Ulrich Weigand | 5f613df | 2013-05-06 16:15:19 +0000 | [diff] [blame] | 1 | //===-- SystemZOperands.td - SystemZ instruction operands ----*- tblgen-*--===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | |
| 10 | //===----------------------------------------------------------------------===// |
| 11 | // Class definitions |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | class ImmediateAsmOperand<string name> |
| 15 | : AsmOperandClass { |
| 16 | let Name = name; |
| 17 | let RenderMethod = "addImmOperands"; |
| 18 | } |
| 19 | |
| 20 | // Constructs both a DAG pattern and instruction operand for an immediate |
| 21 | // of type VT. PRED returns true if a node is acceptable and XFORM returns |
| 22 | // the operand value associated with the node. ASMOP is the name of the |
| 23 | // associated asm operand, and also forms the basis of the asm print method. |
| 24 | class Immediate<ValueType vt, code pred, SDNodeXForm xform, string asmop> |
| 25 | : PatLeaf<(vt imm), pred, xform>, Operand<vt> { |
| 26 | let PrintMethod = "print"##asmop##"Operand"; |
| 27 | let ParserMatchClass = !cast<AsmOperandClass>(asmop); |
| 28 | } |
| 29 | |
| 30 | // Constructs both a DAG pattern and instruction operand for a PC-relative |
| 31 | // address with address size VT. SELF is the name of the operand. |
| 32 | class PCRelAddress<ValueType vt, string self> |
| 33 | : ComplexPattern<vt, 1, "selectPCRelAddress", [z_pcrel_wrapper]>, |
| 34 | Operand<vt> { |
| 35 | let MIOperandInfo = (ops !cast<Operand>(self)); |
| 36 | } |
| 37 | |
| 38 | // Constructs an AsmOperandClass for addressing mode FORMAT, treating the |
| 39 | // registers as having BITSIZE bits and displacements as having DISPSIZE bits. |
| 40 | class AddressAsmOperand<string format, string bitsize, string dispsize> |
| 41 | : AsmOperandClass { |
| 42 | let Name = format##bitsize##"Disp"##dispsize; |
| 43 | let ParserMethod = "parse"##format##bitsize; |
| 44 | let RenderMethod = "add"##format##"Operands"; |
| 45 | } |
| 46 | |
| 47 | // Constructs both a DAG pattern and instruction operand for an addressing mode. |
Richard Sandiford | d454ec0 | 2013-05-14 09:28:21 +0000 | [diff] [blame^] | 48 | // The mode is selected by custom code in select<TYPE><DISPSIZE><SUFFIX>() |
| 49 | // and encoded by custom code in get<FORMAT><DISPSIZE>Encoding(). |
| 50 | // The address registers have BITSIZE bits and displacements have |
| 51 | // DISPSIZE bits. NUMOPS is the number of operands that make up an |
| 52 | // address and OPERANDS lists the types of those operands using (ops ...). |
| 53 | // FORMAT is the type of addressing mode, which needs to match the names |
| 54 | // used in AddressAsmOperand. |
Ulrich Weigand | 5f613df | 2013-05-06 16:15:19 +0000 | [diff] [blame] | 55 | class AddressingMode<string type, string bitsize, string dispsize, |
| 56 | string suffix, int numops, string format, dag operands> |
| 57 | : ComplexPattern<!cast<ValueType>("i"##bitsize), numops, |
| 58 | "select"##type##dispsize##suffix, |
| 59 | [add, sub, or, frameindex, z_adjdynalloc]>, |
| 60 | Operand<!cast<ValueType>("i"##bitsize)> { |
| 61 | let PrintMethod = "print"##format##"Operand"; |
Richard Sandiford | d454ec0 | 2013-05-14 09:28:21 +0000 | [diff] [blame^] | 62 | let EncoderMethod = "get"##format##dispsize##"Encoding"; |
