blob: 6a6384aa3f43223ad74eb970f9f04d5eb2bf34ad [file] [log] [blame]
Zhou Shengdac63782007-02-06 03:00:16 +00001//===-- APInt.cpp - Implement APInt class ---------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Zhou Shengdac63782007-02-06 03:00:16 +00007//
8//===----------------------------------------------------------------------===//
9//
Reid Spencera41e93b2007-02-25 19:32:03 +000010// This file implements a class to represent arbitrary precision integer
11// constant values and provide a variety of arithmetic operations on them.
Zhou Shengdac63782007-02-06 03:00:16 +000012//
13//===----------------------------------------------------------------------===//
14
Reid Spencera5e0d202007-02-24 03:58:46 +000015#define DEBUG_TYPE "apint"
Zhou Shengdac63782007-02-06 03:00:16 +000016#include "llvm/ADT/APInt.h"
Daniel Dunbar3a1efd112009-08-13 02:33:34 +000017#include "llvm/ADT/StringRef.h"
Ted Kremenek5c75d542008-01-19 04:23:33 +000018#include "llvm/ADT/FoldingSet.h"
Chris Lattner17f71652008-08-17 07:19:36 +000019#include "llvm/ADT/SmallString.h"
Reid Spencera5e0d202007-02-24 03:58:46 +000020#include "llvm/Support/Debug.h"
Torok Edwin56d06592009-07-11 20:10:48 +000021#include "llvm/Support/ErrorHandling.h"
Zhou Shengdac63782007-02-06 03:00:16 +000022#include "llvm/Support/MathExtras.h"
Chris Lattner0c19df42008-08-23 22:23:09 +000023#include "llvm/Support/raw_ostream.h"
Chris Lattner17f71652008-08-17 07:19:36 +000024#include <cmath>
Jeff Cohene06855e2007-03-20 20:42:36 +000025#include <limits>
Zhou Sheng3e8022d2007-02-07 06:14:53 +000026#include <cstring>
Zhou Shengdac63782007-02-06 03:00:16 +000027#include <cstdlib>
28using namespace llvm;
29
Reid Spencera41e93b2007-02-25 19:32:03 +000030/// A utility function for allocating memory, checking for allocation failures,
31/// and ensuring the contents are zeroed.
Chris Lattner77527f52009-01-21 18:09:24 +000032inline static uint64_t* getClearedMemory(unsigned numWords) {
Reid Spencera856b6e2007-02-18 18:38:44 +000033 uint64_t * result = new uint64_t[numWords];
34 assert(result && "APInt memory allocation fails!");
35 memset(result, 0, numWords * sizeof(uint64_t));
36 return result;
Zhou Sheng94b623a2007-02-06 06:04:53 +000037}
38
Eric Christopher820256b2009-08-21 04:06:45 +000039/// A utility function for allocating memory and checking for allocation
Reid Spencera41e93b2007-02-25 19:32:03 +000040/// failure. The content is not zeroed.
Chris Lattner77527f52009-01-21 18:09:24 +000041inline static uint64_t* getMemory(unsigned numWords) {
Reid Spencera856b6e2007-02-18 18:38:44 +000042 uint64_t * result = new uint64_t[numWords];
43 assert(result && "APInt memory allocation fails!");
44 return result;
45}
46
Erick Tryzelaardadb15712009-08-21 03:15:28 +000047/// A utility function that converts a character to a digit.
48inline static unsigned getDigit(char cdigit, uint8_t radix) {
Erick Tryzelaar60964092009-08-21 06:48:37 +000049 unsigned r;
50
Erick Tryzelaardadb15712009-08-21 03:15:28 +000051 if (radix == 16) {
Erick Tryzelaar60964092009-08-21 06:48:37 +000052 r = cdigit - '0';
53 if (r <= 9)
54 return r;
55
56 r = cdigit - 'A';
57 if (r <= 5)
58 return r + 10;
59
60 r = cdigit - 'a';
61 if (r <= 5)
62 return r + 10;
Erick Tryzelaardadb15712009-08-21 03:15:28 +000063 }
64
Erick Tryzelaar60964092009-08-21 06:48:37 +000065 r = cdigit - '0';
66 if (r < radix)
67 return r;
68
69 return -1U;
Erick Tryzelaardadb15712009-08-21 03:15:28 +000070}
71
72
Chris Lattner77527f52009-01-21 18:09:24 +000073void APInt::initSlowCase(unsigned numBits, uint64_t val, bool isSigned) {
Chris Lattner1ac3e252008-08-20 17:02:31 +000074 pVal = getClearedMemory(getNumWords());
75 pVal[0] = val;
Eric Christopher820256b2009-08-21 04:06:45 +000076 if (isSigned && int64_t(val) < 0)
Chris Lattner1ac3e252008-08-20 17:02:31 +000077 for (unsigned i = 1; i < getNumWords(); ++i)
78 pVal[i] = -1ULL;
Zhou Shengdac63782007-02-06 03:00:16 +000079}
80
Chris Lattnerd57b7602008-10-11 22:07:19 +000081void APInt::initSlowCase(const APInt& that) {
82 pVal = getMemory(getNumWords());
83 memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
84}
85
86
Chris Lattner77527f52009-01-21 18:09:24 +000087APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
Chris Lattner0c19df42008-08-23 22:23:09 +000088 : BitWidth(numBits), VAL(0) {
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +000089 assert(BitWidth && "Bitwidth too small");
Zhou Shengdac63782007-02-06 03:00:16 +000090 assert(bigVal && "Null pointer detected!");
91 if (isSingleWord())
Reid Spencerdf6cf5a2007-02-24 10:01:42 +000092 VAL = bigVal[0];
Zhou Shengdac63782007-02-06 03:00:16 +000093 else {
Reid Spencerdf6cf5a2007-02-24 10:01:42 +000094 // Get memory, cleared to 0
95 pVal = getClearedMemory(getNumWords());
96 // Calculate the number of words to copy
Chris Lattner77527f52009-01-21 18:09:24 +000097 unsigned words = std::min<unsigned>(numWords, getNumWords());
Reid Spencerdf6cf5a2007-02-24 10:01:42 +000098 // Copy the words from bigVal to pVal
99 memcpy(pVal, bigVal, words * APINT_WORD_SIZE);
Zhou Shengdac63782007-02-06 03:00:16 +0000100 }
Reid Spencerdf6cf5a2007-02-24 10:01:42 +0000101 // Make sure unused high bits are cleared
102 clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000103}
104
Eric Christopher820256b2009-08-21 04:06:45 +0000105APInt::APInt(unsigned numbits, const StringRef& Str, uint8_t radix)
Reid Spencer1ba83352007-02-21 03:55:44 +0000106 : BitWidth(numbits), VAL(0) {
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +0000107 assert(BitWidth && "Bitwidth too small");
Daniel Dunbar3a1efd112009-08-13 02:33:34 +0000108 fromString(numbits, Str, radix);
Zhou Sheng3e8022d2007-02-07 06:14:53 +0000109}
110
Chris Lattner1ac3e252008-08-20 17:02:31 +0000111APInt& APInt::AssignSlowCase(const APInt& RHS) {
Reid Spencer7c16cd22007-02-26 23:38:21 +0000112 // Don't do anything for X = X
113 if (this == &RHS)
114 return *this;
115
Reid Spencer7c16cd22007-02-26 23:38:21 +0000116 if (BitWidth == RHS.getBitWidth()) {
Chris Lattner1ac3e252008-08-20 17:02:31 +0000117 // assume same bit-width single-word case is already handled
118 assert(!isSingleWord());
119 memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
Reid Spencer7c16cd22007-02-26 23:38:21 +0000120 return *this;
121 }
122
Chris Lattner1ac3e252008-08-20 17:02:31 +0000123 if (isSingleWord()) {
124 // assume case where both are single words is already handled
125 assert(!RHS.isSingleWord());
126 VAL = 0;
127 pVal = getMemory(RHS.getNumWords());
128 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
Eric Christopher820256b2009-08-21 04:06:45 +0000129 } else if (getNumWords() == RHS.getNumWords())
Reid Spencer7c16cd22007-02-26 23:38:21 +0000130 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
131 else if (RHS.isSingleWord()) {
132 delete [] pVal;
Reid Spencera856b6e2007-02-18 18:38:44 +0000133 VAL = RHS.VAL;
Reid Spencer7c16cd22007-02-26 23:38:21 +0000134 } else {
135 delete [] pVal;
136 pVal = getMemory(RHS.getNumWords());
137 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
138 }
139 BitWidth = RHS.BitWidth;
140 return clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000141}
142
Zhou Shengdac63782007-02-06 03:00:16 +0000143APInt& APInt::operator=(uint64_t RHS) {
Eric Christopher820256b2009-08-21 04:06:45 +0000144 if (isSingleWord())
Reid Spencer1d072122007-02-16 22:36:51 +0000145 VAL = RHS;
Zhou Shengdac63782007-02-06 03:00:16 +0000146 else {
147 pVal[0] = RHS;
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000148 memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
Zhou Shengdac63782007-02-06 03:00:16 +0000149 }
Reid Spencer7c16cd22007-02-26 23:38:21 +0000150 return clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000151}
152
Ted Kremenek5c75d542008-01-19 04:23:33 +0000153/// Profile - This method 'profiles' an APInt for use with FoldingSet.
154void APInt::Profile(FoldingSetNodeID& ID) const {
Ted Kremenek901540f2008-02-19 20:50:41 +0000155 ID.AddInteger(BitWidth);
Eric Christopher820256b2009-08-21 04:06:45 +0000156
Ted Kremenek5c75d542008-01-19 04:23:33 +0000157 if (isSingleWord()) {
158 ID.AddInteger(VAL);
159 return;
160 }
161
Chris Lattner77527f52009-01-21 18:09:24 +0000162 unsigned NumWords = getNumWords();
Ted Kremenek5c75d542008-01-19 04:23:33 +0000163 for (unsigned i = 0; i < NumWords; ++i)
164 ID.AddInteger(pVal[i]);
165}
166
Eric Christopher820256b2009-08-21 04:06:45 +0000167/// add_1 - This function adds a single "digit" integer, y, to the multiple
Reid Spencera856b6e2007-02-18 18:38:44 +0000168/// "digit" integer array, x[]. x[] is modified to reflect the addition and
169/// 1 is returned if there is a carry out, otherwise 0 is returned.
Reid Spencer100502d2007-02-17 03:16:00 +0000170/// @returns the carry of the addition.
Chris Lattner77527f52009-01-21 18:09:24 +0000171static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
172 for (unsigned i = 0; i < len; ++i) {
Reid Spenceree0a6852007-02-18 06:39:42 +0000173 dest[i] = y + x[i];
174 if (dest[i] < y)
Reid Spencerdf6cf5a2007-02-24 10:01:42 +0000175 y = 1; // Carry one to next digit.
Reid Spenceree0a6852007-02-18 06:39:42 +0000176 else {
Reid Spencerdf6cf5a2007-02-24 10:01:42 +0000177 y = 0; // No need to carry so exit early
Reid Spenceree0a6852007-02-18 06:39:42 +0000178 break;
179 }
Reid Spencer100502d2007-02-17 03:16:00 +0000180 }
Reid Spenceree0a6852007-02-18 06:39:42 +0000181 return y;
Reid Spencer100502d2007-02-17 03:16:00 +0000182}
183
Zhou Shengdac63782007-02-06 03:00:16 +0000184/// @brief Prefix increment operator. Increments the APInt by one.
185APInt& APInt::operator++() {
Eric Christopher820256b2009-08-21 04:06:45 +0000186 if (isSingleWord())
Reid Spencer1d072122007-02-16 22:36:51 +0000187 ++VAL;
Zhou Shengdac63782007-02-06 03:00:16 +0000188 else
Zhou Sheng3e8022d2007-02-07 06:14:53 +0000189 add_1(pVal, pVal, getNumWords(), 1);
Reid Spencera41e93b2007-02-25 19:32:03 +0000190 return clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000191}
192
Eric Christopher820256b2009-08-21 04:06:45 +0000193/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
194/// the multi-digit integer array, x[], propagating the borrowed 1 value until
Reid Spencera856b6e2007-02-18 18:38:44 +0000195/// no further borrowing is neeeded or it runs out of "digits" in x. The result
196/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
197/// In other words, if y > x then this function returns 1, otherwise 0.
Reid Spencera41e93b2007-02-25 19:32:03 +0000198/// @returns the borrow out of the subtraction
Chris Lattner77527f52009-01-21 18:09:24 +0000199static bool sub_1(uint64_t x[], unsigned len, uint64_t y) {
200 for (unsigned i = 0; i < len; ++i) {
Reid Spencer100502d2007-02-17 03:16:00 +0000201 uint64_t X = x[i];
Reid Spenceree0a6852007-02-18 06:39:42 +0000202 x[i] -= y;
Eric Christopher820256b2009-08-21 04:06:45 +0000203 if (y > X)
Reid Spencera856b6e2007-02-18 18:38:44 +0000204 y = 1; // We have to "borrow 1" from next "digit"
Reid Spencer100502d2007-02-17 03:16:00 +0000205 else {
Reid Spencera856b6e2007-02-18 18:38:44 +0000206 y = 0; // No need to borrow
207 break; // Remaining digits are unchanged so exit early
Reid Spencer100502d2007-02-17 03:16:00 +0000208 }
209 }
Reid Spencera41e93b2007-02-25 19:32:03 +0000210 return bool(y);
Reid Spencer100502d2007-02-17 03:16:00 +0000211}
212
Zhou Shengdac63782007-02-06 03:00:16 +0000213/// @brief Prefix decrement operator. Decrements the APInt by one.
214APInt& APInt::operator--() {
Eric Christopher820256b2009-08-21 04:06:45 +0000215 if (isSingleWord())
Reid Spencera856b6e2007-02-18 18:38:44 +0000216 --VAL;
Zhou Shengdac63782007-02-06 03:00:16 +0000217 else
Zhou Sheng3e8022d2007-02-07 06:14:53 +0000218 sub_1(pVal, getNumWords(), 1);
Reid Spencera41e93b2007-02-25 19:32:03 +0000219 return clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000220}
221
Reid Spencera41e93b2007-02-25 19:32:03 +0000222/// add - This function adds the integer array x to the integer array Y and
Eric Christopher820256b2009-08-21 04:06:45 +0000223/// places the result in dest.
Reid Spencera41e93b2007-02-25 19:32:03 +0000224/// @returns the carry out from the addition
225/// @brief General addition of 64-bit integer arrays
Eric Christopher820256b2009-08-21 04:06:45 +0000226static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
Chris Lattner77527f52009-01-21 18:09:24 +0000227 unsigned len) {
Reid Spencera5e0d202007-02-24 03:58:46 +0000228 bool carry = false;
Chris Lattner77527f52009-01-21 18:09:24 +0000229 for (unsigned i = 0; i< len; ++i) {
Reid Spencercb292e42007-02-23 01:57:13 +0000230 uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
Reid Spencer7a6a8d52007-02-20 23:40:25 +0000231 dest[i] = x[i] + y[i] + carry;
Reid Spencerdb2abec2007-02-21 05:44:56 +0000232 carry = dest[i] < limit || (carry && dest[i] == limit);
Reid Spencer100502d2007-02-17 03:16:00 +0000233 }
234 return carry;
235}
236
Reid Spencera41e93b2007-02-25 19:32:03 +0000237/// Adds the RHS APint to this APInt.
238/// @returns this, after addition of RHS.
Eric Christopher820256b2009-08-21 04:06:45 +0000239/// @brief Addition assignment operator.
Zhou Shengdac63782007-02-06 03:00:16 +0000240APInt& APInt::operator+=(const APInt& RHS) {
Reid Spencera32372d12007-02-17 00:18:01 +0000241 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Eric Christopher820256b2009-08-21 04:06:45 +0000242 if (isSingleWord())
Reid Spencer7a6a8d52007-02-20 23:40:25 +0000243 VAL += RHS.VAL;
Zhou Shengdac63782007-02-06 03:00:16 +0000244 else {
Reid Spencer7a6a8d52007-02-20 23:40:25 +0000245 add(pVal, pVal, RHS.pVal, getNumWords());
Zhou Shengdac63782007-02-06 03:00:16 +0000246 }
Reid Spencera41e93b2007-02-25 19:32:03 +0000247 return clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000248}
249
Eric Christopher820256b2009-08-21 04:06:45 +0000250/// Subtracts the integer array y from the integer array x
Reid Spencera41e93b2007-02-25 19:32:03 +0000251/// @returns returns the borrow out.
252/// @brief Generalized subtraction of 64-bit integer arrays.
Eric Christopher820256b2009-08-21 04:06:45 +0000253static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
Chris Lattner77527f52009-01-21 18:09:24 +0000254 unsigned len) {
Reid Spencer1ba83352007-02-21 03:55:44 +0000255 bool borrow = false;
Chris Lattner77527f52009-01-21 18:09:24 +0000256 for (unsigned i = 0; i < len; ++i) {
Reid Spencer1ba83352007-02-21 03:55:44 +0000257 uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
258 borrow = y[i] > x_tmp || (borrow && x[i] == 0);
259 dest[i] = x_tmp - y[i];
Reid Spencer100502d2007-02-17 03:16:00 +0000260 }
Reid Spencer7a6a8d52007-02-20 23:40:25 +0000261 return borrow;
Reid Spencer100502d2007-02-17 03:16:00 +0000262}
263
Reid Spencera41e93b2007-02-25 19:32:03 +0000264/// Subtracts the RHS APInt from this APInt
265/// @returns this, after subtraction
Eric Christopher820256b2009-08-21 04:06:45 +0000266/// @brief Subtraction assignment operator.
Zhou Shengdac63782007-02-06 03:00:16 +0000267APInt& APInt::operator-=(const APInt& RHS) {
Reid Spencera32372d12007-02-17 00:18:01 +0000268 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Eric Christopher820256b2009-08-21 04:06:45 +0000269 if (isSingleWord())
Reid Spencer7a6a8d52007-02-20 23:40:25 +0000270 VAL -= RHS.VAL;
271 else
272 sub(pVal, pVal, RHS.pVal, getNumWords());
Reid Spencera41e93b2007-02-25 19:32:03 +0000273 return clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000274}
275
Dan Gohman4a618822010-02-10 16:03:48 +0000276/// Multiplies an integer array, x, by a uint64_t integer and places the result
Eric Christopher820256b2009-08-21 04:06:45 +0000277/// into dest.
Reid Spencera41e93b2007-02-25 19:32:03 +0000278/// @returns the carry out of the multiplication.
279/// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
Chris Lattner77527f52009-01-21 18:09:24 +0000280static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
Reid Spencerdf6cf5a2007-02-24 10:01:42 +0000281 // Split y into high 32-bit part (hy) and low 32-bit part (ly)
Reid Spencer100502d2007-02-17 03:16:00 +0000282 uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
Reid Spencera41e93b2007-02-25 19:32:03 +0000283 uint64_t carry = 0;
284
285 // For each digit of x.
Chris Lattner77527f52009-01-21 18:09:24 +0000286 for (unsigned i = 0; i < len; ++i) {
Reid Spencera41e93b2007-02-25 19:32:03 +0000287 // Split x into high and low words
288 uint64_t lx = x[i] & 0xffffffffULL;
289 uint64_t hx = x[i] >> 32;
290 // hasCarry - A flag to indicate if there is a carry to the next digit.
Reid Spencer100502d2007-02-17 03:16:00 +0000291 // hasCarry == 0, no carry
292 // hasCarry == 1, has carry
293 // hasCarry == 2, no carry and the calculation result == 0.
294 uint8_t hasCarry = 0;
295 dest[i] = carry + lx * ly;
296 // Determine if the add above introduces carry.
