blob: 9189d79e2fb6ac8c91d6edb1b9514fd2495921c8 [file] [log] [blame]
Andrew Trickd5d2db92012-01-10 01:45:08 +00001; RUN: llc < %s -O3 -march=thumb -mcpu=cortex-a9 | FileCheck %s -check-prefix=A9
2
3; @simple is the most basic chain of address induction variables. Chaining
4; saves at least one register and avoids complex addressing and setup
5; code.
6;
7; A9: @simple
8; no expensive address computation in the preheader
9; A9: lsl
10; A9-NOT: lsl
11; A9: %loop
12; no complex address modes
13; A9-NOT: lsl
14define i32 @simple(i32* %a, i32* %b, i32 %x) nounwind {
15entry:
16 br label %loop
17loop:
18 %iv = phi i32* [ %a, %entry ], [ %iv4, %loop ]
19 %s = phi i32 [ 0, %entry ], [ %s4, %loop ]
20 %v = load i32* %iv
21 %iv1 = getelementptr inbounds i32* %iv, i32 %x
22 %v1 = load i32* %iv1
23 %iv2 = getelementptr inbounds i32* %iv1, i32 %x
24 %v2 = load i32* %iv2
25 %iv3 = getelementptr inbounds i32* %iv2, i32 %x
26 %v3 = load i32* %iv3
27 %s1 = add i32 %s, %v
28 %s2 = add i32 %s1, %v1
29 %s3 = add i32 %s2, %v2
30 %s4 = add i32 %s3, %v3
31 %iv4 = getelementptr inbounds i32* %iv3, i32 %x
32 %cmp = icmp eq i32* %iv4, %b
33 br i1 %cmp, label %exit, label %loop
34exit:
35 ret i32 %s4
36}
37
38; @user is not currently chained because the IV is live across memory ops.
39;
40; A9: @user
41; stride multiples computed in the preheader
42; A9: lsl
43; A9: lsl
44; A9: %loop
45; complex address modes
46; A9: lsl
47; A9: lsl
48define i32 @user(i32* %a, i32* %b, i32 %x) nounwind {
49entry:
50 br label %loop
51loop:
52 %iv = phi i32* [ %a, %entry ], [ %iv4, %loop ]
53 %s = phi i32 [ 0, %entry ], [ %s4, %loop ]
54 %v = load i32* %iv
55 %iv1 = getelementptr inbounds i32* %iv, i32 %x
56 %v1 = load i32* %iv1
57 %iv2 = getelementptr inbounds i32* %iv1, i32 %x
58 %v2 = load i32* %iv2
59 %iv3 = getelementptr inbounds i32* %iv2, i32 %x
60 %v3 = load i32* %iv3
61 %s1 = add i32 %s, %v
62 %s2 = add i32 %s1, %v1
63 %s3 = add i32 %s2, %v2
64 %s4 = add i32 %s3, %v3
65 %iv4 = getelementptr inbounds i32* %iv3, i32 %x
66 store i32 %s4, i32* %iv
67 %cmp = icmp eq i32* %iv4, %b
68 br i1 %cmp, label %exit, label %loop
69exit:
70 ret i32 %s4
71}
72
73; @extrastride is a slightly more interesting case of a single
74; complete chain with multiple strides. The test case IR is what LSR
75; used to do, and exactly what we don't want to do. LSR's new IV
76; chaining feature should now undo the damage.