Ulrich Weigand | 5f613df | 2013-05-06 16:15:19 +0000 | [diff] [blame] | 63 | let MIOperandInfo = operands; |
| 64 | let ParserMatchClass = |
| 65 | !cast<AddressAsmOperand>(format##bitsize##"Disp"##dispsize); |
| 66 | } |
| 67 | |
| 68 | // An addressing mode with a base and displacement but no index. |
| 69 | class BDMode<string type, string bitsize, string dispsize, string suffix> |
| 70 | : AddressingMode<type, bitsize, dispsize, suffix, 2, "BDAddr", |
| 71 | (ops !cast<RegisterOperand>("ADDR"##bitsize), |
| 72 | !cast<Immediate>("disp"##dispsize##"imm"##bitsize))>; |
| 73 | |
| 74 | // An addressing mode with a base, displacement and index. |
| 75 | class BDXMode<string type, string bitsize, string dispsize, string suffix> |
| 76 | : AddressingMode<type, bitsize, dispsize, suffix, 3, "BDXAddr", |
| 77 | (ops !cast<RegisterOperand>("ADDR"##bitsize), |
| 78 | !cast<Immediate>("disp"##dispsize##"imm"##bitsize), |
| 79 | !cast<RegisterOperand>("ADDR"##bitsize))>; |
| 80 | |
| 81 | //===----------------------------------------------------------------------===// |
| 82 | // Extracting immediate operands from nodes |
| 83 | // These all create MVT::i64 nodes to ensure the value is not sign-extended |
| 84 | // when converted from an SDNode to a MachineOperand later on. |
| 85 | //===----------------------------------------------------------------------===// |
| 86 | |
| 87 | // Bits 0-15 (counting from the lsb). |
| 88 | def LL16 : SDNodeXForm<imm, [{ |
| 89 | uint64_t Value = N->getZExtValue() & 0x000000000000FFFFULL; |
| 90 | return CurDAG->getTargetConstant(Value, MVT::i64); |
| 91 | }]>; |
| 92 | |
| 93 | // Bits 16-31 (counting from the lsb). |
| 94 | def LH16 : SDNodeXForm<imm, [{ |
| 95 | uint64_t Value = (N->getZExtValue() & 0x00000000FFFF0000ULL) >> 16; |
| 96 | return CurDAG->getTargetConstant(Value, MVT::i64); |
| 97 | }]>; |
| 98 | |
| 99 | // Bits 32-47 (counting from the lsb). |
| 100 | def HL16 : SDNodeXForm<imm, [{ |
| 101 | uint64_t Value = (N->getZExtValue() & 0x0000FFFF00000000ULL) >> 32; |
| 102 | return CurDAG->getTargetConstant(Value, MVT::i64); |
| 103 | }]>; |
| 104 | |
| 105 | // Bits 48-63 (counting from the lsb). |
| 106 | def HH16 : SDNodeXForm<imm, [{ |
| 107 | uint64_t Value = (N->getZExtValue() & 0xFFFF000000000000ULL) >> 48; |
| 108 | return CurDAG->getTargetConstant(Value, MVT::i64); |
| 109 | }]>; |
| 110 | |
| 111 | // Low 32 bits. |
| 112 | def LF32 : SDNodeXForm<imm, [{ |
| 113 | uint64_t Value = N->getZExtValue() & 0x00000000FFFFFFFFULL; |
| 114 | return CurDAG->getTargetConstant(Value, MVT::i64); |
| 115 | }]>; |
| 116 | |
| 117 | // High 32 bits. |
| 118 | def HF32 : SDNodeXForm<imm, [{ |
| 119 | uint64_t Value = N->getZExtValue() >> 32; |
| 120 | return CurDAG->getTargetConstant(Value, MVT::i64); |
| 121 | }]>; |
| 122 | |
| 123 | // Truncate an immediate to a 8-bit signed quantity. |
| 124 | def SIMM8 : SDNodeXForm<imm, [{ |
| 125 | return CurDAG->getTargetConstant(int8_t(N->getZExtValue()), MVT::i64); |
| 126 | }]>; |
| 127 | |
| 128 | // Truncate an immediate to a 8-bit unsigned quantity. |
| 129 | def UIMM8 : SDNodeXForm<imm, [{ |
| 130 | return CurDAG->getTargetConstant(uint8_t(N->getZExtValue()), MVT::i64); |
| 131 | }]>; |
| 132 | |
| 133 | // Truncate an immediate to a 16-bit signed quantity. |
| 134 | def SIMM16 : SDNodeXForm<imm, [{ |
