blob: 3f5531357a9cfd8eb8227761ac3aac750a23c9e1 [file] [log] [blame]
Yonghong Song7b410ac2018-12-19 16:40:25 +00001//===- BTFDebug.cpp - BTF Generator ---------------------------------------===//
2//
Chandler Carruth2946cd72019-01-19 08:50:56 +00003// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
Yonghong Song7b410ac2018-12-19 16:40:25 +00006//
7//===----------------------------------------------------------------------===//
8//
9// This file contains support for writing BTF debug info.
10//
11//===----------------------------------------------------------------------===//
12
13#include "BTFDebug.h"
14#include "llvm/BinaryFormat/ELF.h"
15#include "llvm/CodeGen/AsmPrinter.h"
16#include "llvm/CodeGen/MachineModuleInfo.h"
17#include "llvm/MC/MCContext.h"
18#include "llvm/MC/MCObjectFileInfo.h"
19#include "llvm/MC/MCSectionELF.h"
20#include "llvm/MC/MCStreamer.h"
21#include <fstream>
22#include <sstream>
23
24using namespace llvm;
25
26static const char *BTFKindStr[] = {
27#define HANDLE_BTF_KIND(ID, NAME) "BTF_KIND_" #NAME,
28#include "BTF.def"
29};
30
31/// Emit a BTF common type.
32void BTFTypeBase::emitType(MCStreamer &OS) {
33 OS.AddComment(std::string(BTFKindStr[Kind]) + "(id = " + std::to_string(Id) +
34 ")");
35 OS.EmitIntValue(BTFType.NameOff, 4);
36 OS.AddComment("0x" + Twine::utohexstr(BTFType.Info));
37 OS.EmitIntValue(BTFType.Info, 4);
38 OS.EmitIntValue(BTFType.Size, 4);
39}
40
41BTFTypeDerived::BTFTypeDerived(const DIDerivedType *DTy, unsigned Tag)
42 : DTy(DTy) {
43 switch (Tag) {
44 case dwarf::DW_TAG_pointer_type:
45 Kind = BTF::BTF_KIND_PTR;
46 break;
47 case dwarf::DW_TAG_const_type:
48 Kind = BTF::BTF_KIND_CONST;
49 break;
50 case dwarf::DW_TAG_volatile_type:
51 Kind = BTF::BTF_KIND_VOLATILE;
52 break;
53 case dwarf::DW_TAG_typedef:
54 Kind = BTF::BTF_KIND_TYPEDEF;
55 break;
56 case dwarf::DW_TAG_restrict_type:
57 Kind = BTF::BTF_KIND_RESTRICT;
58 break;
59 default:
60 llvm_unreachable("Unknown DIDerivedType Tag");
61 }
62 BTFType.Info = Kind << 24;
63}
64
65void BTFTypeDerived::completeType(BTFDebug &BDebug) {
66 BTFType.NameOff = BDebug.addString(DTy->getName());
67
68 // The base type for PTR/CONST/VOLATILE could be void.
69 const DIType *ResolvedType = DTy->getBaseType().resolve();
70 if (!ResolvedType) {
71 assert((Kind == BTF::BTF_KIND_PTR || Kind == BTF::BTF_KIND_CONST ||
72 Kind == BTF::BTF_KIND_VOLATILE) &&
73 "Invalid null basetype");
74 BTFType.Type = 0;
75 } else {
76 BTFType.Type = BDebug.getTypeId(ResolvedType);
77 }
78}
79
80void BTFTypeDerived::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); }
81
82/// Represent a struct/union forward declaration.
83BTFTypeFwd::BTFTypeFwd(StringRef Name, bool IsUnion) : Name(Name) {
84 Kind = BTF::BTF_KIND_FWD;
85 BTFType.Info = IsUnion << 31 | Kind << 24;
86 BTFType.Type = 0;
87}
88
89void BTFTypeFwd::completeType(BTFDebug &BDebug) {
90 BTFType.NameOff = BDebug.addString(Name);
91}
92
93void BTFTypeFwd::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); }
94
95BTFTypeInt::BTFTypeInt(uint32_t Encoding, uint32_t SizeInBits,
96 uint32_t OffsetInBits, StringRef TypeName)
97 : Name(TypeName) {
98 // Translate IR int encoding to BTF int encoding.
