blob: 92f119b2ba783176ff1461afc995bd78a76c36c3 [file] [log] [blame]
Peter Collingbournedf49d1b2016-02-09 22:50:34 +00001//===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass implements whole program optimization of virtual calls in cases
11// where we know (via bitset information) that the list of callee is fixed. This
12// includes the following:
13// - Single implementation devirtualization: if a virtual call has a single
14// possible callee, replace all calls with a direct call to that callee.
15// - Virtual constant propagation: if the virtual function's return type is an
16// integer <=64 bits and all possible callees are readnone, for each class and
17// each list of constant arguments: evaluate the function, store the return
18// value alongside the virtual table, and rewrite each virtual call as a load
19// from the virtual table.
20// - Uniform return value optimization: if the conditions for virtual constant
21// propagation hold and each function returns the same constant value, replace
22// each virtual call with that constant.
23// - Unique return value optimization for i1 return values: if the conditions
24// for virtual constant propagation hold and a single vtable's function
25// returns 0, or a single vtable's function returns 1, replace each virtual
26// call with a comparison of the vptr against that vtable's address.
27//
28//===----------------------------------------------------------------------===//
29
30#include "llvm/Transforms/IPO/WholeProgramDevirt.h"
31#include "llvm/Transforms/IPO.h"
32#include "llvm/ADT/DenseSet.h"
33#include "llvm/ADT/MapVector.h"
34#include "llvm/IR/CallSite.h"
35#include "llvm/IR/Constants.h"
36#include "llvm/IR/DataLayout.h"
37#include "llvm/IR/IRBuilder.h"
38#include "llvm/IR/Instructions.h"
39#include "llvm/IR/Intrinsics.h"
40#include "llvm/IR/Module.h"
41#include "llvm/Pass.h"
42#include "llvm/Support/raw_ostream.h"
43#include "llvm/Transforms/Utils/Evaluator.h"
44#include "llvm/Transforms/Utils/Local.h"
45
46#include <set>
47
48using namespace llvm;
49using namespace wholeprogramdevirt;
50
51#define DEBUG_TYPE "wholeprogramdevirt"
52
53// Find the minimum offset that we may store a value of size Size bits at. If
54// IsAfter is set, look for an offset before the object, otherwise look for an
55// offset after the object.
56uint64_t
57wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets,
58 bool IsAfter, uint64_t Size) {
59 // Find a minimum offset taking into account only vtable sizes.
60 uint64_t MinByte = 0;
61 for (const VirtualCallTarget &Target : Targets) {
62 if (IsAfter)
63 MinByte = std::max(MinByte, Target.minAfterBytes());
64 else
65 MinByte = std::max(MinByte, Target.minBeforeBytes());
66 }
67
68 // Build a vector of arrays of bytes covering, for each target, a slice of the
69 // used region (see AccumBitVector::BytesUsed in
70 // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
71 // this aligns the used regions to start at MinByte.
72 //
73 // In this example, A, B and C are vtables, # is a byte already allocated for
74 // a virtual function pointer, AAAA... (etc.) are the used regions for the
75 // vtables and Offset(X) is the value computed for the Offset variable below
76 // for X.
77 //
78 // Offset(A)
79 // | |
80 // |MinByte
81 // A: ################AAAAAAAA|AAAAAAAA
82 // B: ########BBBBBBBBBBBBBBBB|BBBB
83 // C: ########################|CCCCCCCCCCCCCCCC
84 // | Offset(B) |
85 //
86 // This code produces the slices of A, B and C that appear after the divider
87 // at MinByte.
88 std::vector<ArrayRef<uint8_t>> Used;
89 for (const VirtualCallTarget &Target : Targets) {
90 ArrayRef<uint8_t> VTUsed = IsAfter ? Target.BS->Bits->After.BytesUsed
91 : Target.BS->Bits->Before.BytesUsed;
92 uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes()
93 : MinByte - Target.minBeforeBytes();
94
95 // Disregard used regions that are smaller than Offset. These are
96 // effectively all-free regions that do not need to be checked.
97 if (VTUsed.size() > Offset)
98 Used.push_back(VTUsed.slice(Offset));
99 }
100
101 if (Size == 1) {
102 // Find a free bit in each member of Used.