| 135 | return CurDAG->getTargetConstant(int16_t(N->getZExtValue()), MVT::i64); |
| 136 | }]>; |
| 137 | |
| 138 | // Truncate an immediate to a 16-bit unsigned quantity. |
| 139 | def UIMM16 : SDNodeXForm<imm, [{ |
| 140 | return CurDAG->getTargetConstant(uint16_t(N->getZExtValue()), MVT::i64); |
| 141 | }]>; |
| 142 | |
| 143 | // Truncate an immediate to a 32-bit signed quantity. |
| 144 | def SIMM32 : SDNodeXForm<imm, [{ |
| 145 | return CurDAG->getTargetConstant(int32_t(N->getZExtValue()), MVT::i64); |
| 146 | }]>; |
| 147 | |
| 148 | // Truncate an immediate to a 32-bit unsigned quantity. |
| 149 | def UIMM32 : SDNodeXForm<imm, [{ |
| 150 | return CurDAG->getTargetConstant(uint32_t(N->getZExtValue()), MVT::i64); |
| 151 | }]>; |
| 152 | |
| 153 | // Negate and then truncate an immediate to a 32-bit unsigned quantity. |
| 154 | def NEGIMM32 : SDNodeXForm<imm, [{ |
| 155 | return CurDAG->getTargetConstant(uint32_t(-N->getZExtValue()), MVT::i64); |
| 156 | }]>; |
| 157 | |
| 158 | //===----------------------------------------------------------------------===// |
| 159 | // Immediate asm operands. |
| 160 | //===----------------------------------------------------------------------===// |
| 161 | |
| 162 | def U4Imm : ImmediateAsmOperand<"U4Imm">; |
| 163 | def U6Imm : ImmediateAsmOperand<"U6Imm">; |
| 164 | def S8Imm : ImmediateAsmOperand<"S8Imm">; |
| 165 | def U8Imm : ImmediateAsmOperand<"U8Imm">; |
| 166 | def S16Imm : ImmediateAsmOperand<"S16Imm">; |
| 167 | def U16Imm : ImmediateAsmOperand<"U16Imm">; |
| 168 | def S32Imm : ImmediateAsmOperand<"S32Imm">; |
| 169 | def U32Imm : ImmediateAsmOperand<"U32Imm">; |
| 170 | |
| 171 | //===----------------------------------------------------------------------===// |
| 172 | // 8-bit immediates |
| 173 | //===----------------------------------------------------------------------===// |
| 174 | |
| 175 | def uimm8zx4 : Immediate<i8, [{ |
| 176 | return isUInt<4>(N->getZExtValue()); |
| 177 | }], NOOP_SDNodeXForm, "U4Imm">; |
| 178 | |
| 179 | def uimm8zx6 : Immediate<i8, [{ |
| 180 | return isUInt<6>(N->getZExtValue()); |
| 181 | }], NOOP_SDNodeXForm, "U6Imm">; |
| 182 | |
| 183 | def simm8 : Immediate<i8, [{}], SIMM8, "S8Imm">; |
| 184 | def uimm8 : Immediate<i8, [{}], UIMM8, "U8Imm">; |
| 185 | |
| 186 | //===----------------------------------------------------------------------===// |
| 187 | // i32 immediates |
| 188 | //===----------------------------------------------------------------------===// |
| 189 | |
| 190 | // Immediates for the lower and upper 16 bits of an i32, with the other |
| 191 | // bits of the i32 being zero. |
| 192 | def imm32ll16 : Immediate<i32, [{ |
| 193 | return SystemZ::isImmLL(N->getZExtValue()); |
| 194 | }], LL16, "U16Imm">; |
| 195 | |
| 196 | def imm32lh16 : Immediate<i32, [{ |
| 197 | return SystemZ::isImmLH(N->getZExtValue()); |
| 198 | }], LH16, "U16Imm">; |
| 199 | |
| 200 | // Immediates for the lower and upper 16 bits of an i32, with the other |
| 201 | // bits of the i32 being one. |
| 202 | def imm32ll16c : Immediate<i32, [{ |
| 203 | return SystemZ::isImmLL(uint32_t(~N->getZExtValue())); |
| 204 | }], LL16, "U16Imm">; |
| 205 | |
| 206 | def imm32lh16c : Immediate<i32, [{ |
| 207 | return SystemZ::isImmLH(uint32_t(~N->getZExtValue())); |
| 208 | }], LH16, "U16Imm">; |
| 209 | |