99 uint8_t BTFEncoding;
100 switch (Encoding) {
101 case dwarf::DW_ATE_boolean:
102 BTFEncoding = BTF::INT_BOOL;
103 break;
104 case dwarf::DW_ATE_signed:
105 case dwarf::DW_ATE_signed_char:
106 BTFEncoding = BTF::INT_SIGNED;
107 break;
108 case dwarf::DW_ATE_unsigned:
109 case dwarf::DW_ATE_unsigned_char:
110 BTFEncoding = 0;
111 break;
112 default:
113 llvm_unreachable("Unknown BTFTypeInt Encoding");
114 }
115
116 Kind = BTF::BTF_KIND_INT;
117 BTFType.Info = Kind << 24;
118 BTFType.Size = roundupToBytes(SizeInBits);
119 IntVal = (BTFEncoding << 24) | OffsetInBits << 16 | SizeInBits;
120}
121
122void BTFTypeInt::completeType(BTFDebug &BDebug) {
123 BTFType.NameOff = BDebug.addString(Name);
124}
125
126void BTFTypeInt::emitType(MCStreamer &OS) {
127 BTFTypeBase::emitType(OS);
128 OS.AddComment("0x" + Twine::utohexstr(IntVal));
129 OS.EmitIntValue(IntVal, 4);
130}
131
132BTFTypeEnum::BTFTypeEnum(const DICompositeType *ETy, uint32_t VLen) : ETy(ETy) {
133 Kind = BTF::BTF_KIND_ENUM;
134 BTFType.Info = Kind << 24 | VLen;
135 BTFType.Size = roundupToBytes(ETy->getSizeInBits());
136}
137
138void BTFTypeEnum::completeType(BTFDebug &BDebug) {
139 BTFType.NameOff = BDebug.addString(ETy->getName());
140
141 DINodeArray Elements = ETy->getElements();
142 for (const auto Element : Elements) {
143 const auto *Enum = cast<DIEnumerator>(Element);
144
145 struct BTF::BTFEnum BTFEnum;
146 BTFEnum.NameOff = BDebug.addString(Enum->getName());
147 // BTF enum value is 32bit, enforce it.
148 BTFEnum.Val = static_cast<uint32_t>(Enum->getValue());
149 EnumValues.push_back(BTFEnum);
150 }
151}
152
153void BTFTypeEnum::emitType(MCStreamer &OS) {
154 BTFTypeBase::emitType(OS);
155 for (const auto &Enum : EnumValues) {
156 OS.EmitIntValue(Enum.NameOff, 4);
157 OS.EmitIntValue(Enum.Val, 4);
158 }
159}
160
161BTFTypeArray::BTFTypeArray(const DICompositeType *ATy) : ATy(ATy) {
162 Kind = BTF::BTF_KIND_ARRAY;
163 BTFType.Info = Kind << 24;
164}
165
166/// Represent a BTF array. BTF does not record array dimensions,
167/// so conceptually a BTF array is a one-dimensional array.
168void BTFTypeArray::completeType(BTFDebug &BDebug) {
169 BTFType.NameOff = BDebug.addString(ATy->getName());
170 BTFType.Size = 0;
171
172 auto *BaseType = ATy->getBaseType().resolve();
173 ArrayInfo.ElemType = BDebug.getTypeId(BaseType);
174
175 // The IR does not really have a type for the index.
176 // A special type for array index should have been
177 // created during initial type traversal. Just
178 // retrieve that type id.
179 ArrayInfo.IndexType = BDebug.getArrayIndexTypeId();
180
181 // Get the number of array elements.
182 // If the array size is 0, set the number of elements as 0.
183 // Otherwise, recursively traverse the base types to
184 // find the element size. The number of elements is
185 // the totoal array size in bits divided by
186 // element size in bits.
