blob: e1f9c50839cb486d44520eeaea56b00d50fd01db [file] [log] [blame]
Rui Ueyama0b289522016-02-25 18:43:51 +00001//===- ICF.cpp ------------------------------------------------------------===//
2//
3// The LLVM Linker
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000010// ICF is short for Identical Code Folding. This is a size optimization to
Rui Ueyama91ae8612016-12-01 19:45:22 +000011// identify and merge two or more read-only sections (typically functions)
12// that happened to have the same contents. It usually reduces output size
13// by a few percent.
Rui Ueyama0b289522016-02-25 18:43:51 +000014//
Rui Ueyama91ae8612016-12-01 19:45:22 +000015// In ICF, two sections are considered identical if they have the same
16// section flags, section data, and relocations. Relocations are tricky,
17// because two relocations are considered the same if they have the same
18// relocation types, values, and if they point to the same sections *in
19// terms of ICF*.
Rui Ueyama0b289522016-02-25 18:43:51 +000020//
Rui Ueyama91ae8612016-12-01 19:45:22 +000021// Here is an example. If foo and bar defined below are compiled to the
22// same machine instructions, ICF can and should merge the two, although
23// their relocations point to each other.
Rui Ueyama0b289522016-02-25 18:43:51 +000024//
25// void foo() { bar(); }
26// void bar() { foo(); }
27//
Rui Ueyama91ae8612016-12-01 19:45:22 +000028// If you merge the two, their relocations point to the same section and
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000029// thus you know they are mergeable, but how do you know they are
30// mergeable in the first place? This is not an easy problem to solve.
Rui Ueyama91ae8612016-12-01 19:45:22 +000031//
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000032// What we are doing in LLD is to partition sections into equivalence
33// classes. Sections in the same equivalence class when the algorithm
34// terminates are considered identical. Here are details:
Rui Ueyama91ae8612016-12-01 19:45:22 +000035//
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000036// 1. First, we partition sections using their hash values as keys. Hash
37// values contain section types, section contents and numbers of
38// relocations. During this step, relocation targets are not taken into
39// account. We just put sections that apparently differ into different
40// equivalence classes.
Rui Ueyama91ae8612016-12-01 19:45:22 +000041//
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000042// 2. Next, for each equivalence class, we visit sections to compare
43// relocation targets. Relocation targets are considered equivalent if
44// their targets are in the same equivalence class. Sections with
45// different relocation targets are put into different equivalence
46// clases.
Rui Ueyama91ae8612016-12-01 19:45:22 +000047//
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000048// 3. If we split an equivalence class in step 2, two relocations
49// previously target the same equivalence class may now target
50// different equivalence classes. Therefore, we repeat step 2 until a
51// convergence is obtained.
Rui Ueyama91ae8612016-12-01 19:45:22 +000052//
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000053// 4. For each equivalence class C, pick an arbitrary section in C, and
54// merge all the other sections in C with it.
Rui Ueyama91ae8612016-12-01 19:45:22 +000055//
56// For small programs, this algorithm needs 3-5 iterations. For large
57// programs such as Chromium, it takes more than 20 iterations.
58//
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000059// This algorithm was mentioned as an "optimistic algorithm" in [1],
60// though gold implements a different algorithm than this.
61//
Rui Ueyama91ae8612016-12-01 19:45:22 +000062// We parallelize each step so that multiple threads can work on different
Rui Ueyamafcd3fa82016-12-05 18:11:35 +000063// equivalence classes concurrently. That gave us a large performance
64// boost when applying ICF on large programs. For example, MSVC link.exe
65// or GNU gold takes 10-20 seconds to apply ICF on Chromium, whose output
66// size is about 1.5 GB, but LLD can finish it in less than 2 seconds on a
67// 2.8 GHz 40 core machine. Even without threading, LLD's ICF is still
68// faster than MSVC or gold though.