103 for (unsigned I = 0;; ++I) {
104 uint8_t BitsUsed = 0;
105 for (auto &&B : Used)
106 if (I < B.size())
107 BitsUsed |= B[I];
108 if (BitsUsed != 0xff)
109 return (MinByte + I) * 8 +
110 countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined);
111 }
112 } else {
113 // Find a free (Size/8) byte region in each member of Used.
114 // FIXME: see if alignment helps.
115 for (unsigned I = 0;; ++I) {
116 for (auto &&B : Used) {
117 unsigned Byte = 0;
118 while ((I + Byte) < B.size() && Byte < (Size / 8)) {
119 if (B[I + Byte])
120 goto NextI;
121 ++Byte;
122 }
123 }
124 return (MinByte + I) * 8;
125 NextI:;
126 }
127 }
128}
129
130void wholeprogramdevirt::setBeforeReturnValues(
131 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore,
132 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
133 if (BitWidth == 1)
134 OffsetByte = -(AllocBefore / 8 + 1);
135 else
136 OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8);
137 OffsetBit = AllocBefore % 8;
138
139 for (VirtualCallTarget &Target : Targets) {
140 if (BitWidth == 1)
141 Target.setBeforeBit(AllocBefore);
142 else
143 Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8);
144 }
145}
146
147void wholeprogramdevirt::setAfterReturnValues(
148 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter,
149 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
150 if (BitWidth == 1)
151 OffsetByte = AllocAfter / 8;
152 else
153 OffsetByte = (AllocAfter + 7) / 8;
154 OffsetBit = AllocAfter % 8;
155
156 for (VirtualCallTarget &Target : Targets) {
157 if (BitWidth == 1)
158 Target.setAfterBit(AllocAfter);
159 else
160 Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8);
161 }
162}
163
164VirtualCallTarget::VirtualCallTarget(Function *Fn, const BitSetInfo *BS)
165 : Fn(Fn), BS(BS),
166 IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()) {}
167
168namespace {
169
170// A slot in a set of virtual tables. The BitSetID identifies the set of virtual
171// tables, and the ByteOffset is the offset in bytes from the address point to
172// the virtual function pointer.
173struct VTableSlot {
174 Metadata *BitSetID;
175 uint64_t ByteOffset;
176};
177
178}
179
180template <> struct DenseMapInfo<VTableSlot> {
181 static VTableSlot getEmptyKey() {
182 return {DenseMapInfo<Metadata *>::getEmptyKey(),
183 DenseMapInfo<uint64_t>::getEmptyKey()};
184 }
185 static VTableSlot getTombstoneKey() {
186 return {DenseMapInfo<Metadata *>::getTombstoneKey(),
187 DenseMapInfo<uint64_t>::getTombstoneKey()};
188 }
189 static unsigned getHashValue(const VTableSlot &I) {
190 return DenseMapInfo<Metadata *>::getHashValue(I.BitSetID) ^
191 DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
192 }
193 static bool isEqual(const VTableSlot &LHS,
194 const VTableSlot &RHS) {
195 return LHS.BitSetID == RHS.BitSetID && LHS.ByteOffset == RHS.ByteOffset;
196 }
197};
198
199namespace {
200
201// A virtual call site. VTable is the loaded virtual table pointer, and CS is
202// the indirect virtual call.
