blob: 3e23c9ad162c147bc4c1dda977713cf821ec3c27 [file] [log] [blame]
Chris Lattnere47e4402007-06-01 18:02:12 +00001//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "clang/AST/AST.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
Chris Lattner4347e3692007-06-06 04:54:52 +000018#include "llvm/Function.h"
19#include "llvm/GlobalVariable.h"
Chris Lattnere47e4402007-06-01 18:02:12 +000020using namespace llvm;
21using namespace clang;
22using namespace CodeGen;
23
Chris Lattnerd7f58862007-06-02 05:24:33 +000024//===--------------------------------------------------------------------===//
Chris Lattnerf0106d22007-06-02 19:33:17 +000025// Miscellaneous Helper Methods
26//===--------------------------------------------------------------------===//
27
Chris Lattner8394d792007-06-05 20:53:16 +000028
29/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
30/// expression and compare the result against zero, returning an Int1Ty value.
31Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
32 QualType Ty;
33 RValue Val = EmitExprWithUsualUnaryConversions(E, Ty);
34 return ConvertScalarValueToBool(Val, Ty);
35}
36
37//===--------------------------------------------------------------------===//
38// Conversions
39//===--------------------------------------------------------------------===//
40
41/// EmitConversion - Convert the value specied by Val, whose type is ValTy, to
42/// the type specified by DstTy, following the rules of C99 6.3.
43RValue CodeGenFunction::EmitConversion(RValue Val, QualType ValTy,
Chris Lattnercf106ab2007-06-06 04:05:39 +000044 QualType DstTy, SourceLocation Loc) {
Chris Lattner8394d792007-06-05 20:53:16 +000045 ValTy = ValTy.getCanonicalType();
46 DstTy = DstTy.getCanonicalType();
47 if (ValTy == DstTy) return Val;
Chris Lattner83b484b2007-06-06 04:39:08 +000048
49 // Handle conversions to bool first, they are special: comparisons against 0.
50 if (const BuiltinType *DestBT = dyn_cast<BuiltinType>(DstTy))
51 if (DestBT->getKind() == BuiltinType::Bool)
52 return RValue::get(ConvertScalarValueToBool(Val, ValTy));
Chris Lattner8394d792007-06-05 20:53:16 +000053
Chris Lattner83b484b2007-06-06 04:39:08 +000054 // Handle pointer conversions next: pointers can only be converted to/from
55 // other pointers and integers.
Chris Lattnercf106ab2007-06-06 04:05:39 +000056 if (isa<PointerType>(DstTy)) {
57 const llvm::Type *DestTy = ConvertType(DstTy, Loc);
58
59 // The source value may be an integer, or a pointer.
60 assert(Val.isScalar() && "Can only convert from integer or pointer");
61 if (isa<llvm::PointerType>(Val.getVal()->getType()))
62 return RValue::get(Builder.CreateBitCast(Val.getVal(), DestTy, "conv"));
63 assert(ValTy->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
64 return RValue::get(Builder.CreatePtrToInt(Val.getVal(), DestTy, "conv"));
Chris Lattner83b484b2007-06-06 04:39:08 +000065 }
66
67 if (isa<PointerType>(ValTy)) {
Chris Lattnercf106ab2007-06-06 04:05:39 +000068 // Must be an ptr to int cast.
69 const llvm::Type *DestTy = ConvertType(DstTy, Loc);
70 assert(isa<llvm::IntegerType>(DestTy) && "not ptr->int?");
71 return RValue::get(Builder.CreateIntToPtr(Val.getVal(), DestTy, "conv"));
Chris Lattner8394d792007-06-05 20:53:16 +000072 }
Chris Lattner83b484b2007-06-06 04:39:08 +000073
74 // Finally, we have the arithmetic types: real int/float and complex
75 // int/float. Handle real->real conversions first, they are the most
76 // common.
77 if (Val.isScalar() && DstTy->isRealType()) {
78 // We know that these are representable as scalars in LLVM, convert to LLVM
79 // types since they are easier to reason about.
80 Value *SrcVal = Val.getVal();
81 const llvm::Type *DestTy = ConvertType(DstTy, Loc);
82 if (SrcVal->getType() == DestTy) return Val;
83
84 Value *Result;
85 if (isa<llvm::IntegerType>(SrcVal->getType())) {
86 bool InputSigned = ValTy->isSignedIntegerType();
87 if (isa<llvm::IntegerType>(DestTy))
88 Result = Builder.CreateIntCast(SrcVal, DestTy, InputSigned, "conv");
89 else if (InputSigned)
90 Result = Builder.CreateSIToFP(SrcVal, DestTy, "conv");
91 else
92 Result = Builder.CreateUIToFP(SrcVal, DestTy, "conv");
93 } else {
94 assert(SrcVal->getType()->isFloatingPoint() && "Unknown real conversion");
95 if (isa<llvm::IntegerType>(DestTy)) {
96 if (DstTy->isSignedIntegerType())
97 Result = Builder.CreateFPToSI(SrcVal, DestTy, "conv");
98 else
99 Result = Builder.CreateFPToUI(SrcVal, DestTy, "conv");
100 } else {
101 assert(DestTy->isFloatingPoint() && "Unknown real conversion");
102 if (DestTy->getTypeID() < SrcVal->getType()->getTypeID())
103 Result = Builder.CreateFPTrunc(SrcVal, DestTy, "conv");
104 else
105 Result = Builder.CreateFPExt(SrcVal, DestTy, "conv");
106 }
107 }
108 return RValue::get(Result);
109 }
110
111 assert(0 && "FIXME: We don't support complex conversions yet!");
Chris Lattner8394d792007-06-05 20:53:16 +0000112}
113
114
115/// ConvertScalarValueToBool - Convert the specified expression value to a
Chris Lattnerf0106d22007-06-02 19:33:17 +0000116/// boolean (i1) truth value. This is equivalent to "Val == 0".