187 uint64_t ArraySizeInBits = ATy->getSizeInBits();
188 if (!ArraySizeInBits) {
189 ArrayInfo.Nelems = 0;
190 } else {
191 uint32_t BaseTypeSize = BaseType->getSizeInBits();
192 while (!BaseTypeSize) {
193 const auto *DDTy = cast<DIDerivedType>(BaseType);
194 BaseType = DDTy->getBaseType().resolve();
195 assert(BaseType);
196 BaseTypeSize = BaseType->getSizeInBits();
197 }
198 ArrayInfo.Nelems = ATy->getSizeInBits() / BaseTypeSize;
199 }
200}
201
202void BTFTypeArray::emitType(MCStreamer &OS) {
203 BTFTypeBase::emitType(OS);
204 OS.EmitIntValue(ArrayInfo.ElemType, 4);
205 OS.EmitIntValue(ArrayInfo.IndexType, 4);
206 OS.EmitIntValue(ArrayInfo.Nelems, 4);
207}
208
209/// Represent either a struct or a union.
210BTFTypeStruct::BTFTypeStruct(const DICompositeType *STy, bool IsStruct,
211 bool HasBitField, uint32_t Vlen)
212 : STy(STy), HasBitField(HasBitField) {
213 Kind = IsStruct ? BTF::BTF_KIND_STRUCT : BTF::BTF_KIND_UNION;
214 BTFType.Size = roundupToBytes(STy->getSizeInBits());
215 BTFType.Info = (HasBitField << 31) | (Kind << 24) | Vlen;
216}
217
218void BTFTypeStruct::completeType(BTFDebug &BDebug) {
219 BTFType.NameOff = BDebug.addString(STy->getName());
220
221 // Add struct/union members.
222 const DINodeArray Elements = STy->getElements();
223 for (const auto *Element : Elements) {
224 struct BTF::BTFMember BTFMember;
225 const auto *DDTy = cast<DIDerivedType>(Element);
226
227 BTFMember.NameOff = BDebug.addString(DDTy->getName());
228 if (HasBitField) {
229 uint8_t BitFieldSize = DDTy->isBitField() ? DDTy->getSizeInBits() : 0;
230 BTFMember.Offset = BitFieldSize << 24 | DDTy->getOffsetInBits();
231 } else {
232 BTFMember.Offset = DDTy->getOffsetInBits();
233 }
234 BTFMember.Type = BDebug.getTypeId(DDTy->getBaseType().resolve());
235 Members.push_back(BTFMember);
236 }
237}
238
239void BTFTypeStruct::emitType(MCStreamer &OS) {
240 BTFTypeBase::emitType(OS);
241 for (const auto &Member : Members) {
242 OS.EmitIntValue(Member.NameOff, 4);
243 OS.EmitIntValue(Member.Type, 4);
244 OS.AddComment("0x" + Twine::utohexstr(Member.Offset));
245 OS.EmitIntValue(Member.Offset, 4);
246 }
247}
248
249/// The Func kind represents both subprogram and pointee of function
250/// pointers. If the FuncName is empty, it represents a pointee of function
251/// pointer. Otherwise, it represents a subprogram. The func arg names
252/// are empty for pointee of function pointer case, and are valid names
253/// for subprogram.
254BTFTypeFuncProto::BTFTypeFuncProto(
255 const DISubroutineType *STy, uint32_t VLen,
256 const std::unordered_map<uint32_t, StringRef> &FuncArgNames)
257 : STy(STy), FuncArgNames(FuncArgNames) {
258 Kind = BTF::BTF_KIND_FUNC_PROTO;
259 BTFType.Info = (Kind << 24) | VLen;
260}
261
262void BTFTypeFuncProto::completeType(BTFDebug &BDebug) {
263 DITypeRefArray Elements = STy->getTypeArray();
264 auto RetType = Elements[0].resolve();
265 BTFType.Type = RetType ? BDebug.getTypeId(RetType) : 0;
266 BTFType.NameOff = 0;
267
268 // For null parameter which is typically the last one
269 // to represent the vararg, encode the NameOff/Type to be 0.
