list scheduler |
| 39 | /// implementation. This supports both top-down and bottom-up scheduling. |
| 40 | /// |
| 41 | |
| 42 | class ScheduleDAGRRList : public ScheduleDAG { |
| 43 | private: |
| 44 | /// isBottomUp - This is true if the scheduling problem is bottom-up, false if |
| 45 | /// it is top-down. |
| 46 | bool isBottomUp; |
| 47 | |
| 48 | /// AvailableQueue - The priority queue to use for the available SUnits. |
| 49 | /// |
| 50 | SchedulingPriorityQueue *AvailableQueue; |
| 51 | |
| 52 | public: |
| 53 | ScheduleDAGRRList(SelectionDAG &dag, MachineBasicBlock *bb, |
| 54 | const TargetMachine &tm, bool isbottomup, |
| 55 | SchedulingPriorityQueue *availqueue) |
| 56 | : ScheduleDAG(dag, bb, tm), isBottomUp(isbottomup), |
| 57 | AvailableQueue(availqueue) { |
| 58 | } |
| 59 | |
| 60 | ~ScheduleDAGRRList() { |
| 61 | delete AvailableQueue; |
| 62 | } |
| 63 | |
| 64 | void Schedule(); |
| 65 | |
| 66 | private: |
| 67 | void ReleasePred(SUnit *PredSU, bool isChain, unsigned CurCycle); |
| 68 | void ReleaseSucc(SUnit *SuccSU, bool isChain, unsigned CurCycle); |
| 69 | void ScheduleNodeBottomUp(SUnit *SU, unsigned& CurCycle); |
| 70 | void ScheduleNodeTopDown(SUnit *SU, unsigned& CurCycle); |
| 71 | void ListScheduleTopDown(); |
| 72 | void ListScheduleBottomUp(); |
| 73 | }; |
| 74 | } // end anonymous namespace |
| 75 | |
| 76 | |
| 77 | /// Schedule - Schedule the DAG using list scheduling. |
| 78 | void ScheduleDAGRRList::Schedule() { |
| 79 | DEBUG(std::cerr << "********** List Scheduling **********\n"); |
| 80 | |
| 81 | // Build scheduling units. |
| 82 | BuildSchedUnits(); |
| 83 | |
| 84 | CalculateDepths(); |
| 85 | CalculateHeights(); |
| 86 | DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) |
| 87 | SUnits[su].dumpAll(&DAG)); |
| 88 | |
| 89 | AvailableQueue->initNodes(SUnits); |
| 90 | |
| 91 | // Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate. |
| 92 | if (isBottomUp) |
| 93 | ListScheduleBottomUp(); |
| 94 | else |
| 95 | ListScheduleTopDown(); |
| 96 | |
| 97 | AvailableQueue->releaseState(); |
| 98 | |
| 99 | DEBUG(std::cerr << "*** Final schedule ***\n"); |
| 100 | DEBUG(dumpSchedule()); |
| 101 | DEBUG(std::cerr << "\n"); |
| 102 | |
| 103 | // Emit in scheduled order |
| 104 | EmitSchedule(); |
| 105 | } |
| 106 | |
| 107 | |
| 108 | //===----------------------------------------------------------------------===// |
| 109 | // Bottom-Up Scheduling |
| 110 | //===----------------------------------------------------------------------===// |
| 111 | |
| 112 | static const TargetRegisterClass *getRegClass(SUnit *SU, |
| 113 | const TargetInstrInfo *TII, |
| 114 | const MRegisterInfo *MRI, |
| 115 | SSARegMap *RegMap) { |
| 116 | if (SU->Node->isTargetOpcode()) { |
| 117 | unsigned Opc = SU->Node->getTargetOpcode(); |
| 118 | const TargetInstrDescriptor &II = TII->get(Opc); |
| 119 | return II.OpInfo->RegClass; |
| 120 | } else { |
| 121 | assert(SU->Node->getOpcode() == ISD::CopyFromReg); |
| 122 | unsigned SrcReg = cast<RegisterSDNode>(SU->Node->getOperand(1))->getReg(); |
| 123 | if (MRegisterInfo::isVirtualRegister(SrcReg)) |
| 124 | return RegMap->getRegClass(SrcReg); |
| 125 | else { |
| 126 | for (MRegisterInfo::regclass_iterator I = MRI->regclass_begin(), |
| 127 | E = MRI->regclass_end(); I != E; ++I) |
| 128 | if ((*I)->hasType(SU->Node->getValueType(0)) && |
| 129 | (*I)->contains(SrcReg)) |
| 130 | return *I; |
| 131 | assert(false && "Couldn't find register class for reg copy!"); |
| 132 | } |
| 133 | return NULL; |
| 134 | } |
| 135 | } |
| 136 | |
| 137 | static unsigned getNumResults(SUnit *SU) { |
| 138 | unsigned NumResults = 0; |
| 139 | for (unsigned i = 0, e = SU->Node->getNumValues(); i != e; ++i) { |
| 140 | MVT::ValueType VT = SU->Node->getValueType(i); |