69//
70// [1] Safe ICF: Pointer Safe and Unwinding aware Identical Code Folding
71// in the Gold Linker
72// http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36912.pdf
Rui Ueyama0b289522016-02-25 18:43:51 +000073//
74//===----------------------------------------------------------------------===//
75
76#include "ICF.h"
77#include "Config.h"
Rui Ueyama0b289522016-02-25 18:43:51 +000078#include "SymbolTable.h"
Rui Ueyama244a4352016-12-03 21:24:51 +000079#include "Threads.h"
Rui Ueyama0b289522016-02-25 18:43:51 +000080
81#include "llvm/ADT/Hashing.h"
82#include "llvm/Object/ELF.h"
83#include "llvm/Support/ELF.h"
Rui Ueyamaa05134e2016-11-19 20:15:55 +000084#include <algorithm>
Rui Ueyama1b6bab02016-12-02 05:35:46 +000085#include <atomic>
Rui Ueyama0b289522016-02-25 18:43:51 +000086
87using namespace lld;
Rafael Espindolae0df00b2016-02-28 00:25:54 +000088using namespace lld::elf;
Rui Ueyama0b289522016-02-25 18:43:51 +000089using namespace llvm;
90using namespace llvm::ELF;
91using namespace llvm::object;
92
Rui Ueyamabd1f0632016-11-20 02:39:59 +000093namespace {
Rui Ueyama0b289522016-02-25 18:43:51 +000094template <class ELFT> class ICF {
Rui Ueyama0b289522016-02-25 18:43:51 +000095public:
Rui Ueyama4f8d21f2016-05-02 19:30:42 +000096 void run();
Rui Ueyama0b289522016-02-25 18:43:51 +000097
98private:
Rui Ueyama1b6bab02016-12-02 05:35:46 +000099 void segregate(size_t Begin, size_t End, bool Constant);
Rui Ueyama0b289522016-02-25 18:43:51 +0000100
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000101 template <class RelTy>
102 bool constantEq(ArrayRef<RelTy> RelsA, ArrayRef<RelTy> RelsB);
Rui Ueyama0b289522016-02-25 18:43:51 +0000103
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000104 template <class RelTy>
105 bool variableEq(const InputSection<ELFT> *A, ArrayRef<RelTy> RelsA,
106 const InputSection<ELFT> *B, ArrayRef<RelTy> RelsB);
Rui Ueyama0b289522016-02-25 18:43:51 +0000107
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000108 bool equalsConstant(const InputSection<ELFT> *A, const InputSection<ELFT> *B);
109 bool equalsVariable(const InputSection<ELFT> *A, const InputSection<ELFT> *B);
110
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000111 size_t findBoundary(size_t Begin, size_t End);
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000112
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000113 void forEachClassRange(size_t Begin, size_t End,
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000114 std::function<void(size_t, size_t)> Fn);
115
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000116 void forEachClass(std::function<void(size_t, size_t)> Fn);
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000117
118 std::vector<InputSection<ELFT> *> Sections;
Rui Ueyama045d8282016-12-04 16:33:13 +0000119
120 // We repeat the main loop while `Repeat` is true.
121 std::atomic<bool> Repeat;
122
123 // The main loop counter.
Rui Ueyamac1835312016-12-01 17:09:04 +0000124 int Cnt = 0;
Rui Ueyama045d8282016-12-04 16:33:13 +0000125
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000126 // We have two locations for equivalence classes. On the first iteration
127 // of the main loop, Class[0] has a valid value, and Class[1] contains
128 // garbage. We read equivalence classes from slot 0 and write to slot 1.
129 // So, Class[0] represents the current class, and Class[1] represents
130 // the next class. On each iteration, we switch their roles and use them
131 // alternately.
