Michael Zolotukhin | 1da4afd | 2016-02-08 23:03:59 +0000 | [diff] [blame] | 1 | //===- LoopUnrollAnalyzer.cpp - Unrolling Effect Estimation -----*- C++ -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements UnrolledInstAnalyzer class. It's used for predicting |
| 11 | // potential effects that loop unrolling might have, such as enabling constant |
| 12 | // propagation and other optimizations. |
| 13 | // |
| 14 | //===----------------------------------------------------------------------===// |
| 15 | |
| 16 | #include "llvm/Analysis/LoopUnrollAnalyzer.h" |
| 17 | #include "llvm/IR/Dominators.h" |
| 18 | |
| 19 | using namespace llvm; |
| 20 | |
| 21 | /// \brief Try to simplify instruction \param I using its SCEV expression. |
| 22 | /// |
| 23 | /// The idea is that some AddRec expressions become constants, which then |
| 24 | /// could trigger folding of other instructions. However, that only happens |
| 25 | /// for expressions whose start value is also constant, which isn't always the |
| 26 | /// case. In another common and important case the start value is just some |
| 27 | /// address (i.e. SCEVUnknown) - in this case we compute the offset and save |
| 28 | /// it along with the base address instead. |
| 29 | bool UnrolledInstAnalyzer::simplifyInstWithSCEV(Instruction *I) { |
| 30 | if (!SE.isSCEVable(I->getType())) |
| 31 | return false; |
| 32 | |
| 33 | const SCEV *S = SE.getSCEV(I); |
| 34 | if (auto *SC = dyn_cast<SCEVConstant>(S)) { |
| 35 | SimplifiedValues[I] = SC->getValue(); |
| 36 | return true; |
| 37 | } |
| 38 | |
| 39 | auto *AR = dyn_cast<SCEVAddRecExpr>(S); |
Michael Zolotukhin | 9f520eb | 2016-02-26 02:57:05 +0000 | [diff] [blame] | 40 | if (!AR || AR->getLoop() != L) |
Michael Zolotukhin | 1da4afd | 2016-02-08 23:03:59 +0000 | [diff] [blame] | 41 | return false; |
| 42 | |
| 43 | const SCEV *ValueAtIteration = AR->evaluateAtIteration(IterationNumber, SE); |
| 44 | // Check if the AddRec expression becomes a constant. |
| 45 | if (auto *SC = dyn_cast<SCEVConstant>(ValueAtIteration)) { |
| 46 | SimplifiedValues[I] = SC->getValue(); |
| 47 | return true; |
| 48 | } |
| 49 | |
| 50 | // Check if the offset from the base address becomes a constant. |
| 51 | auto *Base = dyn_cast<SCEVUnknown>(SE.getPointerBase(S)); |
| 52 | if (!Base) |
| 53 | return false; |
| 54 | auto *Offset = |
| 55 | dyn_cast<SCEVConstant>(SE.getMinusSCEV(ValueAtIteration, Base)); |
| 56 | if (!Offset) |
| 57 | return false; |
| 58 | SimplifiedAddress Address; |
| 59 | Address.Base = Base->getValue(); |
| 60 | Address.Offset = Offset->getValue(); |
| 61 | SimplifiedAddresses[I] = Address; |
Michael Zolotukhin | a59a308 | 2016-05-13 01:42:34 +0000 | [diff] [blame] | 62 | return false; |
Michael Zolotukhin | 1da4afd | 2016-02-08 23:03:59 +0000 | [diff] [blame] | 63 | } |
| 64 | |
| 65 | /// Try to simplify binary operator I. |
| 66 | /// |
| 67 | /// TODO: Probably it's worth to hoist the code for estimating the |
| 68 | /// simplifications effects to a separate class, since we have a very similar |
| 69 | /// code in InlineCost already. |