| 141 | if (VT != MVT::Other && VT != MVT::Flag) |
| 142 | NumResults++; |
| 143 | } |
| 144 | return NumResults; |
| 145 | } |
| 146 | |
| 147 | /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to |
| 148 | /// the Available queue is the count reaches zero. Also update its cycle bound. |
| 149 | void ScheduleDAGRRList::ReleasePred(SUnit *PredSU, bool isChain, |
| 150 | unsigned CurCycle) { |
| 151 | // FIXME: the distance between two nodes is not always == the predecessor's |
| 152 | // latency. For example, the reader can very well read the register written |
| 153 | // by the predecessor later than the issue cycle. It also depends on the |
| 154 | // interrupt model (drain vs. freeze). |
| 155 | PredSU->CycleBound = std::max(PredSU->CycleBound, CurCycle + PredSU->Latency); |
| 156 | |
| 157 | if (!isChain) |
| 158 | PredSU->NumSuccsLeft--; |
| 159 | else |
| 160 | PredSU->NumChainSuccsLeft--; |
| 161 | |
| 162 | #ifndef NDEBUG |
| 163 | if (PredSU->NumSuccsLeft < 0 || PredSU->NumChainSuccsLeft < 0) { |
| 164 | std::cerr << "*** List scheduling failed! ***\n"; |
| 165 | PredSU->dump(&DAG); |
| 166 | std::cerr << " has been released too many times!\n"; |
| 167 | assert(0); |
| 168 | } |
| 169 | #endif |
| 170 | |
| 171 | if ((PredSU->NumSuccsLeft + PredSU->NumChainSuccsLeft) == 0) { |
| 172 | // EntryToken has to go last! Special case it here. |
| 173 | if (PredSU->Node->getOpcode() != ISD::EntryToken) { |
| 174 | PredSU->isAvailable = true; |
| 175 | AvailableQueue->push(PredSU); |
| 176 | } |
| 177 | } |
| 178 | } |
| 179 | |
| 180 | /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending |
| 181 | /// count of its predecessors. If a predecessor pending count is zero, add it to |
| 182 | /// the Available queue. |
| 183 | void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU, unsigned& CurCycle) { |
| 184 | DEBUG(std::cerr << "*** Scheduling [" << CurCycle << "]: "); |
| 185 | DEBUG(SU->dump(&DAG)); |
| 186 | SU->Cycle = CurCycle; |
| 187 | |
| 188 | AvailableQueue->ScheduledNode(SU); |
| 189 | Sequence.push_back(SU); |
| 190 | |
| 191 | // Bottom up: release predecessors |
| 192 | for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Preds.begin(), |
| 193 | E = SU->Preds.end(); I != E; ++I) |
| 194 | ReleasePred(I->first, I->second, CurCycle); |
| 195 | SU->isScheduled = true; |
| 196 | CurCycle++; |
| 197 | } |
| 198 | |
| 199 | /// isReady - True if node's lower cycle bound is less or equal to the current |
| 200 | /// scheduling cycle. Always true if all nodes have uniform latency 1. |
| 201 | static inline bool isReady(SUnit *SU, unsigned CurCycle) { |
| 202 | return SU->CycleBound <= CurCycle; |
| 203 | } |
| 204 | |
| 205 | /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up |
| 206 | /// schedulers. |
| 207 | void ScheduleDAGRRList::ListScheduleBottomUp() { |
| 208 | unsigned CurCycle = 0; |
| 209 | // Add root to Available queue. |
| 210 | AvailableQueue->push(SUnitMap[DAG.getRoot().Val]); |
| 211 | |
| 212 | // While Available queue is not empty, grab the node with the highest |
| 213 | // priority. If it is not ready put it back. Schedule the node. |
| 214 | std::vector<SUnit*> NotReady; |
| 215 | SUnit *CurNode = NULL; |
| 216 | while (!AvailableQueue->empty()) { |
| 217 | SUnit *CurNode = AvailableQueue->pop(); |
| 218 | while (!isReady(CurNode, CurCycle)) { |
| 219 | NotReady.push_back(CurNode); |
| 220 | CurNode = AvailableQueue->pop(); |
| 221 | } |
| 222 | |
| 223 | // Add the nodes that aren't ready back onto the available list. |
| 224 | AvailableQueue->push_all(NotReady); |
| 225 | NotReady.clear(); |
| 226 | |
| 227 | ScheduleNodeBottomUp(CurNode, CurCycle); |
| 228 | } |
| 229 | |
| 230 | // Add entry node last |
| 231 | if (DAG.getEntryNode().Val != DAG.getRoot().Val) { |
