blob: 53149ba3fafce4cd2f78681937bcbc0414eafc80 [file] [log] [blame]
Rui Ueyama0fcdc732016-05-24 20:24:43 +00001//===- Relocations.cpp ----------------------------------------------------===//
2//
3// The LLVM Linker
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains platform-independent functions to processe relocations.
11// I'll describe the overview of this file here.
12//
13// Simple relocations are easy to handle for the linker. For example,
14// for R_X86_64_PC64 relocs, the linker just has to fix up locations
15// with the relative offsets to the target symbols. It would just be
16// reading records from relocation sections and applying them to output.
17//
18// But not all relocations are that easy to handle. For example, for
19// R_386_GOTOFF relocs, the linker has to create new GOT entries for
20// symbols if they don't exist, and fix up locations with GOT entry
21// offsets from the beginning of GOT section. So there is more than
22// fixing addresses in relocation processing.
23//
24// ELF defines a large number of complex relocations.
25//
26// The functions in this file analyze relocations and do whatever needs
27// to be done. It includes, but not limited to, the following.
28//
29// - create GOT/PLT entries
30// - create new relocations in .dynsym to let the dynamic linker resolve
31// them at runtime (since ELF supports dynamic linking, not all
32// relocations can be resolved at link-time)
33// - create COPY relocs and reserve space in .bss
34// - replace expensive relocs (in terms of runtime cost) with cheap ones
35// - error out infeasible combinations such as PIC and non-relative relocs
36//
37// Note that the functions in this file don't actually apply relocations
38// because it doesn't know about the output file nor the output file buffer.
39// It instead stores Relocation objects to InputSection's Relocations
40// vector to let it apply later in InputSection::writeTo.
41//
42//===----------------------------------------------------------------------===//
43
44#include "Relocations.h"
45#include "Config.h"
46#include "OutputSections.h"
47#include "SymbolTable.h"
48#include "Target.h"
49
50#include "llvm/Support/Endian.h"
51#include "llvm/Support/raw_ostream.h"
52
53using namespace llvm;
54using namespace llvm::ELF;
55using namespace llvm::object;
56using namespace llvm::support::endian;
57
58namespace lld {
59namespace elf {
60
61static bool refersToGotEntry(RelExpr Expr) {
62 return Expr == R_GOT || Expr == R_GOT_OFF || Expr == R_MIPS_GOT_LOCAL ||
63 Expr == R_MIPS_GOT_LOCAL_PAGE || Expr == R_GOT_PAGE_PC ||
64 Expr == R_GOT_PC || Expr == R_GOT_FROM_END || Expr == R_TLSGD ||
65 Expr == R_TLSGD_PC;
66}
67
Simon Atanasyan9a9a3162016-05-28 04:49:57 +000068static bool isPreemptible(const SymbolBody &Body, uint32_t Type) {
69 // In case of MIPS GP-relative relocations always resolve to a definition
70 // in a regular input file, ignoring the one-definition rule. So we,
71 // for example, should not attempt to create a dynamic relocation even
72 // if the target symbol is preemptible. There are two two MIPS GP-relative
73 // relocations R_MIPS_GPREL16 and R_MIPS_GPREL32. But only R_MIPS_GPREL16
74 // can be against a preemptible symbol.
75 // To get MIPS relocation type we apply 0xf mask. In case of O32 ABI all
76 // relocation types occupy eight bit. In case of N64 ABI we extract first
77 // relocation from 3-in-1 packet because only the first relocation can
78 // be against a real symbol.
79 if (Config->EMachine == EM_MIPS && (Type & 0xf) == R_MIPS_GPREL16)
80 return false;
81 return Body.isPreemptible();
82}
83
Rui Ueyama0fcdc732016-05-24 20:24:43 +000084// Returns the number of relocations processed.