297 hasCarry = (dest[i] < carry) ? 1 : 0;
298 carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
Eric Christopher820256b2009-08-21 04:06:45 +0000299 // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
Reid Spencer100502d2007-02-17 03:16:00 +0000300 // (2^32 - 1) + 2^32 = 2^64.
301 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
302
303 carry += (lx * hy) & 0xffffffffULL;
304 dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
Eric Christopher820256b2009-08-21 04:06:45 +0000305 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
Reid Spencer100502d2007-02-17 03:16:00 +0000306 (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
307 }
Reid Spencer100502d2007-02-17 03:16:00 +0000308 return carry;
309}
310
Eric Christopher820256b2009-08-21 04:06:45 +0000311/// Multiplies integer array x by integer array y and stores the result into
Reid Spencera41e93b2007-02-25 19:32:03 +0000312/// the integer array dest. Note that dest's size must be >= xlen + ylen.
313/// @brief Generalized multiplicate of integer arrays.
Chris Lattner77527f52009-01-21 18:09:24 +0000314static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[],
315 unsigned ylen) {
Reid Spencer100502d2007-02-17 03:16:00 +0000316 dest[xlen] = mul_1(dest, x, xlen, y[0]);
Chris Lattner77527f52009-01-21 18:09:24 +0000317 for (unsigned i = 1; i < ylen; ++i) {
Reid Spencer100502d2007-02-17 03:16:00 +0000318 uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
Reid Spencer58a6a432007-02-21 08:21:52 +0000319 uint64_t carry = 0, lx = 0, hx = 0;
Chris Lattner77527f52009-01-21 18:09:24 +0000320 for (unsigned j = 0; j < xlen; ++j) {
Reid Spencer100502d2007-02-17 03:16:00 +0000321 lx = x[j] & 0xffffffffULL;
322 hx = x[j] >> 32;
323 // hasCarry - A flag to indicate if has carry.
324 // hasCarry == 0, no carry
325 // hasCarry == 1, has carry
326 // hasCarry == 2, no carry and the calculation result == 0.
327 uint8_t hasCarry = 0;
328 uint64_t resul = carry + lx * ly;
329 hasCarry = (resul < carry) ? 1 : 0;
330 carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
331 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
332
333 carry += (lx * hy) & 0xffffffffULL;
334 resul = (carry << 32) | (resul & 0xffffffffULL);
335 dest[i+j] += resul;
336 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
Eric Christopher820256b2009-08-21 04:06:45 +0000337 (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
Reid Spencer100502d2007-02-17 03:16:00 +0000338 ((lx * hy) >> 32) + hx * hy;
339 }
340 dest[i+xlen] = carry;
341 }
342}
343
Zhou Shengdac63782007-02-06 03:00:16 +0000344APInt& APInt::operator*=(const APInt& RHS) {
Reid Spencera32372d12007-02-17 00:18:01 +0000345 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer58a6a432007-02-21 08:21:52 +0000346 if (isSingleWord()) {
Reid Spencer4bb430c2007-02-20 20:42:10 +0000347 VAL *= RHS.VAL;
Reid Spencer58a6a432007-02-21 08:21:52 +0000348 clearUnusedBits();
349 return *this;
Zhou Shengdac63782007-02-06 03:00:16 +0000350 }
Reid Spencer58a6a432007-02-21 08:21:52 +0000351
352 // Get some bit facts about LHS and check for zero
Chris Lattner77527f52009-01-21 18:09:24 +0000353 unsigned lhsBits = getActiveBits();
354 unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
Eric Christopher820256b2009-08-21 04:06:45 +0000355 if (!lhsWords)
Reid Spencer58a6a432007-02-21 08:21:52 +0000356 // 0 * X ===> 0
357 return *this;
358
359 // Get some bit facts about RHS and check for zero
Chris Lattner77527f52009-01-21 18:09:24 +0000360 unsigned rhsBits = RHS.getActiveBits();
361 unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
Reid Spencer58a6a432007-02-21 08:21:52 +0000362 if (!rhsWords) {
363 // X * 0 ===> 0
364 clear();
365 return *this;
366 }
367
368 // Allocate space for the result
Chris Lattner77527f52009-01-21 18:09:24 +0000369 unsigned destWords = rhsWords + lhsWords;
Reid Spencer58a6a432007-02-21 08:21:52 +0000370 uint64_t *dest = getMemory(destWords);
371
372 // Perform the long multiply
373 mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
374
375 // Copy result back into *this
376 clear();
Chris Lattner77527f52009-01-21 18:09:24 +0000377 unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
Reid Spencer58a6a432007-02-21 08:21:52 +0000378 memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
379
380 // delete dest array and return
381 delete[] dest;
Zhou Shengdac63782007-02-06 03:00:16 +0000382 return *this;
383}
384
Zhou Shengdac63782007-02-06 03:00:16 +0000385APInt& APInt::operator&=(const APInt& RHS) {
Reid Spencera32372d12007-02-17 00:18:01 +0000386 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Zhou Shengdac63782007-02-06 03:00:16 +0000387 if (isSingleWord()) {
Reid Spencera856b6e2007-02-18 18:38:44 +0000388 VAL &= RHS.VAL;
389 return *this;
Zhou Shengdac63782007-02-06 03:00:16 +0000390 }
Chris Lattner77527f52009-01-21 18:09:24 +0000391 unsigned numWords = getNumWords();
392 for (unsigned i = 0; i < numWords; ++i)
Reid Spencera856b6e2007-02-18 18:38:44 +0000393 pVal[i] &= RHS.pVal[i];
Zhou Shengdac63782007-02-06 03:00:16 +0000394 return *this;
395}
396
Zhou Shengdac63782007-02-06 03:00:16 +0000397APInt& APInt::operator|=(const APInt& RHS) {
Reid Spencera32372d12007-02-17 00:18:01 +0000398 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Zhou Shengdac63782007-02-06 03:00:16 +0000399 if (isSingleWord()) {
Reid Spencera856b6e2007-02-18 18:38:44 +0000400 VAL |= RHS.VAL;
401 return *this;
Zhou Shengdac63782007-02-06 03:00:16 +0000402 }
Chris Lattner77527f52009-01-21 18:09:24 +0000403 unsigned numWords = getNumWords();
404 for (unsigned i = 0; i < numWords; ++i)
Reid Spencera856b6e2007-02-18 18:38:44 +0000405 pVal[i] |= RHS.pVal[i];
Zhou Shengdac63782007-02-06 03:00:16 +0000406 return *this;
407}
408
Zhou Shengdac63782007-02-06 03:00:16 +0000409APInt& APInt::operator^=(const APInt& RHS) {
Reid Spencera32372d12007-02-17 00:18:01 +0000410 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Zhou Shengdac63782007-02-06 03:00:16 +0000411 if (isSingleWord()) {
Reid Spenceree0a6852007-02-18 06:39:42 +0000412 VAL ^= RHS.VAL;
Reid Spencer7a6a8d52007-02-20 23:40:25 +0000413 this->clearUnusedBits();
Reid Spenceree0a6852007-02-18 06:39:42 +0000414 return *this;
Eric Christopher820256b2009-08-21 04:06:45 +0000415 }
Chris Lattner77527f52009-01-21 18:09:24 +0000416 unsigned numWords = getNumWords();
417 for (unsigned i = 0; i < numWords; ++i)
Reid Spencera856b6e2007-02-18 18:38:44 +0000418 pVal[i] ^= RHS.pVal[i];
Reid Spencera41e93b2007-02-25 19:32:03 +0000419 return clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000420}
421
Chris Lattner1ac3e252008-08-20 17:02:31 +0000422APInt APInt::AndSlowCase(const APInt& RHS) const {
Chris Lattner77527f52009-01-21 18:09:24 +0000423 unsigned numWords = getNumWords();
Reid Spencera41e93b2007-02-25 19:32:03 +0000424 uint64_t* val = getMemory(numWords);
Chris Lattner77527f52009-01-21 18:09:24 +0000425 for (unsigned i = 0; i < numWords; ++i)
Reid Spencera41e93b2007-02-25 19:32:03 +0000426 val[i] = pVal[i] & RHS.pVal[i];
427 return APInt(val, getBitWidth());
Zhou Shengdac63782007-02-06 03:00:16 +0000428}
429
Chris Lattner1ac3e252008-08-20 17:02:31 +0000430APInt APInt::OrSlowCase(const APInt& RHS) const {
Chris Lattner77527f52009-01-21 18:09:24 +0000431 unsigned numWords = getNumWords();
Reid Spencera41e93b2007-02-25 19:32:03 +0000432 uint64_t *val = getMemory(numWords);
Chris Lattner77527f52009-01-21 18:09:24 +0000433 for (unsigned i = 0; i < numWords; ++i)
Reid Spencera41e93b2007-02-25 19:32:03 +0000434 val[i] = pVal[i] | RHS.pVal[i];
435 return APInt(val, getBitWidth());
Zhou Shengdac63782007-02-06 03:00:16 +0000436}
437
Chris Lattner1ac3e252008-08-20 17:02:31 +0000438APInt APInt::XorSlowCase(const APInt& RHS) const {
Chris Lattner77527f52009-01-21 18:09:24 +0000439 unsigned numWords = getNumWords();
Reid Spencera41e93b2007-02-25 19:32:03 +0000440 uint64_t *val = getMemory(numWords);
Chris Lattner77527f52009-01-21 18:09:24 +0000441 for (unsigned i = 0; i < numWords; ++i)
Reid Spencera41e93b2007-02-25 19:32:03 +0000442 val[i] = pVal[i] ^ RHS.pVal[i];
443
444 // 0^0==1 so clear the high bits in case they got set.
445 return APInt(val, getBitWidth()).clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000446}
447
Zhou Shengdac63782007-02-06 03:00:16 +0000448bool APInt::operator !() const {
449 if (isSingleWord())
450 return !VAL;
Reid Spencera856b6e2007-02-18 18:38:44 +0000451
Chris Lattner77527f52009-01-21 18:09:24 +0000452 for (unsigned i = 0; i < getNumWords(); ++i)
Eric Christopher820256b2009-08-21 04:06:45 +0000453 if (pVal[i])
Reid Spencera856b6e2007-02-18 18:38:44 +0000454 return false;
Zhou Shengdac63782007-02-06 03:00:16 +0000455 return true;
456}
457
Zhou Shengdac63782007-02-06 03:00:16 +0000458APInt APInt::operator*(const APInt& RHS) const {
Reid Spencera32372d12007-02-17 00:18:01 +0000459 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencera41e93b2007-02-25 19:32:03 +0000460 if (isSingleWord())
Reid Spenceraa8dcfe2007-02-26 07:44:38 +0000461 return APInt(BitWidth, VAL * RHS.VAL);
Reid Spencer4bb430c2007-02-20 20:42:10 +0000462 APInt Result(*this);
463 Result *= RHS;
Reid Spencera41e93b2007-02-25 19:32:03 +0000464 return Result.clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000465}
466
Zhou Shengdac63782007-02-06 03:00:16 +0000467APInt APInt::operator+(const APInt& RHS) const {
Reid Spencera32372d12007-02-17 00:18:01 +0000468 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencera41e93b2007-02-25 19:32:03 +0000469 if (isSingleWord())
Reid Spenceraa8dcfe2007-02-26 07:44:38 +0000470 return APInt(BitWidth, VAL + RHS.VAL);
Reid Spencer7a6a8d52007-02-20 23:40:25 +0000471 APInt Result(BitWidth, 0);
472 add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
Reid Spencera41e93b2007-02-25 19:32:03 +0000473 return Result.clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000474}
475
Zhou Shengdac63782007-02-06 03:00:16 +0000476APInt APInt::operator-(const APInt& RHS) const {
Reid Spencera32372d12007-02-17 00:18:01 +0000477 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencera41e93b2007-02-25 19:32:03 +0000478 if (isSingleWord())
Reid Spenceraa8dcfe2007-02-26 07:44:38 +0000479 return APInt(BitWidth, VAL - RHS.VAL);
Reid Spencer7a6a8d52007-02-20 23:40:25 +0000480 APInt Result(BitWidth, 0);
481 sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
Reid Spencera41e93b2007-02-25 19:32:03 +0000482 return Result.clearUnusedBits();
Zhou Shengdac63782007-02-06 03:00:16 +0000483}
484
Chris Lattner77527f52009-01-21 18:09:24 +0000485bool APInt::operator[](unsigned bitPosition) const {
Eric Christopher820256b2009-08-21 04:06:45 +0000486 return (maskBit(bitPosition) &
Reid Spencera41e93b2007-02-25 19:32:03 +0000487 (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0;
Zhou Shengdac63782007-02-06 03:00:16 +0000488}
489
Chris Lattner1ac3e252008-08-20 17:02:31 +0000490bool APInt::EqualSlowCase(const APInt& RHS) const {
Reid Spencera41e93b2007-02-25 19:32:03 +0000491 // Get some facts about the number of bits used in the two operands.
Chris Lattner77527f52009-01-21 18:09:24 +0000492 unsigned n1 = getActiveBits();
493 unsigned n2 = RHS.getActiveBits();
Reid Spencera41e93b2007-02-25 19:32:03 +0000494
495 // If the number of bits isn't the same, they aren't equal
Eric Christopher820256b2009-08-21 04:06:45 +0000496 if (n1 != n2)
Reid Spencer7a6a8d52007-02-20 23:40:25 +0000497 return false;
498
Reid Spencera41e93b2007-02-25 19:32:03 +0000499 // If the number of bits fits in a word, we only need to compare the low word.
Reid Spencer7a6a8d52007-02-20 23:40:25 +0000500 if (n1 <= APINT_BITS_PER_WORD)
501 return pVal[0] == RHS.pVal[0];
502
Reid Spencera41e93b2007-02-25 19:32:03 +0000503 // Otherwise, compare everything
Reid Spencer7a6a8d52007-02-20 23:40:25 +0000504 for (int i = whichWord(n1 - 1); i >= 0; --i)
Eric Christopher820256b2009-08-21 04:06:45 +0000505 if (pVal[i] != RHS.pVal[i])
Reid Spencer7a6a8d52007-02-20 23:40:25 +0000506 return false;
Zhou Shengdac63782007-02-06 03:00:16 +0000507 return true;
508}
509
Chris Lattner1ac3e252008-08-20 17:02:31 +0000510bool APInt::EqualSlowCase(uint64_t Val) const {
Chris Lattner77527f52009-01-21 18:09:24 +0000511 unsigned n = getActiveBits();
Reid Spencer7a6a8d52007-02-20 23:40:25 +0000512 if (n <= APINT_BITS_PER_WORD)
513 return pVal[0] == Val;
514 else
515 return false;
Zhou Shengdac63782007-02-06 03:00:16 +0000516}
517
Reid Spencer1d072122007-02-16 22:36:51 +0000518bool APInt::ult(const APInt& RHS) const {
519 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
520 if (isSingleWord())
521 return VAL < RHS.VAL;
Reid Spencera41e93b2007-02-25 19:32:03 +0000522
523 // Get active bit length of both operands
Chris Lattner77527f52009-01-21 18:09:24 +0000524 unsigned n1 = getActiveBits();
525 unsigned n2 = RHS.getActiveBits();
Reid Spencera41e93b2007-02-25 19:32:03 +0000526
527 // If magnitude of LHS is less than RHS, return true.
528 if (n1 < n2)
529 return true;
530
531 // If magnitude of RHS is greather than LHS, return false.
532 if (n2 < n1)
533 return false;
534
535 // If they bot fit in a word, just compare the low order word
536 if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
537 return pVal[0] < RHS.pVal[0];
538
539 // Otherwise, compare all words
Chris Lattner77527f52009-01-21 18:09:24 +0000540 unsigned topWord = whichWord(std::max(n1,n2)-1);
Reid Spencer54abdcf2007-02-27 18:23:40 +0000541 for (int i = topWord; i >= 0; --i) {
Eric Christopher820256b2009-08-21 04:06:45 +0000542 if (pVal[i] > RHS.pVal[i])
Reid Spencer1d072122007-02-16 22:36:51 +0000543 return false;
Eric Christopher820256b2009-08-21 04:06:45 +0000544 if (pVal[i] < RHS.pVal[i])
Reid Spencera41e93b2007-02-25 19:32:03 +0000545 return true;
Zhou Shengdac63782007-02-06 03:00:16 +0000546 }
547 return false;
548}
549
Reid Spencer1d072122007-02-16 22:36:51 +0000550bool APInt::slt(const APInt& RHS) const {
551 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000552 if (isSingleWord()) {
553 int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
554 int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
555 return lhsSext < rhsSext;
Reid Spencer1d072122007-02-16 22:36:51 +0000556 }
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000557
558 APInt lhs(*this);
Reid Spencer54abdcf2007-02-27 18:23:40 +0000559 APInt rhs(RHS);
560 bool lhsNeg = isNegative();
561 bool rhsNeg = rhs.isNegative();
562 if (lhsNeg) {
563 // Sign bit is set so perform two's complement to make it positive
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000564 lhs.flip();
565 lhs++;
566 }
Reid Spencer54abdcf2007-02-27 18:23:40 +0000567 if (rhsNeg) {
568 // Sign bit is set so perform two's complement to make it positive
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000569 rhs.flip();
570 rhs++;
571 }
Reid Spencera41e93b2007-02-25 19:32:03 +0000572
573 // Now we have unsigned values to compare so do the comparison if necessary
574 // based on the negativeness of the values.
Reid Spencer54abdcf2007-02-27 18:23:40 +0000575 if (lhsNeg)
576 if (rhsNeg)
577 return lhs.ugt(rhs);
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000578 else
579 return true;
Reid Spencer54abdcf2007-02-27 18:23:40 +0000580 else if (rhsNeg)
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000581 return false;
Eric Christopher820256b2009-08-21 04:06:45 +0000582 else
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000583 return lhs.ult(rhs);
Zhou Shengdac63782007-02-06 03:00:16 +0000584}
585
Chris Lattner77527f52009-01-21 18:09:24 +0000586APInt& APInt::set(unsigned bitPosition) {
Eric Christopher820256b2009-08-21 04:06:45 +0000587 if (isSingleWord())
Reid Spencera41e93b2007-02-25 19:32:03 +0000588 VAL |= maskBit(bitPosition);
Eric Christopher820256b2009-08-21 04:06:45 +0000589 else
Reid Spencera41e93b2007-02-25 19:32:03 +0000590 pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
Zhou Shengdac63782007-02-06 03:00:16 +0000591 return *this;
592}
593
Zhou Shengdac63782007-02-06 03:00:16 +0000594/// Set the given bit to 0 whose position is given as "bitPosition".
595/// @brief Set a given bit to 0.
Chris Lattner77527f52009-01-21 18:09:24 +0000596APInt& APInt::clear(unsigned bitPosition) {
Eric Christopher820256b2009-08-21 04:06:45 +0000597 if (isSingleWord())
Reid Spencera856b6e2007-02-18 18:38:44 +0000598 VAL &= ~maskBit(bitPosition);
Eric Christopher820256b2009-08-21 04:06:45 +0000599 else
Reid Spencera856b6e2007-02-18 18:38:44 +0000600 pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
Zhou Shengdac63782007-02-06 03:00:16 +0000601 return *this;
602}
603
Zhou Shengdac63782007-02-06 03:00:16 +0000604/// @brief Toggle every bit to its opposite value.
Zhou Shengdac63782007-02-06 03:00:16 +0000605
Eric Christopher820256b2009-08-21 04:06:45 +0000606/// Toggle a given bit to its opposite value whose position is given
Zhou Shengdac63782007-02-06 03:00:16 +0000607/// as "bitPosition".
608/// @brief Toggles a given bit to its opposite value.