| 232 | SUnit *Entry = SUnitMap[DAG.getEntryNode().Val]; |
| 233 | Sequence.push_back(Entry); |
| 234 | } |
| 235 | |
| 236 | // Reverse the order if it is bottom up. |
| 237 | std::reverse(Sequence.begin(), Sequence.end()); |
| 238 | |
| 239 | |
| 240 | #ifndef NDEBUG |
| 241 | // Verify that all SUnits were scheduled. |
| 242 | bool AnyNotSched = false; |
| 243 | for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { |
| 244 | if (SUnits[i].NumSuccsLeft != 0 || SUnits[i].NumChainSuccsLeft != 0) { |
| 245 | if (!AnyNotSched) |
| 246 | std::cerr << "*** List scheduling failed! ***\n"; |
| 247 | SUnits[i].dump(&DAG); |
| 248 | std::cerr << "has not been scheduled!\n"; |
| 249 | AnyNotSched = true; |
| 250 | } |
| 251 | } |
| 252 | assert(!AnyNotSched); |
| 253 | #endif |
| 254 | } |
| 255 | |
| 256 | //===----------------------------------------------------------------------===// |
| 257 | // Top-Down Scheduling |
| 258 | //===----------------------------------------------------------------------===// |
| 259 | |
| 260 | /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to |
| 261 | /// the PendingQueue if the count reaches zero. |
| 262 | void ScheduleDAGRRList::ReleaseSucc(SUnit *SuccSU, bool isChain, |
| 263 | unsigned CurCycle) { |
| 264 | // FIXME: the distance between two nodes is not always == the predecessor's |
| 265 | // latency. For example, the reader can very well read the register written |
| 266 | // by the predecessor later than the issue cycle. It also depends on the |
| 267 | // interrupt model (drain vs. freeze). |
| 268 | SuccSU->CycleBound = std::max(SuccSU->CycleBound, CurCycle + SuccSU->Latency); |
| 269 | |
| 270 | if (!isChain) |
| 271 | SuccSU->NumPredsLeft--; |
| 272 | else |
| 273 | SuccSU->NumChainPredsLeft--; |
| 274 | |
| 275 | #ifndef NDEBUG |
| 276 | if (SuccSU->NumPredsLeft < 0 || SuccSU->NumChainPredsLeft < 0) { |
| 277 | std::cerr << "*** List scheduling failed! ***\n"; |
| 278 | SuccSU->dump(&DAG); |
| 279 | std::cerr << " has been released too many times!\n"; |
| 280 | assert(0); |
| 281 | } |
| 282 | #endif |
| 283 | |
| 284 | if ((SuccSU->NumPredsLeft + SuccSU->NumChainPredsLeft) == 0) { |
| 285 | SuccSU->isAvailable = true; |
| 286 | AvailableQueue->push(SuccSU); |
| 287 | } |
| 288 | } |
| 289 | |
| 290 | |
| 291 | /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending |
| 292 | /// count of its successors. If a successor pending count is zero, add it to |
| 293 | /// the Available queue. |
| 294 | void ScheduleDAGRRList::ScheduleNodeTopDown(SUnit *SU, unsigned& CurCycle) { |
| 295 | DEBUG(std::cerr << "*** Scheduling [" << CurCycle << "]: "); |
| 296 | DEBUG(SU->dump(&DAG)); |
| 297 | SU->Cycle = CurCycle; |
| 298 | |
| 299 | AvailableQueue->ScheduledNode(SU); |
| 300 | Sequence.push_back(SU); |
| 301 | |
| 302 | // Top down: release successors |
| 303 | for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Succs.begin(), |
| 304 | E = SU->Succs.end(); I != E; ++I) |
| 305 | ReleaseSucc(I->first, I->second, CurCycle); |
| 306 | SU->isScheduled = true; |
| 307 | CurCycle++; |
| 308 | } |
| 309 | |
| 310 | void ScheduleDAGRRList::ListScheduleTopDown() { |
| 311 | unsigned CurCycle = 0; |
| 312 | SUnit *Entry = SUnitMap[DAG.getEntryNode().Val]; |
| 313 | |
| 314 | // All leaves to Available queue. |
| 315 | for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { |
| 316 | // It is available if it has no predecessors. |
| 317 | if (SUnits[i].Preds.size() == 0 && &SUnits[i] != Entry) { |
| 318 | AvailableQueue->push(&SUnits[i]); |
| 319 | SUnits[i].isAvailable = true; |
| 320 | } |
| 321 | } |
| 322 | |
| 323 | // Emit the entry node first. |
| 324 | ScheduleNodeTopDown(Entry, CurCycle); |
| 325 | |
| 326 | // While Available queue is not empty, grab the node with the highest |