270 for (unsigned I = 1, N = Elements.size(); I < N; ++I) {
271 struct BTF::BTFParam Param;
272 auto Element = Elements[I].resolve();
273 if (Element) {
274 Param.NameOff = BDebug.addString(FuncArgNames[I]);
275 Param.Type = BDebug.getTypeId(Element);
276 } else {
277 Param.NameOff = 0;
278 Param.Type = 0;
279 }
280 Parameters.push_back(Param);
281 }
282}
283
284void BTFTypeFuncProto::emitType(MCStreamer &OS) {
285 BTFTypeBase::emitType(OS);
286 for (const auto &Param : Parameters) {
287 OS.EmitIntValue(Param.NameOff, 4);
288 OS.EmitIntValue(Param.Type, 4);
289 }
290}
291
292BTFTypeFunc::BTFTypeFunc(StringRef FuncName, uint32_t ProtoTypeId)
293 : Name(FuncName) {
294 Kind = BTF::BTF_KIND_FUNC;
295 BTFType.Info = Kind << 24;
296 BTFType.Type = ProtoTypeId;
297}
298
299void BTFTypeFunc::completeType(BTFDebug &BDebug) {
300 BTFType.NameOff = BDebug.addString(Name);
301}
302
303void BTFTypeFunc::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); }
304
305uint32_t BTFStringTable::addString(StringRef S) {
306 // Check whether the string already exists.
307 for (auto &OffsetM : OffsetToIdMap) {
308 if (Table[OffsetM.second] == S)
309 return OffsetM.first;
310 }
311 // Not find, add to the string table.
312 uint32_t Offset = Size;
313 OffsetToIdMap[Offset] = Table.size();
314 Table.push_back(S);
315 Size += S.size() + 1;
316 return Offset;
317}
318
319BTFDebug::BTFDebug(AsmPrinter *AP)
320 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), SkipInstruction(false),
321 LineInfoGenerated(false), SecNameOff(0), ArrayIndexTypeId(0) {
322 addString("\0");
323}
324
325void BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry,
326 const DIType *Ty) {
327 TypeEntry->setId(TypeEntries.size() + 1);
328 DIToIdMap[Ty] = TypeEntry->getId();
329 TypeEntries.push_back(std::move(TypeEntry));
330}
331
332uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry) {
333 TypeEntry->setId(TypeEntries.size() + 1);
334 uint32_t Id = TypeEntry->getId();
335 TypeEntries.push_back(std::move(TypeEntry));
336 return Id;
337}
338
339void BTFDebug::visitBasicType(const DIBasicType *BTy) {
340 // Only int types are supported in BTF.
341 uint32_t Encoding = BTy->getEncoding();
342 if (Encoding != dwarf::DW_ATE_boolean && Encoding != dwarf::DW_ATE_signed &&
343 Encoding != dwarf::DW_ATE_signed_char &&
344 Encoding != dwarf::DW_ATE_unsigned &&
345 Encoding != dwarf::DW_ATE_unsigned_char)
346 return;
347
348 // Create a BTF type instance for this DIBasicType and put it into
349 // DIToIdMap for cross-type reference check.
350 auto TypeEntry = llvm::make_unique<BTFTypeInt>(
351 Encoding, BTy->getSizeInBits(), BTy->getOffsetInBits(), BTy->getName());
352 addType(std::move(TypeEntry), BTy);
353}
354
355/// Handle subprogram or subroutine types.
356void BTFDebug::visitSubroutineType(
357 const DISubroutineType *STy, bool ForSubprog,
358 const std::unordered_map<uint32_t, StringRef> &FuncArgNames,
359 uint32_t &TypeId) {
360 DITypeRefArray Elements = STy->getTypeArray();
361 uint32_t VLen = Elements.size() - 1;
362 if (VLen > BTF::MAX_VLEN)
363 return;
364
365 // Subprogram has a valid non-zero-length name, and the pointee of
366 // a function pointer has an empty name. The subprogram type will
367 // not be added to DIToIdMap as it should not be referenced by
368 // any other types.
369 auto TypeEntry = llvm::make_unique<BTFTypeFuncProto>(STy, VLen, FuncArgNames);
370 if (ForSubprog)
371 TypeId = addType(std::move(TypeEntry)); // For subprogram
372 else
373 addType(std::move(TypeEntry), STy); // For func ptr
374
375 // Visit return type and func arg types.
376 for (const auto Element : Elements) {
377 visitTypeEntry(Element.resolve());
378 }
379}
380
381/// Handle structure/union types.