203struct VirtualCallSite {
204 Value *VTable;
205 CallSite CS;
206
207 void replaceAndErase(Value *New) {
208 CS->replaceAllUsesWith(New);
209 if (auto II = dyn_cast<InvokeInst>(CS.getInstruction())) {
210 BranchInst::Create(II->getNormalDest(), CS.getInstruction());
211 II->getUnwindDest()->removePredecessor(II->getParent());
212 }
213 CS->eraseFromParent();
214 }
215};
216
217struct DevirtModule {
218 Module &M;
219 IntegerType *Int8Ty;
220 PointerType *Int8PtrTy;
221 IntegerType *Int32Ty;
222
223 MapVector<VTableSlot, std::vector<VirtualCallSite>> CallSlots;
224
225 DevirtModule(Module &M)
226 : M(M), Int8Ty(Type::getInt8Ty(M.getContext())),
227 Int8PtrTy(Type::getInt8PtrTy(M.getContext())),
228 Int32Ty(Type::getInt32Ty(M.getContext())) {}
229 void findLoadCallsAtConstantOffset(Metadata *BitSet, Value *Ptr,
230 uint64_t Offset, Value *VTable);
231 void findCallsAtConstantOffset(Metadata *BitSet, Value *Ptr, uint64_t Offset,
232 Value *VTable);
233
234 void buildBitSets(std::vector<VTableBits> &Bits,
235 DenseMap<Metadata *, std::set<BitSetInfo>> &BitSets);
236 bool tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot,
237 const std::set<BitSetInfo> &BitSetInfos,
238 uint64_t ByteOffset);
239 bool trySingleImplDevirt(ArrayRef<VirtualCallTarget> TargetsForSlot,
240 MutableArrayRef<VirtualCallSite> CallSites);
241 bool tryEvaluateFunctionsWithArgs(
242 MutableArrayRef<VirtualCallTarget> TargetsForSlot,
243 ArrayRef<ConstantInt *> Args);
244 bool tryUniformRetValOpt(IntegerType *RetType,
245 ArrayRef<VirtualCallTarget> TargetsForSlot,
246 MutableArrayRef<VirtualCallSite> CallSites);
247 bool tryUniqueRetValOpt(unsigned BitWidth,
248 ArrayRef<VirtualCallTarget> TargetsForSlot,
249 MutableArrayRef<VirtualCallSite> CallSites);
250 bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
251 ArrayRef<VirtualCallSite> CallSites);
252
253 void rebuildGlobal(VTableBits &B);
254
255 bool run();
256};
257
258struct WholeProgramDevirt : public ModulePass {
259 static char ID;
260 WholeProgramDevirt() : ModulePass(ID) {
261 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
262 }
263 bool runOnModule(Module &M) { return DevirtModule(M).run(); }
264};
265
266} // anonymous namespace
267
268INITIALIZE_PASS(WholeProgramDevirt, "wholeprogramdevirt",
269 "Whole program devirtualization", false, false)
270char WholeProgramDevirt::ID = 0;
271
272ModulePass *llvm::createWholeProgramDevirtPass() {
273 return new WholeProgramDevirt;
274}
275
276// Search for virtual calls that call FPtr and add them to CallSlots.
277void DevirtModule::findCallsAtConstantOffset(Metadata *BitSet, Value *FPtr,
278 uint64_t Offset, Value *VTable) {
279 for (const Use &U : FPtr->uses()) {
280 Value *User = U.getUser();
281 if (isa<BitCastInst>(User)) {
282 findCallsAtConstantOffset(BitSet, User, Offset, VTable);
283 } else if (auto CI = dyn_cast<CallInst>(User)) {
284 CallSlots[{BitSet, Offset}].push_back({VTable, CI});
285 } else if (auto II = dyn_cast<InvokeInst>(User)) {
286 CallSlots[{BitSet, Offset}].push_back({VTable, II});
287 }
288 }
289}
290
291// Search for virtual calls that load from VPtr and add them to CallSlots.
292void DevirtModule::findLoadCallsAtConstantOffset(Metadata *BitSet, Value *VPtr,
293 uint64_t Offset,
294 Value *VTable) {
295 for (const Use &U : VPtr->uses()) {
296 Value *User = U.getUser();
297 if (isa<BitCastInst>(User)) {
298 findLoadCallsAtConstantOffset(BitSet, User, Offset, VTable);
299 } else if (isa<LoadInst>(User)) {
300 findCallsAtConstantOffset(BitSet, User, Offset, VTable);
301 } else if (auto GEP = dyn_cast<GetElementPtrInst>(User)) {
302 // Take into account the GEP offset.