Chris Lattner8394d792007-06-05 20:53:16 +0000117Value *CodeGenFunction::ConvertScalarValueToBool(RValue Val, QualType Ty) {
Chris Lattnerf0106d22007-06-02 19:33:17 +0000118 Ty = Ty.getCanonicalType();
119 Value *Result;
120 if (const BuiltinType *BT = dyn_cast<BuiltinType>(Ty)) {
121 switch (BT->getKind()) {
122 default: assert(0 && "Unknown scalar value");
123 case BuiltinType::Bool:
124 Result = Val.getVal();
125 // Bool is already evaluated right.
126 assert(Result->getType() == llvm::Type::Int1Ty &&
127 "Unexpected bool value type!");
128 return Result;
Chris Lattnerb16f4552007-06-03 07:25:34 +0000129 case BuiltinType::Char_S:
130 case BuiltinType::Char_U:
Chris Lattnerf0106d22007-06-02 19:33:17 +0000131 case BuiltinType::SChar:
132 case BuiltinType::UChar:
133 case BuiltinType::Short:
134 case BuiltinType::UShort:
135 case BuiltinType::Int:
136 case BuiltinType::UInt:
137 case BuiltinType::Long:
138 case BuiltinType::ULong:
139 case BuiltinType::LongLong:
140 case BuiltinType::ULongLong:
141 // Code below handles simple integers.
142 break;
143 case BuiltinType::Float:
144 case BuiltinType::Double:
145 case BuiltinType::LongDouble: {
146 // Compare against 0.0 for fp scalars.
147 Result = Val.getVal();
148 llvm::Value *Zero = Constant::getNullValue(Result->getType());
149 // FIXME: llvm-gcc produces a une comparison: validate this is right.
150 Result = Builder.CreateFCmpUNE(Result, Zero, "tobool");
151 return Result;
152 }
153
154 case BuiltinType::FloatComplex:
155 case BuiltinType::DoubleComplex:
156 case BuiltinType::LongDoubleComplex:
157 assert(0 && "comparisons against complex not implemented yet");
158 }
159 } else {
160 assert((isa<PointerType>(Ty) ||
161 cast<TagType>(Ty)->getDecl()->getKind() == Decl::Enum) &&
162 "Unknown scalar type");
163 // Code below handles this fine.
164 }
165
166 // Usual case for integers, pointers, and enums: compare against zero.
167 Result = Val.getVal();
Chris Lattnera45c5af2007-06-02 19:47:04 +0000168
169 // Because of the type rules of C, we often end up computing a logical value,
170 // then zero extending it to int, then wanting it as a logical value again.
171 // Optimize this common case.
172 if (llvm::ZExtInst *ZI = dyn_cast<ZExtInst>(Result)) {
173 if (ZI->getOperand(0)->getType() == llvm::Type::Int1Ty) {
174 Result = ZI->getOperand(0);
175 ZI->eraseFromParent();
176 return Result;
177 }
178 }
179
Chris Lattnerf0106d22007-06-02 19:33:17 +0000180 llvm::Value *Zero = Constant::getNullValue(Result->getType());
181 return Builder.CreateICmpNE(Result, Zero, "tobool");
182}
183
Chris Lattnera45c5af2007-06-02 19:47:04 +0000184//===----------------------------------------------------------------------===//
Chris Lattnerd7f58862007-06-02 05:24:33 +0000185// LValue Expression Emission
Chris Lattnera45c5af2007-06-02 19:47:04 +0000186//===----------------------------------------------------------------------===//
Chris Lattnerd7f58862007-06-02 05:24:33 +0000187
Chris Lattner8394d792007-06-05 20:53:16 +0000188/// EmitLValue - Emit code to compute a designator that specifies the location
189/// of the expression.
190///
191/// This can return one of two things: a simple address or a bitfield
192/// reference. In either case, the LLVM Value* in the LValue structure is
193/// guaranteed to be an LLVM pointer type.
194///
195/// If this returns a bitfield reference, nothing about the pointee type of
196/// the LLVM value is known: For example, it may not be a pointer to an
197/// integer.
198///
199/// If this returns a normal address, and if the lvalue's C type is fixed
200/// size, this method guarantees that the returned pointer type will point to
201/// an LLVM type of the same size of the lvalue's type. If the lvalue has a
202/// variable length type, this is not possible.
203///
Chris Lattnerd7f58862007-06-02 05:24:33 +0000204LValue CodeGenFunction::EmitLValue(const Expr *E) {
205 switch (E->getStmtClass()) {
206 default:
Chris Lattner8394d792007-06-05 20:53:16 +0000207 fprintf(stderr, "Unimplemented lvalue expr!\n");
Chris Lattnerd7f58862007-06-02 05:24:33 +0000208 E->dump();
209 return LValue::getAddr(UndefValue::get(
210 llvm::PointerType::get(llvm::Type::Int32Ty)));
211
212 case Expr::DeclRefExprClass: return EmitDeclRefLValue(cast<DeclRefExpr>(E));
Chris Lattner946aa312007-06-05 03:59:43 +0000213 case Expr::ParenExprClass:return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
Chris Lattner4347e3692007-06-06 04:54:52 +0000214 case Expr::StringLiteralClass:
215 return EmitStringLiteralLValue(cast<StringLiteral>(E));
Chris Lattner8394d792007-06-05 20:53:16 +0000216
217 case Expr::UnaryOperatorClass:
218 return EmitUnaryOpLValue(cast<UnaryOperator>(E));
Chris Lattnerd9d2fb12007-06-08 23:31:14 +0000219 case Expr::ArraySubscriptExprClass:
220 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
Chris Lattnerd7f58862007-06-02 05:24:33 +0000221 }
222}
223
Chris Lattner8394d792007-06-05 20:53:16 +0000224/// EmitLoadOfLValue - Given an expression that represents a value lvalue,
225/// this method emits the address of the lvalue, then loads the result as an
226/// rvalue, returning the rvalue.
