blob: 02382afb8c49a0f4a7a6f8d6a766b02b8fbc954f [file] [log] [blame]
Anna Thomas740f5292017-07-05 01:16:29 +00001//===-- SafepointIRVerifier.cpp - Verify gc.statepoint invariants ---------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Run a sanity check on the IR to ensure that Safepoints - if they've been
11// inserted - were inserted correctly. In particular, look for use of
12// non-relocated values after a safepoint. It's primary use is to check the
13// correctness of safepoint insertion immediately after insertion, but it can
14// also be used to verify that later transforms have not found a way to break
15// safepoint semenatics.
16//
17// In its current form, this verify checks a property which is sufficient, but
18// not neccessary for correctness. There are some cases where an unrelocated
19// pointer can be used after the safepoint. Consider this example:
20//
21// a = ...
22// b = ...
23// (a',b') = safepoint(a,b)
24// c = cmp eq a b
25// br c, ..., ....
26//
27// Because it is valid to reorder 'c' above the safepoint, this is legal. In
28// practice, this is a somewhat uncommon transform, but CodeGenPrep does create
Anna Thomascace0532017-07-07 13:02:29 +000029// idioms like this. The verifier knows about these cases and avoids reporting
30// false positives.
Anna Thomas740f5292017-07-05 01:16:29 +000031//
32//===----------------------------------------------------------------------===//
33
34#include "llvm/ADT/DenseSet.h"
35#include "llvm/ADT/SetOperations.h"
36#include "llvm/ADT/SetVector.h"
37#include "llvm/IR/BasicBlock.h"
38#include "llvm/IR/Dominators.h"
39#include "llvm/IR/Function.h"
40#include "llvm/IR/Instructions.h"
41#include "llvm/IR/Intrinsics.h"
42#include "llvm/IR/IntrinsicInst.h"
43#include "llvm/IR/Module.h"
44#include "llvm/IR/Value.h"
45#include "llvm/IR/SafepointIRVerifier.h"
46#include "llvm/IR/Statepoint.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/CommandLine.h"
49#include "llvm/Support/raw_ostream.h"
50
51#define DEBUG_TYPE "safepoint-ir-verifier"
52
53using namespace llvm;
54
55/// This option is used for writing test cases. Instead of crashing the program
56/// when verification fails, report a message to the console (for FileCheck
57/// usage) and continue execution as if nothing happened.
58static cl::opt<bool> PrintOnly("safepoint-ir-verifier-print-only",
59 cl::init(false));
60
61static void Verify(const Function &F, const DominatorTree &DT);
62
Benjamin Kramer49a49fe2017-08-20 13:03:48 +000063namespace {
Anna Thomas740f5292017-07-05 01:16:29 +000064struct SafepointIRVerifier : public FunctionPass {
65 static char ID; // Pass identification, replacement for typeid
66 DominatorTree DT;
67 SafepointIRVerifier() : FunctionPass(ID) {
68 initializeSafepointIRVerifierPass(*PassRegistry::getPassRegistry());
69 }
70
71 bool runOnFunction(Function &F) override {
72 DT.recalculate(F);
73 Verify(F, DT);
74 return false; // no modifications
75 }
76
77 void getAnalysisUsage(AnalysisUsage &AU) const override {
78 AU.setPreservesAll();
79 }
80
81 StringRef getPassName() const override { return "safepoint verifier"; }
82};
Benjamin Kramer49a49fe2017-08-20 13:03:48 +000083} // namespace
Anna Thomas740f5292017-07-05 01:16:29 +000084
85void llvm::verifySafepointIR(Function &F) {
86 SafepointIRVerifier pass;
87 pass.runOnFunction(F);
88}
89
90char SafepointIRVerifier::ID = 0;
91
92FunctionPass *llvm::createSafepointIRVerifierPass() {
93 return new SafepointIRVerifier();
94}
95
96INITIALIZE_PASS_BEGIN(SafepointIRVerifier, "verify-safepoint-ir",
97 "Safepoint IR Verifier", false, true)
98INITIALIZE_PASS_END(SafepointIRVerifier, "verify-safepoint-ir",
99 "Safepoint IR Verifier", false, true)
100
101static bool isGCPointerType(Type *T) {
102 if (auto *PT = dyn_cast<PointerType>(T))
103 // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
104 // GC managed heap. We know that a pointer into this heap needs to be
105 // updated and that no other pointer does.