382void BTFDebug::visitStructType(const DICompositeType *CTy, bool IsStruct) {
383 const DINodeArray Elements = CTy->getElements();
384 uint32_t VLen = Elements.size();
385 if (VLen > BTF::MAX_VLEN)
386 return;
387
388 // Check whether we have any bitfield members or not
389 bool HasBitField = false;
390 for (const auto *Element : Elements) {
391 auto E = cast<DIDerivedType>(Element);
392 if (E->isBitField()) {
393 HasBitField = true;
394 break;
395 }
396 }
397
398 auto TypeEntry =
399 llvm::make_unique<BTFTypeStruct>(CTy, IsStruct, HasBitField, VLen);
400 addType(std::move(TypeEntry), CTy);
401
402 // Visit all struct members.
403 for (const auto *Element : Elements)
404 visitTypeEntry(cast<DIDerivedType>(Element));
405}
406
407void BTFDebug::visitArrayType(const DICompositeType *CTy) {
408 auto TypeEntry = llvm::make_unique<BTFTypeArray>(CTy);
409 addType(std::move(TypeEntry), CTy);
410
411 // The IR does not have a type for array index while BTF wants one.
412 // So create an array index type if there is none.
413 if (!ArrayIndexTypeId) {
414 auto TypeEntry = llvm::make_unique<BTFTypeInt>(dwarf::DW_ATE_unsigned, 32,
415 0, "__ARRAY_SIZE_TYPE__");
416 ArrayIndexTypeId = addType(std::move(TypeEntry));
417 }
418
419 // Visit array element type.
420 visitTypeEntry(CTy->getBaseType().resolve());
421}
422
423void BTFDebug::visitEnumType(const DICompositeType *CTy) {
424 DINodeArray Elements = CTy->getElements();
425 uint32_t VLen = Elements.size();
426 if (VLen > BTF::MAX_VLEN)
427 return;
428
429 auto TypeEntry = llvm::make_unique<BTFTypeEnum>(CTy, VLen);
430 addType(std::move(TypeEntry), CTy);
431 // No need to visit base type as BTF does not encode it.
432}
433
434/// Handle structure/union forward declarations.
435void BTFDebug::visitFwdDeclType(const DICompositeType *CTy, bool IsUnion) {
436 auto TypeEntry = llvm::make_unique<BTFTypeFwd>(CTy->getName(), IsUnion);
437 addType(std::move(TypeEntry), CTy);
438}
439
440/// Handle structure, union, array and enumeration types.
441void BTFDebug::visitCompositeType(const DICompositeType *CTy) {
442 auto Tag = CTy->getTag();
443 if (Tag == dwarf::DW_TAG_structure_type || Tag == dwarf::DW_TAG_union_type) {
444 // Handle forward declaration differently as it does not have members.
445 if (CTy->isForwardDecl())
446 visitFwdDeclType(CTy, Tag == dwarf::DW_TAG_union_type);
447 else
448 visitStructType(CTy, Tag == dwarf::DW_TAG_structure_type);
449 } else if (Tag == dwarf::DW_TAG_array_type)
450 visitArrayType(CTy);
451 else if (Tag == dwarf::DW_TAG_enumeration_type)
452 visitEnumType(CTy);
453}
454
455/// Handle pointer, typedef, const, volatile, restrict and member types.
456void BTFDebug::visitDerivedType(const DIDerivedType *DTy) {
457 unsigned Tag = DTy->getTag();
458
459 if (Tag == dwarf::DW_TAG_pointer_type || Tag == dwarf::DW_TAG_typedef ||
460 Tag == dwarf::DW_TAG_const_type || Tag == dwarf::DW_TAG_volatile_type ||
461 Tag == dwarf::DW_TAG_restrict_type) {
462 auto TypeEntry = llvm::make_unique<BTFTypeDerived>(DTy, Tag);
463 addType(std::move(TypeEntry), DTy);
464 } else if (Tag != dwarf::DW_TAG_member) {
465 return;
466 }
467
468 // Visit base type of pointer, typedef, const, volatile, restrict or
469 // struct/union member.