227RValue CodeGenFunction::EmitLoadOfLValue(const Expr *E) {
228 LValue LV = EmitLValue(E);
229
230 QualType ExprTy = E->getType().getCanonicalType();
231
232 // FIXME: this is silly and obviously wrong for non-scalars.
233 assert(!LV.isBitfield());
234 return RValue::get(Builder.CreateLoad(LV.getAddress(), "tmp"));
235}
236
237/// EmitStoreThroughLValue - Store the specified rvalue into the specified
238/// lvalue, where both are guaranteed to the have the same type, and that type
239/// is 'Ty'.
240void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
241 QualType Ty) {
242 // FIXME: This is obviously bogus.
243 assert(!Dst.isBitfield() && "FIXME: Don't support store to bitfield yet");
244 assert(Src.isScalar() && "FIXME: Don't support store of aggregate yet");
245
246 // TODO: Handle volatility etc.
247 Value *Addr = Dst.getAddress();
248 const llvm::Type *SrcTy = Src.getVal()->getType();
249 const llvm::Type *AddrTy =
250 cast<llvm::PointerType>(Addr->getType())->getElementType();
251
252 if (AddrTy != SrcTy)
253 Addr = Builder.CreateBitCast(Addr, llvm::PointerType::get(SrcTy),
254 "storetmp");
255 Builder.CreateStore(Src.getVal(), Addr);
256}
257
Chris Lattnerd7f58862007-06-02 05:24:33 +0000258
259LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
260 const Decl *D = E->getDecl();
261 if (isa<BlockVarDecl>(D)) {
262 Value *V = LocalDeclMap[D];
263 assert(V && "BlockVarDecl not entered in LocalDeclMap?");
264 return LValue::getAddr(V);
265 }
266 assert(0 && "Unimp declref");
267}
Chris Lattnere47e4402007-06-01 18:02:12 +0000268
Chris Lattner8394d792007-06-05 20:53:16 +0000269LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
270 // __extension__ doesn't affect lvalue-ness.
271 if (E->getOpcode() == UnaryOperator::Extension)
272 return EmitLValue(E->getSubExpr());
273
274 assert(E->getOpcode() == UnaryOperator::Deref &&
275 "'*' is the only unary operator that produces an lvalue");
276 return LValue::getAddr(EmitExpr(E->getSubExpr()).getVal());
277}
278
Chris Lattner4347e3692007-06-06 04:54:52 +0000279LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
280 assert(!E->isWide() && "FIXME: Wide strings not supported yet!");
281 const char *StrData = E->getStrData();
282 unsigned Len = E->getByteLength();
283
284 // FIXME: Can cache/reuse these within the module.
285 Constant *C = llvm::ConstantArray::get(std::string(StrData, StrData+Len));
286
287 // Create a global variable for this.
288 C = new llvm::GlobalVariable(C->getType(), true, GlobalValue::InternalLinkage,
289 C, ".str", CurFn->getParent());
290 Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
291 Constant *Zeros[] = { Zero, Zero };
292 C = ConstantExpr::getGetElementPtr(C, Zeros, 2);
293 return LValue::getAddr(C);
294}
295
Chris Lattnerd9d2fb12007-06-08 23:31:14 +0000296LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) {
297 // The base and index must be pointers or integers, neither of which are
298 // aggregates. Emit them.
299 QualType BaseTy;
300 Value *Base =EmitExprWithUsualUnaryConversions(E->getBase(), BaseTy).getVal();
301 QualType IdxTy;
302 Value *Idx = EmitExprWithUsualUnaryConversions(E->getIdx(), IdxTy).getVal();
303
304 // Usually the base is the pointer type, but sometimes it is the index.
305 // Canonicalize to have the pointer as the base.
306 if (isa<llvm::PointerType>(Idx->getType())) {
307 std::swap(Base, Idx);
308 std::swap(BaseTy, IdxTy);
309 }
310
311 // The pointer is now the base. Extend or truncate the index type to 32 or
312 // 64-bits.
313 bool IdxSigned = IdxTy->isSignedIntegerType();
314 unsigned IdxBitwidth = cast<IntegerType>(Idx->getType())->getBitWidth();
315 if (IdxBitwidth != LLVMPointerWidth)
316 Idx = Builder.CreateIntCast(Idx, IntegerType::get(LLVMPointerWidth),
317 IdxSigned, "idxprom");
318
319 // We know that the pointer points to a type of the correct size, unless the
320 // size is a VLA.
321 if (!E->getType()->isConstantSizeType())
322 assert(0 && "VLA idx not implemented");
323 return LValue::getAddr(Builder.CreateGEP(Base, Idx, "arrayidx"));
324}
325
Chris Lattnere47e4402007-06-01 18:02:12 +0000326//===--------------------------------------------------------------------===//
327// Expression Emission
328//===--------------------------------------------------------------------===//
329
Chris Lattner8394d792007-06-05 20:53:16 +0000330RValue CodeGenFunction::EmitExpr(const Expr *E) {
Chris Lattnere47e4402007-06-01 18:02:12 +0000331 assert(E && "Null expression?");
332
333 switch (E->getStmtClass()) {
334 default:
335 printf("Unimplemented expr!\n");
336 E->dump();
Chris Lattner8394d792007-06-05 20:53:16 +0000337 return RValue::get(UndefValue::get(llvm::Type::Int32Ty));
Chris Lattnerd7f58862007-06-02 05:24:33 +0000338
339 // l-values.