106 return (1 == PT->getAddressSpace());
107 return false;
108}
109
110static bool containsGCPtrType(Type *Ty) {
111 if (isGCPointerType(Ty))
112 return true;
113 if (VectorType *VT = dyn_cast<VectorType>(Ty))
114 return isGCPointerType(VT->getScalarType());
115 if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
116 return containsGCPtrType(AT->getElementType());
117 if (StructType *ST = dyn_cast<StructType>(Ty))
118 return std::any_of(ST->subtypes().begin(), ST->subtypes().end(),
119 containsGCPtrType);
120 return false;
121}
122
123// Debugging aid -- prints a [Begin, End) range of values.
124template<typename IteratorTy>
125static void PrintValueSet(raw_ostream &OS, IteratorTy Begin, IteratorTy End) {
126 OS << "[ ";
127 while (Begin != End) {
128 OS << **Begin << " ";
129 ++Begin;
130 }
131 OS << "]";
132}
133
134/// The verifier algorithm is phrased in terms of availability. The set of
135/// values "available" at a given point in the control flow graph is the set of
136/// correctly relocated value at that point, and is a subset of the set of
137/// definitions dominating that point.
138
139/// State we compute and track per basic block.
140struct BasicBlockState {
141 // Set of values available coming in, before the phi nodes
142 DenseSet<const Value *> AvailableIn;
143
144 // Set of values available going out
145 DenseSet<const Value *> AvailableOut;
146
147 // AvailableOut minus AvailableIn.
148 // All elements are Instructions
149 DenseSet<const Value *> Contribution;
150
151 // True if this block contains a safepoint and thus AvailableIn does not
152 // contribute to AvailableOut.
153 bool Cleared = false;
154};
155
156
157/// Gather all the definitions dominating the start of BB into Result. This is
158/// simply the Defs introduced by every dominating basic block and the function
159/// arguments.
160static void GatherDominatingDefs(const BasicBlock *BB,
161 DenseSet<const Value *> &Result,
162 const DominatorTree &DT,
163 DenseMap<const BasicBlock *, BasicBlockState *> &BlockMap) {
164 DomTreeNode *DTN = DT[const_cast<BasicBlock *>(BB)];
165
166 while (DTN->getIDom()) {
167 DTN = DTN->getIDom();
168 const auto &Defs = BlockMap[DTN->getBlock()]->Contribution;
169 Result.insert(Defs.begin(), Defs.end());
170 // If this block is 'Cleared', then nothing LiveIn to this block can be
171 // available after this block completes. Note: This turns out to be
172 // really important for reducing memory consuption of the initial available
173 // sets and thus peak memory usage by this verifier.
174 if (BlockMap[DTN->getBlock()]->Cleared)
175 return;
176 }
177
178 for (const Argument &A : BB->getParent()->args())
179 if (containsGCPtrType(A.getType()))
180 Result.insert(&A);
181}
182
183/// Model the effect of an instruction on the set of available values.
184static void TransferInstruction(const Instruction &I, bool &Cleared,
185 DenseSet<const Value *> &Available) {
186 if (isStatepoint(I)) {
187 Cleared = true;
188 Available.clear();
189 } else if (containsGCPtrType(I.getType()))
190 Available.insert(&I);
191}
192
193/// Compute the AvailableOut set for BB, based on the
194/// BasicBlockState BBS, which is the BasicBlockState for BB. FirstPass is set
195/// when the verifier runs for the first time computing the AvailableOut set
196/// for BB.
