blob: 6bde5a54d6486d7c4add366291ffe1ad8c693d6c [file] [log] [blame]
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001================================
2Source Level Debugging with LLVM
3================================
4
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00005.. contents::
6 :local:
7
8Introduction
9============
10
11This document is the central repository for all information pertaining to debug
12information in LLVM. It describes the :ref:`actual format that the LLVM debug
13information takes <format>`, which is useful for those interested in creating
14front-ends or dealing directly with the information. Further, this document
15provides specific examples of what debug information for C/C++ looks like.
16
17Philosophy behind LLVM debugging information
18--------------------------------------------
19
20The idea of the LLVM debugging information is to capture how the important
21pieces of the source-language's Abstract Syntax Tree map onto LLVM code.
22Several design aspects have shaped the solution that appears here. The
23important ones are:
24
25* Debugging information should have very little impact on the rest of the
26 compiler. No transformations, analyses, or code generators should need to
27 be modified because of debugging information.
28
29* LLVM optimizations should interact in :ref:`well-defined and easily described
30 ways <intro_debugopt>` with the debugging information.
31
32* Because LLVM is designed to support arbitrary programming languages,
33 LLVM-to-LLVM tools should not need to know anything about the semantics of
34 the source-level-language.
35
36* Source-level languages are often **widely** different from one another.
37 LLVM should not put any restrictions of the flavor of the source-language,
38 and the debugging information should work with any language.
39
40* With code generator support, it should be possible to use an LLVM compiler
41 to compile a program to native machine code and standard debugging
42 formats. This allows compatibility with traditional machine-code level
43 debuggers, like GDB or DBX.
44
45The approach used by the LLVM implementation is to use a small set of
46:ref:`intrinsic functions <format_common_intrinsics>` to define a mapping
47between LLVM program objects and the source-level objects. The description of
48the source-level program is maintained in LLVM metadata in an
49:ref:`implementation-defined format <ccxx_frontend>` (the C/C++ front-end
50currently uses working draft 7 of the `DWARF 3 standard
51<http://www.eagercon.com/dwarf/dwarf3std.htm>`_).
52
53When a program is being debugged, a debugger interacts with the user and turns
54the stored debug information into source-language specific information. As
55such, a debugger must be aware of the source-language, and is thus tied to a
56specific language or family of languages.
57
58Debug information consumers
59---------------------------
60
61The role of debug information is to provide meta information normally stripped
62away during the compilation process. This meta information provides an LLVM
63user a relationship between generated code and the original program source
64code.
65
Reid Kleckner0ad60a92016-06-07 20:27:30 +000066Currently, there are two backend consumers of debug info: DwarfDebug and
67CodeViewDebug. DwarfDebug produces DWARF sutable for use with GDB, LLDB, and
68other DWARF-based debuggers. :ref:`CodeViewDebug <codeview>` produces CodeView,
69the Microsoft debug info format, which is usable with Microsoft debuggers such
70as Visual Studio and WinDBG. LLVM's debug information format is mostly derived
71from and inspired by DWARF, but it is feasible to translate into other target
72debug info formats such as STABS.
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +000073
74It would also be reasonable to use debug information to feed profiling tools
75for analysis of generated code, or, tools for reconstructing the original
76source from generated code.
77
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +000078.. _intro_debugopt:
79
80Debugging optimized code
81------------------------
82
83An extremely high priority of LLVM debugging information is to make it interact
84well with optimizations and analysis. In particular, the LLVM debug
85information provides the following guarantees:
86
87* LLVM debug information **always provides information to accurately read
88 the source-level state of the program**, regardless of which LLVM
89 optimizations have been run, and without any modification to the
90 optimizations themselves. However, some optimizations may impact the
91 ability to modify the current state of the program with a debugger, such
92 as setting program variables, or calling functions that have been
93 deleted.
94
95* As desired, LLVM optimizations can be upgraded to be aware of the LLVM
96 debugging information, allowing them to update the debugging information
97 as they perform aggressive optimizations. This means that, with effort,
98 the LLVM optimizers could optimize debug code just as well as non-debug
99 code.
100
101* LLVM debug information does not prevent optimizations from
102 happening (for example inlining, basic block reordering/merging/cleanup,
103 tail duplication, etc).
104
105* LLVM debug information is automatically optimized along with the rest of
106 the program, using existing facilities. For example, duplicate
107 information is automatically merged by the linker, and unused information
108 is automatically removed.
109
110Basically, the debug information allows you to compile a program with
111"``-O0 -g``" and get full debug information, allowing you to arbitrarily modify
112the program as it executes from a debugger. Compiling a program with
113"``-O3 -g``" gives you full debug information that is always available and
114accurate for reading (e.g., you get accurate stack traces despite tail call
115elimination and inlining), but you might lose the ability to modify the program
116and call functions where were optimized out of the program, or inlined away
117completely.
118
119:ref:`LLVM test suite <test-suite-quickstart>` provides a framework to test
120optimizer's handling of debugging information. It can be run like this:
121
122.. code-block:: bash
123
124 % cd llvm/projects/test-suite/MultiSource/Benchmarks # or some other level
125 % make TEST=dbgopt
126
127This will test impact of debugging information on optimization passes. If
128debugging information influences optimization passes then it will be reported
129as a failure. See :doc:`TestingGuide` for more information on LLVM test
130infrastructure and how to run various tests.
131
132.. _format:
133
134Debugging information format
135============================
136
137LLVM debugging information has been carefully designed to make it possible for
138the optimizer to optimize the program and debugging information without
139necessarily having to know anything about debugging information. In
140particular, the use of metadata avoids duplicated debugging information from
141the beginning, and the global dead code elimination pass automatically deletes
142debugging information for a function if it decides to delete the function.
143
144To do this, most of the debugging information (descriptors for types,
145variables, functions, source files, etc) is inserted by the language front-end
146in the form of LLVM metadata.
147
148Debug information is designed to be agnostic about the target debugger and
149debugging information representation (e.g. DWARF/Stabs/etc). It uses a generic
150pass to decode the information that represents variables, types, functions,
151namespaces, etc: this allows for arbitrary source-language semantics and
152type-systems to be used, as long as there is a module written for the target
153debugger to interpret the information.
154
155To provide basic functionality, the LLVM debugger does have to make some
156assumptions about the source-level language being debugged, though it keeps
157these to a minimum. The only common features that the LLVM debugger assumes
Michael Kuperstein605308a2015-05-14 10:58:59 +0000158exist are `source files <LangRef.html#difile>`_, and `program objects
159<LangRef.html#diglobalvariable>`_. These abstract objects are used by a
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000160debugger to form stack traces, show information about local variables, etc.
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000161
162This section of the documentation first describes the representation aspects
163common to any source-language. :ref:`ccxx_frontend` describes the data layout
164conventions used by the C and C++ front-ends.
165
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000166Debug information descriptors are `specialized metadata nodes
167<LangRef.html#specialized-metadata>`_, first-class subclasses of ``Metadata``.
Adrian Prantlb1416832014-08-01 22:11:58 +0000168
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000169.. _format_common_intrinsics:
170
171Debugger intrinsic functions
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000172----------------------------
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000173
174LLVM uses several intrinsic functions (name prefixed with "``llvm.dbg``") to
175provide debug information at various points in generated code.
176
177``llvm.dbg.declare``
178^^^^^^^^^^^^^^^^^^^^
179
180.. code-block:: llvm
181
Michael Kuperstein605308a2015-05-14 10:58:59 +0000182 void @llvm.dbg.declare(metadata, metadata, metadata)
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000183
184This intrinsic provides information about a local element (e.g., variable).
185The first argument is metadata holding the alloca for the variable. The second
Michael Kuperstein605308a2015-05-14 10:58:59 +0000186argument is a `local variable <LangRef.html#dilocalvariable>`_ containing a
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000187description of the variable. The third argument is a `complex expression
Michael Kuperstein605308a2015-05-14 10:58:59 +0000188<LangRef.html#diexpression>`_.