Chris Lattner8394d792007-06-05 20:53:16 +0000340 case Expr::DeclRefExprClass:
341 // FIXME: EnumConstantDecl's are not lvalues. This is wrong for them.
Chris Lattnerd9d2fb12007-06-08 23:31:14 +0000342 case Expr::ArraySubscriptExprClass:
Chris Lattner8394d792007-06-05 20:53:16 +0000343 return EmitLoadOfLValue(E);
Chris Lattner4347e3692007-06-06 04:54:52 +0000344 case Expr::StringLiteralClass:
345 return RValue::get(EmitLValue(E).getAddress());
Chris Lattnerd7f58862007-06-02 05:24:33 +0000346
347 // Leaf expressions.
348 case Expr::IntegerLiteralClass:
Chris Lattnere47e4402007-06-01 18:02:12 +0000349 return EmitIntegerLiteral(cast<IntegerLiteral>(E));
Chris Lattnerdb91b162007-06-02 00:16:28 +0000350
Chris Lattnerd7f58862007-06-02 05:24:33 +0000351 // Operators.
352 case Expr::ParenExprClass:
353 return EmitExpr(cast<ParenExpr>(E)->getSubExpr());
Chris Lattnerf0106d22007-06-02 19:33:17 +0000354 case Expr::UnaryOperatorClass:
355 return EmitUnaryOperator(cast<UnaryOperator>(E));
Chris Lattner8394d792007-06-05 20:53:16 +0000356 case Expr::CastExprClass:
357 return EmitCastExpr(cast<CastExpr>(E));
Chris Lattnerd7f58862007-06-02 05:24:33 +0000358 case Expr::BinaryOperatorClass:
Chris Lattnerdb91b162007-06-02 00:16:28 +0000359 return EmitBinaryOperator(cast<BinaryOperator>(E));
Chris Lattnere47e4402007-06-01 18:02:12 +0000360 }
361
362}
363
Chris Lattner8394d792007-06-05 20:53:16 +0000364RValue CodeGenFunction::EmitIntegerLiteral(const IntegerLiteral *E) {
365 return RValue::get(ConstantInt::get(E->getValue()));
Chris Lattnere47e4402007-06-01 18:02:12 +0000366}
367
Chris Lattner8394d792007-06-05 20:53:16 +0000368RValue CodeGenFunction::EmitCastExpr(const CastExpr *E) {
369 QualType SrcTy;
370 RValue Src = EmitExprWithUsualUnaryConversions(E->getSubExpr(), SrcTy);
371
372 // If the destination is void, just evaluate the source.
373 if (E->getType()->isVoidType())
374 return RValue::getAggregate(0);
375
Chris Lattnercf106ab2007-06-06 04:05:39 +0000376 return EmitConversion(Src, SrcTy, E->getType(), E->getLParenLoc());
Chris Lattner8394d792007-06-05 20:53:16 +0000377}
Chris Lattnerf0106d22007-06-02 19:33:17 +0000378
Chris Lattner8394d792007-06-05 20:53:16 +0000379//===----------------------------------------------------------------------===//
380// Unary Operator Emission
381//===----------------------------------------------------------------------===//
382
383RValue CodeGenFunction::EmitExprWithUsualUnaryConversions(const Expr *E,
384 QualType &ResTy) {
Chris Lattner6db1fb82007-06-02 22:49:07 +0000385 ResTy = E->getType().getCanonicalType();
386
387 if (isa<FunctionType>(ResTy)) { // C99 6.3.2.1p4
388 // Functions are promoted to their address.
389 ResTy = getContext().getPointerType(ResTy);
Chris Lattner8394d792007-06-05 20:53:16 +0000390 return RValue::get(EmitLValue(E).getAddress());
Chris Lattner6db1fb82007-06-02 22:49:07 +0000391 } else if (const ArrayType *ary = dyn_cast<ArrayType>(ResTy)) {
392 // C99 6.3.2.1p3
393 ResTy = getContext().getPointerType(ary->getElementType());
394
395 // FIXME: For now we assume that all source arrays map to LLVM arrays. This
396 // will not true when we add support for VLAs.
397 llvm::Value *V = EmitLValue(E).getAddress(); // Bitfields can't be arrays.
398
399 assert(isa<llvm::PointerType>(V->getType()) &&
400 isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
401 ->getElementType()) &&
402 "Doesn't support VLAs yet!");
403 llvm::Constant *Idx0 = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
Chris Lattner8394d792007-06-05 20:53:16 +0000404 return RValue::get(Builder.CreateGEP(V, Idx0, Idx0, "arraydecay"));
Chris Lattner6db1fb82007-06-02 22:49:07 +0000405 } else if (ResTy->isPromotableIntegerType()) { // C99 6.3.1.1p2
406 // FIXME: this probably isn't right, pending clarification from Steve.
407 llvm::Value *Val = EmitExpr(E).getVal();
408
Chris Lattner6db1fb82007-06-02 22:49:07 +0000409 // If the input is a signed integer, sign extend to the destination.
410 if (ResTy->isSignedIntegerType()) {
411 Val = Builder.CreateSExt(Val, LLVMIntTy, "promote");
412 } else {
413 // This handles unsigned types, including bool.