197static void TransferBlock(const BasicBlock *BB,
198 BasicBlockState &BBS, bool FirstPass) {
199
200 const DenseSet<const Value *> &AvailableIn = BBS.AvailableIn;
201 DenseSet<const Value *> &AvailableOut = BBS.AvailableOut;
202
203 if (BBS.Cleared) {
204 // AvailableOut does not change no matter how the input changes, just
205 // leave it be. We need to force this calculation the first time so that
206 // we have a AvailableOut at all.
207 if (FirstPass) {
208 AvailableOut = BBS.Contribution;
209 }
210 } else {
211 // Otherwise, we need to reduce the AvailableOut set by things which are no
212 // longer in our AvailableIn
213 DenseSet<const Value *> Temp = BBS.Contribution;
214 set_union(Temp, AvailableIn);
215 AvailableOut = std::move(Temp);
216 }
217
218 DEBUG(dbgs() << "Transfered block " << BB->getName() << " from ";
219 PrintValueSet(dbgs(), AvailableIn.begin(), AvailableIn.end());
220 dbgs() << " to ";
221 PrintValueSet(dbgs(), AvailableOut.begin(), AvailableOut.end());
222 dbgs() << "\n";);
223}
224
Anna Thomasccce8532017-07-07 00:40:37 +0000225/// A given derived pointer can have multiple base pointers through phi/selects.
226/// This type indicates when the base pointer is exclusively constant
227/// (ExclusivelySomeConstant), and if that constant is proven to be exclusively
228/// null, we record that as ExclusivelyNull. In all other cases, the BaseType is
229/// NonConstant.
230enum BaseType {
231 NonConstant = 1, // Base pointers is not exclusively constant.
232 ExclusivelyNull,
233 ExclusivelySomeConstant // Base pointers for a given derived pointer is from a
234 // set of constants, but they are not exclusively
235 // null.
236};
Anna Thomas740f5292017-07-05 01:16:29 +0000237
Anna Thomasccce8532017-07-07 00:40:37 +0000238/// Return the baseType for Val which states whether Val is exclusively
239/// derived from constant/null, or not exclusively derived from constant.
240/// Val is exclusively derived off a constant base when all operands of phi and
241/// selects are derived off a constant base.
242static enum BaseType getBaseType(const Value *Val) {
Anna Thomas740f5292017-07-05 01:16:29 +0000243
Anna Thomasccce8532017-07-07 00:40:37 +0000244 SmallVector<const Value *, 32> Worklist;
245 DenseSet<const Value *> Visited;
246 bool isExclusivelyDerivedFromNull = true;
247 Worklist.push_back(Val);
248 // Strip through all the bitcasts and geps to get base pointer. Also check for
249 // the exclusive value when there can be multiple base pointers (through phis
250 // or selects).
251 while(!Worklist.empty()) {
252 const Value *V = Worklist.pop_back_val();
253 if (!Visited.insert(V).second)
254 continue;
Anna Thomas740f5292017-07-05 01:16:29 +0000255
Anna Thomasccce8532017-07-07 00:40:37 +0000256 if (const auto *CI = dyn_cast<CastInst>(V)) {
257 Worklist.push_back(CI->stripPointerCasts());
258 continue;
259 }
260 if (const auto *GEP = dyn_cast<GetElementPtrInst>(V)) {
261 Worklist.push_back(GEP->getPointerOperand());
262 continue;
263 }
264 // Push all the incoming values of phi node into the worklist for
265 // processing.
266 if (const auto *PN = dyn_cast<PHINode>(V)) {
267 for (Value *InV: PN->incoming_values())
268 Worklist.push_back(InV);
269 continue;
270 }
271 if (const auto *SI = dyn_cast<SelectInst>(V)) {
272 // Push in the true and false values
273 Worklist.push_back(SI->getTrueValue());
274 Worklist.push_back(SI->getFalseValue());
275 continue;
276 }
277 if (isa<Constant>(V)) {
278 // We found at least one base pointer which is non-null, so this derived
279 // pointer is not exclusively derived from null.
