Anna Thomas | 740f529 | 2017-07-05 01:16:29 +0000 | [diff] [blame] | 1 | //===-- SafepointIRVerifier.cpp - Verify gc.statepoint invariants ---------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // Run a sanity check on the IR to ensure that Safepoints - if they've been |
| 11 | // inserted - were inserted correctly. In particular, look for use of |
| 12 | // non-relocated values after a safepoint. It's primary use is to check the |
| 13 | // correctness of safepoint insertion immediately after insertion, but it can |
| 14 | // also be used to verify that later transforms have not found a way to break |
| 15 | // safepoint semenatics. |
| 16 | // |
| 17 | // In its current form, this verify checks a property which is sufficient, but |
| 18 | // not neccessary for correctness. There are some cases where an unrelocated |
| 19 | // pointer can be used after the safepoint. Consider this example: |
| 20 | // |
| 21 | // a = ... |
| 22 | // b = ... |
| 23 | // (a',b') = safepoint(a,b) |
| 24 | // c = cmp eq a b |
| 25 | // br c, ..., .... |
| 26 | // |
| 27 | // Because it is valid to reorder 'c' above the safepoint, this is legal. In |
| 28 | // practice, this is a somewhat uncommon transform, but CodeGenPrep does create |
Anna Thomas | cace053 | 2017-07-07 13:02:29 +0000 | [diff] [blame] | 29 | // idioms like this. The verifier knows about these cases and avoids reporting |
| 30 | // false positives. |
Anna Thomas | 740f529 | 2017-07-05 01:16:29 +0000 | [diff] [blame] | 31 | // |
| 32 | //===----------------------------------------------------------------------===// |
| 33 | |
| 34 | #include "llvm/ADT/DenseSet.h" |
| 35 | #include "llvm/ADT/SetOperations.h" |
| 36 | #include "llvm/ADT/SetVector.h" |
| 37 | #include "llvm/IR/BasicBlock.h" |
| 38 | #include "llvm/IR/Dominators.h" |
| 39 | #include "llvm/IR/Function.h" |
| 40 | #include "llvm/IR/Instructions.h" |
| 41 | #include "llvm/IR/Intrinsics.h" |
| 42 | #include "llvm/IR/IntrinsicInst.h" |
| 43 | #include "llvm/IR/Module.h" |
| 44 | #include "llvm/IR/Value.h" |
| 45 | #include "llvm/IR/SafepointIRVerifier.h" |
| 46 | #include "llvm/IR/Statepoint.h" |
| 47 | #include "llvm/Support/Debug.h" |
| 48 | #include "llvm/Support/CommandLine.h" |
| 49 | #include "llvm/Support/raw_ostream.h" |
| 50 | |
| 51 | #define DEBUG_TYPE "safepoint-ir-verifier" |
| 52 | |
| 53 | using namespace llvm; |
| 54 | |
| 55 | /// This option is used for writing test cases. Instead of crashing the program |
| 56 | /// when verification fails, report a message to the console (for FileCheck |
| 57 | /// usage) and continue execution as if nothing happened. |
| 58 | static cl::opt<bool> PrintOnly("safepoint-ir-verifier-print-only", |
| 59 | cl::init(false)); |
| 60 | |
| 61 | static void Verify(const Function &F, const DominatorTree &DT); |
| 62 | |
Benjamin Kramer | 49a49fe | 2017-08-20 13:03:48 +0000 | [diff] [blame] | 63 | namespace { |
Anna Thomas | 740f529 | 2017-07-05 01:16:29 +0000 | [diff] [blame] | 64 | struct SafepointIRVerifier : public FunctionPass { |
| 65 | static char ID; // Pass identification, replacement for typeid |
| 66 | DominatorTree DT; |
| 67 | SafepointIRVerifier() : FunctionPass(ID) { |
| 68 | initializeSafepointIRVerifierPass(*PassRegistry::getPassRegistry()); |
| 69 | } |
| 70 | |
| 71 | bool runOnFunction(Function &F) override { |
| 72 | DT.recalculate(F); |
| 73 | Verify(F, DT); |
| 74 | return false; // no modifications |
| 75 | } |
| 76 | |