414 Val = Builder.CreateZExt(Val, LLVMIntTy, "promote");
415 }
416 ResTy = getContext().IntTy;
417
Chris Lattner8394d792007-06-05 20:53:16 +0000418 return RValue::get(Val);
Chris Lattner6db1fb82007-06-02 22:49:07 +0000419 }
420
421 // Otherwise, this is a float, double, int, struct, etc.
422 return EmitExpr(E);
423}
424
425
Chris Lattner8394d792007-06-05 20:53:16 +0000426RValue CodeGenFunction::EmitUnaryOperator(const UnaryOperator *E) {
Chris Lattnerf0106d22007-06-02 19:33:17 +0000427 switch (E->getOpcode()) {
428 default:
429 printf("Unimplemented unary expr!\n");
430 E->dump();
Chris Lattner8394d792007-06-05 20:53:16 +0000431 return RValue::get(UndefValue::get(llvm::Type::Int32Ty));
432 // FIXME: pre/post inc/dec
433 case UnaryOperator::AddrOf: return EmitUnaryAddrOf(E);
434 case UnaryOperator::Deref : return EmitLoadOfLValue(E);
435 case UnaryOperator::Plus : return EmitUnaryPlus(E);
436 case UnaryOperator::Minus : return EmitUnaryMinus(E);
437 case UnaryOperator::Not : return EmitUnaryNot(E);
438 case UnaryOperator::LNot : return EmitUnaryLNot(E);
439 // FIXME: SIZEOF/ALIGNOF(expr).
440 // FIXME: real/imag
441 case UnaryOperator::Extension: return EmitExpr(E->getSubExpr());
Chris Lattnerf0106d22007-06-02 19:33:17 +0000442 }
443}
444
Chris Lattner8394d792007-06-05 20:53:16 +0000445/// C99 6.5.3.2
446RValue CodeGenFunction::EmitUnaryAddrOf(const UnaryOperator *E) {
447 // The address of the operand is just its lvalue. It cannot be a bitfield.
448 return RValue::get(EmitLValue(E->getSubExpr()).getAddress());
449}
450
451RValue CodeGenFunction::EmitUnaryPlus(const UnaryOperator *E) {
452 // Unary plus just performs promotions on its arithmetic operand.
453 QualType Ty;
454 return EmitExprWithUsualUnaryConversions(E, Ty);
455}
456
457RValue CodeGenFunction::EmitUnaryMinus(const UnaryOperator *E) {
458 // Unary minus performs promotions, then negates its arithmetic operand.
459 QualType Ty;
460 RValue V = EmitExprWithUsualUnaryConversions(E, Ty);
Chris Lattnerf0106d22007-06-02 19:33:17 +0000461
Chris Lattner8394d792007-06-05 20:53:16 +0000462 if (V.isScalar())
463 return RValue::get(Builder.CreateNeg(V.getVal(), "neg"));
464
465 assert(0 && "FIXME: This doesn't handle complex operands yet");
466}
467
468RValue CodeGenFunction::EmitUnaryNot(const UnaryOperator *E) {
469 // Unary not performs promotions, then complements its integer operand.
470 QualType Ty;
471 RValue V = EmitExprWithUsualUnaryConversions(E, Ty);
472
473 if (V.isScalar())
474 return RValue::get(Builder.CreateNot(V.getVal(), "neg"));
475
476 assert(0 && "FIXME: This doesn't handle integer complex operands yet (GNU)");
477}
478
479
480/// C99 6.5.3.3
481RValue CodeGenFunction::EmitUnaryLNot(const UnaryOperator *E) {
482 // Compare operand to zero.
483 Value *BoolVal = EvaluateExprAsBool(E->getSubExpr());
Chris Lattnerf0106d22007-06-02 19:33:17 +0000484
485 // Invert value.
Chris Lattnera45c5af2007-06-02 19:47:04 +0000486 // TODO: Could dynamically modify easy computations here. For example, if
487 // the operand is an icmp ne, turn into icmp eq.
Chris Lattnerf0106d22007-06-02 19:33:17 +0000488 BoolVal = Builder.CreateNot(BoolVal, "lnot");
489
490 // ZExt result to int.
Chris Lattner8394d792007-06-05 20:53:16 +0000491 return RValue::get(Builder.CreateZExt(BoolVal, LLVMIntTy, "lnot.ext"));
Chris Lattnerf0106d22007-06-02 19:33:17 +0000492}
493
Chris Lattnere47e4402007-06-01 18:02:12 +0000494
Chris Lattnerdb91b162007-06-02 00:16:28 +0000495//===--------------------------------------------------------------------===//
496// Binary Operator Emission
497//===--------------------------------------------------------------------===//
498
499// FIXME describe.
Chris Lattnercf250242007-06-03 02:02:44 +0000500QualType CodeGenFunction::
Chris Lattner8394d792007-06-05 20:53:16 +0000501EmitUsualArithmeticConversions(const BinaryOperator *E, RValue &LHS,
502 RValue &RHS) {
Chris Lattnerc18f9d12007-06-02 22:51:30 +0000503 QualType LHSType, RHSType;
504 LHS = EmitExprWithUsualUnaryConversions(E->getLHS(), LHSType);
505 RHS = EmitExprWithUsualUnaryConversions(E->getRHS(), RHSType);
506
Chris Lattnercf250242007-06-03 02:02:44 +0000507 // If both operands have the same source type, we're done already.
508 if (LHSType == RHSType) return LHSType;
509
510 // If either side is a non-arithmetic type (e.g. a pointer), we are done.
511 // The caller can deal with this (e.g. pointer + int).
512 if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
513 return LHSType;
514
515 // At this point, we have two different arithmetic types.
516
517 // Handle complex types first (C99 6.3.1.8p1).