| 327 | // priority. If it is not ready put it back. Schedule the node. |
| 328 | std::vector<SUnit*> NotReady; |
| 329 | SUnit *CurNode = NULL; |
| 330 | while (!AvailableQueue->empty()) { |
| 331 | SUnit *CurNode = AvailableQueue->pop(); |
| 332 | while (!isReady(CurNode, CurCycle)) { |
| 333 | NotReady.push_back(CurNode); |
| 334 | CurNode = AvailableQueue->pop(); |
| 335 | } |
| 336 | |
| 337 | // Add the nodes that aren't ready back onto the available list. |
| 338 | AvailableQueue->push_all(NotReady); |
| 339 | NotReady.clear(); |
| 340 | |
| 341 | ScheduleNodeTopDown(CurNode, CurCycle); |
| 342 | } |
| 343 | |
| 344 | |
| 345 | #ifndef NDEBUG |
| 346 | // Verify that all SUnits were scheduled. |
| 347 | bool AnyNotSched = false; |
| 348 | for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { |
| 349 | if (!SUnits[i].isScheduled) { |
| 350 | if (!AnyNotSched) |
| 351 | std::cerr << "*** List scheduling failed! ***\n"; |
| 352 | SUnits[i].dump(&DAG); |
| 353 | std::cerr << "has not been scheduled!\n"; |
| 354 | AnyNotSched = true; |
| 355 | } |
| 356 | } |
| 357 | assert(!AnyNotSched); |
| 358 | #endif |
| 359 | } |
| 360 | |
| 361 | |
| 362 | |
| 363 | //===----------------------------------------------------------------------===// |
| 364 | // RegReductionPriorityQueue Implementation |
| 365 | //===----------------------------------------------------------------------===// |
| 366 | // |
| 367 | // This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers |
| 368 | // to reduce register pressure. |
| 369 | // |
| 370 | namespace { |
| 371 | template<class SF> |
| 372 | class RegReductionPriorityQueue; |
| 373 | |
| 374 | /// Sorting functions for the Available queue. |
| 375 | struct bu_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> { |
| 376 | RegReductionPriorityQueue<bu_ls_rr_sort> *SPQ; |
| 377 | bu_ls_rr_sort(RegReductionPriorityQueue<bu_ls_rr_sort> *spq) : SPQ(spq) {} |
| 378 | bu_ls_rr_sort(const bu_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {} |
| 379 | |
| 380 | bool operator()(const SUnit* left, const SUnit* right) const; |
| 381 | }; |
| 382 | |
| 383 | struct td_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> { |
| 384 | RegReductionPriorityQueue<td_ls_rr_sort> *SPQ; |
| 385 | td_ls_rr_sort(RegReductionPriorityQueue<td_ls_rr_sort> *spq) : SPQ(spq) {} |
| 386 | td_ls_rr_sort(const td_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {} |
| 387 | |
| 388 | bool operator()(const SUnit* left, const SUnit* right) const; |
| 389 | }; |
| 390 | } // end anonymous namespace |
| 391 | |
| 392 | namespace { |
| 393 | template<class SF> |
| 394 | class RegReductionPriorityQueue : public SchedulingPriorityQueue { |
| 395 | std::priority_queue<SUnit*, std::vector<SUnit*>, SF> Queue; |
| 396 | |
| 397 | public: |
| 398 | RegReductionPriorityQueue() : |
| 399 | Queue(SF(this)) {} |
| 400 | |
| 401 | virtual void initNodes(const std::vector<SUnit> &sunits) {} |
| 402 | virtual void releaseState() {} |
| 403 | |
| 404 | virtual int getSethiUllmanNumber(unsigned NodeNum) const { |
| 405 | return 0; |
| 406 | } |
| 407 | |
| 408 | bool empty() const { return Queue.empty(); } |
| 409 | |
| 410 | void push(SUnit *U) { |
| 411 | Queue.push(U); |
| 412 | } |
| 413 | void push_all(const std::vector<SUnit *> &Nodes) { |
| 414 | for (unsigned i = 0, e = Nodes.size(); i != e; ++i) |
| 415 | Queue.push(Nodes[i]); |
| 416 | } |
| 417 | |
| 418 | SUnit *pop() { |
| 419 | SUnit *V = Queue.top(); |
| 420 | Queue.pop(); |
| 421 | return V; |
| 422 | } |
| 423 | }; |
| 424 | |
| 425 | template<class SF> |
| 426 | class BURegReductionPriorityQueue : public RegReductionPriorityQueue<SF> { |
| 427 | // SUnits - The SUnits for the current graph. |
| 428 | const std::vector<SUnit> *SUnits; |
| 429 | |
