Chris Lattner | f5bd1b7 | 2003-10-05 19:27:59 +0000 | [diff] [blame] | 1 | char rcsid_table[] = "$Id$"; |
| 2 | |
| 3 | #include "b.h" |
| 4 | #include <string.h> |
| 5 | #include <stdio.h> |
| 6 | |
| 7 | static void growIndex_Map ARGS((Index_Map *)); |
| 8 | static Relevant newRelevant ARGS((void)); |
| 9 | static Dimension newDimension ARGS((Operator, int)); |
| 10 | static void GT_1 ARGS((Table)); |
| 11 | static void GT_2_0 ARGS((Table)); |
| 12 | static void GT_2_1 ARGS((Table)); |
| 13 | static void growTransition ARGS((Table, int)); |
| 14 | static Item_Set restrict ARGS((Dimension, Item_Set)); |
| 15 | static void addHP_1 ARGS((Table, Item_Set)); |
| 16 | static void addHP_2_0 ARGS((Table, Item_Set)); |
| 17 | static void addHP_2_1 ARGS((Table, Item_Set)); |
| 18 | static void addHyperPlane ARGS((Table, int, Item_Set)); |
| 19 | |
| 20 | static void |
| 21 | growIndex_Map(r) Index_Map *r; |
| 22 | { |
| 23 | Index_Map new; |
| 24 | |
| 25 | new.max_size = r->max_size + STATES_INCR; |
| 26 | new.class = (Item_Set*) zalloc(new.max_size * sizeof(Item_Set)); |
| 27 | assert(new.class); |
| 28 | memcpy(new.class, r->class, r->max_size * sizeof(Item_Set)); |
| 29 | zfree(r->class); |
| 30 | *r = new; |
| 31 | } |
| 32 | |
| 33 | static Relevant |
| 34 | newRelevant() |
| 35 | { |
| 36 | Relevant r = (Relevant) zalloc(max_nonterminal * sizeof(*r)); |
| 37 | return r; |
| 38 | } |
| 39 | |
| 40 | void |
| 41 | addRelevant(r, nt) Relevant r; NonTerminalNum nt; |
| 42 | { |
| 43 | int i; |
| 44 | |
| 45 | for (i = 0; r[i]; i++) { |
| 46 | if (r[i] == nt) { |
| 47 | break; |
| 48 | } |
| 49 | } |
| 50 | if (!r[i]) { |
| 51 | r[i] = nt; |
| 52 | } |
| 53 | } |
| 54 | |
| 55 | static Dimension |
| 56 | newDimension(op, index) Operator op; ArityNum index; |
| 57 | { |
| 58 | Dimension d; |
| 59 | List pl; |
| 60 | Relevant r; |
| 61 | |
| 62 | assert(op); |
| 63 | assert(index >= 0 && index < op->arity); |
| 64 | d = (Dimension) zalloc(sizeof(struct dimension)); |
| 65 | assert(d); |
| 66 | |
| 67 | r = d->relevant = newRelevant(); |
| 68 | for (pl = rules; pl; pl = pl->next) { |
| 69 | Rule pr = (Rule) pl->x; |
| 70 | if (pr->pat->op == op) { |
| 71 | addRelevant(r, pr->pat->children[index]->num); |
| 72 | } |
| 73 | } |
| 74 | |
| 75 | d->index_map.max_size = STATES_INCR; |
| 76 | d->index_map.class = (Item_Set*) |
| 77 | zalloc(d->index_map.max_size * sizeof(Item_Set)); |
| 78 | d->map = newMapping(DIM_MAP_SIZE); |
| 79 | d->max_size = TABLE_INCR; |
| 80 | |
| 81 | return d; |
| 82 | } |
| 83 | |
| 84 | Table |
| 85 | newTable(op) Operator op; |
| 86 | { |
| 87 | Table t; |
| 88 | int i, size; |
| 89 | |
| 90 | assert(op); |
| 91 | |
| 92 | t = (Table) zalloc(sizeof(struct table)); |
| 93 | assert(t); |
| 94 | |
| 95 | t->op = op; |
| 96 | |
| 97 | for (i = 0; i < op->arity; i++) { |
| 98 | t->dimen[i] = newDimension(op, i); |
| 99 | } |
| 100 | |
| 101 | size = 1; |
| 102 | for (i = 0; i < op->arity; i++) { |
| 103 | size *= t->dimen[i]->max_size; |
| 104 | } |
| 105 | t->transition = (Item_Set*) zalloc(size * sizeof(Item_Set)); |
| 106 | t->relevant = newRelevant(); |
| 107 | assert(t->transition); |