518 if (LHSType->isComplexType() || RHSType->isComplexType()) {
519 assert(0 && "FIXME: complex types unimp");
520#if 0
521 // if we have an integer operand, the result is the complex type.
522 if (rhs->isIntegerType())
523 return lhs;
524 if (lhs->isIntegerType())
525 return rhs;
526 return Context.maxComplexType(lhs, rhs);
527#endif
528 }
529
530 // If neither operand is complex, they must be scalars.
531 llvm::Value *LHSV = LHS.getVal();
532 llvm::Value *RHSV = RHS.getVal();
533
534 // If the LLVM types are already equal, then they only differed in sign, or it
535 // was something like char/signed char or double/long double.
536 if (LHSV->getType() == RHSV->getType())
537 return LHSType;
538
539 // Now handle "real" floating types (i.e. float, double, long double).
540 if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType()) {
541 // if we have an integer operand, the result is the real floating type, and
542 // the integer converts to FP.
543 if (RHSType->isIntegerType()) {
544 // Promote the RHS to an FP type of the LHS, with the sign following the
545 // RHS.
546 if (RHSType->isSignedIntegerType())
Chris Lattner8394d792007-06-05 20:53:16 +0000547 RHS = RValue::get(Builder.CreateSIToFP(RHSV,LHSV->getType(),"promote"));
Chris Lattnercf250242007-06-03 02:02:44 +0000548 else
Chris Lattner8394d792007-06-05 20:53:16 +0000549 RHS = RValue::get(Builder.CreateUIToFP(RHSV,LHSV->getType(),"promote"));
Chris Lattnercf250242007-06-03 02:02:44 +0000550 return LHSType;
551 }
552
553 if (LHSType->isIntegerType()) {
554 // Promote the LHS to an FP type of the RHS, with the sign following the
555 // LHS.
556 if (LHSType->isSignedIntegerType())
Chris Lattner8394d792007-06-05 20:53:16 +0000557 LHS = RValue::get(Builder.CreateSIToFP(LHSV,RHSV->getType(),"promote"));
Chris Lattnercf250242007-06-03 02:02:44 +0000558 else
Chris Lattner8394d792007-06-05 20:53:16 +0000559 LHS = RValue::get(Builder.CreateUIToFP(LHSV,RHSV->getType(),"promote"));
Chris Lattnercf250242007-06-03 02:02:44 +0000560 return RHSType;
561 }
562
563 // Otherwise, they are two FP types. Promote the smaller operand to the
564 // bigger result.
565 QualType BiggerType = ASTContext::maxFloatingType(LHSType, RHSType);
566
567 if (BiggerType == LHSType)
Chris Lattner8394d792007-06-05 20:53:16 +0000568 RHS = RValue::get(Builder.CreateFPExt(RHSV, LHSV->getType(), "promote"));
Chris Lattnercf250242007-06-03 02:02:44 +0000569 else
Chris Lattner8394d792007-06-05 20:53:16 +0000570 LHS = RValue::get(Builder.CreateFPExt(LHSV, RHSV->getType(), "promote"));
Chris Lattnercf250242007-06-03 02:02:44 +0000571 return BiggerType;
572 }
573
574 // Finally, we have two integer types that are different according to C. Do
575 // a sign or zero extension if needed.
576
577 // Otherwise, one type is smaller than the other.
578 QualType ResTy = ASTContext::maxIntegerType(LHSType, RHSType);
579
580 if (LHSType == ResTy) {
581 if (RHSType->isSignedIntegerType())
Chris Lattner8394d792007-06-05 20:53:16 +0000582 RHS = RValue::get(Builder.CreateSExt(RHSV, LHSV->getType(), "promote"));
Chris Lattnercf250242007-06-03 02:02:44 +0000583 else
Chris Lattner8394d792007-06-05 20:53:16 +0000584 RHS = RValue::get(Builder.CreateZExt(RHSV, LHSV->getType(), "promote"));
Chris Lattnercf250242007-06-03 02:02:44 +0000585 } else {
586 assert(RHSType == ResTy && "Unknown conversion");
587 if (LHSType->isSignedIntegerType())
Chris Lattner8394d792007-06-05 20:53:16 +0000588 LHS = RValue::get(Builder.CreateSExt(LHSV, RHSV->getType(), "promote"));
Chris Lattnercf250242007-06-03 02:02:44 +0000589 else
Chris Lattner8394d792007-06-05 20:53:16 +0000590 LHS = RValue::get(Builder.CreateZExt(LHSV, RHSV->getType(), "promote"));
Chris Lattnercf250242007-06-03 02:02:44 +0000591 }
592 return ResTy;
Chris Lattnerdb91b162007-06-02 00:16:28 +0000593}
594
595
Chris Lattner8394d792007-06-05 20:53:16 +0000596RValue CodeGenFunction::EmitBinaryOperator(const BinaryOperator *E) {
Chris Lattnerdb91b162007-06-02 00:16:28 +0000597 switch (E->getOpcode()) {
598 default:
Chris Lattner8394d792007-06-05 20:53:16 +0000599 fprintf(stderr, "Unimplemented expr!\n");
Chris Lattnerdb91b162007-06-02 00:16:28 +0000600 E->dump();
Chris Lattner8394d792007-06-05 20:53:16 +0000601 return RValue::get(UndefValue::get(llvm::Type::Int32Ty));
602 case BinaryOperator::Mul: return EmitBinaryMul(E);
603 case BinaryOperator::Div: return EmitBinaryDiv(E);
604 case BinaryOperator::Rem: return EmitBinaryRem(E);
Chris Lattnerdb91b162007-06-02 00:16:28 +0000605 case BinaryOperator::Add: return EmitBinaryAdd(E);
Chris Lattner8394d792007-06-05 20:53:16 +0000606 case BinaryOperator::Sub: return EmitBinarySub(E);
607 case BinaryOperator::Shl: return EmitBinaryShl(E);
608 case BinaryOperator::Shr: return EmitBinaryShr(E);
609
610 // FIXME: relational
611
612 case BinaryOperator::And: return EmitBinaryAnd(E);
613 case BinaryOperator::Xor: return EmitBinaryXor(E);
614 case BinaryOperator::Or : return EmitBinaryOr(E);
615 case BinaryOperator::LAnd: return EmitBinaryLAnd(E);
616 case BinaryOperator::LOr: return EmitBinaryLOr(E);
617
618 case BinaryOperator::Assign: return EmitBinaryAssign(E);
619 // FIXME: Assignment.
