blob: b68c43a63cbe83a7e92d60118457bbcdc1fafd4d [file] [log] [blame]
Tim Northovere0e3aef2013-01-31 12:12:40 +00001//===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation -----===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that AArch64 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "aarch64-isel"
16#include "AArch64.h"
17#include "AArch64ISelLowering.h"
18#include "AArch64MachineFunctionInfo.h"
19#include "AArch64TargetMachine.h"
20#include "AArch64TargetObjectFile.h"
Tim Northover969afbe2013-02-05 13:24:47 +000021#include "Utils/AArch64BaseInfo.h"
Tim Northovere0e3aef2013-01-31 12:12:40 +000022#include "llvm/CodeGen/Analysis.h"
23#include "llvm/CodeGen/CallingConvLower.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
28#include "llvm/IR/CallingConv.h"
29
30using namespace llvm;
31
32static TargetLoweringObjectFile *createTLOF(AArch64TargetMachine &TM) {
33 const AArch64Subtarget *Subtarget = &TM.getSubtarget<AArch64Subtarget>();
34
35 if (Subtarget->isTargetLinux())
36 return new AArch64LinuxTargetObjectFile();
37 if (Subtarget->isTargetELF())
38 return new TargetLoweringObjectFileELF();
39 llvm_unreachable("unknown subtarget type");
40}
41
Tim Northovere0e3aef2013-01-31 12:12:40 +000042AArch64TargetLowering::AArch64TargetLowering(AArch64TargetMachine &TM)
Bill Wendling496dc332013-06-07 05:00:11 +000043 : TargetLowering(TM, createTLOF(TM)), Itins(TM.getInstrItineraryData()) {
Tim Northovere0e3aef2013-01-31 12:12:40 +000044
Tim Northover40e9efd2013-08-01 09:20:35 +000045 const AArch64Subtarget *Subtarget = &TM.getSubtarget<AArch64Subtarget>();
46
Tim Northovere0e3aef2013-01-31 12:12:40 +000047 // SIMD compares set the entire lane's bits to 1
48 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
49
50 // Scalar register <-> type mapping
51 addRegisterClass(MVT::i32, &AArch64::GPR32RegClass);
52 addRegisterClass(MVT::i64, &AArch64::GPR64RegClass);
53 addRegisterClass(MVT::f16, &AArch64::FPR16RegClass);
54 addRegisterClass(MVT::f32, &AArch64::FPR32RegClass);
55 addRegisterClass(MVT::f64, &AArch64::FPR64RegClass);
56 addRegisterClass(MVT::f128, &AArch64::FPR128RegClass);
57
Tim Northover40e9efd2013-08-01 09:20:35 +000058 if (Subtarget->hasNEON()) {
59 // And the vectors
60 addRegisterClass(MVT::v8i8, &AArch64::VPR64RegClass);
61 addRegisterClass(MVT::v4i16, &AArch64::VPR64RegClass);
62 addRegisterClass(MVT::v2i32, &AArch64::VPR64RegClass);
63 addRegisterClass(MVT::v1i64, &AArch64::VPR64RegClass);
64 addRegisterClass(MVT::v2f32, &AArch64::VPR64RegClass);
65 addRegisterClass(MVT::v16i8, &AArch64::VPR128RegClass);
66 addRegisterClass(MVT::v8i16, &AArch64::VPR128RegClass);
67 addRegisterClass(MVT::v4i32, &AArch64::VPR128RegClass);
68 addRegisterClass(MVT::v2i64, &AArch64::VPR128RegClass);
69 addRegisterClass(MVT::v4f32, &AArch64::VPR128RegClass);
70 addRegisterClass(MVT::v2f64, &AArch64::VPR128RegClass);
71 }
72
Tim Northovere0e3aef2013-01-31 12:12:40 +000073 computeRegisterProperties();
74
Tim Northovere0e3aef2013-01-31 12:12:40 +000075 // We combine OR nodes for bitfield and NEON BSL operations.
76 setTargetDAGCombine(ISD::OR);
77
78 setTargetDAGCombine(ISD::AND);
79 setTargetDAGCombine(ISD::SRA);
Hao Liud4aede02013-09-04 09:28:24 +000080 setTargetDAGCombine(ISD::SRL);
Hao Liucd8b02d2013-08-15 08:26:11 +000081 setTargetDAGCombine(ISD::SHL);
Tim Northovere0e3aef2013-01-31 12:12:40 +000082
Hao Liud4aede02013-09-04 09:28:24 +000083 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
84
Tim Northovere0e3aef2013-01-31 12:12:40 +000085 // AArch64 does not have i1 loads, or much of anything for i1 really.
86 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
87 setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
88 setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
89
90 setStackPointerRegisterToSaveRestore(AArch64::XSP);
91 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
92 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
93 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
94
95 // We'll lower globals to wrappers for selection.
96 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
97 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
98
99 // A64 instructions have the comparison predicate attached to the user of the
100 // result, but having a separate comparison is valuable for matching.
101 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
102 setOperationAction(ISD::BR_CC, MVT::i64, Custom);
103 setOperationAction(ISD::BR_CC, MVT::f32, Custom);
104 setOperationAction(ISD::BR_CC, MVT::f64, Custom);
105
106 setOperationAction(ISD::SELECT, MVT::i32, Custom);
107 setOperationAction(ISD::SELECT, MVT::i64, Custom);
108 setOperationAction(ISD::SELECT, MVT::f32, Custom);
109 setOperationAction(ISD::SELECT, MVT::f64, Custom);
110
111 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
112 setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
113 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
114 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
115
116 setOperationAction(ISD::BRCOND, MVT::Other, Custom);
117
118 setOperationAction(ISD::SETCC, MVT::i32, Custom);
119 setOperationAction(ISD::SETCC, MVT::i64, Custom);
120 setOperationAction(ISD::SETCC, MVT::f32, Custom);
121 setOperationAction(ISD::SETCC, MVT::f64, Custom);
122
123 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
124 setOperationAction(ISD::JumpTable, MVT::i32, Custom);
125 setOperationAction(ISD::JumpTable, MVT::i64, Custom);
126
127 setOperationAction(ISD::VASTART, MVT::Other, Custom);
128 setOperationAction(ISD::VACOPY, MVT::Other, Custom);
129 setOperationAction(ISD::VAEND, MVT::Other, Expand);
130 setOperationAction(ISD::VAARG, MVT::Other, Expand);
131
132 setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
133
134 setOperationAction(ISD::ROTL, MVT::i32, Expand);
135 setOperationAction(ISD::ROTL, MVT::i64, Expand);
136
137 setOperationAction(ISD::UREM, MVT::i32, Expand);
138 setOperationAction(ISD::UREM, MVT::i64, Expand);
139 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
140 setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
141
142 setOperationAction(ISD::SREM, MVT::i32, Expand);
143 setOperationAction(ISD::SREM, MVT::i64, Expand);
144 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
145 setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
146
147 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
148 setOperationAction(ISD::CTPOP, MVT::i64, Expand);
149
150 // Legal floating-point operations.
151 setOperationAction(ISD::FABS, MVT::f32, Legal);
152 setOperationAction(ISD::FABS, MVT::f64, Legal);
153
154 setOperationAction(ISD::FCEIL, MVT::f32, Legal);
155 setOperationAction(ISD::FCEIL, MVT::f64, Legal);
156
157 setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
158 setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
159
160 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
161 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
162
163 setOperationAction(ISD::FNEG, MVT::f32, Legal);
164 setOperationAction(ISD::FNEG, MVT::f64, Legal);
165
166 setOperationAction(ISD::FRINT, MVT::f32, Legal);
167 setOperationAction(ISD::FRINT, MVT::f64, Legal);
168
169 setOperationAction(ISD::FSQRT, MVT::f32, Legal);
170 setOperationAction(ISD::FSQRT, MVT::f64, Legal);
171
172 setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
173 setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
174
175 setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
176 setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
177 setOperationAction(ISD::ConstantFP, MVT::f128, Legal);
178
179 // Illegal floating-point operations.
180 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
181 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
182
183 setOperationAction(ISD::FCOS, MVT::f32, Expand);
184 setOperationAction(ISD::FCOS, MVT::f64, Expand);
185
186 setOperationAction(ISD::FEXP, MVT::f32, Expand);
187 setOperationAction(ISD::FEXP, MVT::f64, Expand);
188
189 setOperationAction(ISD::FEXP2, MVT::f32, Expand);
190 setOperationAction(ISD::FEXP2, MVT::f64, Expand);
191
192 setOperationAction(ISD::FLOG, MVT::f32, Expand);
193 setOperationAction(ISD::FLOG, MVT::f64, Expand);
194
195 setOperationAction(ISD::FLOG2, MVT::f32, Expand);
196 setOperationAction(ISD::FLOG2, MVT::f64, Expand);
197
198 setOperationAction(ISD::FLOG10, MVT::f32, Expand);
199 setOperationAction(ISD::FLOG10, MVT::f64, Expand);
200
201 setOperationAction(ISD::FPOW, MVT::f32, Expand);
202 setOperationAction(ISD::FPOW, MVT::f64, Expand);
203
204 setOperationAction(ISD::FPOWI, MVT::f32, Expand);
205 setOperationAction(ISD::FPOWI, MVT::f64, Expand);
206
207 setOperationAction(ISD::FREM, MVT::f32, Expand);
208 setOperationAction(ISD::FREM, MVT::f64, Expand);
209
210 setOperationAction(ISD::FSIN, MVT::f32, Expand);
211 setOperationAction(ISD::FSIN, MVT::f64, Expand);
212
Tim Northover95f48922013-03-08 13:55:07 +0000213 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
214 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
Tim Northovere0e3aef2013-01-31 12:12:40 +0000215
216 // Virtually no operation on f128 is legal, but LLVM can't expand them when
217 // there's a valid register class, so we need custom operations in most cases.
218 setOperationAction(ISD::FABS, MVT::f128, Expand);
219 setOperationAction(ISD::FADD, MVT::f128, Custom);
220 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
221 setOperationAction(ISD::FCOS, MVT::f128, Expand);
222 setOperationAction(ISD::FDIV, MVT::f128, Custom);
223 setOperationAction(ISD::FMA, MVT::f128, Expand);
224 setOperationAction(ISD::FMUL, MVT::f128, Custom);
225 setOperationAction(ISD::FNEG, MVT::f128, Expand);
226 setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand);
227 setOperationAction(ISD::FP_ROUND, MVT::f128, Expand);
228 setOperationAction(ISD::FPOW, MVT::f128, Expand);
229 setOperationAction(ISD::FREM, MVT::f128, Expand);
230 setOperationAction(ISD::FRINT, MVT::f128, Expand);
231 setOperationAction(ISD::FSIN, MVT::f128, Expand);
Tim Northover95f48922013-03-08 13:55:07 +0000232 setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
Tim Northovere0e3aef2013-01-31 12:12:40 +0000233 setOperationAction(ISD::FSQRT, MVT::f128, Expand);
234 setOperationAction(ISD::FSUB, MVT::f128, Custom);
235 setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
236 setOperationAction(ISD::SETCC, MVT::f128, Custom);
237 setOperationAction(ISD::BR_CC, MVT::f128, Custom);
238 setOperationAction(ISD::SELECT, MVT::f128, Expand);
239 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
240 setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
241
242 // Lowering for many of the conversions is actually specified by the non-f128
243 // type. The LowerXXX function will be trivial when f128 isn't involved.