| 77 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 78 | AU.setPreservesAll(); |
| 79 | } |
| 80 | |
| 81 | StringRef getPassName() const override { return "safepoint verifier"; } |
| 82 | }; |
Benjamin Kramer | 49a49fe | 2017-08-20 13:03:48 +0000 | [diff] [blame] | 83 | } // namespace |
Anna Thomas | 740f529 | 2017-07-05 01:16:29 +0000 | [diff] [blame] | 84 | |
| 85 | void llvm::verifySafepointIR(Function &F) { |
| 86 | SafepointIRVerifier pass; |
| 87 | pass.runOnFunction(F); |
| 88 | } |
| 89 | |
| 90 | char SafepointIRVerifier::ID = 0; |
| 91 | |
| 92 | FunctionPass *llvm::createSafepointIRVerifierPass() { |
| 93 | return new SafepointIRVerifier(); |
| 94 | } |
| 95 | |
| 96 | INITIALIZE_PASS_BEGIN(SafepointIRVerifier, "verify-safepoint-ir", |
| 97 | "Safepoint IR Verifier", false, true) |
| 98 | INITIALIZE_PASS_END(SafepointIRVerifier, "verify-safepoint-ir", |
| 99 | "Safepoint IR Verifier", false, true) |
| 100 | |
| 101 | static bool isGCPointerType(Type *T) { |
| 102 | if (auto *PT = dyn_cast<PointerType>(T)) |
| 103 | // For the sake of this example GC, we arbitrarily pick addrspace(1) as our |
| 104 | // GC managed heap. We know that a pointer into this heap needs to be |
| 105 | // updated and that no other pointer does. |
| 106 | return (1 == PT->getAddressSpace()); |
| 107 | return false; |
| 108 | } |
| 109 | |
| 110 | static bool containsGCPtrType(Type *Ty) { |
| 111 | if (isGCPointerType(Ty)) |
| 112 | return true; |
| 113 | if (VectorType *VT = dyn_cast<VectorType>(Ty)) |
| 114 | return isGCPointerType(VT->getScalarType()); |
| 115 | if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) |
| 116 | return containsGCPtrType(AT->getElementType()); |
| 117 | if (StructType *ST = dyn_cast<StructType>(Ty)) |
| 118 | return std::any_of(ST->subtypes().begin(), ST->subtypes().end(), |
| 119 | containsGCPtrType); |
| 120 | return false; |
| 121 | } |
| 122 | |
| 123 | // Debugging aid -- prints a [Begin, End) range of values. |
| 124 | template<typename IteratorTy> |
| 125 | static void PrintValueSet(raw_ostream &OS, IteratorTy Begin, IteratorTy End) { |
| 126 | OS << "[ "; |
| 127 | while (Begin != End) { |
| 128 | OS << **Begin << " "; |
| 129 | ++Begin; |
| 130 | } |
| 131 | OS << "]"; |
| 132 | } |
| 133 | |
| 134 | /// The verifier algorithm is phrased in terms of availability. The set of |
| 135 | /// values "available" at a given point in the control flow graph is the set of |
| 136 | /// correctly relocated value at that point, and is a subset of the set of |
| 137 | /// definitions dominating that point. |
| 138 | |
| 139 | /// State we compute and track per basic block. |
| 140 | struct BasicBlockState { |
| 141 | // Set of values available coming in, before the phi nodes |
| 142 | DenseSet<const Value *> AvailableIn; |
| 143 | |
| 144 | // Set of values available going out |
| 145 | DenseSet<const Value *> AvailableOut; |
| 146 | |
| 147 | // AvailableOut minus AvailableIn. |
| 148 | // All elements are Instructions |
| 149 | DenseSet<const Value *> Contribution; |
| 150 | |
| 151 | // True if this block contains a safepoint and thus AvailableIn does not |
| 152 | // contribute to AvailableOut. |
| 153 | bool Cleared = false; |
| 154 | }; |
| 155 | |
| 156 | |
| 157 | /// Gather all the definitions dominating the start of BB into Result. This is |
| 158 | /// simply the Defs introduced by every dominating basic block and the function |
| 159 | /// arguments. |