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000189
190``llvm.dbg.value``
191^^^^^^^^^^^^^^^^^^
192
193.. code-block:: llvm
194
Michael Kuperstein605308a2015-05-14 10:58:59 +0000195 void @llvm.dbg.value(metadata, i64, metadata, metadata)
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000196
197This intrinsic provides information when a user source variable is set to a new
198value. The first argument is the new value (wrapped as metadata). The second
199argument is the offset in the user source variable where the new value is
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000200written. The third argument is a `local variable
Michael Kuperstein605308a2015-05-14 10:58:59 +0000201<LangRef.html#dilocalvariable>`_ containing a description of the variable. The
Mark Lacey802f19a2016-02-12 06:19:16 +0000202fourth argument is a `complex expression <LangRef.html#diexpression>`_.
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000203
204Object lifetimes and scoping
205============================
206
207In many languages, the local variables in functions can have their lifetimes or
208scopes limited to a subset of a function. In the C family of languages, for
209example, variables are only live (readable and writable) within the source
210block that they are defined in. In functional languages, values are only
211readable after they have been defined. Though this is a very obvious concept,
212it is non-trivial to model in LLVM, because it has no notion of scoping in this
213sense, and does not want to be tied to a language's scoping rules.
214
215In order to handle this, the LLVM debug format uses the metadata attached to
216llvm instructions to encode line number and scoping information. Consider the
217following C fragment, for example:
218
219.. code-block:: c
220
221 1. void foo() {
222 2. int X = 21;
223 3. int Y = 22;
224 4. {
225 5. int Z = 23;
226 6. Z = X;
227 7. }
228 8. X = Y;
229 9. }
230
231Compiled to LLVM, this function would be represented like this:
232
Renato Golin124f2592016-07-20 12:16:38 +0000233.. code-block:: text
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000234
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000235 ; Function Attrs: nounwind ssp uwtable
Peter Collingbourne50108682015-11-06 02:41:02 +0000236 define void @foo() #0 !dbg !4 {
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000237 entry:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000238 %X = alloca i32, align 4
Bill Wendlinge814a372013-10-27 04:50:34 +0000239 %Y = alloca i32, align 4
240 %Z = alloca i32, align 4
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000241 call void @llvm.dbg.declare(metadata i32* %X, metadata !11, metadata !13), !dbg !14
242 store i32 21, i32* %X, align 4, !dbg !14
243 call void @llvm.dbg.declare(metadata i32* %Y, metadata !15, metadata !13), !dbg !16
244 store i32 22, i32* %Y, align 4, !dbg !16
245 call void @llvm.dbg.declare(metadata i32* %Z, metadata !17, metadata !13), !dbg !19
246 store i32 23, i32* %Z, align 4, !dbg !19
247 %0 = load i32, i32* %X, align 4, !dbg !20
248 store i32 %0, i32* %Z, align 4, !dbg !21
249 %1 = load i32, i32* %Y, align 4, !dbg !22
250 store i32 %1, i32* %X, align 4, !dbg !23
251 ret void, !dbg !24
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000252 }
253
David Blaikiec4fe5db2013-05-29 02:05:13 +0000254 ; Function Attrs: nounwind readnone
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000255 declare void @llvm.dbg.declare(metadata, metadata, metadata) #1
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000256
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000257 attributes #0 = { nounwind ssp uwtable "less-precise-fpmad"="false" "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "stack-protector-buffer-size"="8" "unsafe-fp-math"="false" "use-soft-float"="false" }
David Blaikiec4fe5db2013-05-29 02:05:13 +0000258 attributes #1 = { nounwind readnone }
259
260 !llvm.dbg.cu = !{!0}
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000261 !llvm.module.flags = !{!7, !8, !9}
262 !llvm.ident = !{!10}
Bill Wendlinge814a372013-10-27 04:50:34 +0000263
Adrian Prantlb8089512016-04-01 00:16:49 +0000264 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang version 3.7.0 (trunk 231150) (llvm/trunk 231154)", isOptimized: false, runtimeVersion: 0, emissionKind: FullDebug, enums: !2, retainedTypes: !2, subprograms: !3, globals: !2, imports: !2)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +0000265 !1 = !DIFile(filename: "/dev/stdin", directory: "/Users/dexonsmith/data/llvm/debug-info")
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000266 !2 = !{}
267 !3 = !{!4}
Peter Collingbourne50108682015-11-06 02:41:02 +0000268 !4 = distinct !DISubprogram(name: "foo", scope: !1, file: !1, line: 1, type: !5, isLocal: false, isDefinition: true, scopeLine: 1, isOptimized: false, variables: !2)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +0000269 !5 = !DISubroutineType(types: !6)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000270 !6 = !{null}
271 !7 = !{i32 2, !"Dwarf Version", i32 2}
272 !8 = !{i32 2, !"Debug Info Version", i32 3}
273 !9 = !{i32 1, !"PIC Level", i32 2}
274 !10 = !{!"clang version 3.7.0 (trunk 231150) (llvm/trunk 231154)"}
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +0000275 !11 = !DILocalVariable(name: "X", scope: !4, file: !1, line: 2, type: !12)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +0000276 !12 = !DIBasicType(name: "int", size: 32, align: 32, encoding: DW_ATE_signed)
277 !13 = !DIExpression()
278 !14 = !DILocation(line: 2, column: 9, scope: !4)
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +0000279 !15 = !DILocalVariable(name: "Y", scope: !4, file: !1, line: 3, type: !12)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +0000280 !16 = !DILocation(line: 3, column: 9, scope: !4)
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +0000281 !17 = !DILocalVariable(name: "Z", scope: !18, file: !1, line: 5, type: !12)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +0000282 !18 = distinct !DILexicalBlock(scope: !4, file: !1, line: 4, column: 5)
283 !19 = !DILocation(line: 5, column: 11, scope: !18)
284 !20 = !DILocation(line: 6, column: 11, scope: !18)
285 !21 = !DILocation(line: 6, column: 9, scope: !18)
286 !22 = !DILocation(line: 8, column: 9, scope: !4)
287 !23 = !DILocation(line: 8, column: 7, scope: !4)
288 !24 = !DILocation(line: 9, column: 3, scope: !4)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000289
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000290
291This example illustrates a few important details about LLVM debugging
292information. In particular, it shows how the ``llvm.dbg.declare`` intrinsic and
293location information, which are attached to an instruction, are applied
294together to allow a debugger to analyze the relationship between statements,
295variable definitions, and the code used to implement the function.
296
297.. code-block:: llvm
298
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000299 call void @llvm.dbg.declare(metadata i32* %X, metadata !11, metadata !13), !dbg !14
David Blaikiec4fe5db2013-05-29 02:05:13 +0000300 ; [debug line = 2:7] [debug variable = X]
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000301
302The first intrinsic ``%llvm.dbg.declare`` encodes debugging information for the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000303variable ``X``. The metadata ``!dbg !14`` attached to the intrinsic provides
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000304scope information for the variable ``X``.
305
Renato Golin124f2592016-07-20 12:16:38 +0000306.. code-block:: text
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000307
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +0000308 !14 = !DILocation(line: 2, column: 9, scope: !4)
Peter Collingbourne50108682015-11-06 02:41:02 +0000309 !4 = distinct !DISubprogram(name: "foo", scope: !1, file: !1, line: 1, type: !5,
310 isLocal: false, isDefinition: true, scopeLine: 1,
311 isOptimized: false, variables: !2)
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000312
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000313Here ``!14`` is metadata providing `location information
Michael Kuperstein605308a2015-05-14 10:58:59 +0000314<LangRef.html#dilocation>`_. In this example, scope is encoded by ``!4``, a
315`subprogram descriptor <LangRef.html#disubprogram>`_. This way the location
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000316information attached to the intrinsics indicates that the variable ``X`` is
317declared at line number 2 at a function level scope in function ``foo``.
318
319Now lets take another example.