303 if (VPtr == GEP->getPointerOperand() && GEP->hasAllConstantIndices()) {
304 SmallVector<Value *, 8> Indices(GEP->op_begin() + 1, GEP->op_end());
305 uint64_t GEPOffset = M.getDataLayout().getIndexedOffsetInType(
306 GEP->getSourceElementType(), Indices);
307 findLoadCallsAtConstantOffset(BitSet, User, Offset + GEPOffset, VTable);
308 }
309 }
310 }
311}
312
313void DevirtModule::buildBitSets(
314 std::vector<VTableBits> &Bits,
315 DenseMap<Metadata *, std::set<BitSetInfo>> &BitSets) {
316 NamedMDNode *BitSetNM = M.getNamedMetadata("llvm.bitsets");
317 if (!BitSetNM)
318 return;
319
320 DenseMap<GlobalVariable *, VTableBits *> GVToBits;
321 Bits.reserve(BitSetNM->getNumOperands());
322 for (auto Op : BitSetNM->operands()) {
323 auto OpConstMD = dyn_cast_or_null<ConstantAsMetadata>(Op->getOperand(1));
324 if (!OpConstMD)
325 continue;
326 auto BitSetID = Op->getOperand(0).get();
327
328 Constant *OpConst = OpConstMD->getValue();
329 if (auto GA = dyn_cast<GlobalAlias>(OpConst))
330 OpConst = GA->getAliasee();
331 auto OpGlobal = dyn_cast<GlobalVariable>(OpConst);
332 if (!OpGlobal)
333 continue;
334
335 uint64_t Offset =
336 cast<ConstantInt>(
337 cast<ConstantAsMetadata>(Op->getOperand(2))->getValue())
338 ->getZExtValue();
339
340 VTableBits *&BitsPtr = GVToBits[OpGlobal];
341 if (!BitsPtr) {
342 Bits.emplace_back();
343 Bits.back().GV = OpGlobal;
344 Bits.back().ObjectSize = M.getDataLayout().getTypeAllocSize(
345 OpGlobal->getInitializer()->getType());
346 BitsPtr = &Bits.back();
347 }
348 BitSets[BitSetID].insert({BitsPtr, Offset});
349 }
350}
351
352bool DevirtModule::tryFindVirtualCallTargets(
353 std::vector<VirtualCallTarget> &TargetsForSlot,
354 const std::set<BitSetInfo> &BitSetInfos, uint64_t ByteOffset) {
355 for (const BitSetInfo &BS : BitSetInfos) {
356 if (!BS.Bits->GV->isConstant())
357 return false;
358
359 auto Init = dyn_cast<ConstantArray>(BS.Bits->GV->getInitializer());
360 if (!Init)
361 return false;
362 ArrayType *VTableTy = Init->getType();
363
364 uint64_t ElemSize =
365 M.getDataLayout().getTypeAllocSize(VTableTy->getElementType());
366 uint64_t GlobalSlotOffset = BS.Offset + ByteOffset;
367 if (GlobalSlotOffset % ElemSize != 0)
368 return false;
369
370 unsigned Op = GlobalSlotOffset / ElemSize;
371 if (Op >= Init->getNumOperands())
372 return false;
373
374 auto Fn = dyn_cast<Function>(Init->getOperand(Op)->stripPointerCasts());
375 if (!Fn)
376 return false;
377
378 // We can disregard __cxa_pure_virtual as a possible call target, as
379 // calls to pure virtuals are UB.
380 if (Fn->getName() == "__cxa_pure_virtual")
381 continue;
382
383 TargetsForSlot.push_back({Fn, &BS});
384 }
385
386 // Give up if we couldn't find any targets.
387 return !TargetsForSlot.empty();
388}
389
390bool DevirtModule::trySingleImplDevirt(
391 ArrayRef<VirtualCallTarget> TargetsForSlot,
392 MutableArrayRef<VirtualCallSite> CallSites) {
393 // See if the program contains a single implementation of this virtual
394 // function.
395 Function *TheFn = TargetsForSlot[0].Fn;
396 for (auto &&Target : TargetsForSlot)
397 if (TheFn != Target.Fn)
398 return false;
399
400 // If so, update each call site to call that implementation directly.
401 for (auto &&VCallSite : CallSites) {
402 VCallSite.CS.setCalledFunction(ConstantExpr::getBitCast(
403 TheFn, VCallSite.CS.getCalledValue()->getType()));
404 }
405 return true;
406}
407
408bool DevirtModule::tryEvaluateFunctionsWithArgs(
409 MutableArrayRef<VirtualCallTarget> TargetsForSlot,
410 ArrayRef<ConstantInt *> Args) {
411 // Evaluate each function and store the result in each target's RetVal
412 // field.