| 160 | static void GatherDominatingDefs(const BasicBlock *BB, |
| 161 | DenseSet<const Value *> &Result, |
| 162 | const DominatorTree &DT, |
| 163 | DenseMap<const BasicBlock *, BasicBlockState *> &BlockMap) { |
| 164 | DomTreeNode *DTN = DT[const_cast<BasicBlock *>(BB)]; |
| 165 | |
| 166 | while (DTN->getIDom()) { |
| 167 | DTN = DTN->getIDom(); |
| 168 | const auto &Defs = BlockMap[DTN->getBlock()]->Contribution; |
| 169 | Result.insert(Defs.begin(), Defs.end()); |
| 170 | // If this block is 'Cleared', then nothing LiveIn to this block can be |
| 171 | // available after this block completes. Note: This turns out to be |
| 172 | // really important for reducing memory consuption of the initial available |
| 173 | // sets and thus peak memory usage by this verifier. |
| 174 | if (BlockMap[DTN->getBlock()]->Cleared) |
| 175 | return; |
| 176 | } |
| 177 | |
| 178 | for (const Argument &A : BB->getParent()->args()) |
| 179 | if (containsGCPtrType(A.getType())) |
| 180 | Result.insert(&A); |
| 181 | } |
| 182 | |
| 183 | /// Model the effect of an instruction on the set of available values. |
| 184 | static void TransferInstruction(const Instruction &I, bool &Cleared, |
| 185 | DenseSet<const Value *> &Available) { |
| 186 | if (isStatepoint(I)) { |
| 187 | Cleared = true; |
| 188 | Available.clear(); |
| 189 | } else if (containsGCPtrType(I.getType())) |
| 190 | Available.insert(&I); |
| 191 | } |
| 192 | |
| 193 | /// Compute the AvailableOut set for BB, based on the |
| 194 | /// BasicBlockState BBS, which is the BasicBlockState for BB. FirstPass is set |
| 195 | /// when the verifier runs for the first time computing the AvailableOut set |
| 196 | /// for BB. |
| 197 | static void TransferBlock(const BasicBlock *BB, |
| 198 | BasicBlockState &BBS, bool FirstPass) { |
| 199 | |
| 200 | const DenseSet<const Value *> &AvailableIn = BBS.AvailableIn; |
| 201 | DenseSet<const Value *> &AvailableOut = BBS.AvailableOut; |
| 202 | |
| 203 | if (BBS.Cleared) { |
| 204 | // AvailableOut does not change no matter how the input changes, just |
| 205 | // leave it be. We need to force this calculation the first time so that |
| 206 | // we have a AvailableOut at all. |
| 207 | if (FirstPass) { |
| 208 | AvailableOut = BBS.Contribution; |
| 209 | } |
| 210 | } else { |
| 211 | // Otherwise, we need to reduce the AvailableOut set by things which are no |
| 212 | // longer in our AvailableIn |
| 213 | DenseSet<const Value *> Temp = BBS.Contribution; |
| 214 | set_union(Temp, AvailableIn); |
| 215 | AvailableOut = std::move(Temp); |
| 216 | } |
| 217 | |
| 218 | DEBUG(dbgs() << "Transfered block " << BB->getName() << " from "; |
| 219 | PrintValueSet(dbgs(), AvailableIn.begin(), AvailableIn.end()); |
| 220 | dbgs() << " to "; |
| 221 | PrintValueSet(dbgs(), AvailableOut.begin(), AvailableOut.end()); |
| 222 | dbgs() << "\n";); |
| 223 | } |
| 224 | |
Anna Thomas | ccce853 | 2017-07-07 00:40:37 +0000 | [diff] [blame] | 225 | /// A given derived pointer can have multiple base pointers through phi/selects. |
| 226 | /// This type indicates when the base pointer is exclusively constant |
| 227 | /// (ExclusivelySomeConstant), and if that constant is proven to be exclusively |
| 228 | /// null, we record that as ExclusivelyNull. In all other cases, the BaseType is |
| 229 | /// NonConstant. |
| 230 | enum BaseType { |
| 231 | NonConstant = 1, // Base pointers is not exclusively constant. |
| 232 | ExclusivelyNull, |