| 430 | // SethiUllmanNumbers - The SethiUllman number for each node. |
| 431 | std::vector<int> SethiUllmanNumbers; |
| 432 | |
| 433 | public: |
| 434 | BURegReductionPriorityQueue() {} |
| 435 | |
| 436 | void initNodes(const std::vector<SUnit> &sunits) { |
| 437 | SUnits = &sunits; |
| 438 | // Add pseudo dependency edges for two-address nodes. |
| 439 | if (SchedLowerDefNUse) |
| 440 | AddPseudoTwoAddrDeps(); |
| 441 | // Calculate node priorities. |
| 442 | CalculatePriorities(); |
| 443 | } |
| 444 | |
| 445 | void releaseState() { |
| 446 | SUnits = 0; |
| 447 | SethiUllmanNumbers.clear(); |
| 448 | } |
| 449 | |
| 450 | int getSethiUllmanNumber(unsigned NodeNum) const { |
| 451 | assert(NodeNum < SethiUllmanNumbers.size()); |
| 452 | return SethiUllmanNumbers[NodeNum]; |
| 453 | } |
| 454 | |
| 455 | private: |
| 456 | void AddPseudoTwoAddrDeps(); |
| 457 | void CalculatePriorities(); |
| 458 | int CalcNodePriority(const SUnit *SU); |
| 459 | }; |
| 460 | |
| 461 | |
| 462 | template<class SF> |
| 463 | class TDRegReductionPriorityQueue : public RegReductionPriorityQueue<SF> { |
| 464 | // SUnits - The SUnits for the current graph. |
| 465 | const std::vector<SUnit> *SUnits; |
| 466 | |
| 467 | // SethiUllmanNumbers - The SethiUllman number for each node. |
| 468 | std::vector<int> SethiUllmanNumbers; |
| 469 | |
| 470 | public: |
| 471 | TDRegReductionPriorityQueue() {} |
| 472 | |
| 473 | void initNodes(const std::vector<SUnit> &sunits) { |
| 474 | SUnits = &sunits; |
| 475 | // Calculate node priorities. |
| 476 | CalculatePriorities(); |
| 477 | } |
| 478 | |
| 479 | void releaseState() { |
| 480 | SUnits = 0; |
| 481 | SethiUllmanNumbers.clear(); |
| 482 | } |
| 483 | |
| 484 | int getSethiUllmanNumber(unsigned NodeNum) const { |
| 485 | assert(NodeNum < SethiUllmanNumbers.size()); |
| 486 | return SethiUllmanNumbers[NodeNum]; |
| 487 | } |
| 488 | |
| 489 | private: |
| 490 | void CalculatePriorities(); |
| 491 | int CalcNodePriority(const SUnit *SU); |
| 492 | }; |
| 493 | } |
| 494 | |
| 495 | // Bottom up |
| 496 | bool bu_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const { |
| 497 | unsigned LeftNum = left->NodeNum; |
| 498 | unsigned RightNum = right->NodeNum; |
| 499 | bool LIsTarget = left->Node->isTargetOpcode(); |
| 500 | bool RIsTarget = right->Node->isTargetOpcode(); |
| 501 | int LPriority = SPQ->getSethiUllmanNumber(LeftNum); |
| 502 | int RPriority = SPQ->getSethiUllmanNumber(RightNum); |
| 503 | bool LIsFloater = LIsTarget && (LPriority == 1 || LPriority == 0); |
| 504 | bool RIsFloater = RIsTarget && (RPriority == 1 || RPriority == 0); |
| 505 | int LBonus = 0; |
| 506 | int RBonus = 0; |
| 507 | |
| 508 | // Schedule floaters (e.g. load from some constant address) and those nodes |
| 509 | // with a single predecessor each first. They maintain / reduce register |
| 510 | // pressure. |
| 511 | if (LIsFloater) |
| 512 | LBonus += 2; |
| 513 | if (RIsFloater) |
| 514 | RBonus += 2; |
| 515 | |
| 516 | if (!SchedLowerDefNUse) { |
| 517 | // Special tie breaker: if two nodes share a operand, the one that use it |
| 518 | // as a def&use operand is preferred. |
| 519 | if (LIsTarget && RIsTarget) { |
| 520 | if (left->isTwoAddress && !right->isTwoAddress) { |
| 521 | SDNode *DUNode = left->Node->getOperand(0).Val; |
| 522 | if (DUNode->isOperand(right->Node)) |
| 523 | LBonus += 2; |
| 524 | } |
| 525 | if (!left->isTwoAddress && right->isTwoAddress) { |
| 526 | SDNode *DUNode = right->Node->getOperand(0).Val; |
| 527 | if (DUNode->isOperand(left->Node)) |
| 528 | RBonus += 2; |
| 529 | } |
| 530 | } |
| 531 | } |
| 532 | |
| 533 | if (LPriority+LBonus < RPriority+RBonus) |
| 534 | return true; |
| 535 | else if (LPriority+LBonus == RPriority+RBonus) |
| 536 | if (left->NumPredsLeft > right->NumPredsLeft) |
