Zachary Turner | 11036a9 | 2017-01-19 23:31:24 +0000 | [diff] [blame] | 1 | //===- HashTable.cpp - PDB Hash Table ---------------------------*- C++ -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | |
| 10 | #include "llvm/DebugInfo/PDB/Raw/HashTable.h" |
| 11 | |
| 12 | #include "llvm/ADT/Optional.h" |
| 13 | #include "llvm/ADT/SparseBitVector.h" |
| 14 | #include "llvm/DebugInfo/PDB/Raw/RawError.h" |
| 15 | |
| 16 | using namespace llvm; |
| 17 | using namespace llvm::pdb; |
| 18 | |
| 19 | HashTable::HashTable() : HashTable(8) {} |
| 20 | |
| 21 | HashTable::HashTable(uint32_t Capacity) { Buckets.resize(Capacity); } |
| 22 | |
| 23 | Error HashTable::load(msf::StreamReader &Stream) { |
| 24 | const Header *H; |
| 25 | if (auto EC = Stream.readObject(H)) |
| 26 | return EC; |
| 27 | if (H->Capacity == 0) |
| 28 | return make_error<RawError>(raw_error_code::corrupt_file, |
| 29 | "Invalid Hash Table Capacity"); |
| 30 | if (H->Size > maxLoad(H->Capacity)) |
| 31 | return make_error<RawError>(raw_error_code::corrupt_file, |
| 32 | "Invalid Hash Table Size"); |
| 33 | |
| 34 | Buckets.resize(H->Capacity); |
| 35 | |
| 36 | if (auto EC = readSparseBitVector(Stream, Present)) |
| 37 | return EC; |
| 38 | if (Present.count() != H->Size) |
| 39 | return make_error<RawError>(raw_error_code::corrupt_file, |
| 40 | "Present bit vector does not match size!"); |
| 41 | |
| 42 | if (auto EC = readSparseBitVector(Stream, Deleted)) |
| 43 | return EC; |
| 44 | if (Present.intersects(Deleted)) |
| 45 | return make_error<RawError>(raw_error_code::corrupt_file, |
| 46 | "Present bit vector interesects deleted!"); |
| 47 | |
| 48 | for (uint32_t P : Present) { |
| 49 | if (auto EC = Stream.readInteger(Buckets[P].first)) |
| 50 | return EC; |
| 51 | if (auto EC = Stream.readInteger(Buckets[P].second)) |
| 52 | return EC; |
| 53 | } |
| 54 | |
| 55 | return Error::success(); |
| 56 | } |
| 57 | |
| 58 | uint32_t HashTable::calculateSerializedLength() const { |
| 59 | uint32_t Size = sizeof(Header); |
| 60 | |
| 61 | int NumBitsP = Present.find_last() + 1; |
| 62 | int NumBitsD = Deleted.find_last() + 1; |
| 63 | |
| 64 | // Present bit set number of words, followed by that many actual words. |
| 65 | Size += sizeof(uint32_t); |
| 66 | Size += alignTo(NumBitsP, sizeof(uint32_t)); |
| 67 | |
| 68 | // Deleted bit set number of words, followed by that many actual words. |
| 69 | Size += sizeof(uint32_t); |
| 70 | Size += alignTo(NumBitsD, sizeof(uint32_t)); |
| 71 | |
| 72 | // One (Key, Value) pair for each entry Present. |
| 73 | Size += 2 * sizeof(uint32_t) * size(); |
| 74 | |
| 75 | return Size; |
| 76 | } |
| 77 | |
| 78 | Error HashTable::commit(msf::StreamWriter &Writer) const { |
| 79 | Header H; |
| 80 | H.Size = size(); |
| 81 | H.Capacity = capacity(); |
| 82 | if (auto EC = Writer.writeObject(H)) |
| 83 | return EC; |
| 84 | |
| 85 | if (auto EC = writeSparseBitVector(Writer, Present)) |
| 86 | return EC; |
| 87 | |
| 88 | if (auto EC = writeSparseBitVector(Writer, Deleted)) |
| 89 | return EC; |
| 90 | |
| 91 | for (const auto &Entry : *this) { |
| 92 | if (auto EC = Writer.writeInteger(Entry.first)) |
| 93 | return EC; |
| 94 | if (auto EC = Writer.writeInteger(Entry.second)) |
| 95 | return EC; |
| 96 | } |
| 97 | return Error::success(); |
| 98 | } |
| 99 | |
| 100 | uint32_t HashTable::capacity() const { return Buckets.size(); } |
| 101 | uint32_t HashTable::size() const { return Present.count(); } |
| 102 | |