Rui Ueyama045d8282016-12-04 16:33:13 +0000132 //
133 // Why are we doing this? Recall that other threads may be working on
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000134 // other equivalence classes in parallel. They may read sections that we
135 // are updating. We cannot update equivalence classes in place because
136 // it breaks the invariance that all possibly-identical sections must be
137 // in the same equivalence class at any moment. In other words, the for
138 // loop to update equivalence classes is not atomic, and that is
139 // observable from other threads. By writing new classes to other
140 // places, we can keep the invariance.
Rui Ueyama045d8282016-12-04 16:33:13 +0000141 //
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000142 // Below, `Current` has the index of the current class, and `Next` has
143 // the index of the next class. If threading is enabled, they are either
144 // (0, 1) or (1, 0).
Rui Ueyama045d8282016-12-04 16:33:13 +0000145 //
146 // Note on single-thread: if that's the case, they are always (0, 0)
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000147 // because we can safely read the next class without worrying about race
Rui Ueyama045d8282016-12-04 16:33:13 +0000148 // conditions. Using the same location makes this algorithm converge
149 // faster because it uses results of the same iteration earlier.
150 int Current = 0;
151 int Next = 0;
Rui Ueyama0b289522016-02-25 18:43:51 +0000152};
153}
Rui Ueyama0b289522016-02-25 18:43:51 +0000154
Rui Ueyama0b289522016-02-25 18:43:51 +0000155// Returns a hash value for S. Note that the information about
156// relocation targets is not included in the hash value.
Rui Ueyamac1835312016-12-01 17:09:04 +0000157template <class ELFT> static uint32_t getHash(InputSection<ELFT> *S) {
Rui Ueyamaa05134e2016-11-19 20:15:55 +0000158 return hash_combine(S->Flags, S->getSize(), S->NumRelocations);
Rui Ueyama0b289522016-02-25 18:43:51 +0000159}
160
Rui Ueyamabd1f0632016-11-20 02:39:59 +0000161// Returns true if section S is subject of ICF.
162template <class ELFT> static bool isEligible(InputSection<ELFT> *S) {
Rui Ueyama0b289522016-02-25 18:43:51 +0000163 // .init and .fini contains instructions that must be executed to
164 // initialize and finalize the process. They cannot and should not
165 // be merged.
Rui Ueyamabd1f0632016-11-20 02:39:59 +0000166 return S->Live && (S->Flags & SHF_ALLOC) && !(S->Flags & SHF_WRITE) &&
167 S->Name != ".init" && S->Name != ".fini";
Rui Ueyama0b289522016-02-25 18:43:51 +0000168}
169
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000170// Split an equivalence class into smaller classes.
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000171template <class ELFT>
172void ICF<ELFT>::segregate(size_t Begin, size_t End, bool Constant) {
173 // This loop rearranges sections in [Begin, End) so that all sections
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000174 // that are equal in terms of equals{Constant,Variable} are contiguous
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000175 // in [Begin, End).
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000176 //
177 // The algorithm is quadratic in the worst case, but that is not an
178 // issue in practice because the number of the distinct sections in
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000179 // each range is usually very small.
Rui Ueyamac1835312016-12-01 17:09:04 +0000180
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000181 while (Begin < End) {
182 // Divide [Begin, End) into two. Let Mid be the start index of the
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000183 // second group.
Rui Ueyama0b289522016-02-25 18:43:51 +0000184 auto Bound = std::stable_partition(
Rui Ueyamac1835312016-12-01 17:09:04 +0000185 Sections.begin() + Begin + 1, Sections.begin() + End,
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000186 [&](InputSection<ELFT> *S) {
187 if (Constant)
Rui Ueyamac1835312016-12-01 17:09:04 +0000188 return equalsConstant(Sections[Begin], S);
189 return equalsVariable(Sections[Begin], S);
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000190 });
191 size_t Mid = Bound - Sections.begin();
Rui Ueyama0b289522016-02-25 18:43:51 +0000192
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000193 // Now we split [Begin, End) into [Begin, Mid) and [Mid, End) by
Rui Ueyamac9df1722017-01-15 02:34:42 +0000194 // updating the sections in [Begin, Mid). We use Mid as an equivalence
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000195 // class ID because every group ends with a unique index.