85template <class ELFT>
86static unsigned handleTlsRelocation(uint32_t Type, SymbolBody &Body,
87 InputSectionBase<ELFT> &C,
88 typename ELFT::uint Offset,
89 typename ELFT::uint Addend, RelExpr Expr) {
90 if (!(C.getSectionHdr()->sh_flags & SHF_ALLOC))
91 return 0;
92
93 if (!Body.isTls())
94 return 0;
95
96 typedef typename ELFT::uint uintX_t;
97 if (Expr == R_TLSLD_PC || Expr == R_TLSLD) {
98 // Local-Dynamic relocs can be relaxed to Local-Exec.
99 if (!Config->Shared) {
100 C.Relocations.push_back(
101 {R_RELAX_TLS_LD_TO_LE, Type, Offset, Addend, &Body});
102 return 2;
103 }
104 if (Out<ELFT>::Got->addTlsIndex())
105 Out<ELFT>::RelaDyn->addReloc({Target->TlsModuleIndexRel, Out<ELFT>::Got,
106 Out<ELFT>::Got->getTlsIndexOff(), false,
107 nullptr, 0});
108 C.Relocations.push_back({Expr, Type, Offset, Addend, &Body});
109 return 1;
110 }
111
112 // Local-Dynamic relocs can be relaxed to Local-Exec.
113 if (Target->isTlsLocalDynamicRel(Type) && !Config->Shared) {
114 C.Relocations.push_back(
115 {R_RELAX_TLS_LD_TO_LE, Type, Offset, Addend, &Body});
116 return 1;
117 }
118
119 if (Target->isTlsGlobalDynamicRel(Type)) {
120 if (Config->Shared) {
121 if (Out<ELFT>::Got->addDynTlsEntry(Body)) {
122 uintX_t Off = Out<ELFT>::Got->getGlobalDynOffset(Body);
123 Out<ELFT>::RelaDyn->addReloc(
124 {Target->TlsModuleIndexRel, Out<ELFT>::Got, Off, false, &Body, 0});
125 Out<ELFT>::RelaDyn->addReloc({Target->TlsOffsetRel, Out<ELFT>::Got,
126 Off + (uintX_t)sizeof(uintX_t), false,
127 &Body, 0});
128 }
129 C.Relocations.push_back({Expr, Type, Offset, Addend, &Body});
130 return 1;
131 }
132
133 // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec
134 // depending on the symbol being locally defined or not.
Simon Atanasyan9a9a3162016-05-28 04:49:57 +0000135 if (isPreemptible(Body, Type)) {
Rui Ueyama0fcdc732016-05-24 20:24:43 +0000136 C.Relocations.push_back(
137 {R_RELAX_TLS_GD_TO_IE, Type, Offset, Addend, &Body});
138 if (!Body.isInGot()) {
139 Out<ELFT>::Got->addEntry(Body);
140 Out<ELFT>::RelaDyn->addReloc({Target->TlsGotRel, Out<ELFT>::Got,
141 Body.getGotOffset<ELFT>(), false, &Body,
142 0});
143 }
144 return 2;
145 }
146 C.Relocations.push_back(
147 {R_RELAX_TLS_GD_TO_LE, Type, Offset, Addend, &Body});
148 return Target->TlsGdToLeSkip;
149 }
150
151 // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally
152 // defined.
153 if (Target->isTlsInitialExecRel(Type) && !Config->Shared &&
Simon Atanasyan9a9a3162016-05-28 04:49:57 +0000154 !isPreemptible(Body, Type)) {
Rui Ueyama0fcdc732016-05-24 20:24:43 +0000155 C.Relocations.push_back(
156 {R_RELAX_TLS_IE_TO_LE, Type, Offset, Addend, &Body});
157 return 1;
158 }
159 return 0;
160}
161
162// Some targets might require creation of thunks for relocations. Now we
163// support only MIPS which requires LA25 thunk to call PIC code from non-PIC
164// one. Scan relocations to find each one requires thunk.