| 210 | // Short immediates |
| 211 | def imm32sx8 : Immediate<i32, [{ |
| 212 | return isInt<8>(N->getSExtValue()); |
| 213 | }], SIMM8, "S8Imm">; |
| 214 | |
| 215 | def imm32zx8 : Immediate<i32, [{ |
| 216 | return isUInt<8>(N->getZExtValue()); |
| 217 | }], UIMM8, "U8Imm">; |
| 218 | |
| 219 | def imm32zx8trunc : Immediate<i32, [{}], UIMM8, "U8Imm">; |
| 220 | |
| 221 | def imm32sx16 : Immediate<i32, [{ |
| 222 | return isInt<16>(N->getSExtValue()); |
| 223 | }], SIMM16, "S16Imm">; |
| 224 | |
| 225 | def imm32zx16 : Immediate<i32, [{ |
| 226 | return isUInt<16>(N->getZExtValue()); |
| 227 | }], UIMM16, "U16Imm">; |
| 228 | |
| 229 | def imm32sx16trunc : Immediate<i32, [{}], SIMM16, "S16Imm">; |
| 230 | |
| 231 | // Full 32-bit immediates. we need both signed and unsigned versions |
| 232 | // because the assembler is picky. E.g. AFI requires signed operands |
| 233 | // while NILF requires unsigned ones. |
| 234 | def simm32 : Immediate<i32, [{}], SIMM32, "S32Imm">; |
| 235 | def uimm32 : Immediate<i32, [{}], UIMM32, "U32Imm">; |
| 236 | |
| 237 | def imm32 : ImmLeaf<i32, [{}]>; |
| 238 | |
| 239 | //===----------------------------------------------------------------------===// |
| 240 | // 64-bit immediates |
| 241 | //===----------------------------------------------------------------------===// |
| 242 | |
| 243 | // Immediates for 16-bit chunks of an i64, with the other bits of the |
| 244 | // i32 being zero. |
| 245 | def imm64ll16 : Immediate<i64, [{ |
| 246 | return SystemZ::isImmLL(N->getZExtValue()); |
| 247 | }], LL16, "U16Imm">; |
| 248 | |
| 249 | def imm64lh16 : Immediate<i64, [{ |
| 250 | return SystemZ::isImmLH(N->getZExtValue()); |
| 251 | }], LH16, "U16Imm">; |
| 252 | |
| 253 | def imm64hl16 : Immediate<i64, [{ |
| 254 | return SystemZ::isImmHL(N->getZExtValue()); |
| 255 | }], HL16, "U16Imm">; |
| 256 | |
| 257 | def imm64hh16 : Immediate<i64, [{ |
| 258 | return SystemZ::isImmHH(N->getZExtValue()); |
| 259 | }], HH16, "U16Imm">; |
| 260 | |
| 261 | // Immediates for 16-bit chunks of an i64, with the other bits of the |
| 262 | // i32 being one. |
| 263 | def imm64ll16c : Immediate<i64, [{ |
| 264 | return SystemZ::isImmLL(uint64_t(~N->getZExtValue())); |
| 265 | }], LL16, "U16Imm">; |
| 266 | |
| 267 | def imm64lh16c : Immediate<i64, [{ |
| 268 | return SystemZ::isImmLH(uint64_t(~N->getZExtValue())); |
| 269 | }], LH16, "U16Imm">; |
| 270 | |
| 271 | def imm64hl16c : Immediate<i64, [{ |
| 272 | return SystemZ::isImmHL(uint64_t(~N->getZExtValue())); |
| 273 | }], HL16, "U16Imm">; |
| 274 | |
| 275 | def imm64hh16c : Immediate<i64, [{ |
| 276 | return SystemZ::isImmHH(uint64_t(~N->getZExtValue())); |
| 277 | }], HH16, "U16Imm">; |
| 278 | |
| 279 | // Immediates for the lower and upper 32 bits of an i64, with the other |
| 280 | // bits of the i32 being zero. |
| 281 | def imm64lf32 : Immediate<i64, [{ |
| 282 | return SystemZ::isImmLF(N->getZExtValue()); |
| 283 | }], LF32, "U32Imm">; |
| 284 | |
| 285 | def imm64hf32 : Immediate<i64, [{ |
| 286 | return SystemZ::isImmHF(N->getZExtValue()); |
| 287 | }], HF32, "U32Imm">; |
| 288 | |
| 289 | // Immediates for the lower and upper 32 bits of an i64, with the other |
| 290 | // bits of the i32 being one. |
| 291 | def imm64lf32c : Immediate<i64, [{ |
| 292 | return SystemZ::isImmLF(uint64_t(~N->getZExtValue())); |