320
321.. code-block:: llvm
322
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000323 call void @llvm.dbg.declare(metadata i32* %Z, metadata !17, metadata !13), !dbg !19
David Blaikiec4fe5db2013-05-29 02:05:13 +0000324 ; [debug line = 5:9] [debug variable = Z]
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000325
David Blaikiec4fe5db2013-05-29 02:05:13 +0000326The third intrinsic ``%llvm.dbg.declare`` encodes debugging information for
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000327variable ``Z``. The metadata ``!dbg !19`` attached to the intrinsic provides
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000328scope information for the variable ``Z``.
329
Renato Golin124f2592016-07-20 12:16:38 +0000330.. code-block:: text
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000331
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +0000332 !18 = distinct !DILexicalBlock(scope: !4, file: !1, line: 4, column: 5)
333 !19 = !DILocation(line: 5, column: 11, scope: !18)
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000334
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000335Here ``!19`` indicates that ``Z`` is declared at line number 5 and column
336number 0 inside of lexical scope ``!18``. The lexical scope itself resides
337inside of subprogram ``!4`` described above.
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000338
339The scope information attached with each instruction provides a straightforward
340way to find instructions covered by a scope.
341
342.. _ccxx_frontend:
343
344C/C++ front-end specific debug information
345==========================================
346
347The C and C++ front-ends represent information about the program in a format
348that is effectively identical to `DWARF 3.0
349<http://www.eagercon.com/dwarf/dwarf3std.htm>`_ in terms of information
350content. This allows code generators to trivially support native debuggers by
351generating standard dwarf information, and contains enough information for
352non-dwarf targets to translate it as needed.
353
354This section describes the forms used to represent C and C++ programs. Other
355languages could pattern themselves after this (which itself is tuned to
356representing programs in the same way that DWARF 3 does), or they could choose
357to provide completely different forms if they don't fit into the DWARF model.
358As support for debugging information gets added to the various LLVM
359source-language front-ends, the information used should be documented here.
360
Duncan P. N. Exon Smith936675e2014-10-04 14:56:56 +0000361The following sections provide examples of a few C/C++ constructs and the debug
362information that would best describe those constructs. The canonical
363references are the ``DIDescriptor`` classes defined in
364``include/llvm/IR/DebugInfo.h`` and the implementations of the helper functions
365in ``lib/IR/DIBuilder.cpp``.
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000366
367C/C++ source file information
368-----------------------------
369
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000370``llvm::Instruction`` provides easy access to metadata attached with an
371instruction. One can extract line number information encoded in LLVM IR using
Duncan P. N. Exon Smithf032c952015-08-06 18:15:25 +0000372``Instruction::getDebugLoc()`` and ``DILocation::getLine()``.
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000373
374.. code-block:: c++
375
Duncan P. N. Exon Smithf032c952015-08-06 18:15:25 +0000376 if (DILocation *Loc = I->getDebugLoc()) { // Here I is an LLVM instruction
377 unsigned Line = Loc->getLine();
378 StringRef File = Loc->getFilename();
379 StringRef Dir = Loc->getDirectory();
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000380 }
381
382C/C++ global variable information
383---------------------------------
384
385Given an integer global variable declared as follows:
386
387.. code-block:: c
388
Victor Leschuk3c989982016-10-26 11:59:03 +0000389 _Alignas(8) int MyGlobal = 100;
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000390
391a C/C++ front-end would generate the following descriptors:
392
Renato Golin124f2592016-07-20 12:16:38 +0000393.. code-block:: text
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000394
395 ;;
396 ;; Define the global itself.
397 ;;
Victor Leschuk3c989982016-10-26 11:59:03 +0000398 @MyGlobal = global i32 100, align 8, !dbg !0
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000399
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000400 ;;
401 ;; List of debug info of globals
402 ;;
Victor Leschuk3c989982016-10-26 11:59:03 +0000403 !llvm.dbg.cu = !{!1}
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000404
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000405 ;; Some unrelated metadata.
406 !llvm.module.flags = !{!6, !7}
Victor Leschuk3c989982016-10-26 11:59:03 +0000407 !llvm.ident = !{!8}
408
409 ;; Define the global variable itself
410 !0 = distinct !DIGlobalVariable(name: "MyGlobal", scope: !1, file: !2, line: 1, type: !5, isLocal: false, isDefinition: true, align: 64)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000411
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000412 ;; Define the compile unit.
Victor Leschuk3c989982016-10-26 11:59:03 +0000413 !1 = distinct !DICompileUnit(language: DW_LANG_C99, file: !2,
414 producer: "clang version 4.0.0 (http://llvm.org/git/clang.git ae4deadbea242e8ea517eef662c30443f75bd086) (http://llvm.org/git/llvm.git 818b4c1539df3e51dc7e62c89ead4abfd348827d)",
415 isOptimized: false, runtimeVersion: 0, emissionKind: FullDebug,
416 enums: !3, globals: !4)
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000417
418 ;;
419 ;; Define the file
420 ;;
Victor Leschuk3c989982016-10-26 11:59:03 +0000421 !2 = !DIFile(filename: "/dev/stdin",
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000422 directory: "/Users/dexonsmith/data/llvm/debug-info")
423
424 ;; An empty array.
Victor Leschuk3c989982016-10-26 11:59:03 +0000425 !3 = !{}
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000426
427 ;; The Array of Global Variables
Victor Leschuk3c989982016-10-26 11:59:03 +0000428 !4 = !{!0}
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000429
430 ;;
431 ;; Define the type
432 ;;
Victor Leschuk3c989982016-10-26 11:59:03 +0000433 !5 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000434
435 ;; Dwarf version to output.
Victor Leschuk3c989982016-10-26 11:59:03 +0000436 !6 = !{i32 2, !"Dwarf Version", i32 4}
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000437
438 ;; Debug info schema version.
439 !7 = !{i32 2, !"Debug Info Version", i32 3}
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000440
Victor Leschuk3c989982016-10-26 11:59:03 +0000441 ;; Compiler identification
442 !8 = !{!"clang version 4.0.0 (http://llvm.org/git/clang.git ae4deadbea242e8ea517eef662c30443f75bd086) (http://llvm.org/git/llvm.git 818b4c1539df3e51dc7e62c89ead4abfd348827d)"}
443
444
445The align value in DIGlobalVariable description specifies variable alignment in
446case it was forced by C11 _Alignas(), C++11 alignas() keywords or compiler
447attribute __attribute__((aligned ())). In other case (when this field is missing)
448alignment is considered default. This is used when producing DWARF output
449for DW_AT_alignment value.
450
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000451C/C++ function information
452--------------------------
453
454Given a function declared as follows:
455
456.. code-block:: c
457
458 int main(int argc, char *argv[]) {
459 return 0;
460 }
461
462a C/C++ front-end would generate the following descriptors:
463
Renato Golin124f2592016-07-20 12:16:38 +0000464.. code-block:: text
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000465
466 ;;
David Blaikiec4fe5db2013-05-29 02:05:13 +0000467 ;; Define the anchor for subprograms.
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000468 ;;
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +0000469 !4 = !DISubprogram(name: "main", scope: !1, file: !1, line: 1, type: !5,
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +0000470 isLocal: false, isDefinition: true, scopeLine: 1,
471 flags: DIFlagPrototyped, isOptimized: false,
Peter Collingbourne50108682015-11-06 02:41:02 +0000472 variables: !2)
Duncan P. N. Exon Smith936675e2014-10-04 14:56:56 +0000473
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000474 ;;
475 ;; Define the subprogram itself.
476 ;;
Peter Collingbourne50108682015-11-06 02:41:02 +0000477 define i32 @main(i32 %argc, i8** %argv) !dbg !4 {
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000478 ...
479 }
480
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000481Debugging information format
482============================
483
484Debugging Information Extension for Objective C Properties
485----------------------------------------------------------
486
487Introduction
488^^^^^^^^^^^^
489
490Objective C provides a simpler way to declare and define accessor methods using
491declared properties. The language provides features to declare a property and
492to let compiler synthesize accessor methods.