| 108 | |
| 109 | return t; |
| 110 | } |
| 111 | |
| 112 | static void |
| 113 | GT_1(t) Table t; |
| 114 | { |
| 115 | Item_Set *ts; |
| 116 | ItemSetNum oldsize = t->dimen[0]->max_size; |
| 117 | ItemSetNum newsize = t->dimen[0]->max_size + TABLE_INCR; |
| 118 | |
| 119 | t->dimen[0]->max_size = newsize; |
| 120 | |
| 121 | ts = (Item_Set*) zalloc(newsize * sizeof(Item_Set)); |
| 122 | assert(ts); |
| 123 | memcpy(ts, t->transition, oldsize * sizeof(Item_Set)); |
| 124 | zfree(t->transition); |
| 125 | t->transition = ts; |
| 126 | } |
| 127 | |
| 128 | static void |
| 129 | GT_2_0(t) Table t; |
| 130 | { |
| 131 | Item_Set *ts; |
| 132 | ItemSetNum oldsize = t->dimen[0]->max_size; |
| 133 | ItemSetNum newsize = t->dimen[0]->max_size + TABLE_INCR; |
| 134 | int size; |
| 135 | |
| 136 | t->dimen[0]->max_size = newsize; |
| 137 | |
| 138 | size = newsize * t->dimen[1]->max_size; |
| 139 | |
| 140 | ts = (Item_Set*) zalloc(size * sizeof(Item_Set)); |
| 141 | assert(ts); |
| 142 | memcpy(ts, t->transition, oldsize*t->dimen[1]->max_size * sizeof(Item_Set)); |
| 143 | zfree(t->transition); |
| 144 | t->transition = ts; |
| 145 | } |
| 146 | |
| 147 | static void |
| 148 | GT_2_1(t) Table t; |
| 149 | { |
| 150 | Item_Set *ts; |
| 151 | ItemSetNum oldsize = t->dimen[1]->max_size; |
| 152 | ItemSetNum newsize = t->dimen[1]->max_size + TABLE_INCR; |
| 153 | int size; |
| 154 | Item_Set *from; |
| 155 | Item_Set *to; |
| 156 | int i1, i2; |
| 157 | |
| 158 | t->dimen[1]->max_size = newsize; |
| 159 | |
| 160 | size = newsize * t->dimen[0]->max_size; |
| 161 | |
| 162 | ts = (Item_Set*) zalloc(size * sizeof(Item_Set)); |
| 163 | assert(ts); |
| 164 | |
| 165 | from = t->transition; |
| 166 | to = ts; |
| 167 | for (i1 = 0; i1 < t->dimen[0]->max_size; i1++) { |
| 168 | for (i2 = 0; i2 < oldsize; i2++) { |
| 169 | to[i2] = from[i2]; |
| 170 | } |
| 171 | to += newsize; |
| 172 | from += oldsize; |
| 173 | } |
| 174 | zfree(t->transition); |
| 175 | t->transition = ts; |
| 176 | } |
| 177 | |
| 178 | static void |
| 179 | growTransition(t, dim) Table t; ArityNum dim; |
| 180 | { |
| 181 | |
| 182 | assert(t); |
| 183 | assert(t->op); |
| 184 | assert(dim < t->op->arity); |
| 185 | |
| 186 | switch (t->op->arity) { |
| 187 | default: |
| 188 | assert(0); |
| 189 | break; |
| 190 | case 1: |
| 191 | GT_1(t); |
| 192 | return; |
| 193 | case 2: |
| 194 | switch (dim) { |
| 195 | default: |
| 196 | assert(0); |
| 197 | break; |
| 198 | case 0: |
| 199 | GT_2_0(t); |
| 200 | return; |
| 201 | case 1: |
| 202 | GT_2_1(t); |
| 203 | return; |
| 204 | } |
| 205 | } |
| 206 | } |
| 207 | |
| 208 | static Item_Set |
| 209 | restrict(d, ts) Dimension d; Item_Set ts; |
| 210 | { |
| 211 | DeltaCost base; |
| 212 | Item_Set r; |
| 213 | int found; |
| 214 | register Relevant r_ptr = d->relevant; |
| 215 | register Item *ts_current = ts->closed; |
| 216 | register Item *r_current; |
| 217 | register int i; |
| 218 | register int nt; |
| 219 | |
| 220 | ZEROCOST(base); |
| 221 | found = 0; |
| 222 | r = newItem_Set(d->relevant); |
| 223 | r_current = r->virgin; |
| 224 | for (i = 0; (nt = r_ptr[i]) != 0; i++) { |
| 225 | if (ts_current[nt].rule) { |