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000196 for (size_t I = Begin; I < Mid; ++I)
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000197 Sections[I]->Class[Next] = Mid;
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000198
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000199 // If we created a group, we need to iterate the main loop again.
200 if (Mid != End)
201 Repeat = true;
202
203 Begin = Mid;
Rui Ueyama0b289522016-02-25 18:43:51 +0000204 }
205}
206
207// Compare two lists of relocations.
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000208template <class ELFT>
209template <class RelTy>
210bool ICF<ELFT>::constantEq(ArrayRef<RelTy> RelsA, ArrayRef<RelTy> RelsB) {
Rui Ueyamaa05134e2016-11-19 20:15:55 +0000211 auto Eq = [](const RelTy &A, const RelTy &B) {
212 return A.r_offset == B.r_offset &&
213 A.getType(Config->Mips64EL) == B.getType(Config->Mips64EL) &&
214 getAddend<ELFT>(A) == getAddend<ELFT>(B);
215 };
216
217 return RelsA.size() == RelsB.size() &&
218 std::equal(RelsA.begin(), RelsA.end(), RelsB.begin(), Eq);
Rui Ueyama0b289522016-02-25 18:43:51 +0000219}
220
221// Compare "non-moving" part of two InputSections, namely everything
222// except relocation targets.
223template <class ELFT>
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000224bool ICF<ELFT>::equalsConstant(const InputSection<ELFT> *A,
225 const InputSection<ELFT> *B) {
Rui Ueyamabd1f0632016-11-20 02:39:59 +0000226 if (A->NumRelocations != B->NumRelocations || A->Flags != B->Flags ||
227 A->getSize() != B->getSize() || A->Data != B->Data)
Rui Ueyama0b289522016-02-25 18:43:51 +0000228 return false;
229
Rui Ueyamabd1f0632016-11-20 02:39:59 +0000230 if (A->AreRelocsRela)
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000231 return constantEq(A->relas(), B->relas());
232 return constantEq(A->rels(), B->rels());
Rui Ueyama0b289522016-02-25 18:43:51 +0000233}
234
Rui Ueyama7bed9ee2016-11-20 23:15:54 +0000235// Compare two lists of relocations. Returns true if all pairs of
236// relocations point to the same section in terms of ICF.
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000237template <class ELFT>
238template <class RelTy>
239bool ICF<ELFT>::variableEq(const InputSection<ELFT> *A, ArrayRef<RelTy> RelsA,
240 const InputSection<ELFT> *B, ArrayRef<RelTy> RelsB) {
Rui Ueyamaa05134e2016-11-19 20:15:55 +0000241 auto Eq = [&](const RelTy &RA, const RelTy &RB) {
Rui Ueyama91ae8612016-12-01 19:45:22 +0000242 // The two sections must be identical.
Rui Ueyamabd1f0632016-11-20 02:39:59 +0000243 SymbolBody &SA = A->getFile()->getRelocTargetSym(RA);
244 SymbolBody &SB = B->getFile()->getRelocTargetSym(RB);
Rafael Espindola67d72c02016-03-11 12:06:30 +0000245 if (&SA == &SB)
Rui Ueyamaa05134e2016-11-19 20:15:55 +0000246 return true;
Rui Ueyama0b289522016-02-25 18:43:51 +0000247
Rafael Espindola67d72c02016-03-11 12:06:30 +0000248 auto *DA = dyn_cast<DefinedRegular<ELFT>>(&SA);
249 auto *DB = dyn_cast<DefinedRegular<ELFT>>(&SB);
Rui Ueyama0b289522016-02-25 18:43:51 +0000250 if (!DA || !DB)
251 return false;
Rafael Espindolaccfe3cb2016-04-04 14:04:16 +0000252 if (DA->Value != DB->Value)
Rui Ueyama0b289522016-02-25 18:43:51 +0000253 return false;
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000254
Peter Collingbournedbd8d9b2017-01-20 04:58:12 +0000255 // Either both symbols must be absolute...