Chris Lattner77527f52009-01-21 18:09:24 +0000609APInt& APInt::flip(unsigned bitPosition) {
Reid Spencer1d072122007-02-16 22:36:51 +0000610 assert(bitPosition < BitWidth && "Out of the bit-width range!");
Zhou Shengdac63782007-02-06 03:00:16 +0000611 if ((*this)[bitPosition]) clear(bitPosition);
612 else set(bitPosition);
613 return *this;
614}
615
Daniel Dunbar3a1efd112009-08-13 02:33:34 +0000616unsigned APInt::getBitsNeeded(const StringRef& str, uint8_t radix) {
617 assert(!str.empty() && "Invalid string length");
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +0000618 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
619 "Radix should be 2, 8, 10, or 16!");
Daniel Dunbar3a1efd112009-08-13 02:33:34 +0000620
621 size_t slen = str.size();
Reid Spencer9329e7b2007-04-13 19:19:07 +0000622
Eric Christopher43a1dec2009-08-21 04:10:31 +0000623 // Each computation below needs to know if it's negative.
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +0000624 StringRef::iterator p = str.begin();
Eric Christopher43a1dec2009-08-21 04:10:31 +0000625 unsigned isNegative = *p == '-';
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +0000626 if (*p == '-' || *p == '+') {
627 p++;
Reid Spencer9329e7b2007-04-13 19:19:07 +0000628 slen--;
Eric Christopher43a1dec2009-08-21 04:10:31 +0000629 assert(slen && "String is only a sign, needs a value.");
Reid Spencer9329e7b2007-04-13 19:19:07 +0000630 }
Eric Christopher43a1dec2009-08-21 04:10:31 +0000631
Reid Spencer9329e7b2007-04-13 19:19:07 +0000632 // For radixes of power-of-two values, the bits required is accurately and
633 // easily computed
634 if (radix == 2)
635 return slen + isNegative;
636 if (radix == 8)
637 return slen * 3 + isNegative;
638 if (radix == 16)
639 return slen * 4 + isNegative;
640
Reid Spencer9329e7b2007-04-13 19:19:07 +0000641 // This is grossly inefficient but accurate. We could probably do something
642 // with a computation of roughly slen*64/20 and then adjust by the value of
643 // the first few digits. But, I'm not sure how accurate that could be.
644
645 // Compute a sufficient number of bits that is always large enough but might
Erick Tryzelaardadb15712009-08-21 03:15:28 +0000646 // be too large. This avoids the assertion in the constructor. This
647 // calculation doesn't work appropriately for the numbers 0-9, so just use 4
648 // bits in that case.
649 unsigned sufficient = slen == 1 ? 4 : slen * 64/18;
Reid Spencer9329e7b2007-04-13 19:19:07 +0000650
651 // Convert to the actual binary value.
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +0000652 APInt tmp(sufficient, StringRef(p, slen), radix);
Reid Spencer9329e7b2007-04-13 19:19:07 +0000653
Erick Tryzelaardadb15712009-08-21 03:15:28 +0000654 // Compute how many bits are required. If the log is infinite, assume we need
655 // just bit.
656 unsigned log = tmp.logBase2();
657 if (log == (unsigned)-1) {
658 return isNegative + 1;
659 } else {
660 return isNegative + log + 1;
661 }
Reid Spencer9329e7b2007-04-13 19:19:07 +0000662}
663
Stuart Hastings7440952c2009-03-13 21:51:13 +0000664// From http://www.burtleburtle.net, byBob Jenkins.
665// When targeting x86, both GCC and LLVM seem to recognize this as a
666// rotate instruction.
667#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
Reid Spencerb2bc9852007-02-26 21:02:27 +0000668
Stuart Hastings7440952c2009-03-13 21:51:13 +0000669// From http://www.burtleburtle.net, by Bob Jenkins.
670#define mix(a,b,c) \
671 { \
672 a -= c; a ^= rot(c, 4); c += b; \
673 b -= a; b ^= rot(a, 6); a += c; \
674 c -= b; c ^= rot(b, 8); b += a; \
675 a -= c; a ^= rot(c,16); c += b; \
676 b -= a; b ^= rot(a,19); a += c; \
677 c -= b; c ^= rot(b, 4); b += a; \
678 }
679
680// From http://www.burtleburtle.net, by Bob Jenkins.
681#define final(a,b,c) \
682 { \
683 c ^= b; c -= rot(b,14); \
684 a ^= c; a -= rot(c,11); \
685 b ^= a; b -= rot(a,25); \
686 c ^= b; c -= rot(b,16); \
687 a ^= c; a -= rot(c,4); \
688 b ^= a; b -= rot(a,14); \
689 c ^= b; c -= rot(b,24); \
690 }
691
692// hashword() was adapted from http://www.burtleburtle.net, by Bob
693// Jenkins. k is a pointer to an array of uint32_t values; length is
694// the length of the key, in 32-bit chunks. This version only handles
695// keys that are a multiple of 32 bits in size.
696static inline uint32_t hashword(const uint64_t *k64, size_t length)
697{
698 const uint32_t *k = reinterpret_cast<const uint32_t *>(k64);
699 uint32_t a,b,c;
700
701 /* Set up the internal state */
702 a = b = c = 0xdeadbeef + (((uint32_t)length)<<2);
703
704 /*------------------------------------------------- handle most of the key */
705 while (length > 3)
706 {
707 a += k[0];
708 b += k[1];
709 c += k[2];
710 mix(a,b,c);
711 length -= 3;
712 k += 3;
713 }
714
715 /*------------------------------------------- handle the last 3 uint32_t's */
Mike Stump889285d2009-05-13 23:23:20 +0000716 switch (length) { /* all the case statements fall through */
717 case 3 : c+=k[2];
718 case 2 : b+=k[1];
719 case 1 : a+=k[0];
720 final(a,b,c);
Stuart Hastings7440952c2009-03-13 21:51:13 +0000721 case 0: /* case 0: nothing left to add */
722 break;
723 }
724 /*------------------------------------------------------ report the result */
725 return c;
726}
727
728// hashword8() was adapted from http://www.burtleburtle.net, by Bob
729// Jenkins. This computes a 32-bit hash from one 64-bit word. When
730// targeting x86 (32 or 64 bit), both LLVM and GCC compile this
731// function into about 35 instructions when inlined.
732static inline uint32_t hashword8(const uint64_t k64)
733{
734 uint32_t a,b,c;
735 a = b = c = 0xdeadbeef + 4;
736 b += k64 >> 32;
737 a += k64 & 0xffffffff;
738 final(a,b,c);
739 return c;
740}
741#undef final
742#undef mix
743#undef rot
744
745uint64_t APInt::getHashValue() const {
746 uint64_t hash;
Reid Spencerb2bc9852007-02-26 21:02:27 +0000747 if (isSingleWord())
Stuart Hastings7440952c2009-03-13 21:51:13 +0000748 hash = hashword8(VAL);
Reid Spencerb2bc9852007-02-26 21:02:27 +0000749 else
Stuart Hastings7440952c2009-03-13 21:51:13 +0000750 hash = hashword(pVal, getNumWords()*2);
Reid Spencerb2bc9852007-02-26 21:02:27 +0000751 return hash;
752}
753
Zhou Shengdac63782007-02-06 03:00:16 +0000754/// HiBits - This function returns the high "numBits" bits of this APInt.
Chris Lattner77527f52009-01-21 18:09:24 +0000755APInt APInt::getHiBits(unsigned numBits) const {
Reid Spencer1d072122007-02-16 22:36:51 +0000756 return APIntOps::lshr(*this, BitWidth - numBits);
Zhou Shengdac63782007-02-06 03:00:16 +0000757}
758
759/// LoBits - This function returns the low "numBits" bits of this APInt.
Chris Lattner77527f52009-01-21 18:09:24 +0000760APInt APInt::getLoBits(unsigned numBits) const {
Eric Christopher820256b2009-08-21 04:06:45 +0000761 return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
Reid Spencer1d072122007-02-16 22:36:51 +0000762 BitWidth - numBits);
Zhou Shengdac63782007-02-06 03:00:16 +0000763}
764
Reid Spencer1d072122007-02-16 22:36:51 +0000765bool APInt::isPowerOf2() const {
766 return (!!*this) && !(*this & (*this - APInt(BitWidth,1)));
767}
768
Chris Lattner77527f52009-01-21 18:09:24 +0000769unsigned APInt::countLeadingZerosSlowCase() const {
John McCalldf951bd2010-02-03 03:42:44 +0000770 // Treat the most significand word differently because it might have
771 // meaningless bits set beyond the precision.
772 unsigned BitsInMSW = BitWidth % APINT_BITS_PER_WORD;
773 integerPart MSWMask;
774 if (BitsInMSW) MSWMask = (integerPart(1) << BitsInMSW) - 1;
775 else {
776 MSWMask = ~integerPart(0);
777 BitsInMSW = APINT_BITS_PER_WORD;
778 }
779
780 unsigned i = getNumWords();
781 integerPart MSW = pVal[i-1] & MSWMask;
782 if (MSW)
783 return CountLeadingZeros_64(MSW) - (APINT_BITS_PER_WORD - BitsInMSW);
784
785 unsigned Count = BitsInMSW;
786 for (--i; i > 0u; --i) {
Chris Lattner1ac3e252008-08-20 17:02:31 +0000787 if (pVal[i-1] == 0)
788 Count += APINT_BITS_PER_WORD;
789 else {
790 Count += CountLeadingZeros_64(pVal[i-1]);
791 break;
Reid Spencer74cf82e2007-02-21 00:29:48 +0000792 }
Zhou Shengdac63782007-02-06 03:00:16 +0000793 }
John McCalldf951bd2010-02-03 03:42:44 +0000794 return Count;
Zhou Shengdac63782007-02-06 03:00:16 +0000795}
796
Chris Lattner77527f52009-01-21 18:09:24 +0000797static unsigned countLeadingOnes_64(uint64_t V, unsigned skip) {
798 unsigned Count = 0;
Reid Spencer31acef52007-02-27 21:59:26 +0000799 if (skip)
800 V <<= skip;
801 while (V && (V & (1ULL << 63))) {
802 Count++;
803 V <<= 1;
804 }
805 return Count;
806}
807
Chris Lattner77527f52009-01-21 18:09:24 +0000808unsigned APInt::countLeadingOnes() const {
Reid Spencer31acef52007-02-27 21:59:26 +0000809 if (isSingleWord())
810 return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth);
811
Chris Lattner77527f52009-01-21 18:09:24 +0000812 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
Torok Edwinec39eb82009-01-27 18:06:03 +0000813 unsigned shift;
814 if (!highWordBits) {
815 highWordBits = APINT_BITS_PER_WORD;
816 shift = 0;
817 } else {
818 shift = APINT_BITS_PER_WORD - highWordBits;
819 }
Reid Spencer31acef52007-02-27 21:59:26 +0000820 int i = getNumWords() - 1;
Chris Lattner77527f52009-01-21 18:09:24 +0000821 unsigned Count = countLeadingOnes_64(pVal[i], shift);
Reid Spencer31acef52007-02-27 21:59:26 +0000822 if (Count == highWordBits) {
823 for (i--; i >= 0; --i) {
824 if (pVal[i] == -1ULL)
825 Count += APINT_BITS_PER_WORD;
826 else {
827 Count += countLeadingOnes_64(pVal[i], 0);
828 break;
829 }
830 }
831 }
832 return Count;
833}
834
Chris Lattner77527f52009-01-21 18:09:24 +0000835unsigned APInt::countTrailingZeros() const {
Zhou Shengdac63782007-02-06 03:00:16 +0000836 if (isSingleWord())
Chris Lattner77527f52009-01-21 18:09:24 +0000837 return std::min(unsigned(CountTrailingZeros_64(VAL)), BitWidth);
838 unsigned Count = 0;
839 unsigned i = 0;
Reid Spenceraa8dcfe2007-02-26 07:44:38 +0000840 for (; i < getNumWords() && pVal[i] == 0; ++i)
841 Count += APINT_BITS_PER_WORD;
842 if (i < getNumWords())
843 Count += CountTrailingZeros_64(pVal[i]);
Chris Lattnerc2c4c742007-11-23 22:36:25 +0000844 return std::min(Count, BitWidth);
Zhou Shengdac63782007-02-06 03:00:16 +0000845}
846
Chris Lattner77527f52009-01-21 18:09:24 +0000847unsigned APInt::countTrailingOnesSlowCase() const {
848 unsigned Count = 0;
849 unsigned i = 0;
Dan Gohmanc354ebd2008-02-14 22:38:45 +0000850 for (; i < getNumWords() && pVal[i] == -1ULL; ++i)
Dan Gohman8b4fa9d2008-02-13 21:11:05 +0000851 Count += APINT_BITS_PER_WORD;
852 if (i < getNumWords())
853 Count += CountTrailingOnes_64(pVal[i]);
854 return std::min(Count, BitWidth);
855}
856
Chris Lattner77527f52009-01-21 18:09:24 +0000857unsigned APInt::countPopulationSlowCase() const {
858 unsigned Count = 0;
859 for (unsigned i = 0; i < getNumWords(); ++i)
Zhou Shengdac63782007-02-06 03:00:16 +0000860 Count += CountPopulation_64(pVal[i]);
861 return Count;
862}
863
Reid Spencer1d072122007-02-16 22:36:51 +0000864APInt APInt::byteSwap() const {
865 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
866 if (BitWidth == 16)
Jeff Cohene06855e2007-03-20 20:42:36 +0000867 return APInt(BitWidth, ByteSwap_16(uint16_t(VAL)));
Reid Spencer1d072122007-02-16 22:36:51 +0000868 else if (BitWidth == 32)
Chris Lattner77527f52009-01-21 18:09:24 +0000869 return APInt(BitWidth, ByteSwap_32(unsigned(VAL)));
Reid Spencer1d072122007-02-16 22:36:51 +0000870 else if (BitWidth == 48) {
Chris Lattner77527f52009-01-21 18:09:24 +0000871 unsigned Tmp1 = unsigned(VAL >> 16);
Zhou Shengcfa2ac02007-02-15 06:36:31 +0000872 Tmp1 = ByteSwap_32(Tmp1);
Jeff Cohene06855e2007-03-20 20:42:36 +0000873 uint16_t Tmp2 = uint16_t(VAL);
Zhou Shengcfa2ac02007-02-15 06:36:31 +0000874 Tmp2 = ByteSwap_16(Tmp2);
Jeff Cohene06855e2007-03-20 20:42:36 +0000875 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
Reid Spencer1d072122007-02-16 22:36:51 +0000876 } else if (BitWidth == 64)
Reid Spencera32372d12007-02-17 00:18:01 +0000877 return APInt(BitWidth, ByteSwap_64(VAL));
Zhou Shengcfa2ac02007-02-15 06:36:31 +0000878 else {
Reid Spencera32372d12007-02-17 00:18:01 +0000879 APInt Result(BitWidth, 0);
Zhou Shengcfa2ac02007-02-15 06:36:31 +0000880 char *pByte = (char*)Result.pVal;
Chris Lattner77527f52009-01-21 18:09:24 +0000881 for (unsigned i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) {
Zhou Shengcfa2ac02007-02-15 06:36:31 +0000882 char Tmp = pByte[i];
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000883 pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i];
884 pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp;
Zhou Shengcfa2ac02007-02-15 06:36:31 +0000885 }
886 return Result;
887 }
Zhou Shengdac63782007-02-06 03:00:16 +0000888}
889
Eric Christopher820256b2009-08-21 04:06:45 +0000890APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
Zhou Shengfbf61ea2007-02-08 14:35:19 +0000891 const APInt& API2) {
Zhou Shengdac63782007-02-06 03:00:16 +0000892 APInt A = API1, B = API2;
893 while (!!B) {
894 APInt T = B;
Reid Spencer1d072122007-02-16 22:36:51 +0000895 B = APIntOps::urem(A, B);
Zhou Shengdac63782007-02-06 03:00:16 +0000896 A = T;
897 }
898 return A;
899}
Chris Lattner28cbd1d2007-02-06 05:38:37 +0000900
Chris Lattner77527f52009-01-21 18:09:24 +0000901APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
Zhou Shengd707d632007-02-12 20:02:55 +0000902 union {
903 double D;
904 uint64_t I;
905 } T;
906 T.D = Double;
Reid Spencer974551a2007-02-27 01:28:10 +0000907
908 // Get the sign bit from the highest order bit
Zhou Shengd707d632007-02-12 20:02:55 +0000909 bool isNeg = T.I >> 63;
Reid Spencer974551a2007-02-27 01:28:10 +0000910
911 // Get the 11-bit exponent and adjust for the 1023 bit bias
Zhou Shengd707d632007-02-12 20:02:55 +0000912 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
Reid Spencer974551a2007-02-27 01:28:10 +0000913
914 // If the exponent is negative, the value is < 0 so just return 0.
Zhou Shengd707d632007-02-12 20:02:55 +0000915 if (exp < 0)
Reid Spencer66d0d572007-02-28 01:30:08 +0000916 return APInt(width, 0u);
Reid Spencer974551a2007-02-27 01:28:10 +0000917
918 // Extract the mantissa by clearing the top 12 bits (sign + exponent).
919 uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
920
921 // If the exponent doesn't shift all bits out of the mantissa
Zhou Shengd707d632007-02-12 20:02:55 +0000922 if (exp < 52)
Eric Christopher820256b2009-08-21 04:06:45 +0000923 return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
Reid Spencer54abdcf2007-02-27 18:23:40 +0000924 APInt(width, mantissa >> (52 - exp));
925
926 // If the client didn't provide enough bits for us to shift the mantissa into
927 // then the result is undefined, just return 0
928 if (width <= exp - 52)
929 return APInt(width, 0);
Reid Spencer974551a2007-02-27 01:28:10 +0000930
931 // Otherwise, we have to shift the mantissa bits up to the right location
Reid Spencer54abdcf2007-02-27 18:23:40 +0000932 APInt Tmp(width, mantissa);
Chris Lattner77527f52009-01-21 18:09:24 +0000933 Tmp = Tmp.shl((unsigned)exp - 52);
Zhou Shengd707d632007-02-12 20:02:55 +0000934 return isNeg ? -Tmp : Tmp;
935}
936
Dale Johannesen54be7852009-08-12 18:04:11 +0000937/// RoundToDouble - This function converts this APInt to a double.
Zhou Shengd707d632007-02-12 20:02:55 +0000938/// The layout for double is as following (IEEE Standard 754):
939/// --------------------------------------
940/// | Sign Exponent Fraction Bias |
941/// |-------------------------------------- |
942/// | 1[63] 11[62-52] 52[51-00] 1023 |
Eric Christopher820256b2009-08-21 04:06:45 +0000943/// --------------------------------------
Reid Spencer1d072122007-02-16 22:36:51 +0000944double APInt::roundToDouble(bool isSigned) const {
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000945
946 // Handle the simple case where the value is contained in one uint64_t.
Dale Johannesen54be7852009-08-12 18:04:11 +0000947 // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000948 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
949 if (isSigned) {
Dale Johannesen34c08bb2009-08-12 17:42:34 +0000950 int64_t sext = (int64_t(getWord(0)) << (64-BitWidth)) >> (64-BitWidth);
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000951 return double(sext);
952 } else
Dale Johannesen34c08bb2009-08-12 17:42:34 +0000953 return double(getWord(0));
Reid Spencerbe4ddf62007-02-18 20:09:41 +0000954 }
955
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000956 // Determine if the value is negative.
Reid Spencer1d072122007-02-16 22:36:51 +0000957 bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000958
959 // Construct the absolute value if we're negative.
Zhou Shengd707d632007-02-12 20:02:55 +0000960 APInt Tmp(isNeg ? -(*this) : (*this));
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000961
962 // Figure out how many bits we're using.
Chris Lattner77527f52009-01-21 18:09:24 +0000963 unsigned n = Tmp.getActiveBits();
Zhou Shengd707d632007-02-12 20:02:55 +0000964
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000965 // The exponent (without bias normalization) is just the number of bits
966 // we are using. Note that the sign bit is gone since we constructed the
967 // absolute value.