493
494The debugger lets developer inspect Objective C interfaces and their instance
495variables and class variables. However, the debugger does not know anything
496about the properties defined in Objective C interfaces. The debugger consumes
497information generated by compiler in DWARF format. The format does not support
498encoding of Objective C properties. This proposal describes DWARF extensions to
499encode Objective C properties, which the debugger can use to let developers
500inspect Objective C properties.
501
502Proposal
503^^^^^^^^
504
505Objective C properties exist separately from class members. A property can be
506defined only by "setter" and "getter" selectors, and be calculated anew on each
507access. Or a property can just be a direct access to some declared ivar.
508Finally it can have an ivar "automatically synthesized" for it by the compiler,
509in which case the property can be referred to in user code directly using the
510standard C dereference syntax as well as through the property "dot" syntax, but
511there is no entry in the ``@interface`` declaration corresponding to this ivar.
512
513To facilitate debugging, these properties we will add a new DWARF TAG into the
514``DW_TAG_structure_type`` definition for the class to hold the description of a
515given property, and a set of DWARF attributes that provide said description.
516The property tag will also contain the name and declared type of the property.
517
518If there is a related ivar, there will also be a DWARF property attribute placed
519in the ``DW_TAG_member`` DIE for that ivar referring back to the property TAG
520for that property. And in the case where the compiler synthesizes the ivar
521directly, the compiler is expected to generate a ``DW_TAG_member`` for that
522ivar (with the ``DW_AT_artificial`` set to 1), whose name will be the name used
523to access this ivar directly in code, and with the property attribute pointing
524back to the property it is backing.
525
526The following examples will serve as illustration for our discussion:
527
528.. code-block:: objc
529
530 @interface I1 {
531 int n2;
532 }
533
534 @property int p1;
535 @property int p2;
536 @end
537
538 @implementation I1
539 @synthesize p1;
540 @synthesize p2 = n2;
541 @end
542
543This produces the following DWARF (this is a "pseudo dwarfdump" output):
544
545.. code-block:: none
546
547 0x00000100: TAG_structure_type [7] *
548 AT_APPLE_runtime_class( 0x10 )
549 AT_name( "I1" )
550 AT_decl_file( "Objc_Property.m" )
551 AT_decl_line( 3 )
552
553 0x00000110 TAG_APPLE_property
554 AT_name ( "p1" )
555 AT_type ( {0x00000150} ( int ) )
556
557 0x00000120: TAG_APPLE_property
558 AT_name ( "p2" )
559 AT_type ( {0x00000150} ( int ) )
560
561 0x00000130: TAG_member [8]
562 AT_name( "_p1" )
563 AT_APPLE_property ( {0x00000110} "p1" )
564 AT_type( {0x00000150} ( int ) )
565 AT_artificial ( 0x1 )
566
567 0x00000140: TAG_member [8]
568 AT_name( "n2" )
569 AT_APPLE_property ( {0x00000120} "p2" )
570 AT_type( {0x00000150} ( int ) )
571
572 0x00000150: AT_type( ( int ) )
573
574Note, the current convention is that the name of the ivar for an
575auto-synthesized property is the name of the property from which it derives
576with an underscore prepended, as is shown in the example. But we actually
577don't need to know this convention, since we are given the name of the ivar
578directly.
579
580Also, it is common practice in ObjC to have different property declarations in
581the @interface and @implementation - e.g. to provide a read-only property in
582the interface,and a read-write interface in the implementation. In that case,
583the compiler should emit whichever property declaration will be in force in the
584current translation unit.
585
586Developers can decorate a property with attributes which are encoded using
587``DW_AT_APPLE_property_attribute``.
588
589.. code-block:: objc
590
591 @property (readonly, nonatomic) int pr;
592
593.. code-block:: none
594
595 TAG_APPLE_property [8]
596 AT_name( "pr" )
597 AT_type ( {0x00000147} (int) )
598 AT_APPLE_property_attribute (DW_APPLE_PROPERTY_readonly, DW_APPLE_PROPERTY_nonatomic)
599
600The setter and getter method names are attached to the property using
601``DW_AT_APPLE_property_setter`` and ``DW_AT_APPLE_property_getter`` attributes.
602
603.. code-block:: objc
604
605 @interface I1
606 @property (setter=myOwnP3Setter:) int p3;
607 -(void)myOwnP3Setter:(int)a;
608 @end
609
610 @implementation I1
611 @synthesize p3;
612 -(void)myOwnP3Setter:(int)a{ }
613 @end
614
615The DWARF for this would be:
616
617.. code-block:: none
618
619 0x000003bd: TAG_structure_type [7] *
620 AT_APPLE_runtime_class( 0x10 )
621 AT_name( "I1" )
622 AT_decl_file( "Objc_Property.m" )
623 AT_decl_line( 3 )
624
625 0x000003cd TAG_APPLE_property
626 AT_name ( "p3" )
627 AT_APPLE_property_setter ( "myOwnP3Setter:" )
628 AT_type( {0x00000147} ( int ) )
629
630 0x000003f3: TAG_member [8]
631 AT_name( "_p3" )
632 AT_type ( {0x00000147} ( int ) )
633 AT_APPLE_property ( {0x000003cd} )
634 AT_artificial ( 0x1 )
635
636New DWARF Tags
637^^^^^^^^^^^^^^
638
639+-----------------------+--------+
640| TAG | Value |
641+=======================+========+
642| DW_TAG_APPLE_property | 0x4200 |
643+-----------------------+--------+
644
645New DWARF Attributes
646^^^^^^^^^^^^^^^^^^^^
647
648+--------------------------------+--------+-----------+
649| Attribute | Value | Classes |
650+================================+========+===========+
651| DW_AT_APPLE_property | 0x3fed | Reference |
652+--------------------------------+--------+-----------+
653| DW_AT_APPLE_property_getter | 0x3fe9 | String |
654+--------------------------------+--------+-----------+
655| DW_AT_APPLE_property_setter | 0x3fea | String |
656+--------------------------------+--------+-----------+
657| DW_AT_APPLE_property_attribute | 0x3feb | Constant |
658+--------------------------------+--------+-----------+
659
660New DWARF Constants
661^^^^^^^^^^^^^^^^^^^
662
Frederic Risseea4f882014-10-08 14:59:44 +0000663+--------------------------------------+-------+
664| Name | Value |
665+======================================+=======+
666| DW_APPLE_PROPERTY_readonly | 0x01 |
667+--------------------------------------+-------+
668| DW_APPLE_PROPERTY_getter | 0x02 |
669+--------------------------------------+-------+
670| DW_APPLE_PROPERTY_assign | 0x04 |
671+--------------------------------------+-------+
672| DW_APPLE_PROPERTY_readwrite | 0x08 |
673+--------------------------------------+-------+
674| DW_APPLE_PROPERTY_retain | 0x10 |
675+--------------------------------------+-------+
676| DW_APPLE_PROPERTY_copy | 0x20 |
677+--------------------------------------+-------+
678| DW_APPLE_PROPERTY_nonatomic | 0x40 |
679+--------------------------------------+-------+
680| DW_APPLE_PROPERTY_setter | 0x80 |
681+--------------------------------------+-------+
682| DW_APPLE_PROPERTY_atomic | 0x100 |
683+--------------------------------------+-------+
684| DW_APPLE_PROPERTY_weak | 0x200 |
685+--------------------------------------+-------+
686| DW_APPLE_PROPERTY_strong | 0x400 |
687+--------------------------------------+-------+
688| DW_APPLE_PROPERTY_unsafe_unretained | 0x800 |
Adrian Prantl0418ef22016-07-14 00:41:18 +0000689+--------------------------------------+-------+
690| DW_APPLE_PROPERTY_nullability | 0x1000|
691+--------------------------------------+-------+
692| DW_APPLE_PROPERTY_null_resettable | 0x2000|
693+--------------------------------------+-------+
694| DW_APPLE_PROPERTY_class | 0x4000|
695+--------------------------------------+-------+
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000696
697Name Accelerator Tables
698-----------------------
699
700Introduction
701^^^^^^^^^^^^
702
703The "``.debug_pubnames``" and "``.debug_pubtypes``" formats are not what a
704debugger needs. The "``pub``" in the section name indicates that the entries
705in the table are publicly visible names only. This means no static or hidden
706functions show up in the "``.debug_pubnames``". No static variables or private
707class variables are in the "``.debug_pubtypes``". Many compilers add different
708things to these tables, so we can't rely upon the contents between gcc, icc, or
709clang.