165template <class ELFT, class RelTy>
166static void scanRelocsForThunks(const elf::ObjectFile<ELFT> &File,
167 ArrayRef<RelTy> Rels) {
168 for (const RelTy &RI : Rels) {
169 uint32_t Type = RI.getType(Config->Mips64EL);
170 SymbolBody &Body = File.getRelocTargetSym(RI);
171 if (Body.hasThunk() || !Target->needsThunk(Type, File, Body))
172 continue;
173 auto *D = cast<DefinedRegular<ELFT>>(&Body);
174 auto *S = cast<InputSection<ELFT>>(D->Section);
175 S->addThunk(Body);
176 }
177}
178
179template <endianness E> static int16_t readSignedLo16(const uint8_t *Loc) {
180 return read32<E>(Loc) & 0xffff;
181}
182
183template <class RelTy>
184static uint32_t getMipsPairType(const RelTy *Rel, const SymbolBody &Sym) {
185 switch (Rel->getType(Config->Mips64EL)) {
186 case R_MIPS_HI16:
187 return R_MIPS_LO16;
188 case R_MIPS_GOT16:
189 return Sym.isLocal() ? R_MIPS_LO16 : R_MIPS_NONE;
190 case R_MIPS_PCHI16:
191 return R_MIPS_PCLO16;
192 case R_MICROMIPS_HI16:
193 return R_MICROMIPS_LO16;
194 default:
195 return R_MIPS_NONE;
196 }
197}
198
199template <class ELFT, class RelTy>
200static int32_t findMipsPairedAddend(const uint8_t *Buf, const uint8_t *BufLoc,
201 SymbolBody &Sym, const RelTy *Rel,
202 const RelTy *End) {
203 uint32_t SymIndex = Rel->getSymbol(Config->Mips64EL);
204 uint32_t Type = getMipsPairType(Rel, Sym);
205
206 // Some MIPS relocations use addend calculated from addend of the relocation
207 // itself and addend of paired relocation. ABI requires to compute such
208 // combined addend in case of REL relocation record format only.
209 // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
210 if (RelTy::IsRela || Type == R_MIPS_NONE)
211 return 0;
212
213 for (const RelTy *RI = Rel; RI != End; ++RI) {
214 if (RI->getType(Config->Mips64EL) != Type)
215 continue;
216 if (RI->getSymbol(Config->Mips64EL) != SymIndex)
217 continue;
218 const endianness E = ELFT::TargetEndianness;
219 return ((read32<E>(BufLoc) & 0xffff) << 16) +
220 readSignedLo16<E>(Buf + RI->r_offset);
221 }
222 unsigned OldType = Rel->getType(Config->Mips64EL);
223 StringRef OldName = getELFRelocationTypeName(Config->EMachine, OldType);
224 StringRef NewName = getELFRelocationTypeName(Config->EMachine, Type);
225 warning("can't find matching " + NewName + " relocation for " + OldName);
226 return 0;
227}
228
229// True if non-preemptable symbol always has the same value regardless of where
230// the DSO is loaded.
231template <class ELFT> static bool isAbsolute(const SymbolBody &Body) {
232 if (Body.isUndefined())
233 return !Body.isLocal() && Body.symbol()->isWeak();
234 if (const auto *DR = dyn_cast<DefinedRegular<ELFT>>(&Body))
235 return DR->Section == nullptr; // Absolute symbol.
236 return false;
237}
238
239static bool needsPlt(RelExpr Expr) {
240 return Expr == R_PLT_PC || Expr == R_PPC_PLT_OPD || Expr == R_PLT;
241}
242
243// True if this expression is of the form Sym - X, where X is a position in the
244// file (PC, or GOT for example).