968 uint64_t exp = n;
Zhou Shengd707d632007-02-12 20:02:55 +0000969
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000970 // Return infinity for exponent overflow
971 if (exp > 1023) {
972 if (!isSigned || !isNeg)
Jeff Cohene06855e2007-03-20 20:42:36 +0000973 return std::numeric_limits<double>::infinity();
Eric Christopher820256b2009-08-21 04:06:45 +0000974 else
Jeff Cohene06855e2007-03-20 20:42:36 +0000975 return -std::numeric_limits<double>::infinity();
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000976 }
977 exp += 1023; // Increment for 1023 bias
978
979 // Number of bits in mantissa is 52. To obtain the mantissa value, we must
980 // extract the high 52 bits from the correct words in pVal.
Zhou Shengd707d632007-02-12 20:02:55 +0000981 uint64_t mantissa;
Reid Spencerfb77b2b2007-02-20 08:51:03 +0000982 unsigned hiWord = whichWord(n-1);
983 if (hiWord == 0) {
984 mantissa = Tmp.pVal[0];
985 if (n > 52)
986 mantissa >>= n - 52; // shift down, we want the top 52 bits.
987 } else {
988 assert(hiWord > 0 && "huh?");
989 uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
990 uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
991 mantissa = hibits | lobits;
992 }
993
Zhou Shengd707d632007-02-12 20:02:55 +0000994 // The leading bit of mantissa is implicit, so get rid of it.
Reid Spencerfbd48a52007-02-18 00:44:22 +0000995 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
Zhou Shengd707d632007-02-12 20:02:55 +0000996 union {
997 double D;
998 uint64_t I;
999 } T;
1000 T.I = sign | (exp << 52) | mantissa;
1001 return T.D;
1002}
1003
Reid Spencer1d072122007-02-16 22:36:51 +00001004// Truncate to new width.
Chris Lattner77527f52009-01-21 18:09:24 +00001005APInt &APInt::trunc(unsigned width) {
Reid Spencer1d072122007-02-16 22:36:51 +00001006 assert(width < BitWidth && "Invalid APInt Truncate request");
Chris Lattner1ac3e252008-08-20 17:02:31 +00001007 assert(width && "Can't truncate to 0 bits");
Chris Lattner77527f52009-01-21 18:09:24 +00001008 unsigned wordsBefore = getNumWords();
Reid Spencerb6b5cc32007-02-25 23:44:53 +00001009 BitWidth = width;
Chris Lattner77527f52009-01-21 18:09:24 +00001010 unsigned wordsAfter = getNumWords();
Reid Spencerb6b5cc32007-02-25 23:44:53 +00001011 if (wordsBefore != wordsAfter) {
1012 if (wordsAfter == 1) {
1013 uint64_t *tmp = pVal;
1014 VAL = pVal[0];
Reid Spencer7c16cd22007-02-26 23:38:21 +00001015 delete [] tmp;
Reid Spencerb6b5cc32007-02-25 23:44:53 +00001016 } else {
1017 uint64_t *newVal = getClearedMemory(wordsAfter);
Chris Lattner77527f52009-01-21 18:09:24 +00001018 for (unsigned i = 0; i < wordsAfter; ++i)
Reid Spencerb6b5cc32007-02-25 23:44:53 +00001019 newVal[i] = pVal[i];
Reid Spencer7c16cd22007-02-26 23:38:21 +00001020 delete [] pVal;
Reid Spencerb6b5cc32007-02-25 23:44:53 +00001021 pVal = newVal;
1022 }
1023 }
Reid Spencer91d3b3f2007-02-28 17:34:32 +00001024 return clearUnusedBits();
Reid Spencer1d072122007-02-16 22:36:51 +00001025}
1026
1027// Sign extend to a new width.
Chris Lattner77527f52009-01-21 18:09:24 +00001028APInt &APInt::sext(unsigned width) {
Reid Spencer1d072122007-02-16 22:36:51 +00001029 assert(width > BitWidth && "Invalid APInt SignExtend request");
Reid Spencerb6b5cc32007-02-25 23:44:53 +00001030 // If the sign bit isn't set, this is the same as zext.
Reid Spenceraa8dcfe2007-02-26 07:44:38 +00001031 if (!isNegative()) {
Reid Spencerb6b5cc32007-02-25 23:44:53 +00001032 zext(width);
Reid Spencer91d3b3f2007-02-28 17:34:32 +00001033 return *this;
Reid Spencerb6b5cc32007-02-25 23:44:53 +00001034 }
1035
1036 // The sign bit is set. First, get some facts
Chris Lattner77527f52009-01-21 18:09:24 +00001037 unsigned wordsBefore = getNumWords();
1038 unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
Reid Spencerb6b5cc32007-02-25 23:44:53 +00001039 BitWidth = width;
Chris Lattner77527f52009-01-21 18:09:24 +00001040 unsigned wordsAfter = getNumWords();
Reid Spencerb6b5cc32007-02-25 23:44:53 +00001041
1042 // Mask the high order word appropriately
1043 if (wordsBefore == wordsAfter) {
Chris Lattner77527f52009-01-21 18:09:24 +00001044 unsigned newWordBits = width % APINT_BITS_PER_WORD;
Reid Spencerb6b5cc32007-02-25 23:44:53 +00001045 // The extension is contained to the wordsBefore-1th word.
Reid Spencerc442c842007-03-02 01:19:42 +00001046 uint64_t mask = ~0ULL;
1047 if (newWordBits)
1048 mask >>= APINT_BITS_PER_WORD - newWordBits;
1049 mask <<= wordBits;
Reid Spencerb6b5cc32007-02-25 23:44:53 +00001050 if (wordsBefore == 1)
1051 VAL |= mask;
1052 else
1053 pVal[wordsBefore-1] |= mask;
Reid Spencer1b8dfcba2007-03-01 23:30:25 +00001054 return clearUnusedBits();
Reid Spencerb6b5cc32007-02-25 23:44:53 +00001055 }
1056
Reid Spencerfb55b7b2007-02-25 23:54:00 +00001057 uint64_t mask = wordBits == 0 ? 0 : ~0ULL << wordBits;
Reid Spencerb6b5cc32007-02-25 23:44:53 +00001058 uint64_t *newVal = getMemory(wordsAfter);
1059 if (wordsBefore == 1)
1060 newVal[0] = VAL | mask;
1061 else {
Chris Lattner77527f52009-01-21 18:09:24 +00001062 for (unsigned i = 0; i < wordsBefore; ++i)
Reid Spencerb6b5cc32007-02-25 23:44:53 +00001063 newVal[i] = pVal[i];
1064 newVal[wordsBefore-1] |= mask;
1065 }
Chris Lattner77527f52009-01-21 18:09:24 +00001066 for (unsigned i = wordsBefore; i < wordsAfter; i++)
Reid Spencerb6b5cc32007-02-25 23:44:53 +00001067 newVal[i] = -1ULL;
1068 if (wordsBefore != 1)
Reid Spencer7c16cd22007-02-26 23:38:21 +00001069 delete [] pVal;
Reid Spencerb6b5cc32007-02-25 23:44:53 +00001070 pVal = newVal;
Reid Spencer91d3b3f2007-02-28 17:34:32 +00001071 return clearUnusedBits();
Reid Spencer1d072122007-02-16 22:36:51 +00001072}
1073
1074// Zero extend to a new width.
Chris Lattner77527f52009-01-21 18:09:24 +00001075APInt &APInt::zext(unsigned width) {
Reid Spencer1d072122007-02-16 22:36:51 +00001076 assert(width > BitWidth && "Invalid APInt ZeroExtend request");
Chris Lattner77527f52009-01-21 18:09:24 +00001077 unsigned wordsBefore = getNumWords();
Reid Spencerb6b5cc32007-02-25 23:44:53 +00001078 BitWidth = width;
Chris Lattner77527f52009-01-21 18:09:24 +00001079 unsigned wordsAfter = getNumWords();
Reid Spencerb6b5cc32007-02-25 23:44:53 +00001080 if (wordsBefore != wordsAfter) {
1081 uint64_t *newVal = getClearedMemory(wordsAfter);
1082 if (wordsBefore == 1)
1083 newVal[0] = VAL;
Eric Christopher820256b2009-08-21 04:06:45 +00001084 else
Chris Lattner77527f52009-01-21 18:09:24 +00001085 for (unsigned i = 0; i < wordsBefore; ++i)
Reid Spencerb6b5cc32007-02-25 23:44:53 +00001086 newVal[i] = pVal[i];
1087 if (wordsBefore != 1)
Reid Spencer7c16cd22007-02-26 23:38:21 +00001088 delete [] pVal;
Reid Spencerb6b5cc32007-02-25 23:44:53 +00001089 pVal = newVal;
1090 }
Reid Spencer91d3b3f2007-02-28 17:34:32 +00001091 return *this;
Reid Spencer1d072122007-02-16 22:36:51 +00001092}
1093
Chris Lattner77527f52009-01-21 18:09:24 +00001094APInt &APInt::zextOrTrunc(unsigned width) {
Reid Spencer742d1702007-03-01 17:15:32 +00001095 if (BitWidth < width)
1096 return zext(width);
1097 if (BitWidth > width)
1098 return trunc(width);
1099 return *this;
1100}
1101
Chris Lattner77527f52009-01-21 18:09:24 +00001102APInt &APInt::sextOrTrunc(unsigned width) {
Reid Spencer742d1702007-03-01 17:15:32 +00001103 if (BitWidth < width)
1104 return sext(width);
1105 if (BitWidth > width)
1106 return trunc(width);
1107 return *this;
1108}
1109
Zhou Shenge93db8f2007-02-09 07:48:24 +00001110/// Arithmetic right-shift this APInt by shiftAmt.
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001111/// @brief Arithmetic right-shift function.
Dan Gohman105c1d42008-02-29 01:40:47 +00001112APInt APInt::ashr(const APInt &shiftAmt) const {
Chris Lattner77527f52009-01-21 18:09:24 +00001113 return ashr((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman105c1d42008-02-29 01:40:47 +00001114}
1115
1116/// Arithmetic right-shift this APInt by shiftAmt.
1117/// @brief Arithmetic right-shift function.
Chris Lattner77527f52009-01-21 18:09:24 +00001118APInt APInt::ashr(unsigned shiftAmt) const {
Reid Spenceraa8dcfe2007-02-26 07:44:38 +00001119 assert(shiftAmt <= BitWidth && "Invalid shift amount");
Reid Spencer1825dd02007-03-02 22:39:11 +00001120 // Handle a degenerate case
1121 if (shiftAmt == 0)
1122 return *this;
1123
1124 // Handle single word shifts with built-in ashr
Reid Spencer522ca7c2007-02-25 01:56:07 +00001125 if (isSingleWord()) {
1126 if (shiftAmt == BitWidth)
Reid Spenceraa8dcfe2007-02-26 07:44:38 +00001127 return APInt(BitWidth, 0); // undefined
1128 else {
Chris Lattner77527f52009-01-21 18:09:24 +00001129 unsigned SignBit = APINT_BITS_PER_WORD - BitWidth;
Eric Christopher820256b2009-08-21 04:06:45 +00001130 return APInt(BitWidth,
Reid Spenceraa8dcfe2007-02-26 07:44:38 +00001131 (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
1132 }
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001133 }
Reid Spencer522ca7c2007-02-25 01:56:07 +00001134
Reid Spencer1825dd02007-03-02 22:39:11 +00001135 // If all the bits were shifted out, the result is, technically, undefined.
1136 // We return -1 if it was negative, 0 otherwise. We check this early to avoid
1137 // issues in the algorithm below.
Chris Lattnerdad2d092007-05-03 18:15:36 +00001138 if (shiftAmt == BitWidth) {
Reid Spenceraa8dcfe2007-02-26 07:44:38 +00001139 if (isNegative())
Zhou Sheng1247c072008-06-05 13:27:38 +00001140 return APInt(BitWidth, -1ULL, true);
Reid Spencera41e93b2007-02-25 19:32:03 +00001141 else
Reid Spenceraa8dcfe2007-02-26 07:44:38 +00001142 return APInt(BitWidth, 0);
Chris Lattnerdad2d092007-05-03 18:15:36 +00001143 }
Reid Spenceraa8dcfe2007-02-26 07:44:38 +00001144
1145 // Create some space for the result.
1146 uint64_t * val = new uint64_t[getNumWords()];
1147
Reid Spencer1825dd02007-03-02 22:39:11 +00001148 // Compute some values needed by the following shift algorithms
Chris Lattner77527f52009-01-21 18:09:24 +00001149 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word
1150 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift
1151 unsigned breakWord = getNumWords() - 1 - offset; // last word affected
1152 unsigned bitsInWord = whichBit(BitWidth); // how many bits in last word?
Reid Spencer1825dd02007-03-02 22:39:11 +00001153 if (bitsInWord == 0)
1154 bitsInWord = APINT_BITS_PER_WORD;
Reid Spenceraa8dcfe2007-02-26 07:44:38 +00001155
1156 // If we are shifting whole words, just move whole words
1157 if (wordShift == 0) {
Reid Spencer1825dd02007-03-02 22:39:11 +00001158 // Move the words containing significant bits
Chris Lattner77527f52009-01-21 18:09:24 +00001159 for (unsigned i = 0; i <= breakWord; ++i)
Reid Spencer1825dd02007-03-02 22:39:11 +00001160 val[i] = pVal[i+offset]; // move whole word
1161
1162 // Adjust the top significant word for sign bit fill, if negative
1163 if (isNegative())
1164 if (bitsInWord < APINT_BITS_PER_WORD)
1165 val[breakWord] |= ~0ULL << bitsInWord; // set high bits
1166 } else {
Eric Christopher820256b2009-08-21 04:06:45 +00001167 // Shift the low order words
Chris Lattner77527f52009-01-21 18:09:24 +00001168 for (unsigned i = 0; i < breakWord; ++i) {
Reid Spencer1825dd02007-03-02 22:39:11 +00001169 // This combines the shifted corresponding word with the low bits from
1170 // the next word (shifted into this word's high bits).
Eric Christopher820256b2009-08-21 04:06:45 +00001171 val[i] = (pVal[i+offset] >> wordShift) |
Reid Spencer1825dd02007-03-02 22:39:11 +00001172 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1173 }
1174
1175 // Shift the break word. In this case there are no bits from the next word
1176 // to include in this word.
1177 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1178
1179 // Deal with sign extenstion in the break word, and possibly the word before
1180 // it.
Chris Lattnerdad2d092007-05-03 18:15:36 +00001181 if (isNegative()) {
Reid Spencer1825dd02007-03-02 22:39:11 +00001182 if (wordShift > bitsInWord) {
1183 if (breakWord > 0)
Eric Christopher820256b2009-08-21 04:06:45 +00001184 val[breakWord-1] |=
Reid Spencer1825dd02007-03-02 22:39:11 +00001185 ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
1186 val[breakWord] |= ~0ULL;
Eric Christopher820256b2009-08-21 04:06:45 +00001187 } else
Reid Spencer1825dd02007-03-02 22:39:11 +00001188 val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
Chris Lattnerdad2d092007-05-03 18:15:36 +00001189 }
Reid Spenceraa8dcfe2007-02-26 07:44:38 +00001190 }
1191
Reid Spencer1825dd02007-03-02 22:39:11 +00001192 // Remaining words are 0 or -1, just assign them.
1193 uint64_t fillValue = (isNegative() ? -1ULL : 0);
Chris Lattner77527f52009-01-21 18:09:24 +00001194 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
Reid Spencer1825dd02007-03-02 22:39:11 +00001195 val[i] = fillValue;
Reid Spenceraa8dcfe2007-02-26 07:44:38 +00001196 return APInt(val, BitWidth).clearUnusedBits();
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001197}
1198
Zhou Shenge93db8f2007-02-09 07:48:24 +00001199/// Logical right-shift this APInt by shiftAmt.
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001200/// @brief Logical right-shift function.
Dan Gohman105c1d42008-02-29 01:40:47 +00001201APInt APInt::lshr(const APInt &shiftAmt) const {
Chris Lattner77527f52009-01-21 18:09:24 +00001202 return lshr((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman105c1d42008-02-29 01:40:47 +00001203}
1204
1205/// Logical right-shift this APInt by shiftAmt.
1206/// @brief Logical right-shift function.
Chris Lattner77527f52009-01-21 18:09:24 +00001207APInt APInt::lshr(unsigned shiftAmt) const {
Chris Lattnerdad2d092007-05-03 18:15:36 +00001208 if (isSingleWord()) {
Reid Spencer522ca7c2007-02-25 01:56:07 +00001209 if (shiftAmt == BitWidth)
1210 return APInt(BitWidth, 0);
Eric Christopher820256b2009-08-21 04:06:45 +00001211 else
Reid Spencer522ca7c2007-02-25 01:56:07 +00001212 return APInt(BitWidth, this->VAL >> shiftAmt);
Chris Lattnerdad2d092007-05-03 18:15:36 +00001213 }
Reid Spencer522ca7c2007-02-25 01:56:07 +00001214
Reid Spencer44eef162007-02-26 01:19:48 +00001215 // If all the bits were shifted out, the result is 0. This avoids issues
1216 // with shifting by the size of the integer type, which produces undefined
1217 // results. We define these "undefined results" to always be 0.
1218 if (shiftAmt == BitWidth)
1219 return APInt(BitWidth, 0);
1220
Reid Spencerfffdf102007-05-17 06:26:29 +00001221 // If none of the bits are shifted out, the result is *this. This avoids
Eric Christopher820256b2009-08-21 04:06:45 +00001222 // issues with shifting by the size of the integer type, which produces
Reid Spencerfffdf102007-05-17 06:26:29 +00001223 // undefined results in the code below. This is also an optimization.
1224 if (shiftAmt == 0)
1225 return *this;
1226
Reid Spencer44eef162007-02-26 01:19:48 +00001227 // Create some space for the result.
1228 uint64_t * val = new uint64_t[getNumWords()];
1229
1230 // If we are shifting less than a word, compute the shift with a simple carry
1231 if (shiftAmt < APINT_BITS_PER_WORD) {
1232 uint64_t carry = 0;
1233 for (int i = getNumWords()-1; i >= 0; --i) {
Reid Spencerd99feaf2007-03-01 05:39:56 +00001234 val[i] = (pVal[i] >> shiftAmt) | carry;
Reid Spencer44eef162007-02-26 01:19:48 +00001235 carry = pVal[i] << (APINT_BITS_PER_WORD - shiftAmt);
1236 }
1237 return APInt(val, BitWidth).clearUnusedBits();
Reid Spencera41e93b2007-02-25 19:32:03 +00001238 }
1239
Reid Spencer44eef162007-02-26 01:19:48 +00001240 // Compute some values needed by the remaining shift algorithms
Chris Lattner77527f52009-01-21 18:09:24 +00001241 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1242 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
Reid Spencer44eef162007-02-26 01:19:48 +00001243
1244 // If we are shifting whole words, just move whole words
1245 if (wordShift == 0) {
Chris Lattner77527f52009-01-21 18:09:24 +00001246 for (unsigned i = 0; i < getNumWords() - offset; ++i)
Reid Spencer44eef162007-02-26 01:19:48 +00001247 val[i] = pVal[i+offset];
Chris Lattner77527f52009-01-21 18:09:24 +00001248 for (unsigned i = getNumWords()-offset; i < getNumWords(); i++)
Reid Spencer44eef162007-02-26 01:19:48 +00001249 val[i] = 0;
1250 return APInt(val,BitWidth).clearUnusedBits();
1251 }
1252
Eric Christopher820256b2009-08-21 04:06:45 +00001253 // Shift the low order words
Chris Lattner77527f52009-01-21 18:09:24 +00001254 unsigned breakWord = getNumWords() - offset -1;
1255 for (unsigned i = 0; i < breakWord; ++i)
Reid Spencerd99feaf2007-03-01 05:39:56 +00001256 val[i] = (pVal[i+offset] >> wordShift) |
1257 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
Reid Spencer44eef162007-02-26 01:19:48 +00001258 // Shift the break word.