77;
78; A9: extrastride:
79; no spills
80; A9-NOT: str
81; only one stride multiple in the preheader
82; A9: lsl
83; A9-NOT: {{str r|lsl}}
84; A9: %for.body{{$}}
85; no complex address modes or reloads
86; A9-NOT: {{ldr .*[sp]|lsl}}
87define void @extrastride(i8* nocapture %main, i32 %main_stride, i32* nocapture %res, i32 %x, i32 %y, i32 %z) nounwind {
88entry:
89 %cmp8 = icmp eq i32 %z, 0
90 br i1 %cmp8, label %for.end, label %for.body.lr.ph
91
92for.body.lr.ph: ; preds = %entry
93 %add.ptr.sum = shl i32 %main_stride, 1 ; s*2
94 %add.ptr1.sum = add i32 %add.ptr.sum, %main_stride ; s*3
95 %add.ptr2.sum = add i32 %x, %main_stride ; s + x
96 %add.ptr4.sum = shl i32 %main_stride, 2 ; s*4
97 %add.ptr3.sum = add i32 %add.ptr2.sum, %add.ptr4.sum ; total IV stride = s*5+x
98 br label %for.body
99
100for.body: ; preds = %for.body.lr.ph, %for.body
101 %main.addr.011 = phi i8* [ %main, %for.body.lr.ph ], [ %add.ptr6, %for.body ]
102 %i.010 = phi i32 [ 0, %for.body.lr.ph ], [ %inc, %for.body ]
103 %res.addr.09 = phi i32* [ %res, %for.body.lr.ph ], [ %add.ptr7, %for.body ]
104 %0 = bitcast i8* %main.addr.011 to i32*
105 %1 = load i32* %0, align 4
106 %add.ptr = getelementptr inbounds i8* %main.addr.011, i32 %main_stride
107 %2 = bitcast i8* %add.ptr to i32*
108 %3 = load i32* %2, align 4
109 %add.ptr1 = getelementptr inbounds i8* %main.addr.011, i32 %add.ptr.sum
110 %4 = bitcast i8* %add.ptr1 to i32*
111 %5 = load i32* %4, align 4
112 %add.ptr2 = getelementptr inbounds i8* %main.addr.011, i32 %add.ptr1.sum
113 %6 = bitcast i8* %add.ptr2 to i32*
114 %7 = load i32* %6, align 4
115 %add.ptr3 = getelementptr inbounds i8* %main.addr.011, i32 %add.ptr4.sum
116 %8 = bitcast i8* %add.ptr3 to i32*
117 %9 = load i32* %8, align 4
118 %add = add i32 %3, %1
119 %add4 = add i32 %add, %5
120 %add5 = add i32 %add4, %7
121 %add6 = add i32 %add5, %9
122 store i32 %add6, i32* %res.addr.09, align 4
123 %add.ptr6 = getelementptr inbounds i8* %main.addr.011, i32 %add.ptr3.sum
124 %add.ptr7 = getelementptr inbounds i32* %res.addr.09, i32 %y
125 %inc = add i32 %i.010, 1
126 %cmp = icmp eq i32 %inc, %z
127 br i1 %cmp, label %for.end, label %for.body
128
129for.end: ; preds = %for.body, %entry
130 ret void
131}
132
133; @foldedidx is an unrolled variant of this loop:
134; for (unsigned long i = 0; i < len; i += s) {
135; c[i] = a[i] + b[i];
136; }
137; where 's' can be folded into the addressing mode.
138; Consequently, we should *not* form any chains.
139;
140; A9: foldedidx:
141; A9: ldrb.w {{r[0-9]|lr}}, [{{r[0-9]|lr}}, #3]
142define void @foldedidx(i8* nocapture %a, i8* nocapture %b, i8* nocapture %c) nounwind ssp {
143entry:
144 br label %for.body
145
146for.body: ; preds = %for.body, %entry
147 %i.07 = phi i32 [ 0, %entry ], [ %inc.3, %for.body ]
148 %arrayidx = getelementptr inbounds i8* %a, i32 %i.07
149 %0 = load i8* %arrayidx, align 1
150 %conv5 = zext i8 %0 to i32
151 %arrayidx1 = getelementptr inbounds i8* %b, i32 %i.07
152 %1 = load i8* %arrayidx1, align 1
153 %conv26 = zext i8 %1 to i32
154 %add = add nsw i32 %conv26, %conv5