620 case BinaryOperator::Comma: return EmitBinaryComma(E);
Chris Lattnerdb91b162007-06-02 00:16:28 +0000621 }
622}
623
Chris Lattner8394d792007-06-05 20:53:16 +0000624RValue CodeGenFunction::EmitBinaryMul(const BinaryOperator *E) {
625 RValue LHS, RHS;
626 EmitUsualArithmeticConversions(E, LHS, RHS);
Chris Lattnerdb91b162007-06-02 00:16:28 +0000627
Chris Lattner8394d792007-06-05 20:53:16 +0000628 if (LHS.isScalar())
629 return RValue::get(Builder.CreateMul(LHS.getVal(), RHS.getVal(), "mul"));
630
631 assert(0 && "FIXME: This doesn't handle complex operands yet");
632}
633
634RValue CodeGenFunction::EmitBinaryDiv(const BinaryOperator *E) {
635 RValue LHS, RHS;
636 EmitUsualArithmeticConversions(E, LHS, RHS);
637
638 if (LHS.isScalar()) {
639 Value *RV;
640 if (LHS.getVal()->getType()->isFloatingPoint())
641 RV = Builder.CreateFDiv(LHS.getVal(), RHS.getVal(), "div");
642 else if (E->getType()->isUnsignedIntegerType())
643 RV = Builder.CreateUDiv(LHS.getVal(), RHS.getVal(), "div");
644 else
645 RV = Builder.CreateSDiv(LHS.getVal(), RHS.getVal(), "div");
646 return RValue::get(RV);
647 }
648 assert(0 && "FIXME: This doesn't handle complex operands yet");
649}
650
651RValue CodeGenFunction::EmitBinaryRem(const BinaryOperator *E) {
652 RValue LHS, RHS;
653 EmitUsualArithmeticConversions(E, LHS, RHS);
654
655 if (LHS.isScalar()) {
656 Value *RV;
657 // Rem in C can't be a floating point type: C99 6.5.5p2.
658 if (E->getType()->isUnsignedIntegerType())
659 RV = Builder.CreateURem(LHS.getVal(), RHS.getVal(), "rem");
660 else
661 RV = Builder.CreateSRem(LHS.getVal(), RHS.getVal(), "rem");
662 return RValue::get(RV);
663 }
664
665 assert(0 && "FIXME: This doesn't handle complex operands yet");
666}
667
668RValue CodeGenFunction::EmitBinaryAdd(const BinaryOperator *E) {
669 RValue LHS, RHS;
Chris Lattnerdb91b162007-06-02 00:16:28 +0000670 EmitUsualArithmeticConversions(E, LHS, RHS);
671
Chris Lattner8394d792007-06-05 20:53:16 +0000672 // FIXME: This doesn't handle ptr+int etc yet.
673
674 if (LHS.isScalar())
675 return RValue::get(Builder.CreateAdd(LHS.getVal(), RHS.getVal(), "add"));
676
677 assert(0 && "FIXME: This doesn't handle complex operands yet");
678
679}
680
681RValue CodeGenFunction::EmitBinarySub(const BinaryOperator *E) {
682 RValue LHS, RHS;
683 EmitUsualArithmeticConversions(E, LHS, RHS);
684
685 // FIXME: This doesn't handle ptr-int or ptr-ptr, etc yet.
686
687 if (LHS.isScalar())
688 return RValue::get(Builder.CreateSub(LHS.getVal(), RHS.getVal(), "sub"));
689
690 assert(0 && "FIXME: This doesn't handle complex operands yet");
691
692}
693
694RValue CodeGenFunction::EmitBinaryShl(const BinaryOperator *E) {
695 // For shifts, integer promotions are performed, but the usual arithmetic
696 // conversions are not. The LHS and RHS need not have the same type.
697
698 QualType ResTy;
699 Value *LHS = EmitExprWithUsualUnaryConversions(E->getLHS(), ResTy).getVal();
700 Value *RHS = EmitExprWithUsualUnaryConversions(E->getRHS(), ResTy).getVal();
701
702 // LLVM requires the LHS and RHS to be the same type, promote or truncate the
703 // RHS to the same size as the LHS.
704 if (LHS->getType() != RHS->getType())
705 RHS = Builder.CreateIntCast(RHS, LHS->getType(), false, "sh_prom");
706
707 return RValue::get(Builder.CreateShl(LHS, RHS, "shl"));
708}
709
710RValue CodeGenFunction::EmitBinaryShr(const BinaryOperator *E) {
711 // For shifts, integer promotions are performed, but the usual arithmetic
712 // conversions are not. The LHS and RHS need not have the same type.
713
714 QualType ResTy;
715 Value *LHS = EmitExprWithUsualUnaryConversions(E->getLHS(), ResTy).getVal();
716 Value *RHS = EmitExprWithUsualUnaryConversions(E->getRHS(), ResTy).getVal();
717
718 // LLVM requires the LHS and RHS to be the same type, promote or truncate the
719 // RHS to the same size as the LHS.