1259 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1260
1261 // Remaining words are 0
Chris Lattner77527f52009-01-21 18:09:24 +00001262 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
Reid Spencer44eef162007-02-26 01:19:48 +00001263 val[i] = 0;
1264 return APInt(val, BitWidth).clearUnusedBits();
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001265}
1266
Zhou Shenge93db8f2007-02-09 07:48:24 +00001267/// Left-shift this APInt by shiftAmt.
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001268/// @brief Left-shift function.
Dan Gohman105c1d42008-02-29 01:40:47 +00001269APInt APInt::shl(const APInt &shiftAmt) const {
Nick Lewycky030c4502009-01-19 17:42:33 +00001270 // It's undefined behavior in C to shift by BitWidth or greater.
Chris Lattner77527f52009-01-21 18:09:24 +00001271 return shl((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman105c1d42008-02-29 01:40:47 +00001272}
1273
Chris Lattner77527f52009-01-21 18:09:24 +00001274APInt APInt::shlSlowCase(unsigned shiftAmt) const {
Reid Spencera5c84d92007-02-25 00:56:44 +00001275 // If all the bits were shifted out, the result is 0. This avoids issues
1276 // with shifting by the size of the integer type, which produces undefined
1277 // results. We define these "undefined results" to always be 0.
1278 if (shiftAmt == BitWidth)
1279 return APInt(BitWidth, 0);
1280
Reid Spencer81ee0202007-05-12 18:01:57 +00001281 // If none of the bits are shifted out, the result is *this. This avoids a
1282 // lshr by the words size in the loop below which can produce incorrect
1283 // results. It also avoids the expensive computation below for a common case.
1284 if (shiftAmt == 0)
1285 return *this;
1286
Reid Spencera5c84d92007-02-25 00:56:44 +00001287 // Create some space for the result.
1288 uint64_t * val = new uint64_t[getNumWords()];
1289
1290 // If we are shifting less than a word, do it the easy way
1291 if (shiftAmt < APINT_BITS_PER_WORD) {
1292 uint64_t carry = 0;
Chris Lattner77527f52009-01-21 18:09:24 +00001293 for (unsigned i = 0; i < getNumWords(); i++) {
Reid Spencera5c84d92007-02-25 00:56:44 +00001294 val[i] = pVal[i] << shiftAmt | carry;
1295 carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
1296 }
Reid Spencera41e93b2007-02-25 19:32:03 +00001297 return APInt(val, BitWidth).clearUnusedBits();
Reid Spencer632ebdf2007-02-24 20:19:37 +00001298 }
1299
Reid Spencera5c84d92007-02-25 00:56:44 +00001300 // Compute some values needed by the remaining shift algorithms
Chris Lattner77527f52009-01-21 18:09:24 +00001301 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1302 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
Reid Spencera5c84d92007-02-25 00:56:44 +00001303
1304 // If we are shifting whole words, just move whole words
1305 if (wordShift == 0) {
Chris Lattner77527f52009-01-21 18:09:24 +00001306 for (unsigned i = 0; i < offset; i++)
Reid Spencera5c84d92007-02-25 00:56:44 +00001307 val[i] = 0;
Chris Lattner77527f52009-01-21 18:09:24 +00001308 for (unsigned i = offset; i < getNumWords(); i++)
Reid Spencera5c84d92007-02-25 00:56:44 +00001309 val[i] = pVal[i-offset];
Reid Spencera41e93b2007-02-25 19:32:03 +00001310 return APInt(val,BitWidth).clearUnusedBits();
Reid Spencer632ebdf2007-02-24 20:19:37 +00001311 }
Reid Spencera5c84d92007-02-25 00:56:44 +00001312
1313 // Copy whole words from this to Result.
Chris Lattner77527f52009-01-21 18:09:24 +00001314 unsigned i = getNumWords() - 1;
Reid Spencera5c84d92007-02-25 00:56:44 +00001315 for (; i > offset; --i)
1316 val[i] = pVal[i-offset] << wordShift |
1317 pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
Reid Spencerab0e08a2007-02-25 01:08:58 +00001318 val[offset] = pVal[0] << wordShift;
Reid Spencera5c84d92007-02-25 00:56:44 +00001319 for (i = 0; i < offset; ++i)
1320 val[i] = 0;
Reid Spencera41e93b2007-02-25 19:32:03 +00001321 return APInt(val, BitWidth).clearUnusedBits();
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001322}
1323
Dan Gohman105c1d42008-02-29 01:40:47 +00001324APInt APInt::rotl(const APInt &rotateAmt) const {
Chris Lattner77527f52009-01-21 18:09:24 +00001325 return rotl((unsigned)rotateAmt.getLimitedValue(BitWidth));
Dan Gohman105c1d42008-02-29 01:40:47 +00001326}
1327
Chris Lattner77527f52009-01-21 18:09:24 +00001328APInt APInt::rotl(unsigned rotateAmt) const {
Reid Spencer98ed7db2007-05-14 00:15:28 +00001329 if (rotateAmt == 0)
1330 return *this;
Reid Spencer4c50b522007-05-13 23:44:59 +00001331 // Don't get too fancy, just use existing shift/or facilities
1332 APInt hi(*this);
1333 APInt lo(*this);
1334 hi.shl(rotateAmt);
1335 lo.lshr(BitWidth - rotateAmt);
1336 return hi | lo;
1337}
1338
Dan Gohman105c1d42008-02-29 01:40:47 +00001339APInt APInt::rotr(const APInt &rotateAmt) const {
Chris Lattner77527f52009-01-21 18:09:24 +00001340 return rotr((unsigned)rotateAmt.getLimitedValue(BitWidth));
Dan Gohman105c1d42008-02-29 01:40:47 +00001341}
1342
Chris Lattner77527f52009-01-21 18:09:24 +00001343APInt APInt::rotr(unsigned rotateAmt) const {
Reid Spencer98ed7db2007-05-14 00:15:28 +00001344 if (rotateAmt == 0)
1345 return *this;
Reid Spencer4c50b522007-05-13 23:44:59 +00001346 // Don't get too fancy, just use existing shift/or facilities
1347 APInt hi(*this);
1348 APInt lo(*this);
1349 lo.lshr(rotateAmt);
1350 hi.shl(BitWidth - rotateAmt);
1351 return hi | lo;
1352}
Reid Spencerd99feaf2007-03-01 05:39:56 +00001353
1354// Square Root - this method computes and returns the square root of "this".
1355// Three mechanisms are used for computation. For small values (<= 5 bits),
1356// a table lookup is done. This gets some performance for common cases. For
1357// values using less than 52 bits, the value is converted to double and then
1358// the libc sqrt function is called. The result is rounded and then converted
1359// back to a uint64_t which is then used to construct the result. Finally,
Eric Christopher820256b2009-08-21 04:06:45 +00001360// the Babylonian method for computing square roots is used.
Reid Spencerd99feaf2007-03-01 05:39:56 +00001361APInt APInt::sqrt() const {
1362
1363 // Determine the magnitude of the value.
Chris Lattner77527f52009-01-21 18:09:24 +00001364 unsigned magnitude = getActiveBits();
Reid Spencerd99feaf2007-03-01 05:39:56 +00001365
1366 // Use a fast table for some small values. This also gets rid of some
1367 // rounding errors in libc sqrt for small values.
1368 if (magnitude <= 5) {
Reid Spencer2f6ad4d2007-03-01 17:47:31 +00001369 static const uint8_t results[32] = {
Reid Spencerc8841d22007-03-01 06:23:32 +00001370 /* 0 */ 0,
1371 /* 1- 2 */ 1, 1,
Eric Christopher820256b2009-08-21 04:06:45 +00001372 /* 3- 6 */ 2, 2, 2, 2,
Reid Spencerc8841d22007-03-01 06:23:32 +00001373 /* 7-12 */ 3, 3, 3, 3, 3, 3,
1374 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1375 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1376 /* 31 */ 6
1377 };
1378 return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]);
Reid Spencerd99feaf2007-03-01 05:39:56 +00001379 }
1380
1381 // If the magnitude of the value fits in less than 52 bits (the precision of
1382 // an IEEE double precision floating point value), then we can use the
1383 // libc sqrt function which will probably use a hardware sqrt computation.
1384 // This should be faster than the algorithm below.
Jeff Cohenb622c112007-03-05 00:00:42 +00001385 if (magnitude < 52) {
1386#ifdef _MSC_VER
1387 // Amazingly, VC++ doesn't have round().
Eric Christopher820256b2009-08-21 04:06:45 +00001388 return APInt(BitWidth,
Jeff Cohenb622c112007-03-05 00:00:42 +00001389 uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0]))) + 0.5);
1390#else
Eric Christopher820256b2009-08-21 04:06:45 +00001391 return APInt(BitWidth,
Reid Spencerd99feaf2007-03-01 05:39:56 +00001392 uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
Jeff Cohenb622c112007-03-05 00:00:42 +00001393#endif
1394 }
Reid Spencerd99feaf2007-03-01 05:39:56 +00001395
1396 // Okay, all the short cuts are exhausted. We must compute it. The following
1397 // is a classical Babylonian method for computing the square root. This code
1398 // was adapted to APINt from a wikipedia article on such computations.
1399 // See http://www.wikipedia.org/ and go to the page named
Eric Christopher820256b2009-08-21 04:06:45 +00001400 // Calculate_an_integer_square_root.
Chris Lattner77527f52009-01-21 18:09:24 +00001401 unsigned nbits = BitWidth, i = 4;
Reid Spencerd99feaf2007-03-01 05:39:56 +00001402 APInt testy(BitWidth, 16);
1403 APInt x_old(BitWidth, 1);
1404 APInt x_new(BitWidth, 0);
1405 APInt two(BitWidth, 2);
1406
1407 // Select a good starting value using binary logarithms.
Eric Christopher820256b2009-08-21 04:06:45 +00001408 for (;; i += 2, testy = testy.shl(2))
Reid Spencerd99feaf2007-03-01 05:39:56 +00001409 if (i >= nbits || this->ule(testy)) {
1410 x_old = x_old.shl(i / 2);
1411 break;
1412 }
1413
Eric Christopher820256b2009-08-21 04:06:45 +00001414 // Use the Babylonian method to arrive at the integer square root:
Reid Spencerd99feaf2007-03-01 05:39:56 +00001415 for (;;) {
1416 x_new = (this->udiv(x_old) + x_old).udiv(two);
1417 if (x_old.ule(x_new))
1418 break;
1419 x_old = x_new;
1420 }
1421
1422 // Make sure we return the closest approximation
Eric Christopher820256b2009-08-21 04:06:45 +00001423 // NOTE: The rounding calculation below is correct. It will produce an
Reid Spencercf817562007-03-02 04:21:55 +00001424 // off-by-one discrepancy with results from pari/gp. That discrepancy has been
Eric Christopher820256b2009-08-21 04:06:45 +00001425 // determined to be a rounding issue with pari/gp as it begins to use a
Reid Spencercf817562007-03-02 04:21:55 +00001426 // floating point representation after 192 bits. There are no discrepancies
1427 // between this algorithm and pari/gp for bit widths < 192 bits.
Reid Spencerd99feaf2007-03-01 05:39:56 +00001428 APInt square(x_old * x_old);
1429 APInt nextSquare((x_old + 1) * (x_old +1));
1430 if (this->ult(square))
1431 return x_old;
Reid Spencercf817562007-03-02 04:21:55 +00001432 else if (this->ule(nextSquare)) {
1433 APInt midpoint((nextSquare - square).udiv(two));
1434 APInt offset(*this - square);
1435 if (offset.ult(midpoint))
Reid Spencerd99feaf2007-03-01 05:39:56 +00001436 return x_old;
Reid Spencercf817562007-03-02 04:21:55 +00001437 else
1438 return x_old + 1;
1439 } else
Torok Edwinfbcc6632009-07-14 16:55:14 +00001440 llvm_unreachable("Error in APInt::sqrt computation");
Reid Spencerd99feaf2007-03-01 05:39:56 +00001441 return x_old + 1;
1442}
1443
Wojciech Matyjewicz41b744d2008-06-23 19:39:50 +00001444/// Computes the multiplicative inverse of this APInt for a given modulo. The
1445/// iterative extended Euclidean algorithm is used to solve for this value,
1446/// however we simplify it to speed up calculating only the inverse, and take
1447/// advantage of div+rem calculations. We also use some tricks to avoid copying
1448/// (potentially large) APInts around.
1449APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1450 assert(ult(modulo) && "This APInt must be smaller than the modulo");
1451
1452 // Using the properties listed at the following web page (accessed 06/21/08):
1453 // http://www.numbertheory.org/php/euclid.html
1454 // (especially the properties numbered 3, 4 and 9) it can be proved that
1455 // BitWidth bits suffice for all the computations in the algorithm implemented
1456 // below. More precisely, this number of bits suffice if the multiplicative
1457 // inverse exists, but may not suffice for the general extended Euclidean
1458 // algorithm.
1459
1460 APInt r[2] = { modulo, *this };
1461 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1462 APInt q(BitWidth, 0);
Eric Christopher820256b2009-08-21 04:06:45 +00001463
Wojciech Matyjewicz41b744d2008-06-23 19:39:50 +00001464 unsigned i;
1465 for (i = 0; r[i^1] != 0; i ^= 1) {
1466 // An overview of the math without the confusing bit-flipping:
1467 // q = r[i-2] / r[i-1]
1468 // r[i] = r[i-2] % r[i-1]
1469 // t[i] = t[i-2] - t[i-1] * q
1470 udivrem(r[i], r[i^1], q, r[i]);
1471 t[i] -= t[i^1] * q;
1472 }
1473
1474 // If this APInt and the modulo are not coprime, there is no multiplicative
1475 // inverse, so return 0. We check this by looking at the next-to-last
1476 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1477 // algorithm.
1478 if (r[i] != 1)
1479 return APInt(BitWidth, 0);
1480
1481 // The next-to-last t is the multiplicative inverse. However, we are
1482 // interested in a positive inverse. Calcuate a positive one from a negative
1483 // one if necessary. A simple addition of the modulo suffices because
Wojciech Matyjewiczf0d21cd2008-07-20 15:55:14 +00001484 // abs(t[i]) is known to be less than *this/2 (see the link above).
Wojciech Matyjewicz41b744d2008-06-23 19:39:50 +00001485 return t[i].isNegative() ? t[i] + modulo : t[i];
1486}
1487
Jay Foadfe0c6482009-04-30 10:15:35 +00001488/// Calculate the magic numbers required to implement a signed integer division
1489/// by a constant as a sequence of multiplies, adds and shifts. Requires that
1490/// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S.
1491/// Warren, Jr., chapter 10.
1492APInt::ms APInt::magic() const {
1493 const APInt& d = *this;
1494 unsigned p;
1495 APInt ad, anc, delta, q1, r1, q2, r2, t;
Jay Foadfe0c6482009-04-30 10:15:35 +00001496 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
Jay Foadfe0c6482009-04-30 10:15:35 +00001497 struct ms mag;
Eric Christopher820256b2009-08-21 04:06:45 +00001498
Jay Foadfe0c6482009-04-30 10:15:35 +00001499 ad = d.abs();
1500 t = signedMin + (d.lshr(d.getBitWidth() - 1));
1501 anc = t - 1 - t.urem(ad); // absolute value of nc
1502 p = d.getBitWidth() - 1; // initialize p
1503 q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc)
1504 r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc))
1505 q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d)
1506 r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d))
1507 do {
1508 p = p + 1;
1509 q1 = q1<<1; // update q1 = 2p/abs(nc)
1510 r1 = r1<<1; // update r1 = rem(2p/abs(nc))
1511 if (r1.uge(anc)) { // must be unsigned comparison
1512 q1 = q1 + 1;
1513 r1 = r1 - anc;
1514 }
1515 q2 = q2<<1; // update q2 = 2p/abs(d)
1516 r2 = r2<<1; // update r2 = rem(2p/abs(d))
1517 if (r2.uge(ad)) { // must be unsigned comparison
1518 q2 = q2 + 1;
1519 r2 = r2 - ad;
1520 }
1521 delta = ad - r2;
1522 } while (q1.ule(delta) || (q1 == delta && r1 == 0));
Eric Christopher820256b2009-08-21 04:06:45 +00001523
Jay Foadfe0c6482009-04-30 10:15:35 +00001524 mag.m = q2 + 1;
1525 if (d.isNegative()) mag.m = -mag.m; // resulting magic number
1526 mag.s = p - d.getBitWidth(); // resulting shift
1527 return mag;
1528}
1529
1530/// Calculate the magic numbers required to implement an unsigned integer
1531/// division by a constant as a sequence of multiplies, adds and shifts.
1532/// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry
1533/// S. Warren, Jr., chapter 10.
1534APInt::mu APInt::magicu() const {
1535 const APInt& d = *this;
1536 unsigned p;
1537 APInt nc, delta, q1, r1, q2, r2;
1538 struct mu magu;
1539 magu.a = 0; // initialize "add" indicator
1540 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth());
1541 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1542 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
1543
1544 nc = allOnes - (-d).urem(d);
1545 p = d.getBitWidth() - 1; // initialize p
1546 q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc
1547 r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc)
1548 q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d
1549 r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d)
1550 do {
1551 p = p + 1;
1552 if (r1.uge(nc - r1)) {
1553 q1 = q1 + q1 + 1; // update q1
1554 r1 = r1 + r1 - nc; // update r1
1555 }
1556 else {
1557 q1 = q1+q1; // update q1
1558 r1 = r1+r1; // update r1
1559 }
1560 if ((r2 + 1).uge(d - r2)) {
1561 if (q2.uge(signedMax)) magu.a = 1;
1562 q2 = q2+q2 + 1; // update q2
1563 r2 = r2+r2 + 1 - d; // update r2
1564 }
1565 else {
1566 if (q2.uge(signedMin)) magu.a = 1;
1567 q2 = q2+q2; // update q2
1568 r2 = r2+r2 + 1; // update r2
1569 }
1570 delta = d - 1 - r2;
1571 } while (p < d.getBitWidth()*2 &&
1572 (q1.ult(delta) || (q1 == delta && r1 == 0)));
1573 magu.m = q2 + 1; // resulting magic number
1574 magu.s = p - d.getBitWidth(); // resulting shift
1575 return magu;
1576}
1577
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001578/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1579/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1580/// variables here have the same names as in the algorithm. Comments explain
1581/// the algorithm and any deviation from it.
Chris Lattner77527f52009-01-21 18:09:24 +00001582static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
1583 unsigned m, unsigned n) {
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001584 assert(u && "Must provide dividend");
1585 assert(v && "Must provide divisor");
1586 assert(q && "Must provide quotient");
Reid Spencera5e0d202007-02-24 03:58:46 +00001587 assert(u != v && u != q && v != q && "Must us different memory");
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001588 assert(n>1 && "n must be > 1");
1589
1590 // Knuth uses the value b as the base of the number system. In our case b
1591 // is 2^31 so we just set it to -1u.
1592 uint64_t b = uint64_t(1) << 32;
1593
Chris Lattner17f71652008-08-17 07:19:36 +00001594#if 0
David Greenef32fcb42010-01-05 01:28:52 +00001595 DEBUG(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
1596 DEBUG(dbgs() << "KnuthDiv: original:");
1597 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1598 DEBUG(dbgs() << " by");
1599 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]);
1600 DEBUG(dbgs() << '\n');
Chris Lattner17f71652008-08-17 07:19:36 +00001601#endif
Eric Christopher820256b2009-08-21 04:06:45 +00001602 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1603 // u and v by d. Note that we have taken Knuth's advice here to use a power
1604 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1605 // 2 allows us to shift instead of multiply and it is easy to determine the
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001606 // shift amount from the leading zeros. We are basically normalizing the u
1607 // and v so that its high bits are shifted to the top of v's range without
1608 // overflow. Note that this can require an extra word in u so that u must
1609 // be of length m+n+1.