| 293 | }], LF32, "U32Imm">; |
| 294 | |
| 295 | def imm64hf32c : Immediate<i64, [{ |
| 296 | return SystemZ::isImmHF(uint64_t(~N->getZExtValue())); |
| 297 | }], HF32, "U32Imm">; |
| 298 | |
| 299 | // Short immediates. |
| 300 | def imm64sx8 : Immediate<i64, [{ |
| 301 | return isInt<8>(N->getSExtValue()); |
| 302 | }], SIMM8, "S8Imm">; |
| 303 | |
| 304 | def imm64sx16 : Immediate<i64, [{ |
| 305 | return isInt<16>(N->getSExtValue()); |
| 306 | }], SIMM16, "S16Imm">; |
| 307 | |
| 308 | def imm64zx16 : Immediate<i64, [{ |
| 309 | return isUInt<16>(N->getZExtValue()); |
| 310 | }], UIMM16, "U16Imm">; |
| 311 | |
| 312 | def imm64sx32 : Immediate<i64, [{ |
| 313 | return isInt<32>(N->getSExtValue()); |
| 314 | }], SIMM32, "S32Imm">; |
| 315 | |
| 316 | def imm64zx32 : Immediate<i64, [{ |
| 317 | return isUInt<32>(N->getZExtValue()); |
| 318 | }], UIMM32, "U32Imm">; |
| 319 | |
| 320 | def imm64zx32n : Immediate<i64, [{ |
| 321 | return isUInt<32>(-N->getSExtValue()); |
| 322 | }], NEGIMM32, "U32Imm">; |
| 323 | |
| 324 | def imm64 : ImmLeaf<i64, [{}]>; |
| 325 | |
| 326 | //===----------------------------------------------------------------------===// |
| 327 | // Floating-point immediates |
| 328 | //===----------------------------------------------------------------------===// |
| 329 | |
| 330 | // Floating-point zero. |
| 331 | def fpimm0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+0.0); }]>; |
| 332 | |
| 333 | // Floating point negative zero. |
| 334 | def fpimmneg0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(-0.0); }]>; |
| 335 | |
| 336 | //===----------------------------------------------------------------------===// |
| 337 | // Symbolic address operands |
| 338 | //===----------------------------------------------------------------------===// |
| 339 | |
| 340 | // PC-relative offsets of a basic block. The offset is sign-extended |
| 341 | // and multiplied by 2. |
| 342 | def brtarget16 : Operand<OtherVT> { |
| 343 | let EncoderMethod = "getPC16DBLEncoding"; |
| 344 | } |
| 345 | def brtarget32 : Operand<OtherVT> { |
| 346 | let EncoderMethod = "getPC32DBLEncoding"; |
| 347 | } |
| 348 | |
| 349 | // A PC-relative offset of a global value. The offset is sign-extended |
| 350 | // and multiplied by 2. |
| 351 | def pcrel32 : PCRelAddress<i64, "pcrel32"> { |
| 352 | let EncoderMethod = "getPC32DBLEncoding"; |
| 353 | } |
| 354 | |
| 355 | // A PC-relative offset of a global value when the value is used as a |
| 356 | // call target. The offset is sign-extended and multiplied by 2. |
| 357 | def pcrel16call : PCRelAddress<i64, "pcrel16call"> { |
| 358 | let PrintMethod = "printCallOperand"; |
| 359 | let EncoderMethod = "getPLT16DBLEncoding"; |
| 360 | } |
| 361 | def pcrel32call : PCRelAddress<i64, "pcrel32call"> { |
| 362 | let PrintMethod = "printCallOperand"; |
| 363 | let EncoderMethod = "getPLT32DBLEncoding"; |
| 364 | } |
| 365 | |
| 366 | //===----------------------------------------------------------------------===// |
| 367 | // Addressing modes |
| 368 | //===----------------------------------------------------------------------===// |
| 369 | |
| 370 | // 12-bit displacement operands. |
| 371 | def disp12imm32 : Operand<i32>; |
| 372 | def disp12imm64 : Operand<i64>; |
| 373 | |
| 374 | // 20-bit displacement operands. |