256 if (!DA->Section || !DB->Section)
257 return !DA->Section && !DB->Section;
258
259 // Or the two sections must be in the same equivalence class.
Rui Ueyama9f8cb732016-11-20 02:43:44 +0000260 auto *X = dyn_cast<InputSection<ELFT>>(DA->Section);
261 auto *Y = dyn_cast<InputSection<ELFT>>(DB->Section);
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000262 if (!X || !Y)
263 return false;
Rui Ueyamac1835312016-12-01 17:09:04 +0000264
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000265 // Ineligible sections are in the special equivalence class 0.
266 // They can never be the same in terms of the equivalence class.
267 if (X->Class[Current] == 0)
Rui Ueyama83ec6812016-12-02 17:23:58 +0000268 return false;
Rui Ueyamaa6cd5fe2016-12-01 21:41:06 +0000269
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000270 return X->Class[Current] == Y->Class[Current];
Rui Ueyamaa05134e2016-11-19 20:15:55 +0000271 };
272
273 return std::equal(RelsA.begin(), RelsA.end(), RelsB.begin(), Eq);
Rui Ueyama0b289522016-02-25 18:43:51 +0000274}
275
276// Compare "moving" part of two InputSections, namely relocation targets.
277template <class ELFT>
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000278bool ICF<ELFT>::equalsVariable(const InputSection<ELFT> *A,
279 const InputSection<ELFT> *B) {
Rafael Espindola9f0c4bb2016-11-10 14:53:24 +0000280 if (A->AreRelocsRela)
Rui Ueyamaa05134e2016-11-19 20:15:55 +0000281 return variableEq(A, A->relas(), B, B->relas());
282 return variableEq(A, A->rels(), B, B->rels());
Rui Ueyama0b289522016-02-25 18:43:51 +0000283}
284
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000285template <class ELFT> size_t ICF<ELFT>::findBoundary(size_t Begin, size_t End) {
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000286 uint32_t Class = Sections[Begin]->Class[Current];
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000287 for (size_t I = Begin + 1; I < End; ++I)
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000288 if (Class != Sections[I]->Class[Current])
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000289 return I;
290 return End;
291}
292
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000293// Sections in the same equivalence class are contiguous in Sections
294// vector. Therefore, Sections vector can be considered as contiguous
295// groups of sections, grouped by the class.
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000296//
297// This function calls Fn on every group that starts within [Begin, End).
Rui Ueyamac9df1722017-01-15 02:34:42 +0000298// Note that a group must start in that range but doesn't necessarily
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000299// have to end before End.
300template <class ELFT>
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000301void ICF<ELFT>::forEachClassRange(size_t Begin, size_t End,
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000302 std::function<void(size_t, size_t)> Fn) {
303 if (Begin > 0)
304 Begin = findBoundary(Begin - 1, End);
305
306 while (Begin < End) {
307 size_t Mid = findBoundary(Begin, Sections.size());
308 Fn(Begin, Mid);
309 Begin = Mid;
310 }
311}
312
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000313// Call Fn on each equivalence class.
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000314template <class ELFT>
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000315void ICF<ELFT>::forEachClass(std::function<void(size_t, size_t)> Fn) {
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000316 // If threading is disabled or the number of sections are
317 // too small to use threading, call Fn sequentially.
318 if (!Config->Threads || Sections.size() < 1024) {
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000319 forEachClassRange(0, Sections.size(), Fn);
Rui Ueyama045d8282016-12-04 16:33:13 +0000320 ++Cnt;
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000321 return;
322 }
323
Rui Ueyama045d8282016-12-04 16:33:13 +0000324 Current = Cnt % 2;
325 Next = (Cnt + 1) % 2;
326
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000327 // Split sections into 256 shards and call Fn in parallel.