245static bool isRelExpr(RelExpr Expr) {
George Rimar5c33b912016-05-25 14:31:37 +0000246 return Expr == R_PC || Expr == R_GOTREL || Expr == R_PAGE_PC ||
Rafael Espindolaa8433c12016-06-01 06:15:22 +0000247 Expr == R_RELAX_GOT_PC;
Rui Ueyama0fcdc732016-05-24 20:24:43 +0000248}
249
250template <class ELFT>
251static bool isStaticLinkTimeConstant(RelExpr E, uint32_t Type,
252 const SymbolBody &Body) {
253 // These expressions always compute a constant
254 if (E == R_SIZE || E == R_GOT_FROM_END || E == R_GOT_OFF ||
255 E == R_MIPS_GOT_LOCAL || E == R_MIPS_GOT_LOCAL_PAGE ||
256 E == R_GOT_PAGE_PC || E == R_GOT_PC || E == R_PLT_PC || E == R_TLSGD_PC ||
257 E == R_TLSGD || E == R_PPC_PLT_OPD)
258 return true;
259
260 // These never do, except if the entire file is position dependent or if
261 // only the low bits are used.
262 if (E == R_GOT || E == R_PLT)
263 return Target->usesOnlyLowPageBits(Type) || !Config->Pic;
264
Simon Atanasyan9a9a3162016-05-28 04:49:57 +0000265 if (isPreemptible(Body, Type))
Rui Ueyama0fcdc732016-05-24 20:24:43 +0000266 return false;
267
268 if (!Config->Pic)
269 return true;
270
271 bool AbsVal = isAbsolute<ELFT>(Body) || Body.isTls();
272 bool RelE = isRelExpr(E);
273 if (AbsVal && !RelE)
274 return true;
275 if (!AbsVal && RelE)
276 return true;
277
278 // Relative relocation to an absolute value. This is normally unrepresentable,
279 // but if the relocation refers to a weak undefined symbol, we allow it to
280 // resolve to the image base. This is a little strange, but it allows us to
281 // link function calls to such symbols. Normally such a call will be guarded
282 // with a comparison, which will load a zero from the GOT.
283 if (AbsVal && RelE) {
284 if (Body.isUndefined() && !Body.isLocal() && Body.symbol()->isWeak())
285 return true;
286 StringRef S = getELFRelocationTypeName(Config->EMachine, Type);
287 error("relocation " + S + " cannot refer to absolute symbol " +
288 Body.getName());
289 return true;
290 }
291
292 return Target->usesOnlyLowPageBits(Type);
293}
294
295static RelExpr toPlt(RelExpr Expr) {
296 if (Expr == R_PPC_OPD)
297 return R_PPC_PLT_OPD;
298 if (Expr == R_PC)
299 return R_PLT_PC;
300 if (Expr == R_ABS)
301 return R_PLT;
302 return Expr;
303}
304
305static RelExpr fromPlt(RelExpr Expr) {
306 // We decided not to use a plt. Optimize a reference to the plt to a
307 // reference to the symbol itself.
308 if (Expr == R_PLT_PC)
309 return R_PC;
310 if (Expr == R_PPC_PLT_OPD)
311 return R_PPC_OPD;
312 if (Expr == R_PLT)
313 return R_ABS;
314 return Expr;
315}
316
317template <class ELFT> static uint32_t getAlignment(SharedSymbol<ELFT> *SS) {
318 typedef typename ELFT::uint uintX_t;
319
320 uintX_t SecAlign = SS->File->getSection(SS->Sym)->sh_addralign;
321 uintX_t SymValue = SS->Sym.st_value;
322 int TrailingZeros =
323 std::min(countTrailingZeros(SecAlign), countTrailingZeros(SymValue));
324 return 1 << TrailingZeros;
325}
326
327// Reserve space in .bss for copy relocation.
328template <class ELFT> static void addCopyRelSymbol(SharedSymbol<ELFT> *SS) {
329 typedef typename ELFT::uint uintX_t;
330 typedef typename ELFT::Sym Elf_Sym;
331
332 // Copy relocation against zero-sized symbol doesn't make sense.
333 uintX_t SymSize = SS->template getSize<ELFT>();
334 if (SymSize == 0)
335 fatal("cannot create a copy relocation for " + SS->getName());
336
337 uintX_t Align = getAlignment(SS);
338 uintX_t Off = alignTo(Out<ELFT>::Bss->getSize(), Align);
339 Out<ELFT>::Bss->setSize(Off + SymSize);
340 Out<ELFT>::Bss->updateAlign(Align);
341 uintX_t Shndx = SS->Sym.st_shndx;
342 uintX_t Value = SS->Sym.st_value;
343 // Look through the DSO's dynamic symbol table for aliases and create a
344 // dynamic symbol for each one. This causes the copy relocation to correctly
345 // interpose any aliases.