710
711The typical query given by users tends not to match up with the contents of
712these tables. For example, the DWARF spec states that "In the case of the name
713of a function member or static data member of a C++ structure, class or union,
714the name presented in the "``.debug_pubnames``" section is not the simple name
715given by the ``DW_AT_name attribute`` of the referenced debugging information
716entry, but rather the fully qualified name of the data or function member."
717So the only names in these tables for complex C++ entries is a fully
718qualified name. Debugger users tend not to enter their search strings as
719"``a::b::c(int,const Foo&) const``", but rather as "``c``", "``b::c``" , or
720"``a::b::c``". So the name entered in the name table must be demangled in
721order to chop it up appropriately and additional names must be manually entered
722into the table to make it effective as a name lookup table for debuggers to
Bruce Mitchenere9ffb452015-09-12 01:17:08 +0000723use.
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000724
725All debuggers currently ignore the "``.debug_pubnames``" table as a result of
726its inconsistent and useless public-only name content making it a waste of
727space in the object file. These tables, when they are written to disk, are not
728sorted in any way, leaving every debugger to do its own parsing and sorting.
729These tables also include an inlined copy of the string values in the table
730itself making the tables much larger than they need to be on disk, especially
731for large C++ programs.
732
733Can't we just fix the sections by adding all of the names we need to this
734table? No, because that is not what the tables are defined to contain and we
735won't know the difference between the old bad tables and the new good tables.
736At best we could make our own renamed sections that contain all of the data we
737need.
738
739These tables are also insufficient for what a debugger like LLDB needs. LLDB
740uses clang for its expression parsing where LLDB acts as a PCH. LLDB is then
741often asked to look for type "``foo``" or namespace "``bar``", or list items in
742namespace "``baz``". Namespaces are not included in the pubnames or pubtypes
743tables. Since clang asks a lot of questions when it is parsing an expression,
744we need to be very fast when looking up names, as it happens a lot. Having new
745accelerator tables that are optimized for very quick lookups will benefit this
746type of debugging experience greatly.
747
748We would like to generate name lookup tables that can be mapped into memory
749from disk, and used as is, with little or no up-front parsing. We would also
750be able to control the exact content of these different tables so they contain
751exactly what we need. The Name Accelerator Tables were designed to fix these
752issues. In order to solve these issues we need to:
753
754* Have a format that can be mapped into memory from disk and used as is
755* Lookups should be very fast
756* Extensible table format so these tables can be made by many producers
757* Contain all of the names needed for typical lookups out of the box
758* Strict rules for the contents of tables
759
760Table size is important and the accelerator table format should allow the reuse
761of strings from common string tables so the strings for the names are not
762duplicated. We also want to make sure the table is ready to be used as-is by
763simply mapping the table into memory with minimal header parsing.
764
765The name lookups need to be fast and optimized for the kinds of lookups that
766debuggers tend to do. Optimally we would like to touch as few parts of the
767mapped table as possible when doing a name lookup and be able to quickly find
768the name entry we are looking for, or discover there are no matches. In the
769case of debuggers we optimized for lookups that fail most of the time.
770
771Each table that is defined should have strict rules on exactly what is in the
772accelerator tables and documented so clients can rely on the content.
773
774Hash Tables
775^^^^^^^^^^^
776
777Standard Hash Tables
778""""""""""""""""""""
779
780Typical hash tables have a header, buckets, and each bucket points to the
781bucket contents:
782
783.. code-block:: none
784
785 .------------.
786 | HEADER |
787 |------------|
788 | BUCKETS |
789 |------------|
790 | DATA |
791 `------------'
792
793The BUCKETS are an array of offsets to DATA for each hash:
794
795.. code-block:: none
796
797 .------------.
798 | 0x00001000 | BUCKETS[0]
799 | 0x00002000 | BUCKETS[1]
800 | 0x00002200 | BUCKETS[2]
801 | 0x000034f0 | BUCKETS[3]
802 | | ...
803 | 0xXXXXXXXX | BUCKETS[n_buckets]
804 '------------'
805
806So for ``bucket[3]`` in the example above, we have an offset into the table
8070x000034f0 which points to a chain of entries for the bucket. Each bucket must
808contain a next pointer, full 32 bit hash value, the string itself, and the data
809for the current string value.
810
811.. code-block:: none
812
813 .------------.
814 0x000034f0: | 0x00003500 | next pointer
815 | 0x12345678 | 32 bit hash
816 | "erase" | string value
817 | data[n] | HashData for this bucket
818 |------------|
819 0x00003500: | 0x00003550 | next pointer
820 | 0x29273623 | 32 bit hash
821 | "dump" | string value
822 | data[n] | HashData for this bucket
823 |------------|
824 0x00003550: | 0x00000000 | next pointer
825 | 0x82638293 | 32 bit hash
826 | "main" | string value
827 | data[n] | HashData for this bucket
828 `------------'
829
830The problem with this layout for debuggers is that we need to optimize for the
831negative lookup case where the symbol we're searching for is not present. So
832if we were to lookup "``printf``" in the table above, we would make a 32 hash
833for "``printf``", it might match ``bucket[3]``. We would need to go to the
834offset 0x000034f0 and start looking to see if our 32 bit hash matches. To do
835so, we need to read the next pointer, then read the hash, compare it, and skip
836to the next bucket. Each time we are skipping many bytes in memory and
837touching new cache pages just to do the compare on the full 32 bit hash. All
838of these accesses then tell us that we didn't have a match.
839
840Name Hash Tables
841""""""""""""""""
842
843To solve the issues mentioned above we have structured the hash tables a bit
844differently: a header, buckets, an array of all unique 32 bit hash values,
845followed by an array of hash value data offsets, one for each hash value, then
846the data for all hash values:
847
848.. code-block:: none
849
850 .-------------.
851 | HEADER |
852 |-------------|
853 | BUCKETS |
854 |-------------|
855 | HASHES |
856 |-------------|
857 | OFFSETS |
858 |-------------|
859 | DATA |
860 `-------------'
861
862The ``BUCKETS`` in the name tables are an index into the ``HASHES`` array. By
863making all of the full 32 bit hash values contiguous in memory, we allow
864ourselves to efficiently check for a match while touching as little memory as
865possible. Most often checking the 32 bit hash values is as far as the lookup
866goes. If it does match, it usually is a match with no collisions. So for a
867table with "``n_buckets``" buckets, and "``n_hashes``" unique 32 bit hash
868values, we can clarify the contents of the ``BUCKETS``, ``HASHES`` and
869``OFFSETS`` as:
870
871.. code-block:: none
872
873 .-------------------------.
874 | HEADER.magic | uint32_t
875 | HEADER.version | uint16_t
876 | HEADER.hash_function | uint16_t
877 | HEADER.bucket_count | uint32_t
878 | HEADER.hashes_count | uint32_t
879 | HEADER.header_data_len | uint32_t
880 | HEADER_DATA | HeaderData
881 |-------------------------|
Eric Christopher7e66bd32013-03-18 20:21:47 +0000882 | BUCKETS | uint32_t[n_buckets] // 32 bit hash indexes
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000883 |-------------------------|
Eric Christopher7e66bd32013-03-18 20:21:47 +0000884 | HASHES | uint32_t[n_hashes] // 32 bit hash values
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000885 |-------------------------|
Eric Christopher7e66bd32013-03-18 20:21:47 +0000886 | OFFSETS | uint32_t[n_hashes] // 32 bit offsets to hash value data
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +0000887 |-------------------------|
888 | ALL HASH DATA |
889 `-------------------------'
890
891So taking the exact same data from the standard hash example above we end up
892with:
893
894.. code-block:: none
895
896 .------------.