470 visitTypeEntry(DTy->getBaseType().resolve());
471}
472
473void BTFDebug::visitTypeEntry(const DIType *Ty) {
474 if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end())
475 return;
476
477 uint32_t TypeId;
478 if (const auto *BTy = dyn_cast<DIBasicType>(Ty))
479 visitBasicType(BTy);
480 else if (const auto *STy = dyn_cast<DISubroutineType>(Ty))
481 visitSubroutineType(STy, false, std::unordered_map<uint32_t, StringRef>(),
482 TypeId);
483 else if (const auto *CTy = dyn_cast<DICompositeType>(Ty))
484 visitCompositeType(CTy);
485 else if (const auto *DTy = dyn_cast<DIDerivedType>(Ty))
486 visitDerivedType(DTy);
487 else
488 llvm_unreachable("Unknown DIType");
489}
490
491/// Read file contents from the actual file or from the source
492std::string BTFDebug::populateFileContent(const DISubprogram *SP) {
493 auto File = SP->getFile();
494 std::string FileName;
495
Yonghong Songfa365402019-02-02 05:54:59 +0000496 if (!File->getFilename().startswith("/") && File->getDirectory().size())
Yonghong Song7b410ac2018-12-19 16:40:25 +0000497 FileName = File->getDirectory().str() + "/" + File->getFilename().str();
498 else
499 FileName = File->getFilename();
500
501 // No need to populate the contends if it has been populated!
502 if (FileContent.find(FileName) != FileContent.end())
503 return FileName;
504
505 std::vector<std::string> Content;
506 std::string Line;
507 Content.push_back(Line); // Line 0 for empty string
508
509 auto Source = File->getSource();
510 if (Source) {
511 std::istringstream InputString(Source.getValue());
512 while (std::getline(InputString, Line))
513 Content.push_back(Line);
514 } else {
515 std::ifstream InputFile(FileName);
516 while (std::getline(InputFile, Line))
517 Content.push_back(Line);
518 }
519
520 FileContent[FileName] = Content;
521 return FileName;
522}
523
524void BTFDebug::constructLineInfo(const DISubprogram *SP, MCSymbol *Label,
525 uint32_t Line, uint32_t Column) {
526 std::string FileName = populateFileContent(SP);
527 BTFLineInfo LineInfo;
528
529 LineInfo.Label = Label;
530 LineInfo.FileNameOff = addString(FileName);
531 // If file content is not available, let LineOff = 0.
532 if (Line < FileContent[FileName].size())
533 LineInfo.LineOff = addString(FileContent[FileName][Line]);
534 else
535 LineInfo.LineOff = 0;
536 LineInfo.LineNum = Line;
537 LineInfo.ColumnNum = Column;
538 LineInfoTable[SecNameOff].push_back(LineInfo);
539}
540
541void BTFDebug::emitCommonHeader() {
542 OS.AddComment("0x" + Twine::utohexstr(BTF::MAGIC));
543 OS.EmitIntValue(BTF::MAGIC, 2);
544 OS.EmitIntValue(BTF::VERSION, 1);
545 OS.EmitIntValue(0, 1);
546}
547
548void BTFDebug::emitBTFSection() {
Yonghong Songd82247c2019-03-05 01:01:21 +0000549 // Do not emit section if no types and only "" string.
550 if (!TypeEntries.size() && StringTable.getSize() == 1)
551 return;
552
Yonghong Song7b410ac2018-12-19 16:40:25 +0000553 MCContext &Ctx = OS.getContext();
554 OS.SwitchSection(Ctx.getELFSection(".BTF", ELF::SHT_PROGBITS, 0));
555
556 // Emit header.
557 emitCommonHeader();
558 OS.EmitIntValue(BTF::HeaderSize, 4);
559
560 uint32_t TypeLen = 0, StrLen;
561 for (const auto &TypeEntry : TypeEntries)
562 TypeLen += TypeEntry->getSize();
563 StrLen = StringTable.getSize();
564
565 OS.EmitIntValue(0, 4);
566 OS.EmitIntValue(TypeLen, 4);
567 OS.EmitIntValue(TypeLen, 4);
568 OS.EmitIntValue(StrLen, 4);
569
570 // Emit type table.
571 for (const auto &TypeEntry : TypeEntries)
572 TypeEntry->emitType(OS);
573
574 // Emit string table.