346 for (const Elf_Sym &S : SS->File->getElfSymbols(true)) {
347 if (S.st_shndx != Shndx || S.st_value != Value)
348 continue;
349 auto *Alias = dyn_cast_or_null<SharedSymbol<ELFT>>(
350 Symtab<ELFT>::X->find(check(S.getName(SS->File->getStringTable()))));
351 if (!Alias)
352 continue;
353 Alias->OffsetInBss = Off;
354 Alias->NeedsCopyOrPltAddr = true;
355 Alias->symbol()->IsUsedInRegularObj = true;
356 }
357 Out<ELFT>::RelaDyn->addReloc(
358 {Target->CopyRel, Out<ELFT>::Bss, SS->OffsetInBss, false, SS, 0});
359}
360
361template <class ELFT>
362static RelExpr adjustExpr(const elf::ObjectFile<ELFT> &File, SymbolBody &Body,
George Rimar5c33b912016-05-25 14:31:37 +0000363 bool IsWrite, RelExpr Expr, uint32_t Type,
364 const uint8_t *Data, typename ELFT::uint Offset) {
Rui Ueyama0fcdc732016-05-24 20:24:43 +0000365 if (Target->needsThunk(Type, File, Body))
366 return R_THUNK;
Simon Atanasyan9a9a3162016-05-28 04:49:57 +0000367 bool Preemptible = isPreemptible(Body, Type);
George Rimar5c33b912016-05-25 14:31:37 +0000368 if (Body.isGnuIFunc()) {
Rui Ueyama0fcdc732016-05-24 20:24:43 +0000369 Expr = toPlt(Expr);
George Rimar5c33b912016-05-25 14:31:37 +0000370 } else if (!Preemptible) {
371 if (needsPlt(Expr))
372 Expr = fromPlt(Expr);
George Rimarf10c8292016-06-01 16:45:30 +0000373 if (Expr == R_GOT_PC)
374 Expr = Target->adjustRelaxGotExpr(Type, Data + Offset, Expr);
George Rimar5c33b912016-05-25 14:31:37 +0000375 }
Rui Ueyama0fcdc732016-05-24 20:24:43 +0000376
377 if (IsWrite || isStaticLinkTimeConstant<ELFT>(Expr, Type, Body))
378 return Expr;
379
380 // This relocation would require the dynamic linker to write a value to read
381 // only memory. We can hack around it if we are producing an executable and
382 // the refered symbol can be preemepted to refer to the executable.
383 if (Config->Shared || (Config->Pic && !isRelExpr(Expr))) {
384 StringRef S = getELFRelocationTypeName(Config->EMachine, Type);
385 error("relocation " + S + " cannot be used when making a shared "
386 "object; recompile with -fPIC.");
387 return Expr;
388 }
389 if (Body.getVisibility() != STV_DEFAULT) {
390 error("Cannot preempt symbol");
391 return Expr;
392 }
393 if (Body.isObject()) {
394 // Produce a copy relocation.
395 auto *B = cast<SharedSymbol<ELFT>>(&Body);
396 if (!B->needsCopy())
397 addCopyRelSymbol(B);
398 return Expr;
399 }
400 if (Body.isFunc()) {
401 // This handles a non PIC program call to function in a shared library. In
402 // an ideal world, we could just report an error saying the relocation can
403 // overflow at runtime. In the real world with glibc, crt1.o has a
404 // R_X86_64_PC32 pointing to libc.so.
405 //
406 // The general idea on how to handle such cases is to create a PLT entry and
407 // use that as the function value.
408 //
409 // For the static linking part, we just return a plt expr and everything
410 // else will use the the PLT entry as the address.