| 226 | r_current[nt].rule = &stub_rule; |
| 227 | if (!found) { |
| 228 | found = 1; |
| 229 | ASSIGNCOST(base, ts_current[nt].delta); |
| 230 | } else { |
| 231 | if (LESSCOST(ts_current[nt].delta, base)) { |
| 232 | ASSIGNCOST(base, ts_current[nt].delta); |
| 233 | } |
| 234 | } |
| 235 | } |
| 236 | } |
| 237 | |
| 238 | /* zero align */ |
| 239 | for (i = 0; (nt = r_ptr[i]) != 0; i++) { |
| 240 | if (r_current[nt].rule) { |
| 241 | ASSIGNCOST(r_current[nt].delta, ts_current[nt].delta); |
| 242 | MINUSCOST(r_current[nt].delta, base); |
| 243 | } |
| 244 | } |
| 245 | assert(!r->closed); |
| 246 | r->representative = ts; |
| 247 | return r; |
| 248 | } |
| 249 | |
| 250 | static void |
| 251 | addHP_1(t, ts) Table t; Item_Set ts; |
| 252 | { |
| 253 | List pl; |
| 254 | Item_Set e; |
| 255 | Item_Set tmp; |
| 256 | int new; |
| 257 | |
| 258 | e = newItem_Set(t->relevant); |
| 259 | assert(e); |
| 260 | e->kids[0] = ts->representative; |
| 261 | for (pl = t->rules; pl; pl = pl->next) { |
| 262 | Rule p = (Rule) pl->x; |
| 263 | if (t->op == p->pat->op && ts->virgin[p->pat->children[0]->num].rule) { |
| 264 | DeltaCost dc; |
| 265 | ASSIGNCOST(dc, ts->virgin[p->pat->children[0]->num].delta); |
| 266 | ADDCOST(dc, p->delta); |
| 267 | if (!e->virgin[p->lhs->num].rule || LESSCOST(dc, e->virgin[p->lhs->num].delta)) { |
| 268 | e->virgin[p->lhs->num].rule = p; |
| 269 | ASSIGNCOST(e->virgin[p->lhs->num].delta, dc); |
| 270 | e->op = t->op; |
| 271 | } |
| 272 | } |
| 273 | } |
| 274 | trim(e); |
| 275 | zero(e); |
| 276 | tmp = encode(globalMap, e, &new); |
| 277 | assert(ts->num < t->dimen[0]->map->max_size); |
| 278 | t->transition[ts->num] = tmp; |
| 279 | if (new) { |
| 280 | closure(e); |
| 281 | addQ(globalQ, tmp); |
| 282 | } else { |
| 283 | freeItem_Set(e); |
| 284 | } |
| 285 | } |
| 286 | |
| 287 | static void |
| 288 | addHP_2_0(t, ts) Table t; Item_Set ts; |
| 289 | { |
| 290 | List pl; |
| 291 | register Item_Set e; |
| 292 | Item_Set tmp; |
| 293 | int new; |
| 294 | int i2; |
| 295 | |
| 296 | assert(t->dimen[1]->map->count <= t->dimen[1]->map->max_size); |
| 297 | for (i2 = 0; i2 < t->dimen[1]->map->count; i2++) { |
| 298 | e = newItem_Set(t->relevant); |
| 299 | assert(e); |
| 300 | e->kids[0] = ts->representative; |
| 301 | e->kids[1] = t->dimen[1]->map->set[i2]->representative; |
| 302 | for (pl = t->rules; pl; pl = pl->next) { |
| 303 | register Rule p = (Rule) pl->x; |
| 304 | |
| 305 | if (t->op == p->pat->op |
| 306 | && ts->virgin[p->pat->children[0]->num].rule |
| 307 | && t->dimen[1]->map->set[i2]->virgin[p->pat->children[1]->num].rule){ |
| 308 | DeltaCost dc; |
| 309 | ASSIGNCOST(dc, p->delta); |
| 310 | ADDCOST(dc, ts->virgin[p->pat->children[0]->num].delta); |
| 311 | ADDCOST(dc, t->dimen[1]->map->set[i2]->virgin[p->pat->children[1]->num].delta); |
| 312 | |
| 313 | if (!e->virgin[p->lhs->num].rule || LESSCOST(dc, e->virgin[p->lhs->num].delta)) { |
| 314 | e->virgin[p->lhs->num].rule = p; |
| 315 | ASSIGNCOST(e->virgin[p->lhs->num].delta, dc); |
| 316 | e->op = t->op; |
| 317 | } |
| 318 | } |
| 319 | } |
| 320 | trim(e); |
| 321 | zero(e); |