244 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
245 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
246 setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom);
247 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
248 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
249 setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom);
250 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
251 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
252 setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom);
253 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
254 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
255 setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom);
256 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
257 setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
258
259 // This prevents LLVM trying to compress double constants into a floating
260 // constant-pool entry and trying to load from there. It's of doubtful benefit
261 // for A64: we'd need LDR followed by FCVT, I believe.
262 setLoadExtAction(ISD::EXTLOAD, MVT::f64, Expand);
263 setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
264 setLoadExtAction(ISD::EXTLOAD, MVT::f16, Expand);
265
266 setTruncStoreAction(MVT::f128, MVT::f64, Expand);
267 setTruncStoreAction(MVT::f128, MVT::f32, Expand);
268 setTruncStoreAction(MVT::f128, MVT::f16, Expand);
269 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
270 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
271 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
272
Tim Northovere0e3aef2013-01-31 12:12:40 +0000273 setExceptionPointerRegister(AArch64::X0);
274 setExceptionSelectorRegister(AArch64::X1);
Tim Northover40e9efd2013-08-01 09:20:35 +0000275
276 if (Subtarget->hasNEON()) {
277 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i8, Custom);
278 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
279 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
280 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
281 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Custom);
282 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
283 setOperationAction(ISD::BUILD_VECTOR, MVT::v1i64, Custom);
284 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
285 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f32, Custom);
286 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
287 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
288
Hao Liud4aede02013-09-04 09:28:24 +0000289 setOperationAction(ISD::CONCAT_VECTORS, MVT::v2i64, Legal);
290
Tim Northover40e9efd2013-08-01 09:20:35 +0000291 setOperationAction(ISD::SETCC, MVT::v8i8, Custom);
292 setOperationAction(ISD::SETCC, MVT::v16i8, Custom);
293 setOperationAction(ISD::SETCC, MVT::v4i16, Custom);
294 setOperationAction(ISD::SETCC, MVT::v8i16, Custom);
295 setOperationAction(ISD::SETCC, MVT::v2i32, Custom);
296 setOperationAction(ISD::SETCC, MVT::v4i32, Custom);
297 setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
298 setOperationAction(ISD::SETCC, MVT::v2f32, Custom);
299 setOperationAction(ISD::SETCC, MVT::v4f32, Custom);
300 setOperationAction(ISD::SETCC, MVT::v2f64, Custom);
301 }
Tim Northovere0e3aef2013-01-31 12:12:40 +0000302}
303
Matt Arsenault758659232013-05-18 00:21:46 +0000304EVT AArch64TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
Tim Northovere0e3aef2013-01-31 12:12:40 +0000305 // It's reasonably important that this value matches the "natural" legal
306 // promotion from i1 for scalar types. Otherwise LegalizeTypes can get itself
307 // in a twist (e.g. inserting an any_extend which then becomes i64 -> i64).
308 if (!VT.isVector()) return MVT::i32;
309 return VT.changeVectorElementTypeToInteger();
310}
311
Tim Northover15410e92013-04-08 08:40:41 +0000312static void getExclusiveOperation(unsigned Size, AtomicOrdering Ord,
313 unsigned &LdrOpc,
314 unsigned &StrOpc) {
Craig Toppere952ad02013-07-15 07:22:00 +0000315 static const unsigned LoadBares[] = {AArch64::LDXR_byte, AArch64::LDXR_hword,
316 AArch64::LDXR_word, AArch64::LDXR_dword};
317 static const unsigned LoadAcqs[] = {AArch64::LDAXR_byte, AArch64::LDAXR_hword,
318 AArch64::LDAXR_word, AArch64::LDAXR_dword};
319 static const unsigned StoreBares[] = {AArch64::STXR_byte, AArch64::STXR_hword,
320 AArch64::STXR_word, AArch64::STXR_dword};
321 static const unsigned StoreRels[] = {AArch64::STLXR_byte,AArch64::STLXR_hword,
322 AArch64::STLXR_word, AArch64::STLXR_dword};
Tim Northover15410e92013-04-08 08:40:41 +0000323
Craig Toppere952ad02013-07-15 07:22:00 +0000324 const unsigned *LoadOps, *StoreOps;
Tim Northover15410e92013-04-08 08:40:41 +0000325 if (Ord == Acquire || Ord == AcquireRelease || Ord == SequentiallyConsistent)
326 LoadOps = LoadAcqs;
327 else
328 LoadOps = LoadBares;
329
330 if (Ord == Release || Ord == AcquireRelease || Ord == SequentiallyConsistent)
331 StoreOps = StoreRels;
332 else
333 StoreOps = StoreBares;
334
335 assert(isPowerOf2_32(Size) && Size <= 8 &&
336 "unsupported size for atomic binary op!");
337
338 LdrOpc = LoadOps[Log2_32(Size)];
339 StrOpc = StoreOps[Log2_32(Size)];
Tim Northovere0e3aef2013-01-31 12:12:40 +0000340}
341
342MachineBasicBlock *
343AArch64TargetLowering::emitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
344 unsigned Size,
345 unsigned BinOpcode) const {
346 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
347 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
348
349 const BasicBlock *LLVM_BB = BB->getBasicBlock();
350 MachineFunction *MF = BB->getParent();
351 MachineFunction::iterator It = BB;
352 ++It;
353
354 unsigned dest = MI->getOperand(0).getReg();
355 unsigned ptr = MI->getOperand(1).getReg();
356 unsigned incr = MI->getOperand(2).getReg();
Tim Northover15410e92013-04-08 08:40:41 +0000357 AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(3).getImm());
Tim Northovere0e3aef2013-01-31 12:12:40 +0000358 DebugLoc dl = MI->getDebugLoc();
359
360 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
361
362 unsigned ldrOpc, strOpc;
Tim Northover15410e92013-04-08 08:40:41 +0000363 getExclusiveOperation(Size, Ord, ldrOpc, strOpc);
Tim Northovere0e3aef2013-01-31 12:12:40 +0000364
365 MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
366 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
367 MF->insert(It, loopMBB);
368 MF->insert(It, exitMBB);
369
370 // Transfer the remainder of BB and its successor edges to exitMBB.
371 exitMBB->splice(exitMBB->begin(), BB,
372 llvm::next(MachineBasicBlock::iterator(MI)),
373 BB->end());
374 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
375
376 const TargetRegisterClass *TRC
377 = Size == 8 ? &AArch64::GPR64RegClass : &AArch64::GPR32RegClass;
378 unsigned scratch = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC);
379
380 // thisMBB:
381 // ...
382 // fallthrough --> loopMBB
383 BB->addSuccessor(loopMBB);
384
385 // loopMBB:
386 // ldxr dest, ptr
387 // <binop> scratch, dest, incr
388 // stxr stxr_status, scratch, ptr
Tim Northover9fafdf62013-02-28 13:52:07 +0000389 // cbnz stxr_status, loopMBB
Tim Northovere0e3aef2013-01-31 12:12:40 +0000390 // fallthrough --> exitMBB
391 BB = loopMBB;
392 BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
393 if (BinOpcode) {
394 // All arithmetic operations we'll be creating are designed to take an extra
395 // shift or extend operand, which we can conveniently set to zero.
396
397 // Operand order needs to go the other way for NAND.
398 if (BinOpcode == AArch64::BICwww_lsl || BinOpcode == AArch64::BICxxx_lsl)
399 BuildMI(BB, dl, TII->get(BinOpcode), scratch)
400 .addReg(incr).addReg(dest).addImm(0);
401 else
402 BuildMI(BB, dl, TII->get(BinOpcode), scratch)
403 .addReg(dest).addReg(incr).addImm(0);
404 }
405
406 // From the stxr, the register is GPR32; from the cmp it's GPR32wsp
407 unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
408 MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass);
409
410 BuildMI(BB, dl, TII->get(strOpc), stxr_status).addReg(scratch).addReg(ptr);
Tim Northover9fafdf62013-02-28 13:52:07 +0000411 BuildMI(BB, dl, TII->get(AArch64::CBNZw))
412 .addReg(stxr_status).addMBB(loopMBB);
Tim Northovere0e3aef2013-01-31 12:12:40 +0000413
414 BB->addSuccessor(loopMBB);
415 BB->addSuccessor(exitMBB);
416
417 // exitMBB:
418 // ...
419 BB = exitMBB;
420
421 MI->eraseFromParent(); // The instruction is gone now.
422
423 return BB;
424}
425
426MachineBasicBlock *
427AArch64TargetLowering::emitAtomicBinaryMinMax(MachineInstr *MI,
428 MachineBasicBlock *BB,
429 unsigned Size,
430 unsigned CmpOp,
431 A64CC::CondCodes Cond) const {
432 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
433
434 const BasicBlock *LLVM_BB = BB->getBasicBlock();
435 MachineFunction *MF = BB->getParent();
436 MachineFunction::iterator It = BB;
437 ++It;
438
439 unsigned dest = MI->getOperand(0).getReg();
440 unsigned ptr = MI->getOperand(1).getReg();
441 unsigned incr = MI->getOperand(2).getReg();
Tim Northover15410e92013-04-08 08:40:41 +0000442 AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(3).getImm());
443
Tim Northovere0e3aef2013-01-31 12:12:40 +0000444 unsigned oldval = dest;
445 DebugLoc dl = MI->getDebugLoc();
446
447 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
448 const TargetRegisterClass *TRC, *TRCsp;
449 if (Size == 8) {
450 TRC = &AArch64::GPR64RegClass;
451 TRCsp = &AArch64::GPR64xspRegClass;
452 } else {
453 TRC = &AArch64::GPR32RegClass;
454 TRCsp = &AArch64::GPR32wspRegClass;
455 }
456
457 unsigned ldrOpc, strOpc;
Tim Northover15410e92013-04-08 08:40:41 +0000458 getExclusiveOperation(Size, Ord, ldrOpc, strOpc);
Tim Northovere0e3aef2013-01-31 12:12:40 +0000459
460 MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
461 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
462 MF->insert(It, loopMBB);
463 MF->insert(It, exitMBB);
464
465 // Transfer the remainder of BB and its successor edges to exitMBB.