| 537 | return true; |
| 538 | else if (left->NumPredsLeft+LBonus == right->NumPredsLeft+RBonus) |
| 539 | if (left->CycleBound > right->CycleBound) |
| 540 | return true; |
| 541 | return false; |
| 542 | } |
| 543 | |
| 544 | static inline bool isCopyFromLiveIn(const SUnit *SU) { |
| 545 | SDNode *N = SU->Node; |
| 546 | return N->getOpcode() == ISD::CopyFromReg && |
| 547 | N->getOperand(N->getNumOperands()-1).getValueType() != MVT::Flag; |
| 548 | } |
| 549 | |
| 550 | // FIXME: This is probably too slow! |
| 551 | static void isReachable(SUnit *SU, SUnit *TargetSU, |
| 552 | std::set<SUnit *> &Visited, bool &Reached) { |
| 553 | if (Reached) return; |
| 554 | if (SU == TargetSU) { |
| 555 | Reached = true; |
| 556 | return; |
| 557 | } |
| 558 | if (!Visited.insert(SU).second) return; |
| 559 | |
| 560 | for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Preds.begin(), |
| 561 | E = SU->Preds.end(); I != E; ++I) |
| 562 | isReachable(I->first, TargetSU, Visited, Reached); |
| 563 | } |
| 564 | |
| 565 | static bool isReachable(SUnit *SU, SUnit *TargetSU) { |
| 566 | std::set<SUnit *> Visited; |
| 567 | bool Reached = false; |
| 568 | isReachable(SU, TargetSU, Visited, Reached); |
| 569 | return Reached; |
| 570 | } |
| 571 | |
| 572 | static SUnit *getDefUsePredecessor(SUnit *SU) { |
| 573 | SDNode *DU = SU->Node->getOperand(0).Val; |
| 574 | for (std::set<std::pair<SUnit*, bool> >::iterator |
| 575 | I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { |
| 576 | if (I->second) continue; // ignore chain preds |
| 577 | SUnit *PredSU = I->first; |
| 578 | if (PredSU->Node == DU) |
| 579 | return PredSU; |
| 580 | } |
| 581 | |
| 582 | // Must be flagged. |
| 583 | return NULL; |
| 584 | } |
| 585 | |
| 586 | static bool canClobber(SUnit *SU, SUnit *Op) { |
| 587 | if (SU->isTwoAddress) |
| 588 | return Op == getDefUsePredecessor(SU); |
| 589 | return false; |
| 590 | } |
| 591 | |
| 592 | /// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses |
| 593 | /// it as a def&use operand. Add a pseudo control edge from it to the other |
| 594 | /// node (if it won't create a cycle) so the two-address one will be scheduled |
| 595 | /// first (lower in the schedule). |
| 596 | template<class SF> |
| 597 | void BURegReductionPriorityQueue<SF>::AddPseudoTwoAddrDeps() { |
| 598 | for (unsigned i = 0, e = SUnits->size(); i != e; ++i) { |
| 599 | SUnit *SU = (SUnit *)&((*SUnits)[i]); |
| 600 | SDNode *Node = SU->Node; |
| 601 | if (!Node->isTargetOpcode()) |
| 602 | continue; |
| 603 | |
| 604 | if (SU->isTwoAddress) { |
| 605 | unsigned Depth = SU->Node->getNodeDepth(); |
| 606 | SUnit *DUSU = getDefUsePredecessor(SU); |
| 607 | if (!DUSU) continue; |
| 608 | |
| 609 | for (std::set<std::pair<SUnit*, bool> >::iterator I = DUSU->Succs.begin(), |
| 610 | E = DUSU->Succs.end(); I != E; ++I) { |
| 611 | SUnit *SuccSU = I->first; |
| 612 | if (SuccSU != SU && !canClobber(SuccSU, DUSU)) { |
| 613 | if (SuccSU->Node->getNodeDepth() <= Depth+2 && |
| 614 | !isReachable(SuccSU, SU)) { |
| 615 | DEBUG(std::cerr << "Adding an edge from SU # " << SU->NodeNum |
| 616 | << " to SU #" << SuccSU->NodeNum << "\n"); |
| 617 | if (SU->Preds.insert(std::make_pair(SuccSU, true)).second) |
| 618 | SU->NumChainPredsLeft++; |
| 619 | if (SuccSU->Succs.insert(std::make_pair(SU, true)).second) |
| 620 | SuccSU->NumChainSuccsLeft++; |
| 621 | } |
| 622 | } |
| 623 | } |
| 624 | } |
| 625 | } |
| 626 | } |
| 627 | |
| 628 | /// CalcNodePriority - Priority is the Sethi Ullman number. |
| 629 | /// Smaller number is the higher priority. |
| 630 | template<class SF> |
| 631 | int BURegReductionPriorityQueue<SF>::CalcNodePriority(const SUnit *SU) { |
| 632 | int &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum]; |