Chris Lattner77527f52009-01-21 18:09:24 +00001610 unsigned shift = CountLeadingZeros_32(v[n-1]);
1611 unsigned v_carry = 0;
1612 unsigned u_carry = 0;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001613 if (shift) {
Chris Lattner77527f52009-01-21 18:09:24 +00001614 for (unsigned i = 0; i < m+n; ++i) {
1615 unsigned u_tmp = u[i] >> (32 - shift);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001616 u[i] = (u[i] << shift) | u_carry;
1617 u_carry = u_tmp;
Reid Spencer100502d2007-02-17 03:16:00 +00001618 }
Chris Lattner77527f52009-01-21 18:09:24 +00001619 for (unsigned i = 0; i < n; ++i) {
1620 unsigned v_tmp = v[i] >> (32 - shift);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001621 v[i] = (v[i] << shift) | v_carry;
1622 v_carry = v_tmp;
1623 }
1624 }
1625 u[m+n] = u_carry;
Chris Lattner17f71652008-08-17 07:19:36 +00001626#if 0
David Greenef32fcb42010-01-05 01:28:52 +00001627 DEBUG(dbgs() << "KnuthDiv: normal:");
1628 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1629 DEBUG(dbgs() << " by");
1630 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]);
1631 DEBUG(dbgs() << '\n');
Chris Lattner17f71652008-08-17 07:19:36 +00001632#endif
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001633
1634 // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
1635 int j = m;
1636 do {
David Greenef32fcb42010-01-05 01:28:52 +00001637 DEBUG(dbgs() << "KnuthDiv: quotient digit #" << j << '\n');
Eric Christopher820256b2009-08-21 04:06:45 +00001638 // D3. [Calculate q'.].
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001639 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1640 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1641 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1642 // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
1643 // on v[n-2] determines at high speed most of the cases in which the trial
Eric Christopher820256b2009-08-21 04:06:45 +00001644 // value qp is one too large, and it eliminates all cases where qp is two
1645 // too large.
Reid Spencercb292e42007-02-23 01:57:13 +00001646 uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
David Greenef32fcb42010-01-05 01:28:52 +00001647 DEBUG(dbgs() << "KnuthDiv: dividend == " << dividend << '\n');
Reid Spencercb292e42007-02-23 01:57:13 +00001648 uint64_t qp = dividend / v[n-1];
1649 uint64_t rp = dividend % v[n-1];
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001650 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1651 qp--;
1652 rp += v[n-1];
Reid Spencerdf6cf5a2007-02-24 10:01:42 +00001653 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
Reid Spencera5e0d202007-02-24 03:58:46 +00001654 qp--;
Reid Spencercb292e42007-02-23 01:57:13 +00001655 }
David Greenef32fcb42010-01-05 01:28:52 +00001656 DEBUG(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001657
Reid Spencercb292e42007-02-23 01:57:13 +00001658 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1659 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1660 // consists of a simple multiplication by a one-place number, combined with
Eric Christopher820256b2009-08-21 04:06:45 +00001661 // a subtraction.
Reid Spenceraa8dcfe2007-02-26 07:44:38 +00001662 bool isNeg = false;
Chris Lattner77527f52009-01-21 18:09:24 +00001663 for (unsigned i = 0; i < n; ++i) {
Reid Spencerdf6cf5a2007-02-24 10:01:42 +00001664 uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
Reid Spencera5e0d202007-02-24 03:58:46 +00001665 uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
Reid Spencerdf6cf5a2007-02-24 10:01:42 +00001666 bool borrow = subtrahend > u_tmp;
David Greenef32fcb42010-01-05 01:28:52 +00001667 DEBUG(dbgs() << "KnuthDiv: u_tmp == " << u_tmp
Daniel Dunbar763ace92009-07-13 05:27:30 +00001668 << ", subtrahend == " << subtrahend
1669 << ", borrow = " << borrow << '\n');
Reid Spencera5e0d202007-02-24 03:58:46 +00001670
Reid Spencerdf6cf5a2007-02-24 10:01:42 +00001671 uint64_t result = u_tmp - subtrahend;
Chris Lattner77527f52009-01-21 18:09:24 +00001672 unsigned k = j + i;
1673 u[k++] = (unsigned)(result & (b-1)); // subtract low word
1674 u[k++] = (unsigned)(result >> 32); // subtract high word
Reid Spencerdf6cf5a2007-02-24 10:01:42 +00001675 while (borrow && k <= m+n) { // deal with borrow to the left
1676 borrow = u[k] == 0;
1677 u[k]--;
1678 k++;
1679 }
Reid Spenceraa8dcfe2007-02-26 07:44:38 +00001680 isNeg |= borrow;
David Greenef32fcb42010-01-05 01:28:52 +00001681 DEBUG(dbgs() << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " <<
Eric Christopher820256b2009-08-21 04:06:45 +00001682 u[j+i+1] << '\n');
Reid Spencera5e0d202007-02-24 03:58:46 +00001683 }
David Greenef32fcb42010-01-05 01:28:52 +00001684 DEBUG(dbgs() << "KnuthDiv: after subtraction:");
1685 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1686 DEBUG(dbgs() << '\n');
Eric Christopher820256b2009-08-21 04:06:45 +00001687 // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1688 // this step is actually negative, (u[j+n]...u[j]) should be left as the
Reid Spencerdf6cf5a2007-02-24 10:01:42 +00001689 // true value plus b**(n+1), namely as the b's complement of
Reid Spencercb292e42007-02-23 01:57:13 +00001690 // the true value, and a "borrow" to the left should be remembered.
1691 //
Reid Spenceraa8dcfe2007-02-26 07:44:38 +00001692 if (isNeg) {
Reid Spencerdf6cf5a2007-02-24 10:01:42 +00001693 bool carry = true; // true because b's complement is "complement + 1"
Chris Lattner77527f52009-01-21 18:09:24 +00001694 for (unsigned i = 0; i <= m+n; ++i) {
Reid Spencerdf6cf5a2007-02-24 10:01:42 +00001695 u[i] = ~u[i] + carry; // b's complement
1696 carry = carry && u[i] == 0;
Reid Spencera5e0d202007-02-24 03:58:46 +00001697 }
Reid Spencercb292e42007-02-23 01:57:13 +00001698 }
David Greenef32fcb42010-01-05 01:28:52 +00001699 DEBUG(dbgs() << "KnuthDiv: after complement:");
1700 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1701 DEBUG(dbgs() << '\n');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001702
Eric Christopher820256b2009-08-21 04:06:45 +00001703 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001704 // negative, go to step D6; otherwise go on to step D7.
Chris Lattner77527f52009-01-21 18:09:24 +00001705 q[j] = (unsigned)qp;
Reid Spenceraa8dcfe2007-02-26 07:44:38 +00001706 if (isNeg) {
Eric Christopher820256b2009-08-21 04:06:45 +00001707 // D6. [Add back]. The probability that this step is necessary is very
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001708 // small, on the order of only 2/b. Make sure that test data accounts for
Eric Christopher820256b2009-08-21 04:06:45 +00001709 // this possibility. Decrease q[j] by 1
Reid Spencercb292e42007-02-23 01:57:13 +00001710 q[j]--;
Eric Christopher820256b2009-08-21 04:06:45 +00001711 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1712 // A carry will occur to the left of u[j+n], and it should be ignored
Reid Spencercb292e42007-02-23 01:57:13 +00001713 // since it cancels with the borrow that occurred in D4.
1714 bool carry = false;
Chris Lattner77527f52009-01-21 18:09:24 +00001715 for (unsigned i = 0; i < n; i++) {
1716 unsigned limit = std::min(u[j+i],v[i]);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001717 u[j+i] += v[i] + carry;
Reid Spencera5e0d202007-02-24 03:58:46 +00001718 carry = u[j+i] < limit || (carry && u[j+i] == limit);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001719 }
Reid Spencera5e0d202007-02-24 03:58:46 +00001720 u[j+n] += carry;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001721 }
David Greenef32fcb42010-01-05 01:28:52 +00001722 DEBUG(dbgs() << "KnuthDiv: after correction:");
1723 DEBUG(for (int i = m+n; i >=0; i--) dbgs() <<" " << u[i]);
1724 DEBUG(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001725
Reid Spencercb292e42007-02-23 01:57:13 +00001726 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
1727 } while (--j >= 0);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001728
David Greenef32fcb42010-01-05 01:28:52 +00001729 DEBUG(dbgs() << "KnuthDiv: quotient:");
1730 DEBUG(for (int i = m; i >=0; i--) dbgs() <<" " << q[i]);
1731 DEBUG(dbgs() << '\n');
Reid Spencera5e0d202007-02-24 03:58:46 +00001732
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001733 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1734 // remainder may be obtained by dividing u[...] by d. If r is non-null we
1735 // compute the remainder (urem uses this).
1736 if (r) {
1737 // The value d is expressed by the "shift" value above since we avoided
1738 // multiplication by d by using a shift left. So, all we have to do is
1739 // shift right here. In order to mak
Reid Spencer468ad9112007-02-24 20:38:01 +00001740 if (shift) {
Chris Lattner77527f52009-01-21 18:09:24 +00001741 unsigned carry = 0;
David Greenef32fcb42010-01-05 01:28:52 +00001742 DEBUG(dbgs() << "KnuthDiv: remainder:");
Reid Spencer468ad9112007-02-24 20:38:01 +00001743 for (int i = n-1; i >= 0; i--) {
1744 r[i] = (u[i] >> shift) | carry;
1745 carry = u[i] << (32 - shift);
David Greenef32fcb42010-01-05 01:28:52 +00001746 DEBUG(dbgs() << " " << r[i]);
Reid Spencer468ad9112007-02-24 20:38:01 +00001747 }
1748 } else {
1749 for (int i = n-1; i >= 0; i--) {
1750 r[i] = u[i];
David Greenef32fcb42010-01-05 01:28:52 +00001751 DEBUG(dbgs() << " " << r[i]);
Reid Spencer468ad9112007-02-24 20:38:01 +00001752 }
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001753 }
David Greenef32fcb42010-01-05 01:28:52 +00001754 DEBUG(dbgs() << '\n');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001755 }
Chris Lattner17f71652008-08-17 07:19:36 +00001756#if 0
David Greenef32fcb42010-01-05 01:28:52 +00001757 DEBUG(dbgs() << '\n');
Chris Lattner17f71652008-08-17 07:19:36 +00001758#endif
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001759}
1760
Chris Lattner77527f52009-01-21 18:09:24 +00001761void APInt::divide(const APInt LHS, unsigned lhsWords,
1762 const APInt &RHS, unsigned rhsWords,
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001763 APInt *Quotient, APInt *Remainder)
1764{
1765 assert(lhsWords >= rhsWords && "Fractional result");
1766
Eric Christopher820256b2009-08-21 04:06:45 +00001767 // First, compose the values into an array of 32-bit words instead of
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001768 // 64-bit words. This is a necessity of both the "short division" algorithm
Dan Gohman4a618822010-02-10 16:03:48 +00001769 // and the Knuth "classical algorithm" which requires there to be native
Eric Christopher820256b2009-08-21 04:06:45 +00001770 // operations for +, -, and * on an m bit value with an m*2 bit result. We
1771 // can't use 64-bit operands here because we don't have native results of
1772 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001773 // work on large-endian machines.
Dan Gohmancff69532009-04-01 18:45:54 +00001774 uint64_t mask = ~0ull >> (sizeof(unsigned)*CHAR_BIT);
Chris Lattner77527f52009-01-21 18:09:24 +00001775 unsigned n = rhsWords * 2;
1776 unsigned m = (lhsWords * 2) - n;
Reid Spencer522ca7c2007-02-25 01:56:07 +00001777
1778 // Allocate space for the temporary values we need either on the stack, if
1779 // it will fit, or on the heap if it won't.
Chris Lattner77527f52009-01-21 18:09:24 +00001780 unsigned SPACE[128];
1781 unsigned *U = 0;
1782 unsigned *V = 0;
1783 unsigned *Q = 0;
1784 unsigned *R = 0;
Reid Spencer522ca7c2007-02-25 01:56:07 +00001785 if ((Remainder?4:3)*n+2*m+1 <= 128) {
1786 U = &SPACE[0];
1787 V = &SPACE[m+n+1];
1788 Q = &SPACE[(m+n+1) + n];
1789 if (Remainder)
1790 R = &SPACE[(m+n+1) + n + (m+n)];
1791 } else {
Chris Lattner77527f52009-01-21 18:09:24 +00001792 U = new unsigned[m + n + 1];
1793 V = new unsigned[n];
1794 Q = new unsigned[m+n];
Reid Spencer522ca7c2007-02-25 01:56:07 +00001795 if (Remainder)
Chris Lattner77527f52009-01-21 18:09:24 +00001796 R = new unsigned[n];
Reid Spencer522ca7c2007-02-25 01:56:07 +00001797 }
1798
1799 // Initialize the dividend
Chris Lattner77527f52009-01-21 18:09:24 +00001800 memset(U, 0, (m+n+1)*sizeof(unsigned));
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001801 for (unsigned i = 0; i < lhsWords; ++i) {
Reid Spencer867b4062007-02-22 00:58:45 +00001802 uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
Chris Lattner77527f52009-01-21 18:09:24 +00001803 U[i * 2] = (unsigned)(tmp & mask);
Dan Gohmancff69532009-04-01 18:45:54 +00001804 U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001805 }
1806 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1807
Reid Spencer522ca7c2007-02-25 01:56:07 +00001808 // Initialize the divisor
Chris Lattner77527f52009-01-21 18:09:24 +00001809 memset(V, 0, (n)*sizeof(unsigned));
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001810 for (unsigned i = 0; i < rhsWords; ++i) {
Reid Spencer867b4062007-02-22 00:58:45 +00001811 uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
Chris Lattner77527f52009-01-21 18:09:24 +00001812 V[i * 2] = (unsigned)(tmp & mask);
Dan Gohmancff69532009-04-01 18:45:54 +00001813 V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001814 }
1815
Reid Spencer522ca7c2007-02-25 01:56:07 +00001816 // initialize the quotient and remainder
Chris Lattner77527f52009-01-21 18:09:24 +00001817 memset(Q, 0, (m+n) * sizeof(unsigned));
Reid Spencer522ca7c2007-02-25 01:56:07 +00001818 if (Remainder)
Chris Lattner77527f52009-01-21 18:09:24 +00001819 memset(R, 0, n * sizeof(unsigned));
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001820
Eric Christopher820256b2009-08-21 04:06:45 +00001821 // Now, adjust m and n for the Knuth division. n is the number of words in
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001822 // the divisor. m is the number of words by which the dividend exceeds the
Eric Christopher820256b2009-08-21 04:06:45 +00001823 // divisor (i.e. m+n is the length of the dividend). These sizes must not
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001824 // contain any zero words or the Knuth algorithm fails.
1825 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1826 n--;
1827 m++;
1828 }
1829 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1830 m--;
1831
1832 // If we're left with only a single word for the divisor, Knuth doesn't work
1833 // so we implement the short division algorithm here. This is much simpler
1834 // and faster because we are certain that we can divide a 64-bit quantity
1835 // by a 32-bit quantity at hardware speed and short division is simply a
1836 // series of such operations. This is just like doing short division but we
1837 // are using base 2^32 instead of base 10.
1838 assert(n != 0 && "Divide by zero?");
1839 if (n == 1) {
Chris Lattner77527f52009-01-21 18:09:24 +00001840 unsigned divisor = V[0];
1841 unsigned remainder = 0;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001842 for (int i = m+n-1; i >= 0; i--) {
1843 uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
1844 if (partial_dividend == 0) {
1845 Q[i] = 0;
1846 remainder = 0;
1847 } else if (partial_dividend < divisor) {
1848 Q[i] = 0;
Chris Lattner77527f52009-01-21 18:09:24 +00001849 remainder = (unsigned)partial_dividend;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001850 } else if (partial_dividend == divisor) {
1851 Q[i] = 1;
1852 remainder = 0;
1853 } else {
Chris Lattner77527f52009-01-21 18:09:24 +00001854 Q[i] = (unsigned)(partial_dividend / divisor);
1855 remainder = (unsigned)(partial_dividend - (Q[i] * divisor));
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001856 }
1857 }
1858 if (R)
1859 R[0] = remainder;
1860 } else {
1861 // Now we're ready to invoke the Knuth classical divide algorithm. In this
1862 // case n > 1.
1863 KnuthDiv(U, V, Q, R, m, n);
1864 }
1865
1866 // If the caller wants the quotient
1867 if (Quotient) {
1868 // Set up the Quotient value's memory.
1869 if (Quotient->BitWidth != LHS.BitWidth) {
1870 if (Quotient->isSingleWord())
1871 Quotient->VAL = 0;
1872 else
Reid Spencer7c16cd22007-02-26 23:38:21 +00001873 delete [] Quotient->pVal;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001874 Quotient->BitWidth = LHS.BitWidth;
1875 if (!Quotient->isSingleWord())
Reid Spencer58a6a432007-02-21 08:21:52 +00001876 Quotient->pVal = getClearedMemory(Quotient->getNumWords());
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001877 } else
1878 Quotient->clear();
1879
Eric Christopher820256b2009-08-21 04:06:45 +00001880 // The quotient is in Q. Reconstitute the quotient into Quotient's low
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001881 // order words.
1882 if (lhsWords == 1) {
Eric Christopher820256b2009-08-21 04:06:45 +00001883 uint64_t tmp =
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001884 uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
1885 if (Quotient->isSingleWord())
1886 Quotient->VAL = tmp;
1887 else
1888 Quotient->pVal[0] = tmp;
1889 } else {
1890 assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
1891 for (unsigned i = 0; i < lhsWords; ++i)
Eric Christopher820256b2009-08-21 04:06:45 +00001892 Quotient->pVal[i] =
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001893 uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1894 }
1895 }
1896
1897 // If the caller wants the remainder
1898 if (Remainder) {
1899 // Set up the Remainder value's memory.
1900 if (Remainder->BitWidth != RHS.BitWidth) {
1901 if (Remainder->isSingleWord())
1902 Remainder->VAL = 0;
1903 else
Reid Spencer7c16cd22007-02-26 23:38:21 +00001904 delete [] Remainder->pVal;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001905 Remainder->BitWidth = RHS.BitWidth;
1906 if (!Remainder->isSingleWord())
Reid Spencer58a6a432007-02-21 08:21:52 +00001907 Remainder->pVal = getClearedMemory(Remainder->getNumWords());
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001908 } else
1909 Remainder->clear();
1910
1911 // The remainder is in R. Reconstitute the remainder into Remainder's low
1912 // order words.
1913 if (rhsWords == 1) {
Eric Christopher820256b2009-08-21 04:06:45 +00001914 uint64_t tmp =
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001915 uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
1916 if (Remainder->isSingleWord())
1917 Remainder->VAL = tmp;
1918 else
1919 Remainder->pVal[0] = tmp;
1920 } else {
1921 assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
1922 for (unsigned i = 0; i < rhsWords; ++i)
Eric Christopher820256b2009-08-21 04:06:45 +00001923 Remainder->pVal[i] =
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001924 uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1925 }
1926 }
1927
1928 // Clean up the memory we allocated.