466 exitMBB->splice(exitMBB->begin(), BB,
467 llvm::next(MachineBasicBlock::iterator(MI)),
468 BB->end());
469 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
470
471 unsigned scratch = MRI.createVirtualRegister(TRC);
472 MRI.constrainRegClass(scratch, TRCsp);
473
474 // thisMBB:
475 // ...
476 // fallthrough --> loopMBB
477 BB->addSuccessor(loopMBB);
478
479 // loopMBB:
480 // ldxr dest, ptr
481 // cmp incr, dest (, sign extend if necessary)
482 // csel scratch, dest, incr, cond
483 // stxr stxr_status, scratch, ptr
Tim Northover9fafdf62013-02-28 13:52:07 +0000484 // cbnz stxr_status, loopMBB
Tim Northovere0e3aef2013-01-31 12:12:40 +0000485 // fallthrough --> exitMBB
486 BB = loopMBB;
487 BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
488
489 // Build compare and cmov instructions.
490 MRI.constrainRegClass(incr, TRCsp);
491 BuildMI(BB, dl, TII->get(CmpOp))
492 .addReg(incr).addReg(oldval).addImm(0);
493
494 BuildMI(BB, dl, TII->get(Size == 8 ? AArch64::CSELxxxc : AArch64::CSELwwwc),
495 scratch)
496 .addReg(oldval).addReg(incr).addImm(Cond);
497
498 unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
499 MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass);
500
501 BuildMI(BB, dl, TII->get(strOpc), stxr_status)
502 .addReg(scratch).addReg(ptr);
Tim Northover9fafdf62013-02-28 13:52:07 +0000503 BuildMI(BB, dl, TII->get(AArch64::CBNZw))
504 .addReg(stxr_status).addMBB(loopMBB);
Tim Northovere0e3aef2013-01-31 12:12:40 +0000505
506 BB->addSuccessor(loopMBB);
507 BB->addSuccessor(exitMBB);
508
509 // exitMBB:
510 // ...
511 BB = exitMBB;
512
513 MI->eraseFromParent(); // The instruction is gone now.
514
515 return BB;
516}
517
518MachineBasicBlock *
519AArch64TargetLowering::emitAtomicCmpSwap(MachineInstr *MI,
520 MachineBasicBlock *BB,
521 unsigned Size) const {
522 unsigned dest = MI->getOperand(0).getReg();
523 unsigned ptr = MI->getOperand(1).getReg();
524 unsigned oldval = MI->getOperand(2).getReg();
525 unsigned newval = MI->getOperand(3).getReg();
Tim Northover15410e92013-04-08 08:40:41 +0000526 AtomicOrdering Ord = static_cast<AtomicOrdering>(MI->getOperand(4).getImm());
Tim Northovere0e3aef2013-01-31 12:12:40 +0000527 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
528 DebugLoc dl = MI->getDebugLoc();
529
530 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
531 const TargetRegisterClass *TRCsp;
532 TRCsp = Size == 8 ? &AArch64::GPR64xspRegClass : &AArch64::GPR32wspRegClass;
533
534 unsigned ldrOpc, strOpc;
Tim Northover15410e92013-04-08 08:40:41 +0000535 getExclusiveOperation(Size, Ord, ldrOpc, strOpc);
Tim Northovere0e3aef2013-01-31 12:12:40 +0000536
537 MachineFunction *MF = BB->getParent();
538 const BasicBlock *LLVM_BB = BB->getBasicBlock();
539 MachineFunction::iterator It = BB;
540 ++It; // insert the new blocks after the current block
541
542 MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
543 MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
544 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
545 MF->insert(It, loop1MBB);
546 MF->insert(It, loop2MBB);
547 MF->insert(It, exitMBB);
548
549 // Transfer the remainder of BB and its successor edges to exitMBB.
550 exitMBB->splice(exitMBB->begin(), BB,
551 llvm::next(MachineBasicBlock::iterator(MI)),
552 BB->end());
553 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
554
555 // thisMBB:
556 // ...
557 // fallthrough --> loop1MBB
558 BB->addSuccessor(loop1MBB);
559
560 // loop1MBB:
561 // ldxr dest, [ptr]
562 // cmp dest, oldval
563 // b.ne exitMBB
564 BB = loop1MBB;
565 BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
566
567 unsigned CmpOp = Size == 8 ? AArch64::CMPxx_lsl : AArch64::CMPww_lsl;
568 MRI.constrainRegClass(dest, TRCsp);
569 BuildMI(BB, dl, TII->get(CmpOp))
570 .addReg(dest).addReg(oldval).addImm(0);
571 BuildMI(BB, dl, TII->get(AArch64::Bcc))
572 .addImm(A64CC::NE).addMBB(exitMBB);
573 BB->addSuccessor(loop2MBB);
574 BB->addSuccessor(exitMBB);
575
576 // loop2MBB:
577 // strex stxr_status, newval, [ptr]
Tim Northover9fafdf62013-02-28 13:52:07 +0000578 // cbnz stxr_status, loop1MBB
Tim Northovere0e3aef2013-01-31 12:12:40 +0000579 BB = loop2MBB;
580 unsigned stxr_status = MRI.createVirtualRegister(&AArch64::GPR32RegClass);
581 MRI.constrainRegClass(stxr_status, &AArch64::GPR32wspRegClass);
582
583 BuildMI(BB, dl, TII->get(strOpc), stxr_status).addReg(newval).addReg(ptr);
Tim Northover9fafdf62013-02-28 13:52:07 +0000584 BuildMI(BB, dl, TII->get(AArch64::CBNZw))
585 .addReg(stxr_status).addMBB(loop1MBB);
Tim Northovere0e3aef2013-01-31 12:12:40 +0000586 BB->addSuccessor(loop1MBB);
587 BB->addSuccessor(exitMBB);
588
589 // exitMBB:
590 // ...
591 BB = exitMBB;
592
593 MI->eraseFromParent(); // The instruction is gone now.
594
595 return BB;
596}
597
598MachineBasicBlock *
599AArch64TargetLowering::EmitF128CSEL(MachineInstr *MI,
600 MachineBasicBlock *MBB) const {
601 // We materialise the F128CSEL pseudo-instruction using conditional branches
602 // and loads, giving an instruciton sequence like:
603 // str q0, [sp]
604 // b.ne IfTrue
605 // b Finish
606 // IfTrue:
607 // str q1, [sp]
608 // Finish:
609 // ldr q0, [sp]
610 //
611 // Using virtual registers would probably not be beneficial since COPY
612 // instructions are expensive for f128 (there's no actual instruction to
613 // implement them).
614 //
615 // An alternative would be to do an integer-CSEL on some address. E.g.:
616 // mov x0, sp
617 // add x1, sp, #16
618 // str q0, [x0]
619 // str q1, [x1]
620 // csel x0, x0, x1, ne
621 // ldr q0, [x0]
622 //
623 // It's unclear which approach is actually optimal.
624 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
625 MachineFunction *MF = MBB->getParent();
626 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
627 DebugLoc DL = MI->getDebugLoc();
628 MachineFunction::iterator It = MBB;
629 ++It;
630
631 unsigned DestReg = MI->getOperand(0).getReg();
632 unsigned IfTrueReg = MI->getOperand(1).getReg();
633 unsigned IfFalseReg = MI->getOperand(2).getReg();
634 unsigned CondCode = MI->getOperand(3).getImm();
635 bool NZCVKilled = MI->getOperand(4).isKill();
636
637 MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB);
638 MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB);
639 MF->insert(It, TrueBB);
640 MF->insert(It, EndBB);
641
642 // Transfer rest of current basic-block to EndBB
643 EndBB->splice(EndBB->begin(), MBB,
644 llvm::next(MachineBasicBlock::iterator(MI)),
645 MBB->end());
646 EndBB->transferSuccessorsAndUpdatePHIs(MBB);
647
648 // We need somewhere to store the f128 value needed.
649 int ScratchFI = MF->getFrameInfo()->CreateSpillStackObject(16, 16);
650
651 // [... start of incoming MBB ...]
652 // str qIFFALSE, [sp]
653 // b.cc IfTrue
654 // b Done
655 BuildMI(MBB, DL, TII->get(AArch64::LSFP128_STR))
656 .addReg(IfFalseReg)
657 .addFrameIndex(ScratchFI)
658 .addImm(0);
659 BuildMI(MBB, DL, TII->get(AArch64::Bcc))
660 .addImm(CondCode)
661 .addMBB(TrueBB);
662 BuildMI(MBB, DL, TII->get(AArch64::Bimm))
663 .addMBB(EndBB);
664 MBB->addSuccessor(TrueBB);
665 MBB->addSuccessor(EndBB);
666
667 // IfTrue:
668 // str qIFTRUE, [sp]
669 BuildMI(TrueBB, DL, TII->get(AArch64::LSFP128_STR))
670 .addReg(IfTrueReg)
671 .addFrameIndex(ScratchFI)
672 .addImm(0);
673
674 // Note: fallthrough. We can rely on LLVM adding a branch if it reorders the
675 // blocks.
676 TrueBB->addSuccessor(EndBB);
677
678 // Done:
679 // ldr qDEST, [sp]
680 // [... rest of incoming MBB ...]