897 | HEADER |
898 |------------|
899 | 0 | BUCKETS[0]
900 | 2 | BUCKETS[1]
901 | 5 | BUCKETS[2]
902 | 6 | BUCKETS[3]
903 | | ...
904 | ... | BUCKETS[n_buckets]
905 |------------|
906 | 0x........ | HASHES[0]
907 | 0x........ | HASHES[1]
908 | 0x........ | HASHES[2]
909 | 0x........ | HASHES[3]
910 | 0x........ | HASHES[4]
911 | 0x........ | HASHES[5]
912 | 0x12345678 | HASHES[6] hash for BUCKETS[3]
913 | 0x29273623 | HASHES[7] hash for BUCKETS[3]
914 | 0x82638293 | HASHES[8] hash for BUCKETS[3]
915 | 0x........ | HASHES[9]
916 | 0x........ | HASHES[10]
917 | 0x........ | HASHES[11]
918 | 0x........ | HASHES[12]
919 | 0x........ | HASHES[13]
920 | 0x........ | HASHES[n_hashes]
921 |------------|
922 | 0x........ | OFFSETS[0]
923 | 0x........ | OFFSETS[1]
924 | 0x........ | OFFSETS[2]
925 | 0x........ | OFFSETS[3]
926 | 0x........ | OFFSETS[4]
927 | 0x........ | OFFSETS[5]
928 | 0x000034f0 | OFFSETS[6] offset for BUCKETS[3]
929 | 0x00003500 | OFFSETS[7] offset for BUCKETS[3]
930 | 0x00003550 | OFFSETS[8] offset for BUCKETS[3]
931 | 0x........ | OFFSETS[9]
932 | 0x........ | OFFSETS[10]
933 | 0x........ | OFFSETS[11]
934 | 0x........ | OFFSETS[12]
935 | 0x........ | OFFSETS[13]
936 | 0x........ | OFFSETS[n_hashes]
937 |------------|
938 | |
939 | |
940 | |
941 | |
942 | |
943 |------------|
944 0x000034f0: | 0x00001203 | .debug_str ("erase")
945 | 0x00000004 | A 32 bit array count - number of HashData with name "erase"
946 | 0x........ | HashData[0]
947 | 0x........ | HashData[1]
948 | 0x........ | HashData[2]
949 | 0x........ | HashData[3]
950 | 0x00000000 | String offset into .debug_str (terminate data for hash)
951 |------------|
952 0x00003500: | 0x00001203 | String offset into .debug_str ("collision")
953 | 0x00000002 | A 32 bit array count - number of HashData with name "collision"
954 | 0x........ | HashData[0]
955 | 0x........ | HashData[1]
956 | 0x00001203 | String offset into .debug_str ("dump")
957 | 0x00000003 | A 32 bit array count - number of HashData with name "dump"
958 | 0x........ | HashData[0]
959 | 0x........ | HashData[1]
960 | 0x........ | HashData[2]
961 | 0x00000000 | String offset into .debug_str (terminate data for hash)
962 |------------|
963 0x00003550: | 0x00001203 | String offset into .debug_str ("main")
964 | 0x00000009 | A 32 bit array count - number of HashData with name "main"
965 | 0x........ | HashData[0]
966 | 0x........ | HashData[1]
967 | 0x........ | HashData[2]
968 | 0x........ | HashData[3]
969 | 0x........ | HashData[4]
970 | 0x........ | HashData[5]
971 | 0x........ | HashData[6]
972 | 0x........ | HashData[7]
973 | 0x........ | HashData[8]
974 | 0x00000000 | String offset into .debug_str (terminate data for hash)
975 `------------'
976
977So we still have all of the same data, we just organize it more efficiently for
978debugger lookup. If we repeat the same "``printf``" lookup from above, we
979would hash "``printf``" and find it matches ``BUCKETS[3]`` by taking the 32 bit
980hash value and modulo it by ``n_buckets``. ``BUCKETS[3]`` contains "6" which
981is the index into the ``HASHES`` table. We would then compare any consecutive
98232 bit hashes values in the ``HASHES`` array as long as the hashes would be in
983``BUCKETS[3]``. We do this by verifying that each subsequent hash value modulo
984``n_buckets`` is still 3. In the case of a failed lookup we would access the
985memory for ``BUCKETS[3]``, and then compare a few consecutive 32 bit hashes
986before we know that we have no match. We don't end up marching through
987multiple words of memory and we really keep the number of processor data cache
988lines being accessed as small as possible.
989
990The string hash that is used for these lookup tables is the Daniel J.
991Bernstein hash which is also used in the ELF ``GNU_HASH`` sections. It is a
992very good hash for all kinds of names in programs with very few hash
993collisions.
994
995Empty buckets are designated by using an invalid hash index of ``UINT32_MAX``.
996
997Details
998^^^^^^^
999
1000These name hash tables are designed to be generic where specializations of the
1001table get to define additional data that goes into the header ("``HeaderData``"),
1002how the string value is stored ("``KeyType``") and the content of the data for each
1003hash value.
1004
1005Header Layout
1006"""""""""""""
1007
1008The header has a fixed part, and the specialized part. The exact format of the
1009header is:
1010
1011.. code-block:: c
1012
1013 struct Header
1014 {
1015 uint32_t magic; // 'HASH' magic value to allow endian detection
1016 uint16_t version; // Version number
1017 uint16_t hash_function; // The hash function enumeration that was used
1018 uint32_t bucket_count; // The number of buckets in this hash table
1019 uint32_t hashes_count; // The total number of unique hash values and hash data offsets in this table
1020 uint32_t header_data_len; // The bytes to skip to get to the hash indexes (buckets) for correct alignment
1021 // Specifically the length of the following HeaderData field - this does not
1022 // include the size of the preceding fields
1023 HeaderData header_data; // Implementation specific header data
1024 };
1025
1026The header starts with a 32 bit "``magic``" value which must be ``'HASH'``
1027encoded as an ASCII integer. This allows the detection of the start of the
1028hash table and also allows the table's byte order to be determined so the table
1029can be correctly extracted. The "``magic``" value is followed by a 16 bit
1030``version`` number which allows the table to be revised and modified in the
1031future. The current version number is 1. ``hash_function`` is a ``uint16_t``
1032enumeration that specifies which hash function was used to produce this table.
1033The current values for the hash function enumerations include:
1034
1035.. code-block:: c
1036
1037 enum HashFunctionType
1038 {
1039 eHashFunctionDJB = 0u, // Daniel J Bernstein hash function
1040 };
1041
1042``bucket_count`` is a 32 bit unsigned integer that represents how many buckets
1043are in the ``BUCKETS`` array. ``hashes_count`` is the number of unique 32 bit
1044hash values that are in the ``HASHES`` array, and is the same number of offsets
1045are contained in the ``OFFSETS`` array. ``header_data_len`` specifies the size
1046in bytes of the ``HeaderData`` that is filled in by specialized versions of
1047this table.
1048
1049Fixed Lookup
1050""""""""""""
1051
1052The header is followed by the buckets, hashes, offsets, and hash value data.
1053
1054.. code-block:: c
1055
1056 struct FixedTable
1057 {
1058 uint32_t buckets[Header.bucket_count]; // An array of hash indexes into the "hashes[]" array below
1059 uint32_t hashes [Header.hashes_count]; // Every unique 32 bit hash for the entire table is in this table
1060 uint32_t offsets[Header.hashes_count]; // An offset that corresponds to each item in the "hashes[]" array above
1061 };
1062
1063``buckets`` is an array of 32 bit indexes into the ``hashes`` array. The
1064``hashes`` array contains all of the 32 bit hash values for all names in the
1065hash table. Each hash in the ``hashes`` table has an offset in the ``offsets``
1066array that points to the data for the hash value.
1067
1068This table setup makes it very easy to repurpose these tables to contain
1069different data, while keeping the lookup mechanism the same for all tables.
1070This layout also makes it possible to save the table to disk and map it in
1071later and do very efficient name lookups with little or no parsing.