Reid Spencer522ca7c2007-02-25 01:56:07 +00001929 if (U != &SPACE[0]) {
1930 delete [] U;
1931 delete [] V;
1932 delete [] Q;
1933 delete [] R;
1934 }
Reid Spencer100502d2007-02-17 03:16:00 +00001935}
1936
Reid Spencer1d072122007-02-16 22:36:51 +00001937APInt APInt::udiv(const APInt& RHS) const {
Reid Spencera32372d12007-02-17 00:18:01 +00001938 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer39867762007-02-17 02:07:07 +00001939
1940 // First, deal with the easy case
1941 if (isSingleWord()) {
1942 assert(RHS.VAL != 0 && "Divide by zero?");
1943 return APInt(BitWidth, VAL / RHS.VAL);
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001944 }
Reid Spencer39867762007-02-17 02:07:07 +00001945
Reid Spencer39867762007-02-17 02:07:07 +00001946 // Get some facts about the LHS and RHS number of bits and words
Chris Lattner77527f52009-01-21 18:09:24 +00001947 unsigned rhsBits = RHS.getActiveBits();
1948 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Reid Spencer39867762007-02-17 02:07:07 +00001949 assert(rhsWords && "Divided by zero???");
Chris Lattner77527f52009-01-21 18:09:24 +00001950 unsigned lhsBits = this->getActiveBits();
1951 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
Reid Spencer39867762007-02-17 02:07:07 +00001952
1953 // Deal with some degenerate cases
Eric Christopher820256b2009-08-21 04:06:45 +00001954 if (!lhsWords)
Reid Spencer58a6a432007-02-21 08:21:52 +00001955 // 0 / X ===> 0
Eric Christopher820256b2009-08-21 04:06:45 +00001956 return APInt(BitWidth, 0);
Reid Spencer58a6a432007-02-21 08:21:52 +00001957 else if (lhsWords < rhsWords || this->ult(RHS)) {
1958 // X / Y ===> 0, iff X < Y
1959 return APInt(BitWidth, 0);
1960 } else if (*this == RHS) {
1961 // X / X ===> 1
1962 return APInt(BitWidth, 1);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001963 } else if (lhsWords == 1 && rhsWords == 1) {
Reid Spencer39867762007-02-17 02:07:07 +00001964 // All high words are zero, just use native divide
Reid Spencer58a6a432007-02-21 08:21:52 +00001965 return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
Reid Spencer39867762007-02-17 02:07:07 +00001966 }
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001967
1968 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1969 APInt Quotient(1,0); // to hold result.
1970 divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0);
1971 return Quotient;
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001972}
1973
Reid Spencer1d072122007-02-16 22:36:51 +00001974APInt APInt::urem(const APInt& RHS) const {
Reid Spencera32372d12007-02-17 00:18:01 +00001975 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer39867762007-02-17 02:07:07 +00001976 if (isSingleWord()) {
1977 assert(RHS.VAL != 0 && "Remainder by zero?");
1978 return APInt(BitWidth, VAL % RHS.VAL);
Zhou Shengfbf61ea2007-02-08 14:35:19 +00001979 }
Reid Spencer39867762007-02-17 02:07:07 +00001980
Reid Spencer58a6a432007-02-21 08:21:52 +00001981 // Get some facts about the LHS
Chris Lattner77527f52009-01-21 18:09:24 +00001982 unsigned lhsBits = getActiveBits();
1983 unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
Reid Spencer39867762007-02-17 02:07:07 +00001984
1985 // Get some facts about the RHS
Chris Lattner77527f52009-01-21 18:09:24 +00001986 unsigned rhsBits = RHS.getActiveBits();
1987 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Reid Spencer39867762007-02-17 02:07:07 +00001988 assert(rhsWords && "Performing remainder operation by zero ???");
1989
Reid Spencer39867762007-02-17 02:07:07 +00001990 // Check the degenerate cases
Reid Spencerfb77b2b2007-02-20 08:51:03 +00001991 if (lhsWords == 0) {
Reid Spencer58a6a432007-02-21 08:21:52 +00001992 // 0 % Y ===> 0
1993 return APInt(BitWidth, 0);
1994 } else if (lhsWords < rhsWords || this->ult(RHS)) {
1995 // X % Y ===> X, iff X < Y
1996 return *this;
1997 } else if (*this == RHS) {
Reid Spencer39867762007-02-17 02:07:07 +00001998 // X % X == 0;
Reid Spencer58a6a432007-02-21 08:21:52 +00001999 return APInt(BitWidth, 0);
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002000 } else if (lhsWords == 1) {
Reid Spencer39867762007-02-17 02:07:07 +00002001 // All high words are zero, just use native remainder
Reid Spencer58a6a432007-02-21 08:21:52 +00002002 return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
Reid Spencer39867762007-02-17 02:07:07 +00002003 }
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002004
Reid Spencer4c50b522007-05-13 23:44:59 +00002005 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002006 APInt Remainder(1,0);
2007 divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder);
2008 return Remainder;
Zhou Shengfbf61ea2007-02-08 14:35:19 +00002009}
Reid Spencer100502d2007-02-17 03:16:00 +00002010
Eric Christopher820256b2009-08-21 04:06:45 +00002011void APInt::udivrem(const APInt &LHS, const APInt &RHS,
Reid Spencer4c50b522007-05-13 23:44:59 +00002012 APInt &Quotient, APInt &Remainder) {
2013 // Get some size facts about the dividend and divisor
Chris Lattner77527f52009-01-21 18:09:24 +00002014 unsigned lhsBits = LHS.getActiveBits();
2015 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
2016 unsigned rhsBits = RHS.getActiveBits();
2017 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Reid Spencer4c50b522007-05-13 23:44:59 +00002018
2019 // Check the degenerate cases
Eric Christopher820256b2009-08-21 04:06:45 +00002020 if (lhsWords == 0) {
Reid Spencer4c50b522007-05-13 23:44:59 +00002021 Quotient = 0; // 0 / Y ===> 0
2022 Remainder = 0; // 0 % Y ===> 0
2023 return;
Eric Christopher820256b2009-08-21 04:06:45 +00002024 }
2025
2026 if (lhsWords < rhsWords || LHS.ult(RHS)) {
Reid Spencer4c50b522007-05-13 23:44:59 +00002027 Remainder = LHS; // X % Y ===> X, iff X < Y
John McCallbd8d1e32009-12-24 08:52:06 +00002028 Quotient = 0; // X / Y ===> 0, iff X < Y
Reid Spencer4c50b522007-05-13 23:44:59 +00002029 return;
Eric Christopher820256b2009-08-21 04:06:45 +00002030 }
2031
Reid Spencer4c50b522007-05-13 23:44:59 +00002032 if (LHS == RHS) {
2033 Quotient = 1; // X / X ===> 1
2034 Remainder = 0; // X % X ===> 0;
2035 return;
Eric Christopher820256b2009-08-21 04:06:45 +00002036 }
2037
Reid Spencer4c50b522007-05-13 23:44:59 +00002038 if (lhsWords == 1 && rhsWords == 1) {
2039 // There is only one word to consider so use the native versions.
Wojciech Matyjewicz41b744d2008-06-23 19:39:50 +00002040 uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0];
2041 uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
2042 Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue);
2043 Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue);
Reid Spencer4c50b522007-05-13 23:44:59 +00002044 return;
2045 }
2046
2047 // Okay, lets do it the long way
2048 divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder);
2049}
2050
Daniel Dunbar3a1efd112009-08-13 02:33:34 +00002051void APInt::fromString(unsigned numbits, const StringRef& str, uint8_t radix) {
Reid Spencer1ba83352007-02-21 03:55:44 +00002052 // Check our assumptions here
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +00002053 assert(!str.empty() && "Invalid string length");
Reid Spencer100502d2007-02-17 03:16:00 +00002054 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
2055 "Radix should be 2, 8, 10, or 16!");
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +00002056
Daniel Dunbar3a1efd112009-08-13 02:33:34 +00002057 StringRef::iterator p = str.begin();
2058 size_t slen = str.size();
2059 bool isNeg = *p == '-';
Erick Tryzelaar1264bcb2009-08-21 03:15:14 +00002060 if (*p == '-' || *p == '+') {
Daniel Dunbar3a1efd112009-08-13 02:33:34 +00002061 p++;
2062 slen--;
Eric Christopher43a1dec2009-08-21 04:10:31 +00002063 assert(slen && "String is only a sign, needs a value.");
Daniel Dunbar3a1efd112009-08-13 02:33:34 +00002064 }
Chris Lattnerdad2d092007-05-03 18:15:36 +00002065 assert((slen <= numbits || radix != 2) && "Insufficient bit width");
Chris Lattnerb869a0a2009-04-25 18:34:04 +00002066 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
2067 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
Eric Christopher820256b2009-08-21 04:06:45 +00002068 assert((((slen-1)*64)/22 <= numbits || radix != 10)
Daniel Dunbar7d6781b2009-09-20 02:20:51 +00002069 && "Insufficient bit width");
Reid Spencer1ba83352007-02-21 03:55:44 +00002070
2071 // Allocate memory
2072 if (!isSingleWord())
2073 pVal = getClearedMemory(getNumWords());
2074
2075 // Figure out if we can shift instead of multiply
Chris Lattner77527f52009-01-21 18:09:24 +00002076 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
Reid Spencer1ba83352007-02-21 03:55:44 +00002077
2078 // Set up an APInt for the digit to add outside the loop so we don't
2079 // constantly construct/destruct it.
2080 APInt apdigit(getBitWidth(), 0);
2081 APInt apradix(getBitWidth(), radix);
2082
2083 // Enter digit traversal loop
Daniel Dunbar3a1efd112009-08-13 02:33:34 +00002084 for (StringRef::iterator e = str.end(); p != e; ++p) {
Erick Tryzelaardadb15712009-08-21 03:15:28 +00002085 unsigned digit = getDigit(*p, radix);
Erick Tryzelaar60964092009-08-21 06:48:37 +00002086 assert(digit < radix && "Invalid character in digit string");
Reid Spencer1ba83352007-02-21 03:55:44 +00002087
Reid Spencera93c9812007-05-16 19:18:22 +00002088 // Shift or multiply the value by the radix
Chris Lattnerb869a0a2009-04-25 18:34:04 +00002089 if (slen > 1) {
2090 if (shift)
2091 *this <<= shift;
2092 else
2093 *this *= apradix;
2094 }
Reid Spencer1ba83352007-02-21 03:55:44 +00002095
2096 // Add in the digit we just interpreted
Reid Spencer632ebdf2007-02-24 20:19:37 +00002097 if (apdigit.isSingleWord())
2098 apdigit.VAL = digit;
2099 else
2100 apdigit.pVal[0] = digit;
Reid Spencer1ba83352007-02-21 03:55:44 +00002101 *this += apdigit;
Reid Spencer100502d2007-02-17 03:16:00 +00002102 }
Reid Spencerb6b5cc32007-02-25 23:44:53 +00002103 // If its negative, put it in two's complement form
Reid Spenceraa8dcfe2007-02-26 07:44:38 +00002104 if (isNeg) {
2105 (*this)--;
Reid Spencerb6b5cc32007-02-25 23:44:53 +00002106 this->flip();
Reid Spencerb6b5cc32007-02-25 23:44:53 +00002107 }
Reid Spencer100502d2007-02-17 03:16:00 +00002108}
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002109
Chris Lattner17f71652008-08-17 07:19:36 +00002110void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
2111 bool Signed) const {
2112 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2) &&
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002113 "Radix should be 2, 8, 10, or 16!");
Eric Christopher820256b2009-08-21 04:06:45 +00002114
Chris Lattner17f71652008-08-17 07:19:36 +00002115 // First, check for a zero value and just short circuit the logic below.
2116 if (*this == 0) {
2117 Str.push_back('0');
2118 return;
2119 }
Eric Christopher820256b2009-08-21 04:06:45 +00002120
Chris Lattner17f71652008-08-17 07:19:36 +00002121 static const char Digits[] = "0123456789ABCDEF";
Eric Christopher820256b2009-08-21 04:06:45 +00002122
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002123 if (isSingleWord()) {
Chris Lattner17f71652008-08-17 07:19:36 +00002124 char Buffer[65];
2125 char *BufPtr = Buffer+65;
Eric Christopher820256b2009-08-21 04:06:45 +00002126
Chris Lattner17f71652008-08-17 07:19:36 +00002127 uint64_t N;
2128 if (Signed) {
2129 int64_t I = getSExtValue();
2130 if (I < 0) {
2131 Str.push_back('-');
2132 I = -I;
2133 }
2134 N = I;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002135 } else {
Chris Lattner17f71652008-08-17 07:19:36 +00002136 N = getZExtValue();
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002137 }
Eric Christopher820256b2009-08-21 04:06:45 +00002138
Chris Lattner17f71652008-08-17 07:19:36 +00002139 while (N) {
2140 *--BufPtr = Digits[N % Radix];
2141 N /= Radix;
2142 }
2143 Str.append(BufPtr, Buffer+65);
2144 return;
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002145 }
2146
Chris Lattner17f71652008-08-17 07:19:36 +00002147 APInt Tmp(*this);
Eric Christopher820256b2009-08-21 04:06:45 +00002148
Chris Lattner17f71652008-08-17 07:19:36 +00002149 if (Signed && isNegative()) {
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002150 // They want to print the signed version and it is a negative value
2151 // Flip the bits and add one to turn it into the equivalent positive
2152 // value and put a '-' in the result.
Chris Lattner17f71652008-08-17 07:19:36 +00002153 Tmp.flip();
2154 Tmp++;
2155 Str.push_back('-');
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002156 }
Eric Christopher820256b2009-08-21 04:06:45 +00002157
Chris Lattner17f71652008-08-17 07:19:36 +00002158 // We insert the digits backward, then reverse them to get the right order.
2159 unsigned StartDig = Str.size();
Eric Christopher820256b2009-08-21 04:06:45 +00002160
2161 // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2162 // because the number of bits per digit (1, 3 and 4 respectively) divides
Chris Lattner17f71652008-08-17 07:19:36 +00002163 // equaly. We just shift until the value is zero.
2164 if (Radix != 10) {
2165 // Just shift tmp right for each digit width until it becomes zero
2166 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2167 unsigned MaskAmt = Radix - 1;
Eric Christopher820256b2009-08-21 04:06:45 +00002168
Chris Lattner17f71652008-08-17 07:19:36 +00002169 while (Tmp != 0) {
2170 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2171 Str.push_back(Digits[Digit]);
2172 Tmp = Tmp.lshr(ShiftAmt);
2173 }
2174 } else {
2175 APInt divisor(4, 10);
2176 while (Tmp != 0) {
2177 APInt APdigit(1, 0);
2178 APInt tmp2(Tmp.getBitWidth(), 0);
Eric Christopher820256b2009-08-21 04:06:45 +00002179 divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
Chris Lattner17f71652008-08-17 07:19:36 +00002180 &APdigit);
Chris Lattner77527f52009-01-21 18:09:24 +00002181 unsigned Digit = (unsigned)APdigit.getZExtValue();
Chris Lattner17f71652008-08-17 07:19:36 +00002182 assert(Digit < Radix && "divide failed");
2183 Str.push_back(Digits[Digit]);
2184 Tmp = tmp2;
2185 }
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002186 }
Eric Christopher820256b2009-08-21 04:06:45 +00002187
Chris Lattner17f71652008-08-17 07:19:36 +00002188 // Reverse the digits before returning.
2189 std::reverse(Str.begin()+StartDig, Str.end());
Reid Spencerfb77b2b2007-02-20 08:51:03 +00002190}
2191
Chris Lattner17f71652008-08-17 07:19:36 +00002192/// toString - This returns the APInt as a std::string. Note that this is an
2193/// inefficient method. It is better to pass in a SmallVector/SmallString
2194/// to the methods above.
2195std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
2196 SmallString<40> S;
2197 toString(S, Radix, Signed);
Daniel Dunbar8b0b1152009-08-19 20:07:03 +00002198 return S.str();
Reid Spencer1ba83352007-02-21 03:55:44 +00002199}
Chris Lattner6b695682007-08-16 15:56:55 +00002200
Chris Lattner17f71652008-08-17 07:19:36 +00002201
2202void APInt::dump() const {
2203 SmallString<40> S, U;
2204 this->toStringUnsigned(U);
2205 this->toStringSigned(S);
David Greenef32fcb42010-01-05 01:28:52 +00002206 dbgs() << "APInt(" << BitWidth << "b, "
Daniel Dunbar8b0b1152009-08-19 20:07:03 +00002207 << U.str() << "u " << S.str() << "s)";
Chris Lattner17f71652008-08-17 07:19:36 +00002208}
2209
Chris Lattner0c19df42008-08-23 22:23:09 +00002210void APInt::print(raw_ostream &OS, bool isSigned) const {
Chris Lattner17f71652008-08-17 07:19:36 +00002211 SmallString<40> S;
2212 this->toString(S, 10, isSigned);
Daniel Dunbar8b0b1152009-08-19 20:07:03 +00002213 OS << S.str();
Chris Lattner17f71652008-08-17 07:19:36 +00002214}
2215
Chris Lattner6b695682007-08-16 15:56:55 +00002216// This implements a variety of operations on a representation of
2217// arbitrary precision, two's-complement, bignum integer values.
2218
Chris Lattner96cffa62009-08-23 23:11:28 +00002219// Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
2220// and unrestricting assumption.
Chris Lattner8fcea672008-08-17 04:58:58 +00002221#define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002222COMPILE_TIME_ASSERT(integerPartWidth % 2 == 0);
Chris Lattner6b695682007-08-16 15:56:55 +00002223
2224/* Some handy functions local to this file. */
2225namespace {
2226
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002227 /* Returns the integer part with the least significant BITS set.
2228 BITS cannot be zero. */
Dan Gohmanf4bc7822008-04-10 21:11:47 +00002229 static inline integerPart
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002230 lowBitMask(unsigned int bits)
2231 {
2232 assert (bits != 0 && bits <= integerPartWidth);
2233
2234 return ~(integerPart) 0 >> (integerPartWidth - bits);
2235 }
2236
Neil Boothc8b650a2007-10-06 00:43:45 +00002237 /* Returns the value of the lower half of PART. */
Dan Gohmanf4bc7822008-04-10 21:11:47 +00002238 static inline integerPart
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002239 lowHalf(integerPart part)
2240 {
2241 return part & lowBitMask(integerPartWidth / 2);
2242 }
2243
Neil Boothc8b650a2007-10-06 00:43:45 +00002244 /* Returns the value of the upper half of PART. */
Dan Gohmanf4bc7822008-04-10 21:11:47 +00002245 static inline integerPart
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002246 highHalf(integerPart part)
2247 {
2248 return part >> (integerPartWidth / 2);
2249 }
2250
Neil Boothc8b650a2007-10-06 00:43:45 +00002251 /* Returns the bit number of the most significant set bit of a part.