681 if (!NZCVKilled)
682 EndBB->addLiveIn(AArch64::NZCV);
683 MachineInstr *StartOfEnd = EndBB->begin();
684 BuildMI(*EndBB, StartOfEnd, DL, TII->get(AArch64::LSFP128_LDR), DestReg)
685 .addFrameIndex(ScratchFI)
686 .addImm(0);
687
688 MI->eraseFromParent();
689 return EndBB;
690}
691
692MachineBasicBlock *
693AArch64TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
694 MachineBasicBlock *MBB) const {
695 switch (MI->getOpcode()) {
696 default: llvm_unreachable("Unhandled instruction with custom inserter");
697 case AArch64::F128CSEL:
698 return EmitF128CSEL(MI, MBB);
699 case AArch64::ATOMIC_LOAD_ADD_I8:
700 return emitAtomicBinary(MI, MBB, 1, AArch64::ADDwww_lsl);
701 case AArch64::ATOMIC_LOAD_ADD_I16:
702 return emitAtomicBinary(MI, MBB, 2, AArch64::ADDwww_lsl);
703 case AArch64::ATOMIC_LOAD_ADD_I32:
704 return emitAtomicBinary(MI, MBB, 4, AArch64::ADDwww_lsl);
705 case AArch64::ATOMIC_LOAD_ADD_I64:
706 return emitAtomicBinary(MI, MBB, 8, AArch64::ADDxxx_lsl);
707
708 case AArch64::ATOMIC_LOAD_SUB_I8:
709 return emitAtomicBinary(MI, MBB, 1, AArch64::SUBwww_lsl);
710 case AArch64::ATOMIC_LOAD_SUB_I16:
711 return emitAtomicBinary(MI, MBB, 2, AArch64::SUBwww_lsl);
712 case AArch64::ATOMIC_LOAD_SUB_I32:
713 return emitAtomicBinary(MI, MBB, 4, AArch64::SUBwww_lsl);
714 case AArch64::ATOMIC_LOAD_SUB_I64:
715 return emitAtomicBinary(MI, MBB, 8, AArch64::SUBxxx_lsl);
716
717 case AArch64::ATOMIC_LOAD_AND_I8:
718 return emitAtomicBinary(MI, MBB, 1, AArch64::ANDwww_lsl);
719 case AArch64::ATOMIC_LOAD_AND_I16:
720 return emitAtomicBinary(MI, MBB, 2, AArch64::ANDwww_lsl);
721 case AArch64::ATOMIC_LOAD_AND_I32:
722 return emitAtomicBinary(MI, MBB, 4, AArch64::ANDwww_lsl);
723 case AArch64::ATOMIC_LOAD_AND_I64:
724 return emitAtomicBinary(MI, MBB, 8, AArch64::ANDxxx_lsl);
725
726 case AArch64::ATOMIC_LOAD_OR_I8:
727 return emitAtomicBinary(MI, MBB, 1, AArch64::ORRwww_lsl);
728 case AArch64::ATOMIC_LOAD_OR_I16:
729 return emitAtomicBinary(MI, MBB, 2, AArch64::ORRwww_lsl);
730 case AArch64::ATOMIC_LOAD_OR_I32:
731 return emitAtomicBinary(MI, MBB, 4, AArch64::ORRwww_lsl);
732 case AArch64::ATOMIC_LOAD_OR_I64:
733 return emitAtomicBinary(MI, MBB, 8, AArch64::ORRxxx_lsl);
734
735 case AArch64::ATOMIC_LOAD_XOR_I8:
736 return emitAtomicBinary(MI, MBB, 1, AArch64::EORwww_lsl);
737 case AArch64::ATOMIC_LOAD_XOR_I16:
738 return emitAtomicBinary(MI, MBB, 2, AArch64::EORwww_lsl);
739 case AArch64::ATOMIC_LOAD_XOR_I32:
740 return emitAtomicBinary(MI, MBB, 4, AArch64::EORwww_lsl);
741 case AArch64::ATOMIC_LOAD_XOR_I64:
742 return emitAtomicBinary(MI, MBB, 8, AArch64::EORxxx_lsl);
743
744 case AArch64::ATOMIC_LOAD_NAND_I8:
745 return emitAtomicBinary(MI, MBB, 1, AArch64::BICwww_lsl);
746 case AArch64::ATOMIC_LOAD_NAND_I16:
747 return emitAtomicBinary(MI, MBB, 2, AArch64::BICwww_lsl);
748 case AArch64::ATOMIC_LOAD_NAND_I32:
749 return emitAtomicBinary(MI, MBB, 4, AArch64::BICwww_lsl);
750 case AArch64::ATOMIC_LOAD_NAND_I64:
751 return emitAtomicBinary(MI, MBB, 8, AArch64::BICxxx_lsl);
752
753 case AArch64::ATOMIC_LOAD_MIN_I8:
754 return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_sxtb, A64CC::GT);
755 case AArch64::ATOMIC_LOAD_MIN_I16:
756 return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_sxth, A64CC::GT);
757 case AArch64::ATOMIC_LOAD_MIN_I32:
758 return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::GT);
759 case AArch64::ATOMIC_LOAD_MIN_I64:
760 return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::GT);
761
762 case AArch64::ATOMIC_LOAD_MAX_I8:
763 return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_sxtb, A64CC::LT);
764 case AArch64::ATOMIC_LOAD_MAX_I16:
765 return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_sxth, A64CC::LT);
766 case AArch64::ATOMIC_LOAD_MAX_I32:
767 return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::LT);
768 case AArch64::ATOMIC_LOAD_MAX_I64:
769 return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::LT);
770
771 case AArch64::ATOMIC_LOAD_UMIN_I8:
772 return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_uxtb, A64CC::HI);
773 case AArch64::ATOMIC_LOAD_UMIN_I16:
774 return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_uxth, A64CC::HI);
775 case AArch64::ATOMIC_LOAD_UMIN_I32:
776 return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::HI);
777 case AArch64::ATOMIC_LOAD_UMIN_I64:
778 return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::HI);
779
780 case AArch64::ATOMIC_LOAD_UMAX_I8:
781 return emitAtomicBinaryMinMax(MI, MBB, 1, AArch64::CMPww_uxtb, A64CC::LO);
782 case AArch64::ATOMIC_LOAD_UMAX_I16:
783 return emitAtomicBinaryMinMax(MI, MBB, 2, AArch64::CMPww_uxth, A64CC::LO);
784 case AArch64::ATOMIC_LOAD_UMAX_I32:
785 return emitAtomicBinaryMinMax(MI, MBB, 4, AArch64::CMPww_lsl, A64CC::LO);
786 case AArch64::ATOMIC_LOAD_UMAX_I64:
787 return emitAtomicBinaryMinMax(MI, MBB, 8, AArch64::CMPxx_lsl, A64CC::LO);
788
789 case AArch64::ATOMIC_SWAP_I8:
790 return emitAtomicBinary(MI, MBB, 1, 0);
791 case AArch64::ATOMIC_SWAP_I16:
792 return emitAtomicBinary(MI, MBB, 2, 0);
793 case AArch64::ATOMIC_SWAP_I32:
794 return emitAtomicBinary(MI, MBB, 4, 0);
795 case AArch64::ATOMIC_SWAP_I64:
796 return emitAtomicBinary(MI, MBB, 8, 0);
797
798 case AArch64::ATOMIC_CMP_SWAP_I8:
799 return emitAtomicCmpSwap(MI, MBB, 1);
800 case AArch64::ATOMIC_CMP_SWAP_I16:
801 return emitAtomicCmpSwap(MI, MBB, 2);
802 case AArch64::ATOMIC_CMP_SWAP_I32:
803 return emitAtomicCmpSwap(MI, MBB, 4);
804 case AArch64::ATOMIC_CMP_SWAP_I64:
805 return emitAtomicCmpSwap(MI, MBB, 8);
806 }
807}
808
809
810const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const {
811 switch (Opcode) {
812 case AArch64ISD::BR_CC: return "AArch64ISD::BR_CC";
813 case AArch64ISD::Call: return "AArch64ISD::Call";
814 case AArch64ISD::FPMOV: return "AArch64ISD::FPMOV";
815 case AArch64ISD::GOTLoad: return "AArch64ISD::GOTLoad";
816 case AArch64ISD::BFI: return "AArch64ISD::BFI";
817 case AArch64ISD::EXTR: return "AArch64ISD::EXTR";
818 case AArch64ISD::Ret: return "AArch64ISD::Ret";
819 case AArch64ISD::SBFX: return "AArch64ISD::SBFX";
820 case AArch64ISD::SELECT_CC: return "AArch64ISD::SELECT_CC";
821 case AArch64ISD::SETCC: return "AArch64ISD::SETCC";
822 case AArch64ISD::TC_RETURN: return "AArch64ISD::TC_RETURN";
823 case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER";
824 case AArch64ISD::TLSDESCCALL: return "AArch64ISD::TLSDESCCALL";
Tim Northover2dbef342013-05-04 16:53:46 +0000825 case AArch64ISD::WrapperLarge: return "AArch64ISD::WrapperLarge";
Tim Northovere0e3aef2013-01-31 12:12:40 +0000826 case AArch64ISD::WrapperSmall: return "AArch64ISD::WrapperSmall";
827
Tim Northover40e9efd2013-08-01 09:20:35 +0000828 case AArch64ISD::NEON_BSL:
829 return "AArch64ISD::NEON_BSL";
830 case AArch64ISD::NEON_MOVIMM:
831 return "AArch64ISD::NEON_MOVIMM";
832 case AArch64ISD::NEON_MVNIMM:
833 return "AArch64ISD::NEON_MVNIMM";
834 case AArch64ISD::NEON_FMOVIMM:
835 return "AArch64ISD::NEON_FMOVIMM";
836 case AArch64ISD::NEON_CMP:
837 return "AArch64ISD::NEON_CMP";
838 case AArch64ISD::NEON_CMPZ:
839 return "AArch64ISD::NEON_CMPZ";
840 case AArch64ISD::NEON_TST:
841 return "AArch64ISD::NEON_TST";
Hao Liud4aede02013-09-04 09:28:24 +0000842 case AArch64ISD::NEON_DUPIMM:
843 return "AArch64ISD::NEON_DUPIMM";
844 case AArch64ISD::NEON_QSHLs:
845 return "AArch64ISD::NEON_QSHLs";
846 case AArch64ISD::NEON_QSHLu:
847 return "AArch64ISD::NEON_QSHLu";
Tim Northover40e9efd2013-08-01 09:20:35 +0000848 default:
849 return NULL;
Tim Northovere0e3aef2013-01-31 12:12:40 +0000850 }
851}
852
853static const uint16_t AArch64FPRArgRegs[] = {
854 AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3,
855 AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7
856};
857static const unsigned NumFPRArgRegs = llvm::array_lengthof(AArch64FPRArgRegs);
858
859static const uint16_t AArch64ArgRegs[] = {
860 AArch64::X0, AArch64::X1, AArch64::X2, AArch64::X3,
861 AArch64::X4, AArch64::X5, AArch64::X6, AArch64::X7
862};
863static const unsigned NumArgRegs = llvm::array_lengthof(AArch64ArgRegs);
864
865static bool CC_AArch64NoMoreRegs(unsigned ValNo, MVT ValVT, MVT LocVT,
866 CCValAssign::LocInfo LocInfo,
867 ISD::ArgFlagsTy ArgFlags, CCState &State) {
868 // Mark all remaining general purpose registers as allocated. We don't
869 // backtrack: if (for example) an i128 gets put on the stack, no subsequent
870 // i64 will go in registers (C.11).