720 if (LHS->getType() != RHS->getType())
721 RHS = Builder.CreateIntCast(RHS, LHS->getType(), false, "sh_prom");
722
723 if (E->getType()->isUnsignedIntegerType())
724 return RValue::get(Builder.CreateLShr(LHS, RHS, "shr"));
725 else
726 return RValue::get(Builder.CreateAShr(LHS, RHS, "shr"));
727}
728
729RValue CodeGenFunction::EmitBinaryAnd(const BinaryOperator *E) {
730 RValue LHS, RHS;
731 EmitUsualArithmeticConversions(E, LHS, RHS);
732
733 if (LHS.isScalar())
734 return RValue::get(Builder.CreateAnd(LHS.getVal(), RHS.getVal(), "and"));
735
736 assert(0 && "FIXME: This doesn't handle complex integer operands yet (GNU)");
737}
738
739RValue CodeGenFunction::EmitBinaryXor(const BinaryOperator *E) {
740 RValue LHS, RHS;
741 EmitUsualArithmeticConversions(E, LHS, RHS);
742
743 if (LHS.isScalar())
744 return RValue::get(Builder.CreateXor(LHS.getVal(), RHS.getVal(), "xor"));
745
746 assert(0 && "FIXME: This doesn't handle complex integer operands yet (GNU)");
747}
748
749RValue CodeGenFunction::EmitBinaryOr(const BinaryOperator *E) {
750 RValue LHS, RHS;
751 EmitUsualArithmeticConversions(E, LHS, RHS);
752
753 if (LHS.isScalar())
754 return RValue::get(Builder.CreateOr(LHS.getVal(), RHS.getVal(), "or"));
755
756 assert(0 && "FIXME: This doesn't handle complex integer operands yet (GNU)");
757}
758
759RValue CodeGenFunction::EmitBinaryLAnd(const BinaryOperator *E) {
760 Value *LHSCond = EvaluateExprAsBool(E->getLHS());
761
762 BasicBlock *ContBlock = new BasicBlock("land_cont");
763 BasicBlock *RHSBlock = new BasicBlock("land_rhs");
764
765 BasicBlock *OrigBlock = Builder.GetInsertBlock();
766 Builder.CreateCondBr(LHSCond, RHSBlock, ContBlock);
767
768 EmitBlock(RHSBlock);
769 Value *RHSCond = EvaluateExprAsBool(E->getRHS());
770
771 // Reaquire the RHS block, as there may be subblocks inserted.
772 RHSBlock = Builder.GetInsertBlock();
773 EmitBlock(ContBlock);
774
775 // Create a PHI node. If we just evaluted the LHS condition, the result is
776 // false. If we evaluated both, the result is the RHS condition.
777 PHINode *PN = Builder.CreatePHI(llvm::Type::Int1Ty, "land");
778 PN->reserveOperandSpace(2);
779 PN->addIncoming(ConstantInt::getFalse(), OrigBlock);
780 PN->addIncoming(RHSCond, RHSBlock);
781
782 // ZExt result to int.
783 return RValue::get(Builder.CreateZExt(PN, LLVMIntTy, "land.ext"));
784}
785
786RValue CodeGenFunction::EmitBinaryLOr(const BinaryOperator *E) {
787 Value *LHSCond = EvaluateExprAsBool(E->getLHS());
788
789 BasicBlock *ContBlock = new BasicBlock("lor_cont");
790 BasicBlock *RHSBlock = new BasicBlock("lor_rhs");
791
792 BasicBlock *OrigBlock = Builder.GetInsertBlock();
793 Builder.CreateCondBr(LHSCond, ContBlock, RHSBlock);
794
795 EmitBlock(RHSBlock);
796 Value *RHSCond = EvaluateExprAsBool(E->getRHS());
797
798 // Reaquire the RHS block, as there may be subblocks inserted.
799 RHSBlock = Builder.GetInsertBlock();
800 EmitBlock(ContBlock);
801
802 // Create a PHI node. If we just evaluted the LHS condition, the result is
803 // true. If we evaluated both, the result is the RHS condition.
804 PHINode *PN = Builder.CreatePHI(llvm::Type::Int1Ty, "lor");
805 PN->reserveOperandSpace(2);
806 PN->addIncoming(ConstantInt::getTrue(), OrigBlock);
807 PN->addIncoming(RHSCond, RHSBlock);
808
809 // ZExt result to int.
810 return RValue::get(Builder.CreateZExt(PN, LLVMIntTy, "lor.ext"));
811}
812
813RValue CodeGenFunction::EmitBinaryAssign(const BinaryOperator *E) {
814 LValue LHS = EmitLValue(E->getLHS());
815
816 QualType RHSTy;
817 RValue RHS = EmitExprWithUsualUnaryConversions(E->getRHS(), RHSTy);
818
819 // Convert the RHS to the type of the LHS.
Chris Lattnercf106ab2007-06-06 04:05:39 +0000820 // FIXME: I'm not thrilled about having to call getLocStart() here... :(
821 RHS = EmitConversion(RHS, RHSTy, E->getType(), E->getLocStart());
Chris Lattner8394d792007-06-05 20:53:16 +0000822
823 // Store the value into the LHS.
824 EmitStoreThroughLValue(RHS, LHS, E->getType());
825
826 // Return the converted RHS.
827 return RHS;
828}
829
830
831RValue CodeGenFunction::EmitBinaryComma(const BinaryOperator *E) {
832 EmitExpr(E->getLHS());
833 return EmitExpr(E->getRHS());
834}