155 %conv3 = trunc i32 %add to i8
156 %arrayidx4 = getelementptr inbounds i8* %c, i32 %i.07
157 store i8 %conv3, i8* %arrayidx4, align 1
158 %inc1 = or i32 %i.07, 1
159 %arrayidx.1 = getelementptr inbounds i8* %a, i32 %inc1
160 %2 = load i8* %arrayidx.1, align 1
161 %conv5.1 = zext i8 %2 to i32
162 %arrayidx1.1 = getelementptr inbounds i8* %b, i32 %inc1
163 %3 = load i8* %arrayidx1.1, align 1
164 %conv26.1 = zext i8 %3 to i32
165 %add.1 = add nsw i32 %conv26.1, %conv5.1
166 %conv3.1 = trunc i32 %add.1 to i8
167 %arrayidx4.1 = getelementptr inbounds i8* %c, i32 %inc1
168 store i8 %conv3.1, i8* %arrayidx4.1, align 1
169 %inc.12 = or i32 %i.07, 2
170 %arrayidx.2 = getelementptr inbounds i8* %a, i32 %inc.12
171 %4 = load i8* %arrayidx.2, align 1
172 %conv5.2 = zext i8 %4 to i32
173 %arrayidx1.2 = getelementptr inbounds i8* %b, i32 %inc.12
174 %5 = load i8* %arrayidx1.2, align 1
175 %conv26.2 = zext i8 %5 to i32
176 %add.2 = add nsw i32 %conv26.2, %conv5.2
177 %conv3.2 = trunc i32 %add.2 to i8
178 %arrayidx4.2 = getelementptr inbounds i8* %c, i32 %inc.12
179 store i8 %conv3.2, i8* %arrayidx4.2, align 1
180 %inc.23 = or i32 %i.07, 3
181 %arrayidx.3 = getelementptr inbounds i8* %a, i32 %inc.23
182 %6 = load i8* %arrayidx.3, align 1
183 %conv5.3 = zext i8 %6 to i32
184 %arrayidx1.3 = getelementptr inbounds i8* %b, i32 %inc.23
185 %7 = load i8* %arrayidx1.3, align 1
186 %conv26.3 = zext i8 %7 to i32
187 %add.3 = add nsw i32 %conv26.3, %conv5.3
188 %conv3.3 = trunc i32 %add.3 to i8
189 %arrayidx4.3 = getelementptr inbounds i8* %c, i32 %inc.23
190 store i8 %conv3.3, i8* %arrayidx4.3, align 1
191 %inc.3 = add nsw i32 %i.07, 4
192 %exitcond.3 = icmp eq i32 %inc.3, 400
193 br i1 %exitcond.3, label %for.end, label %for.body
194
195for.end: ; preds = %for.body
196 ret void
197}
198
199; @testNeon is an important example of the nead for ivchains.
200;
201; Currently we have three extra add.w's that keep the store address
202; live past the next increment because ISEL is unfortunately undoing
203; the store chain. ISEL also fails to convert the stores to
204; post-increment addressing. However, the loads should use
205; post-increment addressing, no add's or add.w's beyond the three
206; mentioned. Most importantly, there should be no spills or reloads!
207;
208; CHECK: testNeon:
209; CHECK: %.lr.ph
210; CHECK-NOT: lsl.w
211; CHECK-NOT: {{ldr|str|adds|add r}}
212; CHECK: add.w r
213; CHECK-NOT: {{ldr|str|adds|add r}}
214; CHECK: add.w r
215; CHECK-NOT: {{ldr|str|adds|add r}}
216; CHECK: add.w r
217; CHECK-NOT: {{ldr|str|adds|add r}}
218; CHECK-NOT: add.w r
219; CHECK: bne
220define hidden void @testNeon(i8* %ref_data, i32 %ref_stride, i32 %limit, <16 x i8>* nocapture %data) nounwind optsize {
221 %1 = icmp sgt i32 %limit, 0
222 br i1 %1, label %.lr.ph, label %45
223
224.lr.ph: ; preds = %0
225 %2 = shl nsw i32 %ref_stride, 1
226 %3 = mul nsw i32 %ref_stride, 3
227 %4 = shl nsw i32 %ref_stride, 2
228 %5 = mul nsw i32 %ref_stride, 5
229 %6 = mul nsw i32 %ref_stride, 6
230 %7 = mul nsw i32 %ref_stride, 7
231 %8 = shl nsw i32 %ref_stride, 3