280 if (V != Constant::getNullValue(V->getType()))
281 isExclusivelyDerivedFromNull = false;
282 // Continue processing the remaining values to make sure it's exclusively
283 // constant.
284 continue;
285 }
286 // At this point, we know that the base pointer is not exclusively
287 // constant.
288 return BaseType::NonConstant;
Anna Thomas740f5292017-07-05 01:16:29 +0000289 }
Anna Thomasccce8532017-07-07 00:40:37 +0000290 // Now, we know that the base pointer is exclusively constant, but we need to
291 // differentiate between exclusive null constant and non-null constant.
292 return isExclusivelyDerivedFromNull ? BaseType::ExclusivelyNull
293 : BaseType::ExclusivelySomeConstant;
Anna Thomas740f5292017-07-05 01:16:29 +0000294}
295
296static void Verify(const Function &F, const DominatorTree &DT) {
297 SpecificBumpPtrAllocator<BasicBlockState> BSAllocator;
298 DenseMap<const BasicBlock *, BasicBlockState *> BlockMap;
299
300 DEBUG(dbgs() << "Verifying gc pointers in function: " << F.getName() << "\n");
301 if (PrintOnly)
302 dbgs() << "Verifying gc pointers in function: " << F.getName() << "\n";
303
304
305 for (const BasicBlock &BB : F) {
306 BasicBlockState *BBS = new(BSAllocator.Allocate()) BasicBlockState;
307 for (const auto &I : BB)
308 TransferInstruction(I, BBS->Cleared, BBS->Contribution);
309 BlockMap[&BB] = BBS;
310 }
311
312 for (auto &BBI : BlockMap) {
313 GatherDominatingDefs(BBI.first, BBI.second->AvailableIn, DT, BlockMap);
314 TransferBlock(BBI.first, *BBI.second, true);
315 }
316
317 SetVector<const BasicBlock *> Worklist;
318 for (auto &BBI : BlockMap)
319 Worklist.insert(BBI.first);
320
321 // This loop iterates the AvailableIn and AvailableOut sets to a fixed point.
322 // The AvailableIn and AvailableOut sets decrease as we iterate.
323 while (!Worklist.empty()) {
324 const BasicBlock *BB = Worklist.pop_back_val();
325 BasicBlockState *BBS = BlockMap[BB];
326
327 size_t OldInCount = BBS->AvailableIn.size();
328 for (const BasicBlock *PBB : predecessors(BB))
329 set_intersect(BBS->AvailableIn, BlockMap[PBB]->AvailableOut);
330
331 if (OldInCount == BBS->AvailableIn.size())
332 continue;
333
334 assert(OldInCount > BBS->AvailableIn.size() && "invariant!");
335
336 size_t OldOutCount = BBS->AvailableOut.size();
337 TransferBlock(BB, *BBS, false);
338 if (OldOutCount != BBS->AvailableOut.size()) {
339 assert(OldOutCount > BBS->AvailableOut.size() && "invariant!");
340 Worklist.insert(succ_begin(BB), succ_end(BB));
341 }
342 }
343
344 // We now have all the information we need to decide if the use of a heap
345 // reference is legal or not, given our safepoint semantics.
346
347 bool AnyInvalidUses = false;
348
349 auto ReportInvalidUse = [&AnyInvalidUses](const Value &V,
350 const Instruction &I) {
351 errs() << "Illegal use of unrelocated value found!\n";
352 errs() << "Def: " << V << "\n";
353 errs() << "Use: " << I << "\n";
354 if (!PrintOnly)
355 abort();
356 AnyInvalidUses = true;
357 };
358
Anna Thomasccce8532017-07-07 00:40:37 +0000359 auto isNotExclusivelyConstantDerived = [](const Value *V) {
360 return getBaseType(V) == BaseType::NonConstant;
361 };
362
Anna Thomas740f5292017-07-05 01:16:29 +0000363 for (const BasicBlock &BB : F) {
364 // We destructively modify AvailableIn as we traverse the block instruction
365 // by instruction.