871 for (unsigned i = 0; i < NumArgRegs; ++i)
872 State.AllocateReg(AArch64ArgRegs[i]);
873
874 return false;
875}
876
877#include "AArch64GenCallingConv.inc"
878
879CCAssignFn *AArch64TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
880
881 switch(CC) {
882 default: llvm_unreachable("Unsupported calling convention");
883 case CallingConv::Fast:
884 case CallingConv::C:
885 return CC_A64_APCS;
886 }
887}
888
889void
890AArch64TargetLowering::SaveVarArgRegisters(CCState &CCInfo, SelectionDAG &DAG,
Andrew Trickef9de2a2013-05-25 02:42:55 +0000891 SDLoc DL, SDValue &Chain) const {
Tim Northovere0e3aef2013-01-31 12:12:40 +0000892 MachineFunction &MF = DAG.getMachineFunction();
893 MachineFrameInfo *MFI = MF.getFrameInfo();
Tim Northoverbcaca872013-02-05 13:24:56 +0000894 AArch64MachineFunctionInfo *FuncInfo
895 = MF.getInfo<AArch64MachineFunctionInfo>();
Tim Northovere0e3aef2013-01-31 12:12:40 +0000896
897 SmallVector<SDValue, 8> MemOps;
898
899 unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(AArch64ArgRegs,
900 NumArgRegs);
901 unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(AArch64FPRArgRegs,
902 NumFPRArgRegs);
903
904 unsigned GPRSaveSize = 8 * (NumArgRegs - FirstVariadicGPR);
905 int GPRIdx = 0;
906 if (GPRSaveSize != 0) {
907 GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false);
908
909 SDValue FIN = DAG.getFrameIndex(GPRIdx, getPointerTy());
910
911 for (unsigned i = FirstVariadicGPR; i < NumArgRegs; ++i) {
912 unsigned VReg = MF.addLiveIn(AArch64ArgRegs[i], &AArch64::GPR64RegClass);
913 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64);
914 SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN,
915 MachinePointerInfo::getStack(i * 8),
916 false, false, 0);
917 MemOps.push_back(Store);
918 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
919 DAG.getConstant(8, getPointerTy()));
920 }
921 }
922
923 unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR);
924 int FPRIdx = 0;
925 if (FPRSaveSize != 0) {
926 FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false);
927
928 SDValue FIN = DAG.getFrameIndex(FPRIdx, getPointerTy());
929
930 for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) {
931 unsigned VReg = MF.addLiveIn(AArch64FPRArgRegs[i],
932 &AArch64::FPR128RegClass);
933 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128);
934 SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN,
935 MachinePointerInfo::getStack(i * 16),
936 false, false, 0);
937 MemOps.push_back(Store);
938 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN,
939 DAG.getConstant(16, getPointerTy()));
940 }
941 }
942
943 int StackIdx = MFI->CreateFixedObject(8, CCInfo.getNextStackOffset(), true);
944
945 FuncInfo->setVariadicStackIdx(StackIdx);
946 FuncInfo->setVariadicGPRIdx(GPRIdx);
947 FuncInfo->setVariadicGPRSize(GPRSaveSize);
948 FuncInfo->setVariadicFPRIdx(FPRIdx);
949 FuncInfo->setVariadicFPRSize(FPRSaveSize);
950
951 if (!MemOps.empty()) {
952 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &MemOps[0],
953 MemOps.size());
954 }
955}
956
957
958SDValue
959AArch64TargetLowering::LowerFormalArguments(SDValue Chain,
960 CallingConv::ID CallConv, bool isVarArg,
961 const SmallVectorImpl<ISD::InputArg> &Ins,
Andrew Trickef9de2a2013-05-25 02:42:55 +0000962 SDLoc dl, SelectionDAG &DAG,
Tim Northovere0e3aef2013-01-31 12:12:40 +0000963 SmallVectorImpl<SDValue> &InVals) const {
964 MachineFunction &MF = DAG.getMachineFunction();
965 AArch64MachineFunctionInfo *FuncInfo
966 = MF.getInfo<AArch64MachineFunctionInfo>();
967 MachineFrameInfo *MFI = MF.getFrameInfo();
968 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
969
970 SmallVector<CCValAssign, 16> ArgLocs;
971 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
972 getTargetMachine(), ArgLocs, *DAG.getContext());
973 CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
974
975 SmallVector<SDValue, 16> ArgValues;
976
977 SDValue ArgValue;
978 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
979 CCValAssign &VA = ArgLocs[i];
980 ISD::ArgFlagsTy Flags = Ins[i].Flags;
981
982 if (Flags.isByVal()) {
983 // Byval is used for small structs and HFAs in the PCS, but the system
984 // should work in a non-compliant manner for larger structs.
985 EVT PtrTy = getPointerTy();
986 int Size = Flags.getByValSize();
987 unsigned NumRegs = (Size + 7) / 8;
988
989 unsigned FrameIdx = MFI->CreateFixedObject(8 * NumRegs,
990 VA.getLocMemOffset(),
991 false);
992 SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrTy);
993 InVals.push_back(FrameIdxN);
994
995 continue;
996 } else if (VA.isRegLoc()) {
997 MVT RegVT = VA.getLocVT();
998 const TargetRegisterClass *RC = getRegClassFor(RegVT);
999 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1000
1001 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1002 } else { // VA.isRegLoc()
1003 assert(VA.isMemLoc());
1004
1005 int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
1006 VA.getLocMemOffset(), true);
1007
1008 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1009 ArgValue = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
1010 MachinePointerInfo::getFixedStack(FI),
1011 false, false, false, 0);
1012
1013
1014 }
1015
1016 switch (VA.getLocInfo()) {
1017 default: llvm_unreachable("Unknown loc info!");
1018 case CCValAssign::Full: break;
1019 case CCValAssign::BCvt:
1020 ArgValue = DAG.getNode(ISD::BITCAST,dl, VA.getValVT(), ArgValue);
1021 break;
1022 case CCValAssign::SExt:
1023 case CCValAssign::ZExt:
1024 case CCValAssign::AExt: {
1025 unsigned DestSize = VA.getValVT().getSizeInBits();
1026 unsigned DestSubReg;
1027
1028 switch (DestSize) {
1029 case 8: DestSubReg = AArch64::sub_8; break;
1030 case 16: DestSubReg = AArch64::sub_16; break;
1031 case 32: DestSubReg = AArch64::sub_32; break;
1032 case 64: DestSubReg = AArch64::sub_64; break;
1033 default: llvm_unreachable("Unexpected argument promotion");
1034 }
1035
1036 ArgValue = SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl,
1037 VA.getValVT(), ArgValue,
1038 DAG.getTargetConstant(DestSubReg, MVT::i32)),
1039 0);
1040 break;
1041 }
1042 }
1043
1044 InVals.push_back(ArgValue);
1045 }
1046
1047 if (isVarArg)
1048 SaveVarArgRegisters(CCInfo, DAG, dl, Chain);
1049
1050 unsigned StackArgSize = CCInfo.getNextStackOffset();
1051 if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) {
1052 // This is a non-standard ABI so by fiat I say we're allowed to make full
1053 // use of the stack area to be popped, which must be aligned to 16 bytes in
1054 // any case:
1055 StackArgSize = RoundUpToAlignment(StackArgSize, 16);
1056
1057 // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
1058 // a multiple of 16.
1059 FuncInfo->setArgumentStackToRestore(StackArgSize);
1060
1061 // This realignment carries over to the available bytes below. Our own
1062 // callers will guarantee the space is free by giving an aligned value to
1063 // CALLSEQ_START.
1064 }
1065 // Even if we're not expected to free up the space, it's useful to know how
1066 // much is there while considering tail calls (because we can reuse it).
1067 FuncInfo->setBytesInStackArgArea(StackArgSize);
1068
1069 return Chain;
1070}
1071
1072SDValue
1073AArch64TargetLowering::LowerReturn(SDValue Chain,
1074 CallingConv::ID CallConv, bool isVarArg,
1075 const SmallVectorImpl<ISD::OutputArg> &Outs,
1076 const SmallVectorImpl<SDValue> &OutVals,
Andrew Trickef9de2a2013-05-25 02:42:55 +00001077 SDLoc dl, SelectionDAG &DAG) const {
Tim Northovere0e3aef2013-01-31 12:12:40 +00001078 // CCValAssign - represent the assignment of the return value to a location.
1079 SmallVector<CCValAssign, 16> RVLocs;
1080
1081 // CCState - Info about the registers and stack slots.
1082 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1083 getTargetMachine(), RVLocs, *DAG.getContext());
1084
1085 // Analyze outgoing return values.
1086 CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv));
1087
Tim Northovere0e3aef2013-01-31 12:12:40 +00001088 SDValue Flag;
Jakob Stoklund Olesendbc8c512013-02-05 18:21:49 +00001089 SmallVector<SDValue, 4> RetOps(1, Chain);
Tim Northovere0e3aef2013-01-31 12:12:40 +00001090
1091 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
Tim Northoverbcaca872013-02-05 13:24:56 +00001092 // PCS: "If the type, T, of the result of a function is such that
1093 // void func(T arg) would require that arg be passed as a value in a
1094 // register (or set of registers) according to the rules in 5.4, then the
1095 // result is returned in the same registers as would be used for such an
1096 // argument.
Tim Northovere0e3aef2013-01-31 12:12:40 +00001097 //
1098 // Otherwise, the caller shall reserve a block of memory of sufficient
1099 // size and alignment to hold the result. The address of the memory block
1100 // shall be passed as an additional argument to the function in x8."
1101 //
1102 // This is implemented in two places. The register-return values are dealt
1103 // with here, more complex returns are passed as an sret parameter, which
1104 // means we don't have to worry about it during actual return.
1105 CCValAssign &VA = RVLocs[i];
1106 assert(VA.isRegLoc() && "Only register-returns should be created by PCS");
1107
1108
1109 SDValue Arg = OutVals[i];
1110
1111 // There's no convenient note in the ABI about this as there is for normal
1112 // arguments, but it says return values are passed in the same registers as
1113 // an argument would be. I believe that includes the comments about
1114 // unspecified higher bits, putting the burden of widening on the *caller*
1115 // for return values.
1116 switch (VA.getLocInfo()) {
1117 default: llvm_unreachable("Unknown loc info");
1118 case CCValAssign::Full: break;
1119 case CCValAssign::SExt:
1120 case CCValAssign::ZExt:
1121 case CCValAssign::AExt:
1122 // Floating-point values should only be extended when they're going into
1123 // memory, which can't happen here so an integer extend is acceptable.
1124 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1125 break;
1126 case CCValAssign::BCvt:
1127 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1128 break;
1129 }
1130
1131 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
1132 Flag = Chain.getValue(1);
Jakob Stoklund Olesendbc8c512013-02-05 18:21:49 +00001133 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
Tim Northovere0e3aef2013-01-31 12:12:40 +00001134 }
1135
Jakob Stoklund Olesendbc8c512013-02-05 18:21:49 +00001136 RetOps[0] = Chain; // Update chain.
1137
1138 // Add the flag if we have it.