232 %9 = sub i32 0, %8
233 %10 = mul i32 %limit, -64
234 br label %11
235
236; <label>:11 ; preds = %11, %.lr.ph
237 %.05 = phi i8* [ %ref_data, %.lr.ph ], [ %42, %11 ]
238 %counter.04 = phi i32 [ 0, %.lr.ph ], [ %44, %11 ]
239 %result.03 = phi <16 x i8> [ zeroinitializer, %.lr.ph ], [ %41, %11 ]
240 %.012 = phi <16 x i8>* [ %data, %.lr.ph ], [ %43, %11 ]
241 %12 = tail call <1 x i64> @llvm.arm.neon.vld1.v1i64(i8* %.05, i32 1) nounwind
242 %13 = getelementptr inbounds i8* %.05, i32 %ref_stride
243 %14 = tail call <1 x i64> @llvm.arm.neon.vld1.v1i64(i8* %13, i32 1) nounwind
244 %15 = shufflevector <1 x i64> %12, <1 x i64> %14, <2 x i32> <i32 0, i32 1>
245 %16 = bitcast <2 x i64> %15 to <16 x i8>
246 %17 = getelementptr inbounds <16 x i8>* %.012, i32 1
247 store <16 x i8> %16, <16 x i8>* %.012, align 4
248 %18 = getelementptr inbounds i8* %.05, i32 %2
249 %19 = tail call <1 x i64> @llvm.arm.neon.vld1.v1i64(i8* %18, i32 1) nounwind
250 %20 = getelementptr inbounds i8* %.05, i32 %3
251 %21 = tail call <1 x i64> @llvm.arm.neon.vld1.v1i64(i8* %20, i32 1) nounwind
252 %22 = shufflevector <1 x i64> %19, <1 x i64> %21, <2 x i32> <i32 0, i32 1>
253 %23 = bitcast <2 x i64> %22 to <16 x i8>
254 %24 = getelementptr inbounds <16 x i8>* %.012, i32 2
255 store <16 x i8> %23, <16 x i8>* %17, align 4
256 %25 = getelementptr inbounds i8* %.05, i32 %4
257 %26 = tail call <1 x i64> @llvm.arm.neon.vld1.v1i64(i8* %25, i32 1) nounwind
258 %27 = getelementptr inbounds i8* %.05, i32 %5
259 %28 = tail call <1 x i64> @llvm.arm.neon.vld1.v1i64(i8* %27, i32 1) nounwind
260 %29 = shufflevector <1 x i64> %26, <1 x i64> %28, <2 x i32> <i32 0, i32 1>
261 %30 = bitcast <2 x i64> %29 to <16 x i8>
262 %31 = getelementptr inbounds <16 x i8>* %.012, i32 3
263 store <16 x i8> %30, <16 x i8>* %24, align 4
264 %32 = getelementptr inbounds i8* %.05, i32 %6
265 %33 = tail call <1 x i64> @llvm.arm.neon.vld1.v1i64(i8* %32, i32 1) nounwind
266 %34 = getelementptr inbounds i8* %.05, i32 %7
267 %35 = tail call <1 x i64> @llvm.arm.neon.vld1.v1i64(i8* %34, i32 1) nounwind
268 %36 = shufflevector <1 x i64> %33, <1 x i64> %35, <2 x i32> <i32 0, i32 1>
269 %37 = bitcast <2 x i64> %36 to <16 x i8>
270 store <16 x i8> %37, <16 x i8>* %31, align 4
271 %38 = add <16 x i8> %16, %23
272 %39 = add <16 x i8> %38, %30
273 %40 = add <16 x i8> %39, %37
274 %41 = add <16 x i8> %result.03, %40
275 %42 = getelementptr i8* %.05, i32 %9
276 %43 = getelementptr inbounds <16 x i8>* %.012, i32 -64
277 %44 = add nsw i32 %counter.04, 1
278 %exitcond = icmp eq i32 %44, %limit
279 br i1 %exitcond, label %._crit_edge, label %11
280
281._crit_edge: ; preds = %11
282 %scevgep = getelementptr <16 x i8>* %data, i32 %10
283 br label %45
284
285; <label>:45 ; preds = %._crit_edge, %0
286 %result.0.lcssa = phi <16 x i8> [ %41, %._crit_edge ], [ zeroinitializer, %0 ]
287 %.01.lcssa = phi <16 x i8>* [ %scevgep, %._crit_edge ], [ %data, %0 ]
288 store <16 x i8> %result.0.lcssa, <16 x i8>* %.01.lcssa, align 4
289 ret void
290}
291
292declare <1 x i64> @llvm.arm.neon.vld1.v1i64(i8*, i32) nounwind readonly