| 233 | ExclusivelySomeConstant // Base pointers for a given derived pointer is from a |
| 234 | // set of constants, but they are not exclusively |
| 235 | // null. |
| 236 | }; |
Anna Thomas | 740f529 | 2017-07-05 01:16:29 +0000 | [diff] [blame] | 237 | |
Anna Thomas | ccce853 | 2017-07-07 00:40:37 +0000 | [diff] [blame] | 238 | /// Return the baseType for Val which states whether Val is exclusively |
| 239 | /// derived from constant/null, or not exclusively derived from constant. |
| 240 | /// Val is exclusively derived off a constant base when all operands of phi and |
| 241 | /// selects are derived off a constant base. |
| 242 | static enum BaseType getBaseType(const Value *Val) { |
Anna Thomas | 740f529 | 2017-07-05 01:16:29 +0000 | [diff] [blame] | 243 | |
Anna Thomas | ccce853 | 2017-07-07 00:40:37 +0000 | [diff] [blame] | 244 | SmallVector<const Value *, 32> Worklist; |
| 245 | DenseSet<const Value *> Visited; |
| 246 | bool isExclusivelyDerivedFromNull = true; |
| 247 | Worklist.push_back(Val); |
| 248 | // Strip through all the bitcasts and geps to get base pointer. Also check for |
| 249 | // the exclusive value when there can be multiple base pointers (through phis |
| 250 | // or selects). |
| 251 | while(!Worklist.empty()) { |
| 252 | const Value *V = Worklist.pop_back_val(); |
| 253 | if (!Visited.insert(V).second) |
| 254 | continue; |
Anna Thomas | 740f529 | 2017-07-05 01:16:29 +0000 | [diff] [blame] | 255 | |
Anna Thomas | ccce853 | 2017-07-07 00:40:37 +0000 | [diff] [blame] | 256 | if (const auto *CI = dyn_cast<CastInst>(V)) { |
| 257 | Worklist.push_back(CI->stripPointerCasts()); |
| 258 | continue; |
| 259 | } |
| 260 | if (const auto *GEP = dyn_cast<GetElementPtrInst>(V)) { |
| 261 | Worklist.push_back(GEP->getPointerOperand()); |
| 262 | continue; |
| 263 | } |
| 264 | // Push all the incoming values of phi node into the worklist for |
| 265 | // processing. |
| 266 | if (const auto *PN = dyn_cast<PHINode>(V)) { |
| 267 | for (Value *InV: PN->incoming_values()) |
| 268 | Worklist.push_back(InV); |
| 269 | continue; |
| 270 | } |
| 271 | if (const auto *SI = dyn_cast<SelectInst>(V)) { |
| 272 | // Push in the true and false values |
| 273 | Worklist.push_back(SI->getTrueValue()); |
| 274 | Worklist.push_back(SI->getFalseValue()); |
| 275 | continue; |
| 276 | } |
| 277 | if (isa<Constant>(V)) { |
| 278 | // We found at least one base pointer which is non-null, so this derived |
| 279 | // pointer is not exclusively derived from null. |
| 280 | if (V != Constant::getNullValue(V->getType())) |
| 281 | isExclusivelyDerivedFromNull = false; |
| 282 | // Continue processing the remaining values to make sure it's exclusively |
| 283 | // constant. |
| 284 | continue; |
| 285 | } |
| 286 | // At this point, we know that the base pointer is not exclusively |
| 287 | // constant. |
| 288 | return BaseType::NonConstant; |
Anna Thomas | 740f529 | 2017-07-05 01:16:29 +0000 | [diff] [blame] | 289 | } |
Anna Thomas | ccce853 | 2017-07-07 00:40:37 +0000 | [diff] [blame] | 290 | // Now, we know that the base pointer is exclusively constant, but we need to |
| 291 | // differentiate between exclusive null constant and non-null constant. |
| 292 | return isExclusivelyDerivedFromNull ? BaseType::ExclusivelyNull |
| 293 | : BaseType::ExclusivelySomeConstant; |
Anna Thomas | 740f529 | 2017-07-05 01:16:29 +0000 | [diff] [blame] | 294 | } |
| 295 | |
| 296 | static void Verify(const Function &F, const DominatorTree &DT) { |