| 70 | bool UnrolledInstAnalyzer::visitBinaryOperator(BinaryOperator &I) { |
| 71 | Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); |
| 72 | if (!isa<Constant>(LHS)) |
| 73 | if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS)) |
| 74 | LHS = SimpleLHS; |
| 75 | if (!isa<Constant>(RHS)) |
| 76 | if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS)) |
| 77 | RHS = SimpleRHS; |
| 78 | |
| 79 | Value *SimpleV = nullptr; |
| 80 | const DataLayout &DL = I.getModule()->getDataLayout(); |
| 81 | if (auto FI = dyn_cast<FPMathOperator>(&I)) |
| 82 | SimpleV = |
| 83 | SimplifyFPBinOp(I.getOpcode(), LHS, RHS, FI->getFastMathFlags(), DL); |
| 84 | else |
| 85 | SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, DL); |
| 86 | |
| 87 | if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) |
| 88 | SimplifiedValues[&I] = C; |
| 89 | |
| 90 | if (SimpleV) |
| 91 | return true; |
| 92 | return Base::visitBinaryOperator(I); |
| 93 | } |
| 94 | |
| 95 | /// Try to fold load I. |
| 96 | bool UnrolledInstAnalyzer::visitLoad(LoadInst &I) { |
| 97 | Value *AddrOp = I.getPointerOperand(); |
| 98 | |
| 99 | auto AddressIt = SimplifiedAddresses.find(AddrOp); |
| 100 | if (AddressIt == SimplifiedAddresses.end()) |
| 101 | return false; |
| 102 | ConstantInt *SimplifiedAddrOp = AddressIt->second.Offset; |
| 103 | |
| 104 | auto *GV = dyn_cast<GlobalVariable>(AddressIt->second.Base); |
| 105 | // We're only interested in loads that can be completely folded to a |
| 106 | // constant. |
| 107 | if (!GV || !GV->hasDefinitiveInitializer() || !GV->isConstant()) |
| 108 | return false; |
| 109 | |
| 110 | ConstantDataSequential *CDS = |
| 111 | dyn_cast<ConstantDataSequential>(GV->getInitializer()); |
| 112 | if (!CDS) |
| 113 | return false; |
| 114 | |
| 115 | // We might have a vector load from an array. FIXME: for now we just bail |
| 116 | // out in this case, but we should be able to resolve and simplify such |
| 117 | // loads. |
| 118 | if(!CDS->isElementTypeCompatible(I.getType())) |
| 119 | return false; |
| 120 | |
| 121 | int ElemSize = CDS->getElementType()->getPrimitiveSizeInBits() / 8U; |
Michael Zolotukhin | 15e7451 | 2016-05-27 00:55:16 +0000 | [diff] [blame] | 122 | if (SimplifiedAddrOp->getValue().getActiveBits() >= 64) |
| 123 | return false; |
Michael Zolotukhin | 1da4afd | 2016-02-08 23:03:59 +0000 | [diff] [blame] | 124 | int64_t Index = SimplifiedAddrOp->getSExtValue() / ElemSize; |
| 125 | if (Index >= CDS->getNumElements()) { |
| 126 | // FIXME: For now we conservatively ignore out of bound accesses, but |
| 127 | // we're allowed to perform the optimization in this case. |
| 128 | return false; |
| 129 | } |
| 130 | |
| 131 | Constant *CV = CDS->getElementAsConstant(Index); |
| 132 | assert(CV && "Constant expected."); |
| 133 | SimplifiedValues[&I] = CV; |
| 134 | |
| 135 | return true; |
| 136 | } |
| 137 | |
| 138 | /// Try to simplify cast instruction. |
| 139 | bool UnrolledInstAnalyzer::visitCastInst(CastInst &I) { |
| 140 | // Propagate constants through casts. |