411 //
412 // The remaining problem is making sure pointer equality still works. We
413 // need the help of the dynamic linker for that. We let it know that we have
414 // a direct reference to a so symbol by creating an undefined symbol with a
415 // non zero st_value. Seeing that, the dynamic linker resolves the symbol to
416 // the value of the symbol we created. This is true even for got entries, so
417 // pointer equality is maintained. To avoid an infinite loop, the only entry
418 // that points to the real function is a dedicated got entry used by the
419 // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT,
420 // R_386_JMP_SLOT, etc).
421 Body.NeedsCopyOrPltAddr = true;
422 return toPlt(Expr);
423 }
424 error("Symbol is missing type");
425
426 return Expr;
427}
428
429template <class ELFT, class RelTy>
430static typename ELFT::uint computeAddend(const elf::ObjectFile<ELFT> &File,
431 const uint8_t *SectionData,
432 const RelTy *End, const RelTy &RI,
433 RelExpr Expr, SymbolBody &Body) {
434 typedef typename ELFT::uint uintX_t;
435
436 uint32_t Type = RI.getType(Config->Mips64EL);
437 uintX_t Addend = getAddend<ELFT>(RI);
438 const uint8_t *BufLoc = SectionData + RI.r_offset;
439 if (!RelTy::IsRela)
440 Addend += Target->getImplicitAddend(BufLoc, Type);
441 if (Config->EMachine == EM_MIPS) {
442 Addend += findMipsPairedAddend<ELFT>(SectionData, BufLoc, Body, &RI, End);
443 if (Type == R_MIPS_LO16 && Expr == R_PC)
444 // R_MIPS_LO16 expression has R_PC type iif the target is _gp_disp
445 // symbol. In that case we should use the following formula for
446 // calculation "AHL + GP - P + 4". Let's add 4 right here.
447 // For details see p. 4-19 at
448 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
449 Addend += 4;
450 if (Expr == R_GOT_OFF)
451 Addend -= MipsGPOffset;
452 if (Expr == R_GOTREL) {
453 Addend -= MipsGPOffset;
454 if (Body.isLocal())
455 Addend += File.getMipsGp0();
456 }
457 }
458 if (Config->Pic && Config->EMachine == EM_PPC64 && Type == R_PPC64_TOC)
459 Addend += getPPC64TocBase();
460 return Addend;
461}
462
463// The reason we have to do this early scan is as follows
464// * To mmap the output file, we need to know the size
465// * For that, we need to know how many dynamic relocs we will have.
466// It might be possible to avoid this by outputting the file with write:
467// * Write the allocated output sections, computing addresses.
468// * Apply relocations, recording which ones require a dynamic reloc.
469// * Write the dynamic relocations.
470// * Write the rest of the file.
471// This would have some drawbacks. For example, we would only know if .rela.dyn
472// is needed after applying relocations. If it is, it will go after rw and rx
473// sections. Given that it is ro, we will need an extra PT_LOAD. This
474// complicates things for the dynamic linker and means we would have to reserve
475// space for the extra PT_LOAD even if we end up not using it.
476template <class ELFT, class RelTy>
Rui Ueyama2487f192016-05-25 03:40:02 +0000477static void scanRelocs(InputSectionBase<ELFT> &C, ArrayRef<RelTy> Rels) {
Rui Ueyama0fcdc732016-05-24 20:24:43 +0000478 typedef typename ELFT::uint uintX_t;
479
480 uintX_t Flags = C.getSectionHdr()->sh_flags;
481 bool IsWrite = Flags & SHF_WRITE;
482
483 auto AddDyn = [=](const DynamicReloc<ELFT> &Reloc) {
484 Out<ELFT>::RelaDyn->addReloc(Reloc);
485 };
486
487 const elf::ObjectFile<ELFT> &File = *C.getFile();
488 ArrayRef<uint8_t> SectionData = C.getSectionData();
489 const uint8_t *Buf = SectionData.begin();
490 for (auto I = Rels.begin(), E = Rels.end(); I != E; ++I) {
491 const RelTy &RI = *I;
492 SymbolBody &Body = File.getRelocTargetSym(RI);
493 uint32_t Type = RI.getType(Config->Mips64EL);
494
495 RelExpr Expr = Target->getRelExpr(Type, Body);
496 // Ignore "hint" relocation because it is for optional code optimization.