| 322 | tmp = encode(globalMap, e, &new); |
| 323 | assert(ts->num < t->dimen[0]->map->max_size); |
| 324 | t->transition[ts->num * t->dimen[1]->max_size + i2] = tmp; |
| 325 | if (new) { |
| 326 | closure(e); |
| 327 | addQ(globalQ, tmp); |
| 328 | } else { |
| 329 | freeItem_Set(e); |
| 330 | } |
| 331 | } |
| 332 | } |
| 333 | |
| 334 | static void |
| 335 | addHP_2_1(t, ts) Table t; Item_Set ts; |
| 336 | { |
| 337 | List pl; |
| 338 | register Item_Set e; |
| 339 | Item_Set tmp; |
| 340 | int new; |
| 341 | int i1; |
| 342 | |
| 343 | assert(t->dimen[0]->map->count <= t->dimen[0]->map->max_size); |
| 344 | for (i1 = 0; i1 < t->dimen[0]->map->count; i1++) { |
| 345 | e = newItem_Set(t->relevant); |
| 346 | assert(e); |
| 347 | e->kids[0] = t->dimen[0]->map->set[i1]->representative; |
| 348 | e->kids[1] = ts->representative; |
| 349 | for (pl = t->rules; pl; pl = pl->next) { |
| 350 | register Rule p = (Rule) pl->x; |
| 351 | |
| 352 | if (t->op == p->pat->op |
| 353 | && ts->virgin[p->pat->children[1]->num].rule |
| 354 | && t->dimen[0]->map->set[i1]->virgin[p->pat->children[0]->num].rule){ |
| 355 | DeltaCost dc; |
| 356 | ASSIGNCOST(dc, p->delta ); |
| 357 | ADDCOST(dc, ts->virgin[p->pat->children[1]->num].delta); |
| 358 | ADDCOST(dc, t->dimen[0]->map->set[i1]->virgin[p->pat->children[0]->num].delta); |
| 359 | if (!e->virgin[p->lhs->num].rule || LESSCOST(dc, e->virgin[p->lhs->num].delta)) { |
| 360 | e->virgin[p->lhs->num].rule = p; |
| 361 | ASSIGNCOST(e->virgin[p->lhs->num].delta, dc); |
| 362 | e->op = t->op; |
| 363 | } |
| 364 | } |
| 365 | } |
| 366 | trim(e); |
| 367 | zero(e); |
| 368 | tmp = encode(globalMap, e, &new); |
| 369 | assert(ts->num < t->dimen[1]->map->max_size); |
| 370 | t->transition[i1 * t->dimen[1]->max_size + ts->num] = tmp; |
| 371 | if (new) { |
| 372 | closure(e); |
| 373 | addQ(globalQ, tmp); |
| 374 | } else { |
| 375 | freeItem_Set(e); |
| 376 | } |
| 377 | } |
| 378 | } |
| 379 | |
| 380 | static void |
| 381 | addHyperPlane(t, i, ts) Table t; ArityNum i; Item_Set ts; |
| 382 | { |
| 383 | switch (t->op->arity) { |
| 384 | default: |
| 385 | assert(0); |
| 386 | break; |
| 387 | case 1: |
| 388 | addHP_1(t, ts); |
| 389 | return; |
| 390 | case 2: |
| 391 | switch (i) { |
| 392 | default: |
| 393 | assert(0); |
| 394 | break; |
| 395 | case 0: |
| 396 | addHP_2_0(t, ts); |
| 397 | return; |
| 398 | case 1: |
| 399 | addHP_2_1(t, ts); |
| 400 | return; |
| 401 | } |
| 402 | } |
| 403 | } |
| 404 | |
| 405 | void |
| 406 | addToTable(t, ts) Table t; Item_Set ts; |
| 407 | { |
| 408 | ArityNum i; |
| 409 | |
| 410 | assert(t); |
| 411 | assert(ts); |
| 412 | assert(t->op); |
| 413 | |
| 414 | for (i = 0; i < t->op->arity; i++) { |
| 415 | Item_Set r; |
| 416 | Item_Set tmp; |
| 417 | int new; |
| 418 | |
| 419 | r = restrict(t->dimen[i], ts); |
| 420 | tmp = encode(t->dimen[i]->map, r, &new); |
| 421 | if (t->dimen[i]->index_map.max_size <= ts->num) { |
| 422 | growIndex_Map(&t->dimen[i]->index_map); |
| 423 | } |
| 424 | assert(ts->num < t->dimen[i]->index_map.max_size); |
| 425 | t->dimen[i]->index_map.class[ts->num] = tmp; |
| 426 | if (new) { |
| 427 | if (t->dimen[i]->max_size <= r->num) { |