575 uint32_t StringOffset = 0;
576 for (const auto &S : StringTable.getTable()) {
577 OS.AddComment("string offset=" + std::to_string(StringOffset));
578 OS.EmitBytes(S);
579 OS.EmitBytes(StringRef("\0", 1));
580 StringOffset += S.size() + 1;
581 }
582}
583
584void BTFDebug::emitBTFExtSection() {
Yonghong Songd82247c2019-03-05 01:01:21 +0000585 // Do not emit section if empty FuncInfoTable and LineInfoTable.
586 if (!FuncInfoTable.size() && !LineInfoTable.size())
587 return;
588
Yonghong Song7b410ac2018-12-19 16:40:25 +0000589 MCContext &Ctx = OS.getContext();
590 OS.SwitchSection(Ctx.getELFSection(".BTF.ext", ELF::SHT_PROGBITS, 0));
591
592 // Emit header.
593 emitCommonHeader();
594 OS.EmitIntValue(BTF::ExtHeaderSize, 4);
595
596 // Account for FuncInfo/LineInfo record size as well.
597 uint32_t FuncLen = 4, LineLen = 4;
598 for (const auto &FuncSec : FuncInfoTable) {
599 FuncLen += BTF::SecFuncInfoSize;
600 FuncLen += FuncSec.second.size() * BTF::BPFFuncInfoSize;
601 }
602 for (const auto &LineSec : LineInfoTable) {
603 LineLen += BTF::SecLineInfoSize;
604 LineLen += LineSec.second.size() * BTF::BPFLineInfoSize;
605 }
606
607 OS.EmitIntValue(0, 4);
608 OS.EmitIntValue(FuncLen, 4);
609 OS.EmitIntValue(FuncLen, 4);
610 OS.EmitIntValue(LineLen, 4);
611
612 // Emit func_info table.
613 OS.AddComment("FuncInfo");
614 OS.EmitIntValue(BTF::BPFFuncInfoSize, 4);
615 for (const auto &FuncSec : FuncInfoTable) {
616 OS.AddComment("FuncInfo section string offset=" +
617 std::to_string(FuncSec.first));
618 OS.EmitIntValue(FuncSec.first, 4);
619 OS.EmitIntValue(FuncSec.second.size(), 4);
620 for (const auto &FuncInfo : FuncSec.second) {
621 Asm->EmitLabelReference(FuncInfo.Label, 4);
622 OS.EmitIntValue(FuncInfo.TypeId, 4);
623 }
624 }
625
626 // Emit line_info table.
627 OS.AddComment("LineInfo");
628 OS.EmitIntValue(BTF::BPFLineInfoSize, 4);
629 for (const auto &LineSec : LineInfoTable) {
630 OS.AddComment("LineInfo section string offset=" +
631 std::to_string(LineSec.first));
632 OS.EmitIntValue(LineSec.first, 4);
633 OS.EmitIntValue(LineSec.second.size(), 4);
634 for (const auto &LineInfo : LineSec.second) {
635 Asm->EmitLabelReference(LineInfo.Label, 4);
636 OS.EmitIntValue(LineInfo.FileNameOff, 4);
637 OS.EmitIntValue(LineInfo.LineOff, 4);
638 OS.AddComment("Line " + std::to_string(LineInfo.LineNum) + " Col " +
639 std::to_string(LineInfo.ColumnNum));
640 OS.EmitIntValue(LineInfo.LineNum << 10 | LineInfo.ColumnNum, 4);
641 }
642 }
643}
644
645void BTFDebug::beginFunctionImpl(const MachineFunction *MF) {
646 auto *SP = MF->getFunction().getSubprogram();
647 auto *Unit = SP->getUnit();
648
649 if (Unit->getEmissionKind() == DICompileUnit::NoDebug) {
650 SkipInstruction = true;
651 return;
652 }
653 SkipInstruction = false;
654
655 // Collect all types locally referenced in this function.
656 // Use RetainedNodes so we can collect all argument names
657 // even if the argument is not used.