| 103 | HashTableIterator HashTable::begin() const { return HashTableIterator(*this); } |
| 104 | HashTableIterator HashTable::end() const { |
| 105 | return HashTableIterator(*this, 0, true); |
| 106 | } |
| 107 | |
| 108 | HashTableIterator HashTable::find(uint32_t K) { |
| 109 | uint32_t H = K % capacity(); |
| 110 | uint32_t I = H; |
| 111 | Optional<uint32_t> FirstUnused; |
| 112 | do { |
| 113 | if (isPresent(I)) { |
| 114 | if (Buckets[I].first == K) |
| 115 | return HashTableIterator(*this, I, false); |
| 116 | } else { |
| 117 | if (!FirstUnused) |
| 118 | FirstUnused = I; |
| 119 | // Insertion occurs via linear probing from the slot hint, and will be |
| 120 | // inserted at the first empty / deleted location. Therefore, if we are |
| 121 | // probing and find a location that is neither present nor deleted, then |
| 122 | // nothing must have EVER been inserted at this location, and thus it is |
| 123 | // not possible for a matching value to occur later. |
| 124 | if (!isDeleted(I)) |
| 125 | break; |
| 126 | } |
| 127 | I = (I + 1) % capacity(); |
| 128 | } while (I != H); |
| 129 | |
| 130 | // The only way FirstUnused would not be set is if every single entry in the |
| 131 | // table were Present. But this would violate the load factor constraints |
| 132 | // that we impose, so it should never happen. |
| 133 | assert(FirstUnused); |
| 134 | return HashTableIterator(*this, *FirstUnused, true); |
| 135 | } |
| 136 | |
| 137 | void HashTable::set(uint32_t K, uint32_t V) { |
| 138 | auto Entry = find(K); |
| 139 | if (Entry != end()) { |
| 140 | assert(isPresent(Entry.index())); |
| 141 | assert(Buckets[Entry.index()].first == K); |
| 142 | // We're updating, no need to do anything special. |
| 143 | Buckets[Entry.index()].second = V; |
| 144 | return; |
| 145 | } |
| 146 | |
| 147 | auto &B = Buckets[Entry.index()]; |
| 148 | assert(!isPresent(Entry.index())); |
| 149 | assert(Entry.isEnd()); |
| 150 | B.first = K; |
| 151 | B.second = V; |
| 152 | Present.set(Entry.index()); |
| 153 | Deleted.reset(Entry.index()); |
| 154 | |
| 155 | grow(); |
| 156 | |
| 157 | assert(find(K) != end()); |
| 158 | } |
| 159 | |
| 160 | void HashTable::remove(uint32_t K) { |
| 161 | auto Iter = find(K); |
| 162 | // It wasn't here to begin with, just exit. |
| 163 | if (Iter == end()) |
| 164 | return; |
| 165 | |
| 166 | assert(Present.test(Iter.index())); |
| 167 | assert(!Deleted.test(Iter.index())); |
| 168 | Deleted.set(Iter.index()); |
| 169 | Present.reset(Iter.index()); |
| 170 | } |
| 171 | |
| 172 | uint32_t HashTable::get(uint32_t K) { |
| 173 | auto I = find(K); |
| 174 | assert(I != end()); |
| 175 | return (*I).second; |
| 176 | } |
| 177 | |
| 178 | uint32_t HashTable::maxLoad(uint32_t capacity) { return capacity * 2 / 3 + 1; } |
| 179 | |
| 180 | void HashTable::grow() { |
| 181 | uint32_t S = size(); |
| 182 | if (S < maxLoad(capacity())) |
| 183 | return; |
Zachary Turner | d54deae | 2017-01-19 23:41:11 +0000 | [diff] [blame^] | 184 | assert(capacity() != UINT32_MAX && "Can't grow Hash table!"); |
Zachary Turner | 11036a9 | 2017-01-19 23:31:24 +0000 | [diff] [blame] | 185 | |
| 186 | uint32_t NewCapacity = |
| 187 | (capacity() <= INT32_MAX) ? capacity() * 2 : UINT32_MAX; |
| 188 | |
| 189 | // Growing requires rebuilding the table and re-hashing every item. Make a |
| 190 | // copy with a larger capacity, insert everything into the copy, then swap |
| 191 | // it in. |
| 192 | HashTable NewMap(NewCapacity); |
| 193 | for (auto I : Present) { |