1139 if (Flag.getNode())
1140 RetOps.push_back(Flag);
1141
1142 return DAG.getNode(AArch64ISD::Ret, dl, MVT::Other,
1143 &RetOps[0], RetOps.size());
Tim Northovere0e3aef2013-01-31 12:12:40 +00001144}
1145
1146SDValue
1147AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI,
1148 SmallVectorImpl<SDValue> &InVals) const {
1149 SelectionDAG &DAG = CLI.DAG;
Andrew Trickef9de2a2013-05-25 02:42:55 +00001150 SDLoc &dl = CLI.DL;
Craig Topperb94011f2013-07-14 04:42:23 +00001151 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1152 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1153 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
Tim Northovere0e3aef2013-01-31 12:12:40 +00001154 SDValue Chain = CLI.Chain;
1155 SDValue Callee = CLI.Callee;
1156 bool &IsTailCall = CLI.IsTailCall;
1157 CallingConv::ID CallConv = CLI.CallConv;
1158 bool IsVarArg = CLI.IsVarArg;
1159
1160 MachineFunction &MF = DAG.getMachineFunction();
1161 AArch64MachineFunctionInfo *FuncInfo
1162 = MF.getInfo<AArch64MachineFunctionInfo>();
1163 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
1164 bool IsStructRet = !Outs.empty() && Outs[0].Flags.isSRet();
1165 bool IsSibCall = false;
1166
1167 if (IsTailCall) {
1168 IsTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1169 IsVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1170 Outs, OutVals, Ins, DAG);
1171
1172 // A sibling call is one where we're under the usual C ABI and not planning
1173 // to change that but can still do a tail call:
1174 if (!TailCallOpt && IsTailCall)
1175 IsSibCall = true;
1176 }
1177
1178 SmallVector<CCValAssign, 16> ArgLocs;
1179 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
1180 getTargetMachine(), ArgLocs, *DAG.getContext());
1181 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
1182
1183 // On AArch64 (and all other architectures I'm aware of) the most this has to
1184 // do is adjust the stack pointer.
1185 unsigned NumBytes = RoundUpToAlignment(CCInfo.getNextStackOffset(), 16);
1186 if (IsSibCall) {
1187 // Since we're not changing the ABI to make this a tail call, the memory
1188 // operands are already available in the caller's incoming argument space.
1189 NumBytes = 0;
1190 }
1191
1192 // FPDiff is the byte offset of the call's argument area from the callee's.
1193 // Stores to callee stack arguments will be placed in FixedStackSlots offset
1194 // by this amount for a tail call. In a sibling call it must be 0 because the
1195 // caller will deallocate the entire stack and the callee still expects its
1196 // arguments to begin at SP+0. Completely unused for non-tail calls.
1197 int FPDiff = 0;
1198
1199 if (IsTailCall && !IsSibCall) {
1200 unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
1201
1202 // FPDiff will be negative if this tail call requires more space than we
1203 // would automatically have in our incoming argument space. Positive if we
1204 // can actually shrink the stack.
1205 FPDiff = NumReusableBytes - NumBytes;
1206
1207 // The stack pointer must be 16-byte aligned at all times it's used for a
1208 // memory operation, which in practice means at *all* times and in
1209 // particular across call boundaries. Therefore our own arguments started at
1210 // a 16-byte aligned SP and the delta applied for the tail call should
1211 // satisfy the same constraint.
1212 assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
1213 }
1214
1215 if (!IsSibCall)
Andrew Trickad6d08a2013-05-29 22:03:55 +00001216 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
1217 dl);
Tim Northovere0e3aef2013-01-31 12:12:40 +00001218
Tim Northoverbcaca872013-02-05 13:24:56 +00001219 SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, AArch64::XSP,
1220 getPointerTy());
Tim Northovere0e3aef2013-01-31 12:12:40 +00001221
1222 SmallVector<SDValue, 8> MemOpChains;
1223 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1224
1225 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1226 CCValAssign &VA = ArgLocs[i];
1227 ISD::ArgFlagsTy Flags = Outs[i].Flags;
1228 SDValue Arg = OutVals[i];
1229
1230 // Callee does the actual widening, so all extensions just use an implicit
1231 // definition of the rest of the Loc. Aesthetically, this would be nicer as
1232 // an ANY_EXTEND, but that isn't valid for floating-point types and this
1233 // alternative works on integer types too.
1234 switch (VA.getLocInfo()) {
1235 default: llvm_unreachable("Unknown loc info!");
1236 case CCValAssign::Full: break;
1237 case CCValAssign::SExt:
1238 case CCValAssign::ZExt:
1239 case CCValAssign::AExt: {
1240 unsigned SrcSize = VA.getValVT().getSizeInBits();
1241 unsigned SrcSubReg;
1242
1243 switch (SrcSize) {
1244 case 8: SrcSubReg = AArch64::sub_8; break;
1245 case 16: SrcSubReg = AArch64::sub_16; break;
1246 case 32: SrcSubReg = AArch64::sub_32; break;
1247 case 64: SrcSubReg = AArch64::sub_64; break;
1248 default: llvm_unreachable("Unexpected argument promotion");
1249 }
1250
1251 Arg = SDValue(DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl,
1252 VA.getLocVT(),
1253 DAG.getUNDEF(VA.getLocVT()),
1254 Arg,
1255 DAG.getTargetConstant(SrcSubReg, MVT::i32)),
1256 0);
1257
1258 break;
1259 }
1260 case CCValAssign::BCvt:
1261 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1262 break;
1263 }
1264
1265 if (VA.isRegLoc()) {
1266 // A normal register (sub-) argument. For now we just note it down because
1267 // we want to copy things into registers as late as possible to avoid
1268 // register-pressure (and possibly worse).
1269 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1270 continue;
1271 }
1272
1273 assert(VA.isMemLoc() && "unexpected argument location");
1274
1275 SDValue DstAddr;
1276 MachinePointerInfo DstInfo;
1277 if (IsTailCall) {
1278 uint32_t OpSize = Flags.isByVal() ? Flags.getByValSize() :
1279 VA.getLocVT().getSizeInBits();
1280 OpSize = (OpSize + 7) / 8;
1281 int32_t Offset = VA.getLocMemOffset() + FPDiff;
1282 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
1283
1284 DstAddr = DAG.getFrameIndex(FI, getPointerTy());
1285 DstInfo = MachinePointerInfo::getFixedStack(FI);
1286
1287 // Make sure any stack arguments overlapping with where we're storing are
1288 // loaded before this eventual operation. Otherwise they'll be clobbered.
1289 Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI);
1290 } else {
1291 SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset());
1292
1293 DstAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1294 DstInfo = MachinePointerInfo::getStack(VA.getLocMemOffset());
1295 }
1296
1297 if (Flags.isByVal()) {
1298 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i64);
1299 SDValue Cpy = DAG.getMemcpy(Chain, dl, DstAddr, Arg, SizeNode,
1300 Flags.getByValAlign(),
1301 /*isVolatile = */ false,
1302 /*alwaysInline = */ false,
1303 DstInfo, MachinePointerInfo(0));
1304 MemOpChains.push_back(Cpy);
1305 } else {
1306 // Normal stack argument, put it where it's needed.
1307 SDValue Store = DAG.getStore(Chain, dl, Arg, DstAddr, DstInfo,
1308 false, false, 0);
1309 MemOpChains.push_back(Store);
1310 }
1311 }
1312
1313 // The loads and stores generated above shouldn't clash with each
1314 // other. Combining them with this TokenFactor notes that fact for the rest of
1315 // the backend.
1316 if (!MemOpChains.empty())
1317 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1318 &MemOpChains[0], MemOpChains.size());
1319
1320 // Most of the rest of the instructions need to be glued together; we don't
1321 // want assignments to actual registers used by a call to be rearranged by a
1322 // well-meaning scheduler.
1323 SDValue InFlag;
1324
1325 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1326 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1327 RegsToPass[i].second, InFlag);
1328 InFlag = Chain.getValue(1);
1329 }
1330
1331 // The linker is responsible for inserting veneers when necessary to put a
1332 // function call destination in range, so we don't need to bother with a
1333 // wrapper here.
1334 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1335 const GlobalValue *GV = G->getGlobal();
1336 Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy());
1337 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1338 const char *Sym = S->getSymbol();
1339 Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy());
1340 }
1341
1342 // We don't usually want to end the call-sequence here because we would tidy
1343 // the frame up *after* the call, however in the ABI-changing tail-call case
1344 // we've carefully laid out the parameters so that when sp is reset they'll be
1345 // in the correct location.
1346 if (IsTailCall && !IsSibCall) {
1347 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
Andrew Trickad6d08a2013-05-29 22:03:55 +00001348 DAG.getIntPtrConstant(0, true), InFlag, dl);
Tim Northovere0e3aef2013-01-31 12:12:40 +00001349 InFlag = Chain.getValue(1);
1350 }
1351
1352 // We produce the following DAG scheme for the actual call instruction:
1353 // (AArch64Call Chain, Callee, reg1, ..., regn, preserveMask, inflag?
1354 //
1355 // Most arguments aren't going to be used and just keep the values live as
1356 // far as LLVM is concerned. It's expected to be selected as simply "bl
1357 // callee" (for a direct, non-tail call).
1358 std::vector<SDValue> Ops;
1359 Ops.push_back(Chain);
1360 Ops.push_back(Callee);
1361
1362 if (IsTailCall) {
1363 // Each tail call may have to adjust the stack by a different amount, so
1364 // this information must travel along with the operation for eventual
1365 // consumption by emitEpilogue.
1366 Ops.push_back(DAG.getTargetConstant(FPDiff, MVT::i32));
1367 }
1368
1369 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1370 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1371 RegsToPass[i].second.getValueType()));
1372
1373
1374 // Add a register mask operand representing the call-preserved registers. This
1375 // is used later in codegen to constrain register-allocation.
1376 const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
1377 const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
1378 assert(Mask && "Missing call preserved mask for calling convention");
1379 Ops.push_back(DAG.getRegisterMask(Mask));
1380
1381 // If we needed glue, put it in as the last argument.
1382 if (InFlag.getNode())
1383 Ops.push_back(InFlag);
1384
1385 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1386
1387 if (IsTailCall) {
1388 return DAG.getNode(AArch64ISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
1389 }
1390
1391 Chain = DAG.getNode(AArch64ISD::Call, dl, NodeTys, &Ops[0], Ops.size());
1392 InFlag = Chain.getValue(1);
1393
1394 // Now we can reclaim the stack, just as well do it before working out where
1395 // our return value is.
1396 if (!IsSibCall) {
1397 uint64_t CalleePopBytes
1398 = DoesCalleeRestoreStack(CallConv, TailCallOpt) ? NumBytes : 0;
1399
1400 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
1401 DAG.getIntPtrConstant(CalleePopBytes, true),
Andrew Trickad6d08a2013-05-29 22:03:55 +00001402 InFlag, dl);
Tim Northovere0e3aef2013-01-31 12:12:40 +00001403 InFlag = Chain.getValue(1);
1404 }
1405
1406 return LowerCallResult(Chain, InFlag, CallConv,
1407 IsVarArg, Ins, dl, DAG, InVals);
1408}
1409
1410SDValue
1411AArch64TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1412 CallingConv::ID CallConv, bool IsVarArg,
1413 const SmallVectorImpl<ISD::InputArg> &Ins,
Andrew Trickef9de2a2013-05-25 02:42:55 +00001414 SDLoc dl, SelectionDAG &DAG,
Tim Northovere0e3aef2013-01-31 12:12:40 +00001415 SmallVectorImpl<SDValue> &InVals) const {
1416 // Assign locations to each value returned by this call.