| 297 | SpecificBumpPtrAllocator<BasicBlockState> BSAllocator; |
| 298 | DenseMap<const BasicBlock *, BasicBlockState *> BlockMap; |
| 299 | |
| 300 | DEBUG(dbgs() << "Verifying gc pointers in function: " << F.getName() << "\n"); |
| 301 | if (PrintOnly) |
| 302 | dbgs() << "Verifying gc pointers in function: " << F.getName() << "\n"; |
| 303 | |
| 304 | |
| 305 | for (const BasicBlock &BB : F) { |
| 306 | BasicBlockState *BBS = new(BSAllocator.Allocate()) BasicBlockState; |
| 307 | for (const auto &I : BB) |
| 308 | TransferInstruction(I, BBS->Cleared, BBS->Contribution); |
| 309 | BlockMap[&BB] = BBS; |
| 310 | } |
| 311 | |
| 312 | for (auto &BBI : BlockMap) { |
| 313 | GatherDominatingDefs(BBI.first, BBI.second->AvailableIn, DT, BlockMap); |
| 314 | TransferBlock(BBI.first, *BBI.second, true); |
| 315 | } |
| 316 | |
| 317 | SetVector<const BasicBlock *> Worklist; |
| 318 | for (auto &BBI : BlockMap) |
| 319 | Worklist.insert(BBI.first); |
| 320 | |
| 321 | // This loop iterates the AvailableIn and AvailableOut sets to a fixed point. |
| 322 | // The AvailableIn and AvailableOut sets decrease as we iterate. |
| 323 | while (!Worklist.empty()) { |
| 324 | const BasicBlock *BB = Worklist.pop_back_val(); |
| 325 | BasicBlockState *BBS = BlockMap[BB]; |
| 326 | |
| 327 | size_t OldInCount = BBS->AvailableIn.size(); |
| 328 | for (const BasicBlock *PBB : predecessors(BB)) |
| 329 | set_intersect(BBS->AvailableIn, BlockMap[PBB]->AvailableOut); |
| 330 | |
| 331 | if (OldInCount == BBS->AvailableIn.size()) |
| 332 | continue; |
| 333 | |
| 334 | assert(OldInCount > BBS->AvailableIn.size() && "invariant!"); |
| 335 | |
| 336 | size_t OldOutCount = BBS->AvailableOut.size(); |
| 337 | TransferBlock(BB, *BBS, false); |
| 338 | if (OldOutCount != BBS->AvailableOut.size()) { |
| 339 | assert(OldOutCount > BBS->AvailableOut.size() && "invariant!"); |
| 340 | Worklist.insert(succ_begin(BB), succ_end(BB)); |
| 341 | } |
| 342 | } |
| 343 | |
| 344 | // We now have all the information we need to decide if the use of a heap |
| 345 | // reference is legal or not, given our safepoint semantics. |
| 346 | |
| 347 | bool AnyInvalidUses = false; |
| 348 | |
| 349 | auto ReportInvalidUse = [&AnyInvalidUses](const Value &V, |
| 350 | const Instruction &I) { |
| 351 | errs() << "Illegal use of unrelocated value found!\n"; |
| 352 | errs() << "Def: " << V << "\n"; |
| 353 | errs() << "Use: " << I << "\n"; |
| 354 | if (!PrintOnly) |
| 355 | abort(); |
| 356 | AnyInvalidUses = true; |
| 357 | }; |
| 358 | |
Anna Thomas | ccce853 | 2017-07-07 00:40:37 +0000 | [diff] [blame] | 359 | auto isNotExclusivelyConstantDerived = [](const Value *V) { |
| 360 | return getBaseType(V) == BaseType::NonConstant; |
| 361 | }; |
| 362 | |
Anna Thomas | 740f529 | 2017-07-05 01:16:29 +0000 | [diff] [blame] | 363 | for (const BasicBlock &BB : F) { |
| 364 | // We destructively modify AvailableIn as we traverse the block instruction |
| 365 | // by instruction. |
| 366 | DenseSet<const Value *> &AvailableSet = BlockMap[&BB]->AvailableIn; |
| 367 | for (const Instruction &I : BB) { |
| 368 | if (const PHINode *PN = dyn_cast<PHINode>(&I)) { |
| 369 | if (containsGCPtrType(PN->getType())) |
| 370 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
| 371 | const BasicBlock *InBB = PN->getIncomingBlock(i); |
| 372 | const Value *InValue = PN->getIncomingValue(i); |
| 373 | |