| 375 | def disp20imm32 : Operand<i32>; |
| 376 | def disp20imm64 : Operand<i64>; |
| 377 | |
| 378 | def BDAddr32Disp12 : AddressAsmOperand<"BDAddr", "32", "12">; |
| 379 | def BDAddr32Disp20 : AddressAsmOperand<"BDAddr", "32", "20">; |
| 380 | def BDAddr64Disp12 : AddressAsmOperand<"BDAddr", "64", "12">; |
| 381 | def BDAddr64Disp20 : AddressAsmOperand<"BDAddr", "64", "20">; |
| 382 | def BDXAddr64Disp12 : AddressAsmOperand<"BDXAddr", "64", "12">; |
| 383 | def BDXAddr64Disp20 : AddressAsmOperand<"BDXAddr", "64", "20">; |
| 384 | |
| 385 | // DAG patterns and operands for addressing modes. Each mode has |
| 386 | // the form <type><range><group> where: |
| 387 | // |
| 388 | // <type> is one of: |
| 389 | // shift : base + displacement (32-bit) |
| 390 | // bdaddr : base + displacement |
| 391 | // bdxaddr : base + displacement + index |
| 392 | // laaddr : like bdxaddr, but used for Load Address operations |
| 393 | // dynalloc : base + displacement + index + ADJDYNALLOC |
| 394 | // |
| 395 | // <range> is one of: |
| 396 | // 12 : the displacement is an unsigned 12-bit value |
| 397 | // 20 : the displacement is a signed 20-bit value |
| 398 | // |
| 399 | // <group> is one of: |
| 400 | // pair : used when there is an equivalent instruction with the opposite |
| 401 | // range value (12 or 20) |
| 402 | // only : used when there is no equivalent instruction with the opposite |
| 403 | // range value |
| 404 | def shift12only : BDMode <"BDAddr", "32", "12", "Only">; |
| 405 | def shift20only : BDMode <"BDAddr", "32", "20", "Only">; |
| 406 | def bdaddr12only : BDMode <"BDAddr", "64", "12", "Only">; |
| 407 | def bdaddr12pair : BDMode <"BDAddr", "64", "12", "Pair">; |
| 408 | def bdaddr20only : BDMode <"BDAddr", "64", "20", "Only">; |
| 409 | def bdaddr20pair : BDMode <"BDAddr", "64", "20", "Pair">; |
| 410 | def bdxaddr12only : BDXMode<"BDXAddr", "64", "12", "Only">; |
| 411 | def bdxaddr12pair : BDXMode<"BDXAddr", "64", "12", "Pair">; |
| 412 | def bdxaddr20only : BDXMode<"BDXAddr", "64", "20", "Only">; |
| 413 | def bdxaddr20only128 : BDXMode<"BDXAddr", "64", "20", "Only128">; |
| 414 | def bdxaddr20pair : BDXMode<"BDXAddr", "64", "20", "Pair">; |
| 415 | def dynalloc12only : BDXMode<"DynAlloc", "64", "12", "Only">; |
| 416 | def laaddr12pair : BDXMode<"LAAddr", "64", "12", "Pair">; |
| 417 | def laaddr20pair : BDXMode<"LAAddr", "64", "20", "Pair">; |
| 418 | |
| 419 | //===----------------------------------------------------------------------===// |
| 420 | // Miscellaneous |
| 421 | //===----------------------------------------------------------------------===// |
| 422 | |
| 423 | // Access registers. At present we just use them for accessing the thread |
| 424 | // pointer, so we don't expose them as register to LLVM. |
| 425 | def AccessReg : AsmOperandClass { |
| 426 | let Name = "AccessReg"; |
| 427 | let ParserMethod = "parseAccessReg"; |
| 428 | } |
| 429 | def access_reg : Immediate<i8, [{ return N->getZExtValue() < 16; }], |
| 430 | NOOP_SDNodeXForm, "AccessReg"> { |
| 431 | let ParserMatchClass = AccessReg; |
| 432 | } |
| 433 | |
| 434 | // A 4-bit condition-code mask. |
| 435 | def cond4 : PatLeaf<(i8 imm), [{ return (N->getZExtValue() < 16); }]>, |
| 436 | Operand<i8> { |
| 437 | let PrintMethod = "printCond4Operand"; |
| 438 | } |