| 194 | NewMap.set(Buckets[I].first, Buckets[I].second); |
| 195 | } |
| 196 | |
| 197 | Buckets.swap(NewMap.Buckets); |
| 198 | std::swap(Present, NewMap.Present); |
| 199 | std::swap(Deleted, NewMap.Deleted); |
| 200 | assert(capacity() == NewCapacity); |
| 201 | assert(size() == S); |
| 202 | } |
| 203 | |
| 204 | Error HashTable::readSparseBitVector(msf::StreamReader &Stream, |
| 205 | SparseBitVector<> &V) { |
| 206 | uint32_t NumWords; |
| 207 | if (auto EC = Stream.readInteger(NumWords)) |
| 208 | return joinErrors( |
| 209 | std::move(EC), |
| 210 | make_error<RawError>(raw_error_code::corrupt_file, |
| 211 | "Expected hash table number of words")); |
| 212 | |
| 213 | for (uint32_t I = 0; I != NumWords; ++I) { |
| 214 | uint32_t Word; |
| 215 | if (auto EC = Stream.readInteger(Word)) |
| 216 | return joinErrors(std::move(EC), |
| 217 | make_error<RawError>(raw_error_code::corrupt_file, |
| 218 | "Expected hash table word")); |
| 219 | for (unsigned Idx = 0; Idx < 32; ++Idx) |
| 220 | if (Word & (1U << Idx)) |
| 221 | V.set((I * 32) + Idx); |
| 222 | } |
| 223 | return Error::success(); |
| 224 | } |
| 225 | |
| 226 | Error HashTable::writeSparseBitVector(msf::StreamWriter &Writer, |
| 227 | SparseBitVector<> &Vec) { |
| 228 | int ReqBits = Vec.find_last() + 1; |
| 229 | uint32_t NumWords = alignTo(ReqBits, sizeof(uint32_t)) / sizeof(uint32_t); |
| 230 | if (auto EC = Writer.writeInteger(NumWords)) |
| 231 | return joinErrors( |
| 232 | std::move(EC), |
| 233 | make_error<RawError>(raw_error_code::corrupt_file, |
| 234 | "Could not write linear map number of words")); |
| 235 | |
| 236 | uint32_t Idx = 0; |
| 237 | for (uint32_t I = 0; I != NumWords; ++I) { |
| 238 | uint32_t Word = 0; |
| 239 | for (uint32_t WordIdx = 0; WordIdx < 32; ++WordIdx, ++Idx) { |
| 240 | if (Vec.test(Idx)) |
| 241 | Word |= (1 << WordIdx); |
| 242 | } |
| 243 | if (auto EC = Writer.writeInteger(Word)) |
| 244 | return joinErrors(std::move(EC), make_error<RawError>( |
| 245 | raw_error_code::corrupt_file, |
| 246 | "Could not write linear map word")); |
| 247 | } |
| 248 | return Error::success(); |
| 249 | } |
| 250 | |
| 251 | HashTableIterator::HashTableIterator(const HashTable &Map, uint32_t Index, |
| 252 | bool IsEnd) |
| 253 | : Map(&Map), Index(Index), IsEnd(IsEnd) {} |
| 254 | |
| 255 | HashTableIterator::HashTableIterator(const HashTable &Map) : Map(&Map) { |
| 256 | int I = Map.Present.find_first(); |
| 257 | if (I == -1) { |
| 258 | Index = 0; |
| 259 | IsEnd = true; |
| 260 | } else { |
| 261 | Index = static_cast<uint32_t>(I); |
| 262 | IsEnd = false; |
| 263 | } |
| 264 | } |
| 265 | |
| 266 | HashTableIterator &HashTableIterator::operator=(const HashTableIterator &R) { |
| 267 | Map = R.Map; |
| 268 | return *this; |
| 269 | } |
| 270 | |
| 271 | bool HashTableIterator::operator==(const HashTableIterator &R) const { |
| 272 | if (IsEnd && R.IsEnd) |
| 273 | return true; |
| 274 | if (IsEnd != R.IsEnd) |
| 275 | return false; |
| 276 | |
| 277 | return (Map == R.Map) && (Index == R.Index); |
| 278 | } |
| 279 | |
| 280 | const std::pair<uint32_t, uint32_t> &HashTableIterator::operator*() const { |
| 281 | assert(Map->Present.test(Index)); |
| 282 | return Map->Buckets[Index]; |
| 283 | } |
| 284 | |
| 285 | HashTableIterator &HashTableIterator::operator++() { |
| 286 | while (Index < Map->Buckets.size()) { |
| 287 | ++Index; |
| 288 | if (Map->Present.test(Index)) |
| 289 | return *this; |
| 290 | } |
| 291 | |
| 292 | IsEnd = true; |
| 293 | return *this; |
| 294 | } |