1417 SmallVector<CCValAssign, 16> RVLocs;
1418 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(),
1419 getTargetMachine(), RVLocs, *DAG.getContext());
1420 CCInfo.AnalyzeCallResult(Ins, CCAssignFnForNode(CallConv));
1421
1422 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1423 CCValAssign VA = RVLocs[i];
1424
1425 // Return values that are too big to fit into registers should use an sret
1426 // pointer, so this can be a lot simpler than the main argument code.
1427 assert(VA.isRegLoc() && "Memory locations not expected for call return");
1428
1429 SDValue Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1430 InFlag);
1431 Chain = Val.getValue(1);
1432 InFlag = Val.getValue(2);
1433
1434 switch (VA.getLocInfo()) {
1435 default: llvm_unreachable("Unknown loc info!");
1436 case CCValAssign::Full: break;
1437 case CCValAssign::BCvt:
1438 Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1439 break;
1440 case CCValAssign::ZExt:
1441 case CCValAssign::SExt:
1442 case CCValAssign::AExt:
1443 // Floating-point arguments only get extended/truncated if they're going
1444 // in memory, so using the integer operation is acceptable here.
1445 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
1446 break;
1447 }
1448
1449 InVals.push_back(Val);
1450 }
1451
1452 return Chain;
1453}
1454
1455bool
1456AArch64TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
1457 CallingConv::ID CalleeCC,
1458 bool IsVarArg,
1459 bool IsCalleeStructRet,
1460 bool IsCallerStructRet,
1461 const SmallVectorImpl<ISD::OutputArg> &Outs,
1462 const SmallVectorImpl<SDValue> &OutVals,
1463 const SmallVectorImpl<ISD::InputArg> &Ins,
1464 SelectionDAG& DAG) const {
1465
1466 // For CallingConv::C this function knows whether the ABI needs
1467 // changing. That's not true for other conventions so they will have to opt in
1468 // manually.
1469 if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1470 return false;
1471
1472 const MachineFunction &MF = DAG.getMachineFunction();
1473 const Function *CallerF = MF.getFunction();
1474 CallingConv::ID CallerCC = CallerF->getCallingConv();
1475 bool CCMatch = CallerCC == CalleeCC;
1476
1477 // Byval parameters hand the function a pointer directly into the stack area
1478 // we want to reuse during a tail call. Working around this *is* possible (see
1479 // X86) but less efficient and uglier in LowerCall.
1480 for (Function::const_arg_iterator i = CallerF->arg_begin(),
1481 e = CallerF->arg_end(); i != e; ++i)
1482 if (i->hasByValAttr())
1483 return false;
1484
1485 if (getTargetMachine().Options.GuaranteedTailCallOpt) {
1486 if (IsTailCallConvention(CalleeCC) && CCMatch)
1487 return true;
1488 return false;
1489 }
1490
1491 // Now we search for cases where we can use a tail call without changing the
1492 // ABI. Sibcall is used in some places (particularly gcc) to refer to this
1493 // concept.
1494
1495 // I want anyone implementing a new calling convention to think long and hard
1496 // about this assert.
1497 assert((!IsVarArg || CalleeCC == CallingConv::C)
1498 && "Unexpected variadic calling convention");
1499
1500 if (IsVarArg && !Outs.empty()) {
1501 // At least two cases here: if caller is fastcc then we can't have any
1502 // memory arguments (we'd be expected to clean up the stack afterwards). If
1503 // caller is C then we could potentially use its argument area.
1504
1505 // FIXME: for now we take the most conservative of these in both cases:
1506 // disallow all variadic memory operands.
1507 SmallVector<CCValAssign, 16> ArgLocs;
1508 CCState CCInfo(CalleeCC, IsVarArg, DAG.getMachineFunction(),
1509 getTargetMachine(), ArgLocs, *DAG.getContext());
1510
1511 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
1512 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
1513 if (!ArgLocs[i].isRegLoc())
1514 return false;
1515 }
1516
1517 // If the calling conventions do not match, then we'd better make sure the
1518 // results are returned in the same way as what the caller expects.
1519 if (!CCMatch) {
1520 SmallVector<CCValAssign, 16> RVLocs1;
1521 CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
1522 getTargetMachine(), RVLocs1, *DAG.getContext());
1523 CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC));
1524
1525 SmallVector<CCValAssign, 16> RVLocs2;
1526 CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
1527 getTargetMachine(), RVLocs2, *DAG.getContext());
1528 CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC));
1529
1530 if (RVLocs1.size() != RVLocs2.size())
1531 return false;
1532 for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
1533 if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
1534 return false;
1535 if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
1536 return false;
1537 if (RVLocs1[i].isRegLoc()) {
1538 if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
1539 return false;
1540 } else {
1541 if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
1542 return false;
1543 }
1544 }
1545 }
1546
1547 // Nothing more to check if the callee is taking no arguments
1548 if (Outs.empty())
1549 return true;
1550
1551 SmallVector<CCValAssign, 16> ArgLocs;
1552 CCState CCInfo(CalleeCC, IsVarArg, DAG.getMachineFunction(),
1553 getTargetMachine(), ArgLocs, *DAG.getContext());
1554
1555 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
1556
1557 const AArch64MachineFunctionInfo *FuncInfo
1558 = MF.getInfo<AArch64MachineFunctionInfo>();
1559
1560 // If the stack arguments for this call would fit into our own save area then
1561 // the call can be made tail.
1562 return CCInfo.getNextStackOffset() <= FuncInfo->getBytesInStackArgArea();
1563}
1564
1565bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC,
1566 bool TailCallOpt) const {
1567 return CallCC == CallingConv::Fast && TailCallOpt;
1568}
1569
1570bool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const {
1571 return CallCC == CallingConv::Fast;
1572}
1573
1574SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain,
1575 SelectionDAG &DAG,
1576 MachineFrameInfo *MFI,
1577 int ClobberedFI) const {
1578 SmallVector<SDValue, 8> ArgChains;
1579 int64_t FirstByte = MFI->getObjectOffset(ClobberedFI);
1580 int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1;
1581
1582 // Include the original chain at the beginning of the list. When this is
1583 // used by target LowerCall hooks, this helps legalize find the
1584 // CALLSEQ_BEGIN node.
1585 ArgChains.push_back(Chain);
1586
1587 // Add a chain value for each stack argument corresponding
1588 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
1589 UE = DAG.getEntryNode().getNode()->use_end(); U != UE; ++U)
1590 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
1591 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
1592 if (FI->getIndex() < 0) {
1593 int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex());
1594 int64_t InLastByte = InFirstByte;
1595 InLastByte += MFI->getObjectSize(FI->getIndex()) - 1;
1596
1597 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
1598 (FirstByte <= InFirstByte && InFirstByte <= LastByte))
1599 ArgChains.push_back(SDValue(L, 1));
1600 }
1601
1602 // Build a tokenfactor for all the chains.
Andrew Trickef9de2a2013-05-25 02:42:55 +00001603 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other,
Tim Northovere0e3aef2013-01-31 12:12:40 +00001604 &ArgChains[0], ArgChains.size());
1605}
1606
1607static A64CC::CondCodes IntCCToA64CC(ISD::CondCode CC) {
1608 switch (CC) {
1609 case ISD::SETEQ: return A64CC::EQ;
1610 case ISD::SETGT: return A64CC::GT;
1611 case ISD::SETGE: return A64CC::GE;
1612 case ISD::SETLT: return A64CC::LT;
1613 case ISD::SETLE: return A64CC::LE;
1614 case ISD::SETNE: return A64CC::NE;
1615 case ISD::SETUGT: return A64CC::HI;
1616 case ISD::SETUGE: return A64CC::HS;
1617 case ISD::SETULT: return A64CC::LO;
1618 case ISD::SETULE: return A64CC::LS;
1619 default: llvm_unreachable("Unexpected condition code");
1620 }
1621}
1622
1623bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Val) const {
1624 // icmp is implemented using adds/subs immediate, which take an unsigned
1625 // 12-bit immediate, optionally shifted left by 12 bits.
1626
1627 // Symmetric by using adds/subs
1628 if (Val < 0)
1629 Val = -Val;
1630
1631 return (Val & ~0xfff) == 0 || (Val & ~0xfff000) == 0;
1632}
1633
1634SDValue AArch64TargetLowering::getSelectableIntSetCC(SDValue LHS, SDValue RHS,
1635 ISD::CondCode CC, SDValue &A64cc,
Andrew Trickef9de2a2013-05-25 02:42:55 +00001636 SelectionDAG &DAG, SDLoc &dl) const {
Tim Northovere0e3aef2013-01-31 12:12:40 +00001637 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
1638 int64_t C = 0;
1639 EVT VT = RHSC->getValueType(0);
1640 bool knownInvalid = false;
1641
1642 // I'm not convinced the rest of LLVM handles these edge cases properly, but
1643 // we can at least get it right.
1644 if (isSignedIntSetCC(CC)) {
1645 C = RHSC->getSExtValue();
1646 } else if (RHSC->getZExtValue() > INT64_MAX) {
1647 // A 64-bit constant not representable by a signed 64-bit integer is far
1648 // too big to fit into a SUBS immediate anyway.
1649 knownInvalid = true;
1650 } else {
1651 C = RHSC->getZExtValue();
1652 }
1653
1654 if (!knownInvalid && !isLegalICmpImmediate(C)) {
1655 // Constant does not fit, try adjusting it by one?