2252 If the input number has no bits set -1U is returned. */
Dan Gohmanf4bc7822008-04-10 21:11:47 +00002253 static unsigned int
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002254 partMSB(integerPart value)
Chris Lattner6b695682007-08-16 15:56:55 +00002255 {
2256 unsigned int n, msb;
2257
2258 if (value == 0)
2259 return -1U;
2260
2261 n = integerPartWidth / 2;
2262
2263 msb = 0;
2264 do {
2265 if (value >> n) {
2266 value >>= n;
2267 msb += n;
2268 }
2269
2270 n >>= 1;
2271 } while (n);
2272
2273 return msb;
2274 }
2275
Neil Boothc8b650a2007-10-06 00:43:45 +00002276 /* Returns the bit number of the least significant set bit of a
2277 part. If the input number has no bits set -1U is returned. */
Dan Gohmanf4bc7822008-04-10 21:11:47 +00002278 static unsigned int
Chris Lattner6b695682007-08-16 15:56:55 +00002279 partLSB(integerPart value)
2280 {
2281 unsigned int n, lsb;
2282
2283 if (value == 0)
2284 return -1U;
2285
2286 lsb = integerPartWidth - 1;
2287 n = integerPartWidth / 2;
2288
2289 do {
2290 if (value << n) {
2291 value <<= n;
2292 lsb -= n;
2293 }
2294
2295 n >>= 1;
2296 } while (n);
2297
2298 return lsb;
2299 }
2300}
2301
2302/* Sets the least significant part of a bignum to the input value, and
2303 zeroes out higher parts. */
2304void
2305APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts)
2306{
2307 unsigned int i;
2308
Neil Boothb6182162007-10-08 13:47:12 +00002309 assert (parts > 0);
2310
Chris Lattner6b695682007-08-16 15:56:55 +00002311 dst[0] = part;
2312 for(i = 1; i < parts; i++)
2313 dst[i] = 0;
2314}
2315
2316/* Assign one bignum to another. */
2317void
2318APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts)
2319{
2320 unsigned int i;
2321
2322 for(i = 0; i < parts; i++)
2323 dst[i] = src[i];
2324}
2325
2326/* Returns true if a bignum is zero, false otherwise. */
2327bool
2328APInt::tcIsZero(const integerPart *src, unsigned int parts)
2329{
2330 unsigned int i;
2331
2332 for(i = 0; i < parts; i++)
2333 if (src[i])
2334 return false;
2335
2336 return true;
2337}
2338
2339/* Extract the given bit of a bignum; returns 0 or 1. */
2340int
2341APInt::tcExtractBit(const integerPart *parts, unsigned int bit)
2342{
2343 return(parts[bit / integerPartWidth]
2344 & ((integerPart) 1 << bit % integerPartWidth)) != 0;
2345}
2346
John McCalldcb9a7a2010-02-28 02:51:25 +00002347/* Set the given bit of a bignum. */
Chris Lattner6b695682007-08-16 15:56:55 +00002348void
2349APInt::tcSetBit(integerPart *parts, unsigned int bit)
2350{
2351 parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth);
2352}
2353
John McCalldcb9a7a2010-02-28 02:51:25 +00002354/* Clears the given bit of a bignum. */
2355void
2356APInt::tcClearBit(integerPart *parts, unsigned int bit)
2357{
2358 parts[bit / integerPartWidth] &=
2359 ~((integerPart) 1 << (bit % integerPartWidth));
2360}
2361
Neil Boothc8b650a2007-10-06 00:43:45 +00002362/* Returns the bit number of the least significant set bit of a
2363 number. If the input number has no bits set -1U is returned. */
Chris Lattner6b695682007-08-16 15:56:55 +00002364unsigned int
2365APInt::tcLSB(const integerPart *parts, unsigned int n)
2366{
2367 unsigned int i, lsb;
2368
2369 for(i = 0; i < n; i++) {
2370 if (parts[i] != 0) {
2371 lsb = partLSB(parts[i]);
2372
2373 return lsb + i * integerPartWidth;
2374 }
2375 }
2376
2377 return -1U;
2378}
2379
Neil Boothc8b650a2007-10-06 00:43:45 +00002380/* Returns the bit number of the most significant set bit of a number.
2381 If the input number has no bits set -1U is returned. */
Chris Lattner6b695682007-08-16 15:56:55 +00002382unsigned int
2383APInt::tcMSB(const integerPart *parts, unsigned int n)
2384{
2385 unsigned int msb;
2386
2387 do {
2388 --n;
2389
2390 if (parts[n] != 0) {
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002391 msb = partMSB(parts[n]);
Chris Lattner6b695682007-08-16 15:56:55 +00002392
2393 return msb + n * integerPartWidth;
2394 }
2395 } while (n);
2396
2397 return -1U;
2398}
2399
Neil Boothb6182162007-10-08 13:47:12 +00002400/* Copy the bit vector of width srcBITS from SRC, starting at bit
2401 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
2402 the least significant bit of DST. All high bits above srcBITS in
2403 DST are zero-filled. */
2404void
Evan Chengdb338f32009-05-21 23:47:47 +00002405APInt::tcExtract(integerPart *dst, unsigned int dstCount,const integerPart *src,
Neil Boothb6182162007-10-08 13:47:12 +00002406 unsigned int srcBits, unsigned int srcLSB)
2407{
2408 unsigned int firstSrcPart, dstParts, shift, n;
2409
2410 dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth;
2411 assert (dstParts <= dstCount);
2412
2413 firstSrcPart = srcLSB / integerPartWidth;
2414 tcAssign (dst, src + firstSrcPart, dstParts);
2415
2416 shift = srcLSB % integerPartWidth;
2417 tcShiftRight (dst, dstParts, shift);
2418
2419 /* We now have (dstParts * integerPartWidth - shift) bits from SRC
2420 in DST. If this is less that srcBits, append the rest, else
2421 clear the high bits. */
2422 n = dstParts * integerPartWidth - shift;
2423 if (n < srcBits) {
2424 integerPart mask = lowBitMask (srcBits - n);
2425 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2426 << n % integerPartWidth);
2427 } else if (n > srcBits) {
Neil Booth7e74b172007-10-12 15:31:31 +00002428 if (srcBits % integerPartWidth)
2429 dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth);
Neil Boothb6182162007-10-08 13:47:12 +00002430 }
2431
2432 /* Clear high parts. */
2433 while (dstParts < dstCount)
2434 dst[dstParts++] = 0;
2435}
2436
Chris Lattner6b695682007-08-16 15:56:55 +00002437/* DST += RHS + C where C is zero or one. Returns the carry flag. */
2438integerPart
2439APInt::tcAdd(integerPart *dst, const integerPart *rhs,
2440 integerPart c, unsigned int parts)
2441{
2442 unsigned int i;
2443
2444 assert(c <= 1);
2445
2446 for(i = 0; i < parts; i++) {
2447 integerPart l;
2448
2449 l = dst[i];
2450 if (c) {
2451 dst[i] += rhs[i] + 1;
2452 c = (dst[i] <= l);
2453 } else {
2454 dst[i] += rhs[i];
2455 c = (dst[i] < l);
2456 }
2457 }
2458
2459 return c;
2460}
2461
2462/* DST -= RHS + C where C is zero or one. Returns the carry flag. */
2463integerPart
2464APInt::tcSubtract(integerPart *dst, const integerPart *rhs,
2465 integerPart c, unsigned int parts)
2466{
2467 unsigned int i;
2468
2469 assert(c <= 1);
2470
2471 for(i = 0; i < parts; i++) {
2472 integerPart l;
2473
2474 l = dst[i];
2475 if (c) {
2476 dst[i] -= rhs[i] + 1;
2477 c = (dst[i] >= l);
2478 } else {
2479 dst[i] -= rhs[i];
2480 c = (dst[i] > l);
2481 }
2482 }
2483
2484 return c;
2485}
2486
2487/* Negate a bignum in-place. */
2488void
2489APInt::tcNegate(integerPart *dst, unsigned int parts)
2490{
2491 tcComplement(dst, parts);
2492 tcIncrement(dst, parts);
2493}
2494
Neil Boothc8b650a2007-10-06 00:43:45 +00002495/* DST += SRC * MULTIPLIER + CARRY if add is true
2496 DST = SRC * MULTIPLIER + CARRY if add is false
Chris Lattner6b695682007-08-16 15:56:55 +00002497
2498 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
2499 they must start at the same point, i.e. DST == SRC.
2500
2501 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2502 returned. Otherwise DST is filled with the least significant
2503 DSTPARTS parts of the result, and if all of the omitted higher
2504 parts were zero return zero, otherwise overflow occurred and
2505 return one. */
2506int
2507APInt::tcMultiplyPart(integerPart *dst, const integerPart *src,
2508 integerPart multiplier, integerPart carry,
2509 unsigned int srcParts, unsigned int dstParts,
2510 bool add)
2511{
2512 unsigned int i, n;
2513
2514 /* Otherwise our writes of DST kill our later reads of SRC. */
2515 assert(dst <= src || dst >= src + srcParts);
2516 assert(dstParts <= srcParts + 1);
2517
2518 /* N loops; minimum of dstParts and srcParts. */
2519 n = dstParts < srcParts ? dstParts: srcParts;
2520
2521 for(i = 0; i < n; i++) {
2522 integerPart low, mid, high, srcPart;
2523
2524 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2525
2526 This cannot overflow, because
2527
2528 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2529
2530 which is less than n^2. */
2531
2532 srcPart = src[i];
2533
2534 if (multiplier == 0 || srcPart == 0) {
2535 low = carry;
2536 high = 0;
2537 } else {
2538 low = lowHalf(srcPart) * lowHalf(multiplier);
2539 high = highHalf(srcPart) * highHalf(multiplier);
2540
2541 mid = lowHalf(srcPart) * highHalf(multiplier);
2542 high += highHalf(mid);
2543 mid <<= integerPartWidth / 2;
2544 if (low + mid < low)
2545 high++;
2546 low += mid;
2547
2548 mid = highHalf(srcPart) * lowHalf(multiplier);
2549 high += highHalf(mid);
2550 mid <<= integerPartWidth / 2;
2551 if (low + mid < low)
2552 high++;
2553 low += mid;
2554
2555 /* Now add carry. */
2556 if (low + carry < low)
2557 high++;
2558 low += carry;
2559 }
2560
2561 if (add) {
2562 /* And now DST[i], and store the new low part there. */
2563 if (low + dst[i] < low)
2564 high++;
2565 dst[i] += low;
2566 } else
2567 dst[i] = low;
2568
2569 carry = high;
2570 }
2571
2572 if (i < dstParts) {
2573 /* Full multiplication, there is no overflow. */
2574 assert(i + 1 == dstParts);
2575 dst[i] = carry;
2576 return 0;
2577 } else {
2578 /* We overflowed if there is carry. */
2579 if (carry)
2580 return 1;
2581
2582 /* We would overflow if any significant unwritten parts would be
2583 non-zero. This is true if any remaining src parts are non-zero
2584 and the multiplier is non-zero. */
2585 if (multiplier)
2586 for(; i < srcParts; i++)
2587 if (src[i])
2588 return 1;
2589
2590 /* We fitted in the narrow destination. */
2591 return 0;
2592 }
2593}
2594
2595/* DST = LHS * RHS, where DST has the same width as the operands and
2596 is filled with the least significant parts of the result. Returns
2597 one if overflow occurred, otherwise zero. DST must be disjoint
2598 from both operands. */
2599int
2600APInt::tcMultiply(integerPart *dst, const integerPart *lhs,
2601 const integerPart *rhs, unsigned int parts)
2602{
2603 unsigned int i;
2604 int overflow;
2605
2606 assert(dst != lhs && dst != rhs);
2607
2608 overflow = 0;
2609 tcSet(dst, 0, parts);
2610
2611 for(i = 0; i < parts; i++)
2612 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2613 parts - i, true);
2614
2615 return overflow;
2616}
2617
Neil Booth0ea72a92007-10-06 00:24:48 +00002618/* DST = LHS * RHS, where DST has width the sum of the widths of the
2619 operands. No overflow occurs. DST must be disjoint from both
2620 operands. Returns the number of parts required to hold the
2621 result. */
2622unsigned int
Chris Lattner6b695682007-08-16 15:56:55 +00002623APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs,
Neil Booth0ea72a92007-10-06 00:24:48 +00002624 const integerPart *rhs, unsigned int lhsParts,
2625 unsigned int rhsParts)
Chris Lattner6b695682007-08-16 15:56:55 +00002626{
Neil Booth0ea72a92007-10-06 00:24:48 +00002627 /* Put the narrower number on the LHS for less loops below. */
2628 if (lhsParts > rhsParts) {
2629 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2630 } else {
2631 unsigned int n;
Chris Lattner6b695682007-08-16 15:56:55 +00002632
Neil Booth0ea72a92007-10-06 00:24:48 +00002633 assert(dst != lhs && dst != rhs);
Chris Lattner6b695682007-08-16 15:56:55 +00002634
Neil Booth0ea72a92007-10-06 00:24:48 +00002635 tcSet(dst, 0, rhsParts);
Chris Lattner6b695682007-08-16 15:56:55 +00002636
Neil Booth0ea72a92007-10-06 00:24:48 +00002637 for(n = 0; n < lhsParts; n++)
2638 tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true);
Chris Lattner6b695682007-08-16 15:56:55 +00002639
Neil Booth0ea72a92007-10-06 00:24:48 +00002640 n = lhsParts + rhsParts;
2641
2642 return n - (dst[n - 1] == 0);
2643 }
Chris Lattner6b695682007-08-16 15:56:55 +00002644}
2645
2646/* If RHS is zero LHS and REMAINDER are left unchanged, return one.
2647 Otherwise set LHS to LHS / RHS with the fractional part discarded,
2648 set REMAINDER to the remainder, return zero. i.e.
2649
2650 OLD_LHS = RHS * LHS + REMAINDER
2651
2652 SCRATCH is a bignum of the same size as the operands and result for
2653 use by the routine; its contents need not be initialized and are
2654 destroyed. LHS, REMAINDER and SCRATCH must be distinct.
2655*/
2656int
2657APInt::tcDivide(integerPart *lhs, const integerPart *rhs,
2658 integerPart *remainder, integerPart *srhs,
2659 unsigned int parts)
2660{
2661 unsigned int n, shiftCount;
2662 integerPart mask;
2663
2664 assert(lhs != remainder && lhs != srhs && remainder != srhs);
2665
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002666 shiftCount = tcMSB(rhs, parts) + 1;
2667 if (shiftCount == 0)
Chris Lattner6b695682007-08-16 15:56:55 +00002668 return true;
2669
Chris Lattnerfe02c1f2007-08-20 22:49:32 +00002670 shiftCount = parts * integerPartWidth - shiftCount;
Chris Lattner6b695682007-08-16 15:56:55 +00002671 n = shiftCount / integerPartWidth;
2672 mask = (integerPart) 1 << (shiftCount % integerPartWidth);
2673
2674 tcAssign(srhs, rhs, parts);
2675 tcShiftLeft(srhs, parts, shiftCount);
2676 tcAssign(remainder, lhs, parts);
2677 tcSet(lhs, 0, parts);
2678
2679 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
2680 the total. */
2681 for(;;) {
2682 int compare;
2683
2684 compare = tcCompare(remainder, srhs, parts);
2685 if (compare >= 0) {
2686 tcSubtract(remainder, srhs, 0, parts);
2687 lhs[n] |= mask;
2688 }
2689
2690 if (shiftCount == 0)
2691 break;
2692 shiftCount--;
2693 tcShiftRight(srhs, parts, 1);
2694 if ((mask >>= 1) == 0)
2695 mask = (integerPart) 1 << (integerPartWidth - 1), n--;
2696 }
2697
2698 return false;
2699}
2700
2701/* Shift a bignum left COUNT bits in-place. Shifted in bits are zero.
2702 There are no restrictions on COUNT. */
2703void
2704APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count)
2705{
Neil Boothb6182162007-10-08 13:47:12 +00002706 if (count) {
2707 unsigned int jump, shift;
Chris Lattner6b695682007-08-16 15:56:55 +00002708
Neil Boothb6182162007-10-08 13:47:12 +00002709 /* Jump is the inter-part jump; shift is is intra-part shift. */
2710 jump = count / integerPartWidth;
2711 shift = count % integerPartWidth;
Chris Lattner6b695682007-08-16 15:56:55 +00002712
Neil Boothb6182162007-10-08 13:47:12 +00002713 while (parts > jump) {
2714 integerPart part;
Chris Lattner6b695682007-08-16 15:56:55 +00002715
Neil Boothb6182162007-10-08 13:47:12 +00002716 parts--;
Chris Lattner6b695682007-08-16 15:56:55 +00002717
Neil Boothb6182162007-10-08 13:47:12 +00002718 /* dst[i] comes from the two parts src[i - jump] and, if we have
2719 an intra-part shift, src[i - jump - 1]. */
2720 part = dst[parts - jump];
2721 if (shift) {
2722 part <<= shift;
Chris Lattner6b695682007-08-16 15:56:55 +00002723 if (parts >= jump + 1)
2724 part |= dst[parts - jump - 1] >> (integerPartWidth - shift);
2725 }
2726
Neil Boothb6182162007-10-08 13:47:12 +00002727 dst[parts] = part;
2728 }
Chris Lattner6b695682007-08-16 15:56:55 +00002729
Neil Boothb6182162007-10-08 13:47:12 +00002730 while (parts > 0)
2731 dst[--parts] = 0;
2732 }
Chris Lattner6b695682007-08-16 15:56:55 +00002733}
2734
2735/* Shift a bignum right COUNT bits in-place. Shifted in bits are
2736 zero. There are no restrictions on COUNT. */
2737void
2738APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count)
2739{
Neil Boothb6182162007-10-08 13:47:12 +00002740 if (count) {
2741 unsigned int i, jump, shift;
Chris Lattner6b695682007-08-16 15:56:55 +00002742
Neil Boothb6182162007-10-08 13:47:12 +00002743 /* Jump is the inter-part jump; shift is is intra-part shift. */
2744 jump = count / integerPartWidth;
2745 shift = count % integerPartWidth;
Chris Lattner6b695682007-08-16 15:56:55 +00002746
Neil Boothb6182162007-10-08 13:47:12 +00002747 /* Perform the shift. This leaves the most significant COUNT bits
2748 of the result at zero. */
2749 for(i = 0; i < parts; i++) {
2750 integerPart part;
Chris Lattner6b695682007-08-16 15:56:55 +00002751
Neil Boothb6182162007-10-08 13:47:12 +00002752 if (i + jump >= parts) {
2753 part = 0;
2754 } else {
2755 part = dst[i + jump];
2756 if (shift) {
2757 part >>= shift;
2758 if (i + jump + 1 < parts)
2759 part |= dst[i + jump + 1] << (integerPartWidth - shift);
2760 }
Chris Lattner6b695682007-08-16 15:56:55 +00002761 }
Chris Lattner6b695682007-08-16 15:56:55 +00002762
Neil Boothb6182162007-10-08 13:47:12 +00002763 dst[i] = part;
2764 }
Chris Lattner6b695682007-08-16 15:56:55 +00002765 }
2766}
2767
2768/* Bitwise and of two bignums. */
2769void
2770APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts)
2771{
2772 unsigned int i;
2773
2774 for(i = 0; i < parts; i++)
2775 dst[i] &= rhs[i];
2776}
2777
2778/* Bitwise inclusive or of two bignums. */
2779void
2780APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts)
2781{
2782 unsigned int i;
2783
2784 for(i = 0; i < parts; i++)
2785 dst[i] |= rhs[i];
2786}
2787
2788/* Bitwise exclusive or of two bignums. */
2789void
2790APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts)
2791{
2792 unsigned int i;
2793
2794 for(i = 0; i < parts; i++)
2795 dst[i] ^= rhs[i];
2796}
2797
2798/* Complement a bignum in-place. */
2799void
2800APInt::tcComplement(integerPart *dst, unsigned int parts)
2801{
2802 unsigned int i;
2803
2804 for(i = 0; i < parts; i++)
2805 dst[i] = ~dst[i];
2806}
2807
2808/* Comparison (unsigned) of two bignums. */
2809int
2810APInt::tcCompare(const integerPart *lhs, const integerPart *rhs,
2811 unsigned int parts)
2812{
2813 while (parts) {
2814 parts--;
2815 if (lhs[parts] == rhs[parts])
2816 continue;
2817
2818 if (lhs[parts] > rhs[parts])
2819 return 1;
2820 else
2821 return -1;
2822 }
2823
2824 return 0;
2825}
2826
2827/* Increment a bignum in-place, return the carry flag. */
2828integerPart
2829APInt::tcIncrement(integerPart *dst, unsigned int parts)
2830{
2831 unsigned int i;
2832
2833 for(i = 0; i < parts; i++)
2834 if (++dst[i] != 0)
2835 break;
2836
2837 return i == parts;
2838}
2839
2840/* Set the least significant BITS bits of a bignum, clear the
2841 rest. */
2842void
2843APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts,
2844 unsigned int bits)
2845{
2846 unsigned int i;
2847
2848 i = 0;
2849 while (bits > integerPartWidth) {
2850 dst[i++] = ~(integerPart) 0;
2851 bits -= integerPartWidth;
2852 }
2853
2854 if (bits)
2855 dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits);
2856
2857 while (i < parts)
2858 dst[i++] = 0;
2859}