| 633 | if (SethiUllmanNumber != 0) |
| 634 | return SethiUllmanNumber; |
| 635 | |
| 636 | unsigned Opc = SU->Node->getOpcode(); |
| 637 | if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg) |
| 638 | SethiUllmanNumber = INT_MAX - 10; |
| 639 | else if (SU->NumSuccsLeft == 0) |
| 640 | // If SU does not have a use, i.e. it doesn't produce a value that would |
| 641 | // be consumed (e.g. store), then it terminates a chain of computation. |
| 642 | // Give it a small SethiUllman number so it will be scheduled right before its |
| 643 | // predecessors that it doesn't lengthen their live ranges. |
| 644 | SethiUllmanNumber = INT_MIN + 10; |
| 645 | else if (SU->NumPredsLeft == 0 && |
| 646 | (Opc != ISD::CopyFromReg || isCopyFromLiveIn(SU))) |
| 647 | SethiUllmanNumber = 1; |
| 648 | else { |
| 649 | int Extra = 0; |
| 650 | for (std::set<std::pair<SUnit*, bool> >::const_iterator |
| 651 | I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { |
| 652 | if (I->second) continue; // ignore chain preds |
| 653 | SUnit *PredSU = I->first; |
| 654 | int PredSethiUllman = CalcNodePriority(PredSU); |
| 655 | if (PredSethiUllman > SethiUllmanNumber) { |
| 656 | SethiUllmanNumber = PredSethiUllman; |
| 657 | Extra = 0; |
| 658 | } else if (PredSethiUllman == SethiUllmanNumber && !I->second) |
| 659 | Extra++; |
| 660 | } |
| 661 | |
| 662 | SethiUllmanNumber += Extra; |
| 663 | } |
| 664 | |
| 665 | return SethiUllmanNumber; |
| 666 | } |
| 667 | |
| 668 | /// CalculatePriorities - Calculate priorities of all scheduling units. |
| 669 | template<class SF> |
| 670 | void BURegReductionPriorityQueue<SF>::CalculatePriorities() { |
| 671 | SethiUllmanNumbers.assign(SUnits->size(), 0); |
| 672 | |
| 673 | for (unsigned i = 0, e = SUnits->size(); i != e; ++i) |
| 674 | CalcNodePriority(&(*SUnits)[i]); |
| 675 | } |
| 676 | |
| 677 | static unsigned SumOfUnscheduledPredsOfSuccs(const SUnit *SU) { |
| 678 | unsigned Sum = 0; |
| 679 | for (std::set<std::pair<SUnit*, bool> >::const_iterator |
| 680 | I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) { |
| 681 | SUnit *SuccSU = I->first; |
| 682 | for (std::set<std::pair<SUnit*, bool> >::const_iterator |
| 683 | II = SuccSU->Preds.begin(), EE = SuccSU->Preds.end(); II != EE; ++II) { |
| 684 | SUnit *PredSU = II->first; |
| 685 | if (!PredSU->isScheduled) |
| 686 | Sum++; |
| 687 | } |
| 688 | } |
| 689 | |
| 690 | return Sum; |
| 691 | } |
| 692 | |
| 693 | |
| 694 | // Top down |
| 695 | bool td_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const { |
| 696 | unsigned LeftNum = left->NodeNum; |
| 697 | unsigned RightNum = right->NodeNum; |
| 698 | int LPriority = SPQ->getSethiUllmanNumber(LeftNum); |
| 699 | int RPriority = SPQ->getSethiUllmanNumber(RightNum); |
| 700 | bool LIsTarget = left->Node->isTargetOpcode(); |
| 701 | bool RIsTarget = right->Node->isTargetOpcode(); |
| 702 | bool LIsFloater = LIsTarget && left->NumPreds == 0; |
| 703 | bool RIsFloater = RIsTarget && right->NumPreds == 0; |
| 704 | unsigned LBonus = (SumOfUnscheduledPredsOfSuccs(left) == 1) ? 2 : 0; |
| 705 | unsigned RBonus = (SumOfUnscheduledPredsOfSuccs(right) == 1) ? 2 : 0; |
| 706 | |
| 707 | if (left->NumSuccs == 0 && right->NumSuccs != 0) |
| 708 | return false; |
| 709 | else if (left->NumSuccs != 0 && right->NumSuccs == 0) |
| 710 | return true; |
| 711 | |
| 712 | // Special tie breaker: if two nodes share a operand, the one that use it |
| 713 | // as a def&use operand is preferred. |
| 714 | if (LIsTarget && RIsTarget) { |
| 715 | if (left->isTwoAddress && !right->isTwoAddress) { |
| 716 | SDNode *DUNode = left->Node->getOperand(0).Val; |
| 717 | if (DUNode->isOperand(right->Node)) |
| 718 | RBonus += 2; |
| 719 | } |
| 720 | if (!left->isTwoAddress && right->isTwoAddress) { |