Anna Thomas | ccce853 | 2017-07-07 00:40:37 +0000 | [diff] [blame] | 374 | if (isNotExclusivelyConstantDerived(InValue) && |
Anna Thomas | 740f529 | 2017-07-05 01:16:29 +0000 | [diff] [blame] | 375 | !BlockMap[InBB]->AvailableOut.count(InValue)) |
| 376 | ReportInvalidUse(*InValue, *PN); |
| 377 | } |
Anna Thomas | cace053 | 2017-07-07 13:02:29 +0000 | [diff] [blame] | 378 | } else if (isa<CmpInst>(I) && |
| 379 | containsGCPtrType(I.getOperand(0)->getType())) { |
| 380 | Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); |
| 381 | enum BaseType baseTyLHS = getBaseType(LHS), |
| 382 | baseTyRHS = getBaseType(RHS); |
| 383 | |
| 384 | // Returns true if LHS and RHS are unrelocated pointers and they are |
| 385 | // valid unrelocated uses. |
| 386 | auto hasValidUnrelocatedUse = [&AvailableSet, baseTyLHS, baseTyRHS, &LHS, &RHS] () { |
| 387 | // A cmp instruction has valid unrelocated pointer operands only if |
| 388 | // both operands are unrelocated pointers. |
| 389 | // In the comparison between two pointers, if one is an unrelocated |
| 390 | // use, the other *should be* an unrelocated use, for this |
| 391 | // instruction to contain valid unrelocated uses. This unrelocated |
| 392 | // use can be a null constant as well, or another unrelocated |
| 393 | // pointer. |
| 394 | if (AvailableSet.count(LHS) || AvailableSet.count(RHS)) |
| 395 | return false; |
| 396 | // Constant pointers (that are not exclusively null) may have |
| 397 | // meaning in different VMs, so we cannot reorder the compare |
| 398 | // against constant pointers before the safepoint. In other words, |
| 399 | // comparison of an unrelocated use against a non-null constant |
| 400 | // maybe invalid. |
| 401 | if ((baseTyLHS == BaseType::ExclusivelySomeConstant && |
| 402 | baseTyRHS == BaseType::NonConstant) || |
| 403 | (baseTyLHS == BaseType::NonConstant && |
| 404 | baseTyRHS == BaseType::ExclusivelySomeConstant)) |
| 405 | return false; |
| 406 | // All other cases are valid cases enumerated below: |
| 407 | // 1. Comparison between an exlusively derived null pointer and a |
| 408 | // constant base pointer. |
| 409 | // 2. Comparison between an exlusively derived null pointer and a |
| 410 | // non-constant unrelocated base pointer. |
| 411 | // 3. Comparison between 2 unrelocated pointers. |
| 412 | return true; |
| 413 | }; |
| 414 | if (!hasValidUnrelocatedUse()) { |
| 415 | // Print out all non-constant derived pointers that are unrelocated |
| 416 | // uses, which are invalid. |
| 417 | if (baseTyLHS == BaseType::NonConstant && !AvailableSet.count(LHS)) |
| 418 | ReportInvalidUse(*LHS, I); |
| 419 | if (baseTyRHS == BaseType::NonConstant && !AvailableSet.count(RHS)) |
| 420 | ReportInvalidUse(*RHS, I); |
| 421 | } |
Anna Thomas | 740f529 | 2017-07-05 01:16:29 +0000 | [diff] [blame] | 422 | } else { |
| 423 | for (const Value *V : I.operands()) |
| 424 | if (containsGCPtrType(V->getType()) && |
Anna Thomas | ccce853 | 2017-07-07 00:40:37 +0000 | [diff] [blame] | 425 | isNotExclusivelyConstantDerived(V) && !AvailableSet.count(V)) |
Anna Thomas | 740f529 | 2017-07-05 01:16:29 +0000 | [diff] [blame] | 426 | ReportInvalidUse(*V, I); |
| 427 | } |
| 428 | |
| 429 | bool Cleared = false; |
| 430 | TransferInstruction(I, Cleared, AvailableSet); |
| 431 | (void)Cleared; |
| 432 | } |
| 433 | } |
| 434 | |
| 435 | if (PrintOnly && !AnyInvalidUses) { |
| 436 | dbgs() << "No illegal uses found by SafepointIRVerifier in: " << F.getName() |
| 437 | << "\n"; |
| 438 | } |
| 439 | } |