| 428 | growTransition(t, i); |
| 429 | } |
| 430 | addHyperPlane(t, i, r); |
| 431 | } else { |
| 432 | freeItem_Set(r); |
| 433 | } |
| 434 | } |
| 435 | } |
| 436 | |
| 437 | Item_Set * |
| 438 | transLval(t, row, col) Table t; int row; int col; |
| 439 | { |
| 440 | switch (t->op->arity) { |
| 441 | case 0: |
| 442 | assert(row == 0); |
| 443 | assert(col == 0); |
| 444 | return t->transition; |
| 445 | case 1: |
| 446 | assert(col == 0); |
| 447 | return t->transition + row; |
| 448 | case 2: |
| 449 | return t->transition + row * t->dimen[1]->max_size + col; |
| 450 | default: |
| 451 | assert(0); |
| 452 | } |
| 453 | return 0; |
| 454 | } |
| 455 | |
| 456 | void |
| 457 | dumpRelevant(r) Relevant r; |
| 458 | { |
| 459 | for (; *r; r++) { |
| 460 | printf("%4d", *r); |
| 461 | } |
| 462 | } |
| 463 | |
| 464 | void |
| 465 | dumpIndex_Map(r) Index_Map *r; |
| 466 | { |
| 467 | int i; |
| 468 | |
| 469 | printf("BEGIN Index_Map: MaxSize (%d)\n", r->max_size); |
| 470 | for (i = 0; i < globalMap->count; i++) { |
| 471 | printf("\t#%d: -> %d\n", i, r->class[i]->num); |
| 472 | } |
| 473 | printf("END Index_Map:\n"); |
| 474 | } |
| 475 | |
| 476 | void |
| 477 | dumpDimension(d) Dimension d; |
| 478 | { |
| 479 | printf("BEGIN Dimension:\n"); |
| 480 | printf("Relevant: "); |
| 481 | dumpRelevant(d->relevant); |
| 482 | printf("\n"); |
| 483 | dumpIndex_Map(&d->index_map); |
| 484 | dumpMapping(d->map); |
| 485 | printf("MaxSize of dimension = %d\n", d->max_size); |
| 486 | printf("END Dimension\n"); |
| 487 | } |
| 488 | |
| 489 | void |
| 490 | dumpTable(t, full) Table t; int full; |
| 491 | { |
| 492 | int i; |
| 493 | |
| 494 | if (!t) { |
| 495 | printf("NO Table yet.\n"); |
| 496 | return; |
| 497 | } |
| 498 | printf("BEGIN Table:\n"); |
| 499 | if (full) { |
| 500 | dumpOperator(t->op, 0); |
| 501 | } |
| 502 | for (i = 0; i < t->op->arity; i++) { |
| 503 | printf("BEGIN dimension(%d)\n", i); |
| 504 | dumpDimension(t->dimen[i]); |
| 505 | printf("END dimension(%d)\n", i); |
| 506 | } |
| 507 | dumpTransition(t); |
| 508 | printf("END Table:\n"); |
| 509 | } |
| 510 | |
| 511 | void |
| 512 | dumpTransition(t) Table t; |
| 513 | { |
| 514 | int i,j; |
| 515 | |
| 516 | switch (t->op->arity) { |
| 517 | case 0: |
| 518 | printf("{ %d }", t->transition[0]->num); |
| 519 | break; |
| 520 | case 1: |
| 521 | printf("{"); |
| 522 | for (i = 0; i < t->dimen[0]->map->count; i++) { |
| 523 | if (i > 0) { |
| 524 | printf(","); |
| 525 | } |
| 526 | printf("%5d", t->transition[i]->num); |
| 527 | } |
| 528 | printf("}"); |
| 529 | break; |
| 530 | case 2: |
| 531 | printf("{"); |
| 532 | for (i = 0; i < t->dimen[0]->map->count; i++) { |
| 533 | if (i > 0) { |
| 534 | printf(","); |
| 535 | } |
| 536 | printf("\n"); |
| 537 | printf("{"); |
| 538 | for (j = 0; j < t->dimen[1]->map->count; j++) { |
| 539 | Item_Set *ts = transLval(t, i, j); |
| 540 | if (j > 0) { |
| 541 | printf(","); |
| 542 | } |
| 543 | printf("%5d", (*ts)->num); |
| 544 | } |
| 545 | printf("}"); |
| 546 | } |
| 547 | printf("\n}\n"); |
| 548 | break; |
| 549 | default: |
| 550 | assert(0); |
| 551 | } |
| 552 | } |