| 141 | Constant *COp = dyn_cast<Constant>(I.getOperand(0)); |
| 142 | if (!COp) |
| 143 | COp = SimplifiedValues.lookup(I.getOperand(0)); |
Michael Zolotukhin | d69cd1e | 2016-05-28 01:40:14 +0000 | [diff] [blame^] | 144 | |
| 145 | // If we know a simplified value for this operand and cast is valid, save the |
| 146 | // result to SimplifiedValues. |
| 147 | // The cast can be invalid, because SimplifiedValues contains results of SCEV |
| 148 | // analysis, which operates on integers (and, e.g., might convert i8* null to |
| 149 | // i32 0). |
Michael Zolotukhin | 7216dd4 | 2016-05-24 22:59:58 +0000 | [diff] [blame] | 150 | if (COp && CastInst::castIsValid(I.getOpcode(), COp, I.getType())) { |
Michael Zolotukhin | 1da4afd | 2016-02-08 23:03:59 +0000 | [diff] [blame] | 151 | if (Constant *C = |
| 152 | ConstantExpr::getCast(I.getOpcode(), COp, I.getType())) { |
| 153 | SimplifiedValues[&I] = C; |
| 154 | return true; |
| 155 | } |
Michael Zolotukhin | 3898b2b | 2016-05-24 00:51:01 +0000 | [diff] [blame] | 156 | } |
Michael Zolotukhin | 1da4afd | 2016-02-08 23:03:59 +0000 | [diff] [blame] | 157 | |
| 158 | return Base::visitCastInst(I); |
| 159 | } |
| 160 | |
| 161 | /// Try to simplify cmp instruction. |
| 162 | bool UnrolledInstAnalyzer::visitCmpInst(CmpInst &I) { |
| 163 | Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); |
| 164 | |
| 165 | // First try to handle simplified comparisons. |
| 166 | if (!isa<Constant>(LHS)) |
| 167 | if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS)) |
| 168 | LHS = SimpleLHS; |
| 169 | if (!isa<Constant>(RHS)) |
| 170 | if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS)) |
| 171 | RHS = SimpleRHS; |
| 172 | |
| 173 | if (!isa<Constant>(LHS) && !isa<Constant>(RHS)) { |
| 174 | auto SimplifiedLHS = SimplifiedAddresses.find(LHS); |
| 175 | if (SimplifiedLHS != SimplifiedAddresses.end()) { |
| 176 | auto SimplifiedRHS = SimplifiedAddresses.find(RHS); |
| 177 | if (SimplifiedRHS != SimplifiedAddresses.end()) { |
| 178 | SimplifiedAddress &LHSAddr = SimplifiedLHS->second; |
| 179 | SimplifiedAddress &RHSAddr = SimplifiedRHS->second; |
| 180 | if (LHSAddr.Base == RHSAddr.Base) { |
| 181 | LHS = LHSAddr.Offset; |
| 182 | RHS = RHSAddr.Offset; |
| 183 | } |
| 184 | } |
| 185 | } |
| 186 | } |
| 187 | |
| 188 | if (Constant *CLHS = dyn_cast<Constant>(LHS)) { |
| 189 | if (Constant *CRHS = dyn_cast<Constant>(RHS)) { |
| 190 | if (Constant *C = ConstantExpr::getCompare(I.getPredicate(), CLHS, CRHS)) { |
| 191 | SimplifiedValues[&I] = C; |
| 192 | return true; |
| 193 | } |
| 194 | } |
| 195 | } |
| 196 | |
| 197 | return Base::visitCmpInst(I); |
| 198 | } |
Michael Zolotukhin | 963a6d9 | 2016-05-13 21:23:25 +0000 | [diff] [blame] | 199 | |
| 200 | bool UnrolledInstAnalyzer::visitPHINode(PHINode &PN) { |
| 201 | // Run base visitor first. This way we can gather some useful for later |
| 202 | // analysis information. |
| 203 | if (Base::visitPHINode(PN)) |
| 204 | return true; |
| 205 | |
| 206 | // The loop induction PHI nodes are definitionally free. |
| 207 | return PN.getParent() == L->getHeader(); |
| 208 | } |