413 for (VirtualCallTarget &Target : TargetsForSlot) {
414 if (Target.Fn->arg_size() != Args.size() + 1)
415 return false;
416 for (unsigned I = 0; I != Args.size(); ++I)
417 if (Target.Fn->getFunctionType()->getParamType(I + 1) !=
418 Args[I]->getType())
419 return false;
420
421 Evaluator Eval(M.getDataLayout(), nullptr);
422 SmallVector<Constant *, 2> EvalArgs;
423 EvalArgs.push_back(
424 Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0)));
425 EvalArgs.insert(EvalArgs.end(), Args.begin(), Args.end());
426 Constant *RetVal;
427 if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) ||
428 !isa<ConstantInt>(RetVal))
429 return false;
430 Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue();
431 }
432 return true;
433}
434
435bool DevirtModule::tryUniformRetValOpt(
436 IntegerType *RetType, ArrayRef<VirtualCallTarget> TargetsForSlot,
437 MutableArrayRef<VirtualCallSite> CallSites) {
438 // Uniform return value optimization. If all functions return the same
439 // constant, replace all calls with that constant.
440 uint64_t TheRetVal = TargetsForSlot[0].RetVal;
441 for (const VirtualCallTarget &Target : TargetsForSlot)
442 if (Target.RetVal != TheRetVal)
443 return false;
444
445 auto TheRetValConst = ConstantInt::get(RetType, TheRetVal);
446 for (auto Call : CallSites)
447 Call.replaceAndErase(TheRetValConst);
448 return true;
449}
450
451bool DevirtModule::tryUniqueRetValOpt(
452 unsigned BitWidth, ArrayRef<VirtualCallTarget> TargetsForSlot,
453 MutableArrayRef<VirtualCallSite> CallSites) {
454 // IsOne controls whether we look for a 0 or a 1.
455 auto tryUniqueRetValOptFor = [&](bool IsOne) {
456 const BitSetInfo *UniqueBitSet = 0;
457 for (const VirtualCallTarget &Target : TargetsForSlot) {
458 if (Target.RetVal == IsOne ? 1 : 0) {
459 if (UniqueBitSet)
460 return false;
461 UniqueBitSet = Target.BS;
462 }
463 }
464
465 // We should have found a unique bit set or bailed out by now. We already
466 // checked for a uniform return value in tryUniformRetValOpt.
467 assert(UniqueBitSet);
468
469 // Replace each call with the comparison.
470 for (auto &&Call : CallSites) {
471 IRBuilder<> B(Call.CS.getInstruction());
472 Value *OneAddr = B.CreateBitCast(UniqueBitSet->Bits->GV, Int8PtrTy);
473 OneAddr = B.CreateConstGEP1_64(OneAddr, UniqueBitSet->Offset);
474 Value *Cmp = B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
475 Call.VTable, OneAddr);
476 Call.replaceAndErase(Cmp);
477 }
478 return true;
479 };
480
481 if (BitWidth == 1) {
482 if (tryUniqueRetValOptFor(true))
483 return true;
484 if (tryUniqueRetValOptFor(false))
485 return true;
486 }
487 return false;
488}
489
490bool DevirtModule::tryVirtualConstProp(
491 MutableArrayRef<VirtualCallTarget> TargetsForSlot,
492 ArrayRef<VirtualCallSite> CallSites) {
493 // This only works if the function returns an integer.
494 auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType());
495 if (!RetType)
496 return false;
497 unsigned BitWidth = RetType->getBitWidth();
498 if (BitWidth > 64)
499 return false;
500
501 // Make sure that each function does not access memory, takes at least one
502 // argument, does not use its first argument (which we assume is 'this'),
503 // and has the same return type.
504 for (VirtualCallTarget &Target : TargetsForSlot) {
505 if (!Target.Fn->doesNotAccessMemory() || Target.Fn->arg_empty() ||
506 !Target.Fn->arg_begin()->use_empty() ||
507 Target.Fn->getReturnType() != RetType)
508 return false;
509 }
510
511 // Group call sites by the list of constant arguments they pass.