366 DenseSet<const Value *> &AvailableSet = BlockMap[&BB]->AvailableIn;
367 for (const Instruction &I : BB) {
368 if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
369 if (containsGCPtrType(PN->getType()))
370 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
371 const BasicBlock *InBB = PN->getIncomingBlock(i);
372 const Value *InValue = PN->getIncomingValue(i);
373
Anna Thomasccce8532017-07-07 00:40:37 +0000374 if (isNotExclusivelyConstantDerived(InValue) &&
Anna Thomas740f5292017-07-05 01:16:29 +0000375 !BlockMap[InBB]->AvailableOut.count(InValue))
376 ReportInvalidUse(*InValue, *PN);
377 }
Anna Thomascace0532017-07-07 13:02:29 +0000378 } else if (isa<CmpInst>(I) &&
379 containsGCPtrType(I.getOperand(0)->getType())) {
380 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
381 enum BaseType baseTyLHS = getBaseType(LHS),
382 baseTyRHS = getBaseType(RHS);
383
384 // Returns true if LHS and RHS are unrelocated pointers and they are
385 // valid unrelocated uses.
386 auto hasValidUnrelocatedUse = [&AvailableSet, baseTyLHS, baseTyRHS, &LHS, &RHS] () {
387 // A cmp instruction has valid unrelocated pointer operands only if
388 // both operands are unrelocated pointers.
389 // In the comparison between two pointers, if one is an unrelocated
390 // use, the other *should be* an unrelocated use, for this
391 // instruction to contain valid unrelocated uses. This unrelocated
392 // use can be a null constant as well, or another unrelocated
393 // pointer.
394 if (AvailableSet.count(LHS) || AvailableSet.count(RHS))
395 return false;
396 // Constant pointers (that are not exclusively null) may have
397 // meaning in different VMs, so we cannot reorder the compare
398 // against constant pointers before the safepoint. In other words,
399 // comparison of an unrelocated use against a non-null constant
400 // maybe invalid.
401 if ((baseTyLHS == BaseType::ExclusivelySomeConstant &&
402 baseTyRHS == BaseType::NonConstant) ||
403 (baseTyLHS == BaseType::NonConstant &&
404 baseTyRHS == BaseType::ExclusivelySomeConstant))
405 return false;
406 // All other cases are valid cases enumerated below:
407 // 1. Comparison between an exlusively derived null pointer and a
408 // constant base pointer.
409 // 2. Comparison between an exlusively derived null pointer and a
410 // non-constant unrelocated base pointer.
411 // 3. Comparison between 2 unrelocated pointers.
412 return true;
413 };
414 if (!hasValidUnrelocatedUse()) {
415 // Print out all non-constant derived pointers that are unrelocated
416 // uses, which are invalid.
417 if (baseTyLHS == BaseType::NonConstant && !AvailableSet.count(LHS))
418 ReportInvalidUse(*LHS, I);
419 if (baseTyRHS == BaseType::NonConstant && !AvailableSet.count(RHS))
420 ReportInvalidUse(*RHS, I);
421 }
Anna Thomas740f5292017-07-05 01:16:29 +0000422 } else {
423 for (const Value *V : I.operands())
424 if (containsGCPtrType(V->getType()) &&
Anna Thomasccce8532017-07-07 00:40:37 +0000425 isNotExclusivelyConstantDerived(V) && !AvailableSet.count(V))
Anna Thomas740f5292017-07-05 01:16:29 +0000426 ReportInvalidUse(*V, I);
427 }
428
429 bool Cleared = false;
430 TransferInstruction(I, Cleared, AvailableSet);
431 (void)Cleared;
432 }
433 }
434
435 if (PrintOnly && !AnyInvalidUses) {
436 dbgs() << "No illegal uses found by SafepointIRVerifier in: " << F.getName()
437 << "\n";
438 }
439}