658 std::unordered_map<uint32_t, StringRef> FuncArgNames;
659 for (const DINode *DN : SP->getRetainedNodes()) {
660 if (const auto *DV = dyn_cast<DILocalVariable>(DN)) {
661 visitTypeEntry(DV->getType().resolve());
662
663 // Collect function arguments for subprogram func type.
664 uint32_t Arg = DV->getArg();
665 if (Arg)
666 FuncArgNames[Arg] = DV->getName();
667 }
668 }
669
670 // Construct subprogram func proto type.
671 uint32_t ProtoTypeId;
672 visitSubroutineType(SP->getType(), true, FuncArgNames, ProtoTypeId);
673
674 // Construct subprogram func type
675 auto FuncTypeEntry =
676 llvm::make_unique<BTFTypeFunc>(SP->getName(), ProtoTypeId);
677 uint32_t FuncTypeId = addType(std::move(FuncTypeEntry));
678
679 // Construct funcinfo and the first lineinfo for the function.
680 MCSymbol *FuncLabel = Asm->getFunctionBegin();
681 BTFFuncInfo FuncInfo;
682 FuncInfo.Label = FuncLabel;
683 FuncInfo.TypeId = FuncTypeId;
684 if (FuncLabel->isInSection()) {
685 MCSection &Section = FuncLabel->getSection();
686 const MCSectionELF *SectionELF = dyn_cast<MCSectionELF>(&Section);
687 assert(SectionELF && "Null section for Function Label");
688 SecNameOff = addString(SectionELF->getSectionName());
689 } else {
690 SecNameOff = addString(".text");
691 }
692 FuncInfoTable[SecNameOff].push_back(FuncInfo);
693}
694
695void BTFDebug::endFunctionImpl(const MachineFunction *MF) {
696 SkipInstruction = false;
697 LineInfoGenerated = false;
698 SecNameOff = 0;
699}
700
701void BTFDebug::beginInstruction(const MachineInstr *MI) {
702 DebugHandlerBase::beginInstruction(MI);
703
704 if (SkipInstruction || MI->isMetaInstruction() ||
705 MI->getFlag(MachineInstr::FrameSetup))
706 return;
707
708 if (MI->isInlineAsm()) {
709 // Count the number of register definitions to find the asm string.
710 unsigned NumDefs = 0;
711 for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
712 ++NumDefs)
713 ;
714
715 // Skip this inline asm instruction if the asmstr is empty.
716 const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
717 if (AsmStr[0] == 0)
718 return;
719 }
720
721 // Skip this instruction if no DebugLoc or the DebugLoc
722 // is the same as the previous instruction.
723 const DebugLoc &DL = MI->getDebugLoc();
724 if (!DL || PrevInstLoc == DL) {
725 // This instruction will be skipped, no LineInfo has
726 // been generated, construct one based on function signature.
727 if (LineInfoGenerated == false) {
728 auto *S = MI->getMF()->getFunction().getSubprogram();
729 MCSymbol *FuncLabel = Asm->getFunctionBegin();
730 constructLineInfo(S, FuncLabel, S->getLine(), 0);
731 LineInfoGenerated = true;
732 }
733
734 return;
735 }
736
737 // Create a temporary label to remember the insn for lineinfo.
738 MCSymbol *LineSym = OS.getContext().createTempSymbol();
739 OS.EmitLabel(LineSym);
740
741 // Construct the lineinfo.
742 auto SP = DL.get()->getScope()->getSubprogram();
743 constructLineInfo(SP, LineSym, DL.getLine(), DL.getCol());
744
745 LineInfoGenerated = true;
746 PrevInstLoc = DL;
747}
748
749void BTFDebug::endModule() {
750 // Collect all types referenced by globals.
751 const Module *M = MMI->getModule();
752 for (const DICompileUnit *CUNode : M->debug_compile_units()) {
753 for (const auto *GVE : CUNode->getGlobalVariables()) {
754 DIGlobalVariable *GV = GVE->getVariable();
755 visitTypeEntry(GV->getType().resolve());
756 }
757 }
758
759 // Complete BTF type cross refereences.
760 for (const auto &TypeEntry : TypeEntries)
761 TypeEntry->completeType(*this);
762
763 // Emit BTF sections.
764 emitBTFSection();
765 emitBTFExtSection();
766}