512 // The comparator ensures deterministic ordering.
513 struct ByAPIntValue {
514 bool operator()(const std::vector<ConstantInt *> &A,
515 const std::vector<ConstantInt *> &B) const {
516 return std::lexicographical_compare(
517 A.begin(), A.end(), B.begin(), B.end(),
518 [](ConstantInt *AI, ConstantInt *BI) {
519 return AI->getValue().ult(BI->getValue());
520 });
521 }
522 };
523 std::map<std::vector<ConstantInt *>, std::vector<VirtualCallSite>,
524 ByAPIntValue>
525 VCallSitesByConstantArg;
526 for (auto &&VCallSite : CallSites) {
527 std::vector<ConstantInt *> Args;
528 if (VCallSite.CS.getType() != RetType)
529 continue;
530 for (auto &&Arg :
531 make_range(VCallSite.CS.arg_begin() + 1, VCallSite.CS.arg_end())) {
532 if (!isa<ConstantInt>(Arg))
533 break;
534 Args.push_back(cast<ConstantInt>(&Arg));
535 }
536 if (Args.size() + 1 != VCallSite.CS.arg_size())
537 continue;
538
539 VCallSitesByConstantArg[Args].push_back(VCallSite);
540 }
541
542 for (auto &&CSByConstantArg : VCallSitesByConstantArg) {
543 if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first))
544 continue;
545
546 if (tryUniformRetValOpt(RetType, TargetsForSlot, CSByConstantArg.second))
547 continue;
548
549 if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second))
550 continue;
551
552 // Find an allocation offset in bits in all vtables in the bitset.
553 uint64_t AllocBefore =
554 findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth);
555 uint64_t AllocAfter =
556 findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth);
557
558 // Calculate the total amount of padding needed to store a value at both
559 // ends of the object.
560 uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0;
561 for (auto &&Target : TargetsForSlot) {
562 TotalPaddingBefore += std::max<int64_t>(
563 (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0);
564 TotalPaddingAfter += std::max<int64_t>(
565 (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0);
566 }
567
568 // If the amount of padding is too large, give up.
569 // FIXME: do something smarter here.
570 if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128)
571 continue;
572
573 // Calculate the offset to the value as a (possibly negative) byte offset
574 // and (if applicable) a bit offset, and store the values in the targets.
575 int64_t OffsetByte;
576 uint64_t OffsetBit;
577 if (TotalPaddingBefore <= TotalPaddingAfter)
578 setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte,
579 OffsetBit);
580 else
581 setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte,
582 OffsetBit);
583
584 // Rewrite each call to a load from OffsetByte/OffsetBit.
585 for (auto Call : CSByConstantArg.second) {
586 IRBuilder<> B(Call.CS.getInstruction());
587 Value *Addr = B.CreateConstGEP1_64(Call.VTable, OffsetByte);
588 if (BitWidth == 1) {
589 Value *Bits = B.CreateLoad(Addr);
590 Value *Bit = ConstantInt::get(Int8Ty, 1 << OffsetBit);
591 Value *BitsAndBit = B.CreateAnd(Bits, Bit);
592 auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0));
593 Call.replaceAndErase(IsBitSet);
594 } else {
595 Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo());
596 Value *Val = B.CreateLoad(RetType, ValAddr);
597 Call.replaceAndErase(Val);
598 }
599 }
600 }
601 return true;
602}
603
604void DevirtModule::rebuildGlobal(VTableBits &B) {
605 if (B.Before.Bytes.empty() && B.After.Bytes.empty())
606 return;
607
608 // Align each byte array to pointer width.
609 unsigned PointerSize = M.getDataLayout().getPointerSize();
610 B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), PointerSize));
611 B.After.Bytes.resize(alignTo(B.After.Bytes.size(), PointerSize));
612
613 // Before was stored in reverse order; flip it now.
614 for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I)
615 std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]);
616
617 // Build an anonymous global containing the before bytes, followed by the
618 // original initializer, followed by the after bytes.