328 size_t NumShards = 256;
329 size_t Step = Sections.size() / NumShards;
Rui Ueyama244a4352016-12-03 21:24:51 +0000330 forLoop(0, NumShards,
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000331 [&](size_t I) { forEachClassRange(I * Step, (I + 1) * Step, Fn); });
332 forEachClassRange(Step * NumShards, Sections.size(), Fn);
Rui Ueyama045d8282016-12-04 16:33:13 +0000333 ++Cnt;
Rui Ueyamac1835312016-12-01 17:09:04 +0000334}
335
Rui Ueyama0b289522016-02-25 18:43:51 +0000336// The main function of ICF.
Rui Ueyama4f8d21f2016-05-02 19:30:42 +0000337template <class ELFT> void ICF<ELFT>::run() {
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000338 // Collect sections to merge.
339 for (InputSectionBase<ELFT> *Sec : Symtab<ELFT>::X->Sections)
340 if (auto *S = dyn_cast<InputSection<ELFT>>(Sec))
341 if (isEligible(S))
342 Sections.push_back(S);
343
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000344 // Initially, we use hash values to partition sections.
Rui Ueyamae2dfbc12016-11-19 23:14:23 +0000345 for (InputSection<ELFT> *S : Sections)
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000346 // Set MSB to 1 to avoid collisions with non-hash IDs.
347 S->Class[0] = getHash(S) | (1 << 31);
Rui Ueyama0b289522016-02-25 18:43:51 +0000348
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000349 // From now on, sections in Sections vector are ordered so that sections
350 // in the same equivalence class are consecutive in the vector.
Rui Ueyamae2dfbc12016-11-19 23:14:23 +0000351 std::stable_sort(Sections.begin(), Sections.end(),
Rui Ueyama0b289522016-02-25 18:43:51 +0000352 [](InputSection<ELFT> *A, InputSection<ELFT> *B) {
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000353 return A->Class[0] < B->Class[0];
Rui Ueyama0b289522016-02-25 18:43:51 +0000354 });
355
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000356 // Compare static contents and assign unique IDs for each static content.
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000357 forEachClass([&](size_t Begin, size_t End) { segregate(Begin, End, true); });
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000358
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000359 // Split groups by comparing relocations until convergence is obtained.
360 do {
361 Repeat = false;
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000362 forEachClass(
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000363 [&](size_t Begin, size_t End) { segregate(Begin, End, false); });
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000364 } while (Repeat);
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000365
366 log("ICF needed " + Twine(Cnt) + " iterations");
Rui Ueyama0b289522016-02-25 18:43:51 +0000367
Rui Ueyamafcd3fa82016-12-05 18:11:35 +0000368 // Merge sections by the equivalence class.
369 forEachClass([&](size_t Begin, size_t End) {
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000370 if (End - Begin == 1)
371 return;
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000372
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000373 log("selected " + Sections[Begin]->Name);
374 for (size_t I = Begin + 1; I < End; ++I) {
Rui Ueyama9dedfb12016-11-30 01:50:03 +0000375 log(" removed " + Sections[I]->Name);
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000376 Sections[Begin]->replace(Sections[I]);
Rui Ueyama0b289522016-02-25 18:43:51 +0000377 }
Rui Ueyama1b6bab02016-12-02 05:35:46 +0000378 });
Rui Ueyama0b289522016-02-25 18:43:51 +0000379}
380
381// ICF entry point function.
Rui Ueyama4f8d21f2016-05-02 19:30:42 +0000382template <class ELFT> void elf::doIcf() { ICF<ELFT>().run(); }
Rui Ueyama0b289522016-02-25 18:43:51 +0000383
Rui Ueyama4f8d21f2016-05-02 19:30:42 +0000384template void elf::doIcf<ELF32LE>();
385template void elf::doIcf<ELF32BE>();
386template void elf::doIcf<ELF64LE>();
387template void elf::doIcf<ELF64BE>();