1072
1073DWARF lookup tables can be implemented in a variety of ways and can store a lot
1074of information for each name. We want to make the DWARF tables extensible and
1075able to store the data efficiently so we have used some of the DWARF features
1076that enable efficient data storage to define exactly what kind of data we store
1077for each name.
1078
1079The ``HeaderData`` contains a definition of the contents of each HashData chunk.
1080We might want to store an offset to all of the debug information entries (DIEs)
1081for each name. To keep things extensible, we create a list of items, or
1082Atoms, that are contained in the data for each name. First comes the type of
1083the data in each atom:
1084
1085.. code-block:: c
1086
1087 enum AtomType
1088 {
1089 eAtomTypeNULL = 0u,
1090 eAtomTypeDIEOffset = 1u, // DIE offset, check form for encoding
1091 eAtomTypeCUOffset = 2u, // DIE offset of the compiler unit header that contains the item in question
1092 eAtomTypeTag = 3u, // DW_TAG_xxx value, should be encoded as DW_FORM_data1 (if no tags exceed 255) or DW_FORM_data2
1093 eAtomTypeNameFlags = 4u, // Flags from enum NameFlags
1094 eAtomTypeTypeFlags = 5u, // Flags from enum TypeFlags
1095 };
1096
1097The enumeration values and their meanings are:
1098
1099.. code-block:: none
1100
1101 eAtomTypeNULL - a termination atom that specifies the end of the atom list
1102 eAtomTypeDIEOffset - an offset into the .debug_info section for the DWARF DIE for this name
1103 eAtomTypeCUOffset - an offset into the .debug_info section for the CU that contains the DIE
1104 eAtomTypeDIETag - The DW_TAG_XXX enumeration value so you don't have to parse the DWARF to see what it is
1105 eAtomTypeNameFlags - Flags for functions and global variables (isFunction, isInlined, isExternal...)
1106 eAtomTypeTypeFlags - Flags for types (isCXXClass, isObjCClass, ...)
1107
1108Then we allow each atom type to define the atom type and how the data for each
1109atom type data is encoded:
1110
1111.. code-block:: c
1112
1113 struct Atom
1114 {
1115 uint16_t type; // AtomType enum value
1116 uint16_t form; // DWARF DW_FORM_XXX defines
1117 };
1118
1119The ``form`` type above is from the DWARF specification and defines the exact
1120encoding of the data for the Atom type. See the DWARF specification for the
1121``DW_FORM_`` definitions.
1122
1123.. code-block:: c
1124
1125 struct HeaderData
1126 {
1127 uint32_t die_offset_base;
1128 uint32_t atom_count;
1129 Atoms atoms[atom_count0];
1130 };
1131
1132``HeaderData`` defines the base DIE offset that should be added to any atoms
1133that are encoded using the ``DW_FORM_ref1``, ``DW_FORM_ref2``,
1134``DW_FORM_ref4``, ``DW_FORM_ref8`` or ``DW_FORM_ref_udata``. It also defines
1135what is contained in each ``HashData`` object -- ``Atom.form`` tells us how large
1136each field will be in the ``HashData`` and the ``Atom.type`` tells us how this data
1137should be interpreted.
1138
1139For the current implementations of the "``.apple_names``" (all functions +
1140globals), the "``.apple_types``" (names of all types that are defined), and
1141the "``.apple_namespaces``" (all namespaces), we currently set the ``Atom``
1142array to be:
1143
1144.. code-block:: c
1145
1146 HeaderData.atom_count = 1;
1147 HeaderData.atoms[0].type = eAtomTypeDIEOffset;
1148 HeaderData.atoms[0].form = DW_FORM_data4;
1149
1150This defines the contents to be the DIE offset (eAtomTypeDIEOffset) that is
Eric Christopher911f1d32013-03-19 23:10:26 +00001151encoded as a 32 bit value (DW_FORM_data4). This allows a single name to have
1152multiple matching DIEs in a single file, which could come up with an inlined
1153function for instance. Future tables could include more information about the
1154DIE such as flags indicating if the DIE is a function, method, block,
1155or inlined.
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001156
1157The KeyType for the DWARF table is a 32 bit string table offset into the
Eric Christopher911f1d32013-03-19 23:10:26 +00001158".debug_str" table. The ".debug_str" is the string table for the DWARF which
1159may already contain copies of all of the strings. This helps make sure, with
1160help from the compiler, that we reuse the strings between all of the DWARF
1161sections and keeps the hash table size down. Another benefit to having the
1162compiler generate all strings as DW_FORM_strp in the debug info, is that
1163DWARF parsing can be made much faster.
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001164
1165After a lookup is made, we get an offset into the hash data. The hash data
Eric Christopher911f1d32013-03-19 23:10:26 +00001166needs to be able to deal with 32 bit hash collisions, so the chunk of data
1167at the offset in the hash data consists of a triple:
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001168
1169.. code-block:: c
1170
1171 uint32_t str_offset
1172 uint32_t hash_data_count
1173 HashData[hash_data_count]
1174
1175If "str_offset" is zero, then the bucket contents are done. 99.9% of the
Eric Christopher911f1d32013-03-19 23:10:26 +00001176hash data chunks contain a single item (no 32 bit hash collision):
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001177
1178.. code-block:: none
1179
1180 .------------.
1181 | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main")
1182 | 0x00000004 | uint32_t HashData count
1183 | 0x........ | uint32_t HashData[0] DIE offset
1184 | 0x........ | uint32_t HashData[1] DIE offset
1185 | 0x........ | uint32_t HashData[2] DIE offset
1186 | 0x........ | uint32_t HashData[3] DIE offset
1187 | 0x00000000 | uint32_t KeyType (end of hash chain)
1188 `------------'
1189
1190If there are collisions, you will have multiple valid string offsets:
1191
1192.. code-block:: none
1193
1194 .------------.
1195 | 0x00001023 | uint32_t KeyType (.debug_str[0x0001023] => "main")
1196 | 0x00000004 | uint32_t HashData count
1197 | 0x........ | uint32_t HashData[0] DIE offset
1198 | 0x........ | uint32_t HashData[1] DIE offset
1199 | 0x........ | uint32_t HashData[2] DIE offset
1200 | 0x........ | uint32_t HashData[3] DIE offset
1201 | 0x00002023 | uint32_t KeyType (.debug_str[0x0002023] => "print")
1202 | 0x00000002 | uint32_t HashData count
1203 | 0x........ | uint32_t HashData[0] DIE offset
1204 | 0x........ | uint32_t HashData[1] DIE offset
1205 | 0x00000000 | uint32_t KeyType (end of hash chain)
1206 `------------'
1207
1208Current testing with real world C++ binaries has shown that there is around 1
120932 bit hash collision per 100,000 name entries.
1210
1211Contents
1212^^^^^^^^
1213
1214As we said, we want to strictly define exactly what is included in the
1215different tables. For DWARF, we have 3 tables: "``.apple_names``",
1216"``.apple_types``", and "``.apple_namespaces``".
1217
1218"``.apple_names``" sections should contain an entry for each DWARF DIE whose
1219``DW_TAG`` is a ``DW_TAG_label``, ``DW_TAG_inlined_subroutine``, or
1220``DW_TAG_subprogram`` that has address attributes: ``DW_AT_low_pc``,
1221``DW_AT_high_pc``, ``DW_AT_ranges`` or ``DW_AT_entry_pc``. It also contains
1222``DW_TAG_variable`` DIEs that have a ``DW_OP_addr`` in the location (global and
1223static variables). All global and static variables should be included,
1224including those scoped within functions and classes. For example using the
1225following code:
1226
1227.. code-block:: c
1228
1229 static int var = 0;
1230
1231 void f ()
1232 {
1233 static int var = 0;
1234 }
1235
1236Both of the static ``var`` variables would be included in the table. All
1237functions should emit both their full names and their basenames. For C or C++,
1238the full name is the mangled name (if available) which is usually in the
1239``DW_AT_MIPS_linkage_name`` attribute, and the ``DW_AT_name`` contains the
1240function basename. If global or static variables have a mangled name in a
1241``DW_AT_MIPS_linkage_name`` attribute, this should be emitted along with the
1242simple name found in the ``DW_AT_name`` attribute.