619 auto NewInit = ConstantStruct::getAnon(
620 {ConstantDataArray::get(M.getContext(), B.Before.Bytes),
621 B.GV->getInitializer(),
622 ConstantDataArray::get(M.getContext(), B.After.Bytes)});
623 auto NewGV =
624 new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(),
625 GlobalVariable::PrivateLinkage, NewInit, "", B.GV);
626 NewGV->setSection(B.GV->getSection());
627 NewGV->setComdat(B.GV->getComdat());
628
629 // Build an alias named after the original global, pointing at the second
630 // element (the original initializer).
631 auto Alias = GlobalAlias::create(
632 B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "",
633 ConstantExpr::getGetElementPtr(
634 NewInit->getType(), NewGV,
635 ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0),
636 ConstantInt::get(Int32Ty, 1)}),
637 &M);
638 Alias->setVisibility(B.GV->getVisibility());
639 Alias->takeName(B.GV);
640
641 B.GV->replaceAllUsesWith(Alias);
642 B.GV->eraseFromParent();
643}
644
645bool DevirtModule::run() {
646 Function *BitSetTestFunc =
647 M.getFunction(Intrinsic::getName(Intrinsic::bitset_test));
648 if (!BitSetTestFunc || BitSetTestFunc->use_empty())
649 return false;
650
651 Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume));
652 if (!AssumeFunc || AssumeFunc->use_empty())
653 return false;
654
655 // Find all virtual calls via a virtual table pointer %p under an assumption
656 // of the form llvm.assume(llvm.bitset.test(%p, %md)). This indicates that %p
657 // points to a vtable in the bitset %md. Group calls by (bitset, offset) pair
658 // (effectively the identity of the virtual function) and store to CallSlots.
659 DenseSet<Value *> SeenPtrs;
660 for (auto I = BitSetTestFunc->use_begin(), E = BitSetTestFunc->use_end();
661 I != E;) {
662 auto CI = dyn_cast<CallInst>(I->getUser());
663 ++I;
664 if (!CI)
665 continue;
666
667 // Find llvm.assume intrinsics for this llvm.bitset.test call.
668 SmallVector<CallInst *, 1> Assumes;
669 for (const Use &CIU : CI->uses()) {
670 auto AssumeCI = dyn_cast<CallInst>(CIU.getUser());
671 if (AssumeCI && AssumeCI->getCalledValue() == AssumeFunc)
672 Assumes.push_back(AssumeCI);
673 }
674
675 // If we found any, search for virtual calls based on %p and add them to
676 // CallSlots.
677 if (!Assumes.empty()) {
678 Metadata *BitSet =
679 cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata();
680 Value *Ptr = CI->getArgOperand(0)->stripPointerCasts();
681 if (SeenPtrs.insert(Ptr).second)
682 findLoadCallsAtConstantOffset(BitSet, Ptr, 0, CI->getArgOperand(0));
683 }
684
685 // We no longer need the assumes or the bitset test.
686 for (auto Assume : Assumes)
687 Assume->eraseFromParent();
688 // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
689 // may use the vtable argument later.
690 if (CI->use_empty())
691 CI->eraseFromParent();
692 }
693
694 // Rebuild llvm.bitsets metadata into a map for easy lookup.
695 std::vector<VTableBits> Bits;
696 DenseMap<Metadata *, std::set<BitSetInfo>> BitSets;
697 buildBitSets(Bits, BitSets);
698 if (BitSets.empty())
699 return true;
700
701 // For each (bitset, offset) pair:
702 bool DidVirtualConstProp = false;
703 for (auto &S : CallSlots) {
704 // Search each of the vtables in the bitset for the virtual function
705 // implementation at offset S.first.ByteOffset, and add to TargetsForSlot.
706 std::vector<VirtualCallTarget> TargetsForSlot;
707 if (!tryFindVirtualCallTargets(TargetsForSlot, BitSets[S.first.BitSetID],
708 S.first.ByteOffset))
709 continue;
710
711 if (trySingleImplDevirt(TargetsForSlot, S.second))
712 continue;
713
714 DidVirtualConstProp |= tryVirtualConstProp(TargetsForSlot, S.second);
715 }
716
717 // Rebuild each global we touched as part of virtual constant propagation to
718 // include the before and after bytes.
719 if (DidVirtualConstProp)
720 for (VTableBits &B : Bits)
721 rebuildGlobal(B);
722
723 return true;
724}