497 if (Expr == R_HINT)
498 continue;
499
500 uintX_t Offset = C.getOffset(RI.r_offset);
501 if (Offset == (uintX_t)-1)
502 continue;
503
Simon Atanasyan9a9a3162016-05-28 04:49:57 +0000504 bool Preemptible = isPreemptible(Body, Type);
George Rimar5c33b912016-05-25 14:31:37 +0000505 Expr = adjustExpr(File, Body, IsWrite, Expr, Type, Buf, Offset);
Rui Ueyama0fcdc732016-05-24 20:24:43 +0000506 if (HasError)
507 continue;
508
509 // This relocation does not require got entry, but it is relative to got and
510 // needs it to be created. Here we request for that.
511 if (Expr == R_GOTONLY_PC || Expr == R_GOTREL || Expr == R_PPC_TOC)
512 Out<ELFT>::Got->HasGotOffRel = true;
513
514 uintX_t Addend = computeAddend(File, Buf, E, RI, Expr, Body);
515
516 if (unsigned Processed =
517 handleTlsRelocation<ELFT>(Type, Body, C, Offset, Addend, Expr)) {
518 I += (Processed - 1);
519 continue;
520 }
521
522 if (needsPlt(Expr) || Expr == R_THUNK || refersToGotEntry(Expr) ||
Simon Atanasyan9a9a3162016-05-28 04:49:57 +0000523 !isPreemptible(Body, Type)) {
Rui Ueyama0fcdc732016-05-24 20:24:43 +0000524 // If the relocation points to something in the file, we can process it.
525 bool Constant = isStaticLinkTimeConstant<ELFT>(Expr, Type, Body);
526
527 // If the output being produced is position independent, the final value
528 // is still not known. In that case we still need some help from the
529 // dynamic linker. We can however do better than just copying the incoming
530 // relocation. We can process some of it and and just ask the dynamic
531 // linker to add the load address.
532 if (!Constant)
533 AddDyn({Target->RelativeRel, C.OutSec, Offset, true, &Body, Addend});
534
535 // If the produced value is a constant, we just remember to write it
536 // when outputting this section. We also have to do it if the format
537 // uses Elf_Rel, since in that case the written value is the addend.
538 if (Constant || !RelTy::IsRela)
539 C.Relocations.push_back({Expr, Type, Offset, Addend, &Body});
540 } else {
541 // We don't know anything about the finaly symbol. Just ask the dynamic
542 // linker to handle the relocation for us.
543 AddDyn({Target->getDynRel(Type), C.OutSec, Offset, false, &Body, Addend});
544 // MIPS ABI turns using of GOT and dynamic relocations inside out.
545 // While regular ABI uses dynamic relocations to fill up GOT entries
546 // MIPS ABI requires dynamic linker to fills up GOT entries using
547 // specially sorted dynamic symbol table. This affects even dynamic
548 // relocations against symbols which do not require GOT entries
549 // creation explicitly, i.e. do not have any GOT-relocations. So if
550 // a preemptible symbol has a dynamic relocation we anyway have
551 // to create a GOT entry for it.
552 // If a non-preemptible symbol has a dynamic relocation against it,
553 // dynamic linker takes it st_value, adds offset and writes down
554 // result of the dynamic relocation. In case of preemptible symbol
555 // dynamic linker performs symbol resolution, writes the symbol value
556 // to the GOT entry and reads the GOT entry when it needs to perform
557 // a dynamic relocation.