1243
1244"``.apple_types``" sections should contain an entry for each DWARF DIE whose
1245tag is one of:
1246
1247* DW_TAG_array_type
1248* DW_TAG_class_type
1249* DW_TAG_enumeration_type
1250* DW_TAG_pointer_type
1251* DW_TAG_reference_type
1252* DW_TAG_string_type
1253* DW_TAG_structure_type
1254* DW_TAG_subroutine_type
1255* DW_TAG_typedef
1256* DW_TAG_union_type
1257* DW_TAG_ptr_to_member_type
1258* DW_TAG_set_type
1259* DW_TAG_subrange_type
1260* DW_TAG_base_type
1261* DW_TAG_const_type
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001262* DW_TAG_file_type
1263* DW_TAG_namelist
1264* DW_TAG_packed_type
1265* DW_TAG_volatile_type
1266* DW_TAG_restrict_type
Victor Leschuke1156c22016-10-31 19:09:38 +00001267* DW_TAG_atomic_type
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001268* DW_TAG_interface_type
1269* DW_TAG_unspecified_type
1270* DW_TAG_shared_type
1271
1272Only entries with a ``DW_AT_name`` attribute are included, and the entry must
1273not be a forward declaration (``DW_AT_declaration`` attribute with a non-zero
1274value). For example, using the following code:
1275
1276.. code-block:: c
1277
1278 int main ()
1279 {
1280 int *b = 0;
1281 return *b;
1282 }
1283
1284We get a few type DIEs:
1285
1286.. code-block:: none
1287
1288 0x00000067: TAG_base_type [5]
1289 AT_encoding( DW_ATE_signed )
1290 AT_name( "int" )
1291 AT_byte_size( 0x04 )
1292
1293 0x0000006e: TAG_pointer_type [6]
1294 AT_type( {0x00000067} ( int ) )
1295 AT_byte_size( 0x08 )
1296
1297The DW_TAG_pointer_type is not included because it does not have a ``DW_AT_name``.
1298
1299"``.apple_namespaces``" section should contain all ``DW_TAG_namespace`` DIEs.
1300If we run into a namespace that has no name this is an anonymous namespace, and
1301the name should be output as "``(anonymous namespace)``" (without the quotes).
1302Why? This matches the output of the ``abi::cxa_demangle()`` that is in the
1303standard C++ library that demangles mangled names.
1304
1305
1306Language Extensions and File Format Changes
1307^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1308
1309Objective-C Extensions
1310""""""""""""""""""""""
1311
1312"``.apple_objc``" section should contain all ``DW_TAG_subprogram`` DIEs for an
1313Objective-C class. The name used in the hash table is the name of the
1314Objective-C class itself. If the Objective-C class has a category, then an
1315entry is made for both the class name without the category, and for the class
1316name with the category. So if we have a DIE at offset 0x1234 with a name of
1317method "``-[NSString(my_additions) stringWithSpecialString:]``", we would add
1318an entry for "``NSString``" that points to DIE 0x1234, and an entry for
1319"``NSString(my_additions)``" that points to 0x1234. This allows us to quickly
1320track down all Objective-C methods for an Objective-C class when doing
1321expressions. It is needed because of the dynamic nature of Objective-C where
1322anyone can add methods to a class. The DWARF for Objective-C methods is also
1323emitted differently from C++ classes where the methods are not usually
1324contained in the class definition, they are scattered about across one or more
1325compile units. Categories can also be defined in different shared libraries.
1326So we need to be able to quickly find all of the methods and class functions
1327given the Objective-C class name, or quickly find all methods and class
1328functions for a class + category name. This table does not contain any
1329selector names, it just maps Objective-C class names (or class names +
1330category) to all of the methods and class functions. The selectors are added
1331as function basenames in the "``.debug_names``" section.
1332
1333In the "``.apple_names``" section for Objective-C functions, the full name is
1334the entire function name with the brackets ("``-[NSString
1335stringWithCString:]``") and the basename is the selector only
1336("``stringWithCString:``").
1337
1338Mach-O Changes
1339""""""""""""""
1340
Alp Tokerf907b892013-12-05 05:44:44 +00001341The sections names for the apple hash tables are for non-mach-o files. For
Dmitri Gribenko6ac1de42012-11-22 11:56:02 +00001342mach-o files, the sections should be contained in the ``__DWARF`` segment with
1343names as follows:
1344
1345* "``.apple_names``" -> "``__apple_names``"
1346* "``.apple_types``" -> "``__apple_types``"
1347* "``.apple_namespaces``" -> "``__apple_namespac``" (16 character limit)
1348* "``.apple_objc``" -> "``__apple_objc``"
1349
Reid Kleckner0ad60a92016-06-07 20:27:30 +00001350.. _codeview:
1351
1352CodeView Debug Info Format
1353==========================
1354
1355LLVM supports emitting CodeView, the Microsoft debug info format, and this
1356section describes the design and implementation of that support.
1357
1358Format Background
1359-----------------
1360
1361CodeView as a format is clearly oriented around C++ debugging, and in C++, the
1362majority of debug information tends to be type information. Therefore, the
1363overriding design constraint of CodeView is the separation of type information
1364from other "symbol" information so that type information can be efficiently
1365merged across translation units. Both type information and symbol information is
1366generally stored as a sequence of records, where each record begins with a
136716-bit record size and a 16-bit record kind.
1368
1369Type information is usually stored in the ``.debug$T`` section of the object
1370file. All other debug info, such as line info, string table, symbol info, and
1371inlinee info, is stored in one or more ``.debug$S`` sections. There may only be
1372one ``.debug$T`` section per object file, since all other debug info refers to
1373it. If a PDB (enabled by the ``/Zi`` MSVC option) was used during compilation,
1374the ``.debug$T`` section will contain only an ``LF_TYPESERVER2`` record pointing
1375to the PDB. When using PDBs, symbol information appears to remain in the object
1376file ``.debug$S`` sections.
1377
1378Type records are referred to by their index, which is the number of records in
1379the stream before a given record plus ``0x1000``. Many common basic types, such
1380as the basic integral types and unqualified pointers to them, are represented
1381using type indices less than ``0x1000``. Such basic types are built in to
1382CodeView consumers and do not require type records.
1383
1384Each type record may only contain type indices that are less than its own type
1385index. This ensures that the graph of type stream references is acyclic. While
1386the source-level type graph may contain cycles through pointer types (consider a
1387linked list struct), these cycles are removed from the type stream by always
1388referring to the forward declaration record of user-defined record types. Only
1389"symbol" records in the ``.debug$S`` streams may refer to complete,
1390non-forward-declaration type records.
1391
1392Working with CodeView
1393---------------------
1394
1395These are instructions for some common tasks for developers working to improve
1396LLVM's CodeView support. Most of them revolve around using the CodeView dumper
1397embedded in ``llvm-readobj``.
1398
1399* Testing MSVC's output::
1400
1401 $ cl -c -Z7 foo.cpp # Use /Z7 to keep types in the object file
1402 $ llvm-readobj -codeview foo.obj
1403
1404* Getting LLVM IR debug info out of Clang::
1405
1406 $ clang -g -gcodeview --target=x86_64-windows-msvc foo.cpp -S -emit-llvm
1407
1408 Use this to generate LLVM IR for LLVM test cases.
1409
1410* Generate and dump CodeView from LLVM IR metadata::
1411
1412 $ llc foo.ll -filetype=obj -o foo.obj
1413 $ llvm-readobj -codeview foo.obj > foo.txt
1414
1415 Use this pattern in lit test cases and FileCheck the output of llvm-readobj
1416
1417Improving LLVM's CodeView support is a process of finding interesting type
1418records, constructing a C++ test case that makes MSVC emit those records,
1419dumping the records, understanding them, and then generating equivalent records
1420in LLVM's backend.