| 721 | SDNode *DUNode = right->Node->getOperand(0).Val; |
| 722 | if (DUNode->isOperand(left->Node)) |
| 723 | LBonus += 2; |
| 724 | } |
| 725 | } |
| 726 | if (LIsFloater) |
| 727 | LBonus -= 2; |
| 728 | if (RIsFloater) |
| 729 | RBonus -= 2; |
| 730 | if (left->NumSuccs == 1) |
| 731 | LBonus += 2; |
| 732 | if (right->NumSuccs == 1) |
| 733 | RBonus += 2; |
| 734 | |
| 735 | if (LPriority+LBonus < RPriority+RBonus) |
| 736 | return true; |
| 737 | else if (LPriority == RPriority) |
| 738 | if (left->Depth < right->Depth) |
| 739 | return true; |
| 740 | else if (left->Depth == right->Depth) |
| 741 | if (left->NumSuccsLeft > right->NumSuccsLeft) |
| 742 | return true; |
| 743 | else if (left->NumSuccsLeft == right->NumSuccsLeft) |
| 744 | if (left->CycleBound > right->CycleBound) |
| 745 | return true; |
| 746 | return false; |
| 747 | } |
| 748 | |
| 749 | /// CalcNodePriority - Priority is the Sethi Ullman number. |
| 750 | /// Smaller number is the higher priority. |
| 751 | template<class SF> |
| 752 | int TDRegReductionPriorityQueue<SF>::CalcNodePriority(const SUnit *SU) { |
| 753 | int &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum]; |
| 754 | if (SethiUllmanNumber != 0) |
| 755 | return SethiUllmanNumber; |
| 756 | |
| 757 | unsigned Opc = SU->Node->getOpcode(); |
| 758 | if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg) |
| 759 | SethiUllmanNumber = INT_MAX - 10; |
| 760 | else if (SU->NumSuccsLeft == 0) |
| 761 | // If SU does not have a use, i.e. it doesn't produce a value that would |
| 762 | // be consumed (e.g. store), then it terminates a chain of computation. |
| 763 | // Give it a small SethiUllman number so it will be scheduled right before its |
| 764 | // predecessors that it doesn't lengthen their live ranges. |
| 765 | SethiUllmanNumber = INT_MIN + 10; |
| 766 | else if (SU->NumPredsLeft == 0 && |
| 767 | (Opc != ISD::CopyFromReg || isCopyFromLiveIn(SU))) |
| 768 | SethiUllmanNumber = 1; |
| 769 | else { |
| 770 | int Extra = 0; |
| 771 | for (std::set<std::pair<SUnit*, bool> >::const_iterator |
| 772 | I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) { |
| 773 | if (I->second) continue; // ignore chain preds |
| 774 | SUnit *PredSU = I->first; |
| 775 | int PredSethiUllman = CalcNodePriority(PredSU); |
| 776 | if (PredSethiUllman > SethiUllmanNumber) { |
| 777 | SethiUllmanNumber = PredSethiUllman; |
| 778 | Extra = 0; |
| 779 | } else if (PredSethiUllman == SethiUllmanNumber && !I->second) |
| 780 | Extra++; |
| 781 | } |
| 782 | |
| 783 | SethiUllmanNumber += Extra; |
| 784 | } |
| 785 | |
| 786 | return SethiUllmanNumber; |
| 787 | } |
| 788 | |
| 789 | /// CalculatePriorities - Calculate priorities of all scheduling units. |
| 790 | template<class SF> |
| 791 | void TDRegReductionPriorityQueue<SF>::CalculatePriorities() { |
| 792 | SethiUllmanNumbers.assign(SUnits->size(), 0); |
| 793 | |
| 794 | for (unsigned i = 0, e = SUnits->size(); i != e; ++i) |
| 795 | CalcNodePriority(&(*SUnits)[i]); |
| 796 | } |
| 797 | |
| 798 | //===----------------------------------------------------------------------===// |
| 799 | // Public Constructor Functions |
| 800 | //===----------------------------------------------------------------------===// |
| 801 | |
| 802 | llvm::ScheduleDAG* llvm::createBURRListDAGScheduler(SelectionDAG &DAG, |
| 803 | MachineBasicBlock *BB) { |
| 804 | return new ScheduleDAGRRList(DAG, BB, DAG.getTarget(), true, |
| 805 | new BURegReductionPriorityQueue<bu_ls_rr_sort>()); |
| 806 | } |
| 807 | |
| 808 | llvm::ScheduleDAG* llvm::createTDRRListDAGScheduler(SelectionDAG &DAG, |
| 809 | MachineBasicBlock *BB) { |
| 810 | return new ScheduleDAGRRList(DAG, BB, DAG.getTarget(), false, |
| 811 | new TDRegReductionPriorityQueue<td_ls_rr_sort>()); |
| 812 | } |
| 813 | |