558 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19
559 if (Config->EMachine == EM_MIPS && !Body.isInGot())
560 Out<ELFT>::Got->addEntry(Body);
561 continue;
562 }
563
564 if (Expr == R_THUNK)
565 continue;
566
567 // At this point we are done with the relocated position. Some relocations
568 // also require us to create a got or plt entry.
569
570 // If a relocation needs PLT, we create a PLT and a GOT slot for the symbol.
571 if (needsPlt(Expr)) {
572 if (Body.isInPlt())
573 continue;
574 Out<ELFT>::Plt->addEntry(Body);
575
576 uint32_t Rel;
577 if (Body.isGnuIFunc() && !Preemptible)
578 Rel = Target->IRelativeRel;
579 else
580 Rel = Target->PltRel;
581
582 Out<ELFT>::GotPlt->addEntry(Body);
583 Out<ELFT>::RelaPlt->addReloc({Rel, Out<ELFT>::GotPlt,
584 Body.getGotPltOffset<ELFT>(), !Preemptible,
585 &Body, 0});
586 continue;
587 }
588
589 if (refersToGotEntry(Expr)) {
590 if (Body.isInGot())
591 continue;
592 Out<ELFT>::Got->addEntry(Body);
593
594 if (Config->EMachine == EM_MIPS)
595 // MIPS ABI has special rules to process GOT entries
596 // and doesn't require relocation entries for them.
597 // See "Global Offset Table" in Chapter 5 in the following document
598 // for detailed description:
599 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
600 continue;
601
602 if (Preemptible || (Config->Pic && !isAbsolute<ELFT>(Body))) {
603 uint32_t DynType;
604 if (Body.isTls())
605 DynType = Target->TlsGotRel;
606 else if (Preemptible)
607 DynType = Target->GotRel;
608 else
609 DynType = Target->RelativeRel;
610 AddDyn({DynType, Out<ELFT>::Got, Body.getGotOffset<ELFT>(),
611 !Preemptible, &Body, 0});
612 }
613 continue;
614 }
615 }
616
617 // Scan relocations for necessary thunks.
618 if (Config->EMachine == EM_MIPS)
619 scanRelocsForThunks<ELFT>(File, Rels);
620}
621
622template <class ELFT> void scanRelocations(InputSection<ELFT> &C) {
623 typedef typename ELFT::Shdr Elf_Shdr;
624
625 // Scan all relocations. Each relocation goes through a series
626 // of tests to determine if it needs special treatment, such as
627 // creating GOT, PLT, copy relocations, etc.
628 // Note that relocations for non-alloc sections are directly
629 // processed by InputSection::relocateNative.
630 if (C.getSectionHdr()->sh_flags & SHF_ALLOC)
631 for (const Elf_Shdr *RelSec : C.RelocSections)
632 scanRelocations(C, *RelSec);
633}
634
635template <class ELFT>
636void scanRelocations(InputSectionBase<ELFT> &S,
637 const typename ELFT::Shdr &RelSec) {
638 ELFFile<ELFT> &EObj = S.getFile()->getObj();
639 if (RelSec.sh_type == SHT_RELA)
640 scanRelocs(S, EObj.relas(&RelSec));
641 else
642 scanRelocs(S, EObj.rels(&RelSec));
643}
644
645template void scanRelocations<ELF32LE>(InputSection<ELF32LE> &);
646template void scanRelocations<ELF32BE>(InputSection<ELF32BE> &);
647template void scanRelocations<ELF64LE>(InputSection<ELF64LE> &);
648template void scanRelocations<ELF64BE>(InputSection<ELF64BE> &);
649
650template void scanRelocations<ELF32LE>(InputSectionBase<ELF32LE> &,
651 const ELF32LE::Shdr &);
652template void scanRelocations<ELF32BE>(InputSectionBase<ELF32BE> &,
653 const ELF32BE::Shdr &);
654template void scanRelocations<ELF64LE>(InputSectionBase<ELF64LE> &,
655 const ELF64LE::Shdr &);
656template void scanRelocations<ELF64BE>(InputSectionBase<ELF64BE> &,
657 const ELF64BE::Shdr &);
658}
659}