1656 switch (CC) {
1657 default: break;
1658 case ISD::SETLT:
1659 case ISD::SETGE:
1660 if (isLegalICmpImmediate(C-1)) {
1661 CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
1662 RHS = DAG.getConstant(C-1, VT);
1663 }
1664 break;
1665 case ISD::SETULT:
1666 case ISD::SETUGE:
1667 if (isLegalICmpImmediate(C-1)) {
1668 CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
1669 RHS = DAG.getConstant(C-1, VT);
1670 }
1671 break;
1672 case ISD::SETLE:
1673 case ISD::SETGT:
1674 if (isLegalICmpImmediate(C+1)) {
1675 CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
1676 RHS = DAG.getConstant(C+1, VT);
1677 }
1678 break;
1679 case ISD::SETULE:
1680 case ISD::SETUGT:
1681 if (isLegalICmpImmediate(C+1)) {
1682 CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1683 RHS = DAG.getConstant(C+1, VT);
1684 }
1685 break;
1686 }
1687 }
1688 }
1689
1690 A64CC::CondCodes CondCode = IntCCToA64CC(CC);
1691 A64cc = DAG.getConstant(CondCode, MVT::i32);
1692 return DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
1693 DAG.getCondCode(CC));
1694}
1695
1696static A64CC::CondCodes FPCCToA64CC(ISD::CondCode CC,
1697 A64CC::CondCodes &Alternative) {
1698 A64CC::CondCodes CondCode = A64CC::Invalid;
1699 Alternative = A64CC::Invalid;
1700
1701 switch (CC) {
1702 default: llvm_unreachable("Unknown FP condition!");
1703 case ISD::SETEQ:
1704 case ISD::SETOEQ: CondCode = A64CC::EQ; break;
1705 case ISD::SETGT:
1706 case ISD::SETOGT: CondCode = A64CC::GT; break;
1707 case ISD::SETGE:
1708 case ISD::SETOGE: CondCode = A64CC::GE; break;
1709 case ISD::SETOLT: CondCode = A64CC::MI; break;
1710 case ISD::SETOLE: CondCode = A64CC::LS; break;
1711 case ISD::SETONE: CondCode = A64CC::MI; Alternative = A64CC::GT; break;
1712 case ISD::SETO: CondCode = A64CC::VC; break;
1713 case ISD::SETUO: CondCode = A64CC::VS; break;
1714 case ISD::SETUEQ: CondCode = A64CC::EQ; Alternative = A64CC::VS; break;
1715 case ISD::SETUGT: CondCode = A64CC::HI; break;
1716 case ISD::SETUGE: CondCode = A64CC::PL; break;
1717 case ISD::SETLT:
1718 case ISD::SETULT: CondCode = A64CC::LT; break;
1719 case ISD::SETLE:
1720 case ISD::SETULE: CondCode = A64CC::LE; break;
1721 case ISD::SETNE:
1722 case ISD::SETUNE: CondCode = A64CC::NE; break;
1723 }
1724 return CondCode;
1725}
1726
1727SDValue
1728AArch64TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
Andrew Trickef9de2a2013-05-25 02:42:55 +00001729 SDLoc DL(Op);
Tim Northovere0e3aef2013-01-31 12:12:40 +00001730 EVT PtrVT = getPointerTy();
1731 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1732
Tim Northover9fc1cdd2013-05-04 16:53:53 +00001733 switch(getTargetMachine().getCodeModel()) {
1734 case CodeModel::Small:
1735 // The most efficient code is PC-relative anyway for the small memory model,
1736 // so we don't need to worry about relocation model.
1737 return DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
1738 DAG.getTargetBlockAddress(BA, PtrVT, 0,
1739 AArch64II::MO_NO_FLAG),
1740 DAG.getTargetBlockAddress(BA, PtrVT, 0,
1741 AArch64II::MO_LO12),
1742 DAG.getConstant(/*Alignment=*/ 4, MVT::i32));
1743 case CodeModel::Large:
1744 return DAG.getNode(
1745 AArch64ISD::WrapperLarge, DL, PtrVT,
1746 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G3),
1747 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G2_NC),
1748 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G1_NC),
1749 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_ABS_G0_NC));
1750 default:
1751 llvm_unreachable("Only small and large code models supported now");
1752 }
Tim Northovere0e3aef2013-01-31 12:12:40 +00001753}
1754
1755
1756// (BRCOND chain, val, dest)
1757SDValue
1758AArch64TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
Andrew Trickef9de2a2013-05-25 02:42:55 +00001759 SDLoc dl(Op);
Tim Northovere0e3aef2013-01-31 12:12:40 +00001760 SDValue Chain = Op.getOperand(0);
1761 SDValue TheBit = Op.getOperand(1);
1762 SDValue DestBB = Op.getOperand(2);
1763
1764 // AArch64 BooleanContents is the default UndefinedBooleanContent, which means
1765 // that as the consumer we are responsible for ignoring rubbish in higher
1766 // bits.
1767 TheBit = DAG.getNode(ISD::AND, dl, MVT::i32, TheBit,
1768 DAG.getConstant(1, MVT::i32));
1769
1770 SDValue A64CMP = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, TheBit,
1771 DAG.getConstant(0, TheBit.getValueType()),
1772 DAG.getCondCode(ISD::SETNE));
1773
1774 return DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other, Chain,
1775 A64CMP, DAG.getConstant(A64CC::NE, MVT::i32),
1776 DestBB);
1777}
1778
1779// (BR_CC chain, condcode, lhs, rhs, dest)
1780SDValue
1781AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
Andrew Trickef9de2a2013-05-25 02:42:55 +00001782 SDLoc dl(Op);
Tim Northovere0e3aef2013-01-31 12:12:40 +00001783 SDValue Chain = Op.getOperand(0);
1784 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
1785 SDValue LHS = Op.getOperand(2);
1786 SDValue RHS = Op.getOperand(3);
1787 SDValue DestBB = Op.getOperand(4);
1788
1789 if (LHS.getValueType() == MVT::f128) {
1790 // f128 comparisons are lowered to runtime calls by a routine which sets
1791 // LHS, RHS and CC appropriately for the rest of this function to continue.
1792 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
1793
1794 // If softenSetCCOperands returned a scalar, we need to compare the result
1795 // against zero to select between true and false values.
1796 if (RHS.getNode() == 0) {
1797 RHS = DAG.getConstant(0, LHS.getValueType());
1798 CC = ISD::SETNE;
1799 }
1800 }
1801
1802 if (LHS.getValueType().isInteger()) {
1803 SDValue A64cc;
1804
1805 // Integers are handled in a separate function because the combinations of
1806 // immediates and tests can get hairy and we may want to fiddle things.
1807 SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl);
1808
1809 return DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other,
1810 Chain, CmpOp, A64cc, DestBB);
1811 }
1812
1813 // Note that some LLVM floating-point CondCodes can't be lowered to a single
1814 // conditional branch, hence FPCCToA64CC can set a second test, where either
1815 // passing is sufficient.
1816 A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
1817 CondCode = FPCCToA64CC(CC, Alternative);
1818 SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
1819 SDValue SetCC = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
1820 DAG.getCondCode(CC));
1821 SDValue A64BR_CC = DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other,
1822 Chain, SetCC, A64cc, DestBB);
1823
1824 if (Alternative != A64CC::Invalid) {
1825 A64cc = DAG.getConstant(Alternative, MVT::i32);
1826 A64BR_CC = DAG.getNode(AArch64ISD::BR_CC, dl, MVT::Other,
1827 A64BR_CC, SetCC, A64cc, DestBB);
1828
1829 }
1830
1831 return A64BR_CC;
1832}
1833
1834SDValue
1835AArch64TargetLowering::LowerF128ToCall(SDValue Op, SelectionDAG &DAG,
1836 RTLIB::Libcall Call) const {
1837 ArgListTy Args;
1838 ArgListEntry Entry;
1839 for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) {
1840 EVT ArgVT = Op.getOperand(i).getValueType();
1841 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1842 Entry.Node = Op.getOperand(i); Entry.Ty = ArgTy;
1843 Entry.isSExt = false;
1844 Entry.isZExt = false;
1845 Args.push_back(Entry);
1846 }
1847 SDValue Callee = DAG.getExternalSymbol(getLibcallName(Call), getPointerTy());
1848
1849 Type *RetTy = Op.getValueType().getTypeForEVT(*DAG.getContext());
1850
1851 // By default, the input chain to this libcall is the entry node of the
1852 // function. If the libcall is going to be emitted as a tail call then
1853 // isUsedByReturnOnly will change it to the right chain if the return
1854 // node which is being folded has a non-entry input chain.
1855 SDValue InChain = DAG.getEntryNode();
1856
1857 // isTailCall may be true since the callee does not reference caller stack
1858 // frame. Check if it's in the right position.
1859 SDValue TCChain = InChain;
1860 bool isTailCall = isInTailCallPosition(DAG, Op.getNode(), TCChain);
1861 if (isTailCall)
1862 InChain = TCChain;
1863
1864 TargetLowering::
1865 CallLoweringInfo CLI(InChain, RetTy, false, false, false, false,
1866 0, getLibcallCallingConv(Call), isTailCall,
1867 /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
Andrew Trickef9de2a2013-05-25 02:42:55 +00001868 Callee, Args, DAG, SDLoc(Op));
Tim Northovere0e3aef2013-01-31 12:12:40 +00001869 std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
1870
1871 if (!CallInfo.second.getNode())
1872 // It's a tailcall, return the chain (which is the DAG root).
1873 return DAG.getRoot();
1874
1875 return CallInfo.first;
1876}
1877
1878SDValue
1879AArch64TargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
1880 if (Op.getOperand(0).getValueType() != MVT::f128) {
1881 // It's legal except when f128 is involved
1882 return Op;
1883 }
1884
1885 RTLIB::Libcall LC;
1886 LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
1887
1888 SDValue SrcVal = Op.getOperand(0);
1889 return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1,
Michael Gottesman7a801722013-08-13 17:54:56 +00001890 /*isSigned*/ false, SDLoc(Op)).first;
Tim Northovere0e3aef2013-01-31 12:12:40 +00001891}
1892
1893SDValue
1894AArch64TargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
1895 assert(Op.getValueType() == MVT::f128 && "Unexpected lowering");
1896
1897 RTLIB::Libcall LC;
1898 LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
1899
1900 return LowerF128ToCall(Op, DAG, LC);
1901}
1902
1903SDValue
1904AArch64TargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
1905 bool IsSigned) const {
1906 if (Op.getOperand(0).getValueType() != MVT::f128) {
1907 // It's legal except when f128 is involved
1908 return Op;
1909 }
1910
1911 RTLIB::Libcall LC;
1912 if (IsSigned)
1913 LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType());
1914 else
1915 LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType());
1916
1917 return LowerF128ToCall(Op, DAG, LC);
1918}
1919
1920SDValue
Tim Northover2dbef342013-05-04 16:53:46 +00001921AArch64TargetLowering::LowerGlobalAddressELFLarge(SDValue Op,
1922 SelectionDAG &DAG) const {
1923 assert(getTargetMachine().getCodeModel() == CodeModel::Large);
1924 assert(getTargetMachine().getRelocationModel() == Reloc::Static);
Tim Northovere0e3aef2013-01-31 12:12:40 +00001925
Tim Northover2dbef342013-05-04 16:53:46 +00001926 EVT PtrVT = getPointerTy();
Andrew Trickef9de2a2013-05-25 02:42:55 +00001927 SDLoc dl(Op);
Tim Northover2dbef342013-05-04 16:53:46 +00001928 const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
1929 const GlobalValue *GV = GN->getGlobal();
1930
1931 SDValue GlobalAddr = DAG.getNode(
1932 AArch64ISD::WrapperLarge, dl, PtrVT,
1933 DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G3),
1934 DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G2_NC),
1935 DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G1_NC),
1936 DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, AArch64II::MO_ABS_G0_NC));
1937
1938 if (GN->getOffset() != 0)
1939 return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalAddr,
1940 DAG.getConstant(GN->getOffset(), PtrVT));
1941
1942 return GlobalAddr;
1943}
1944
1945SDValue
1946AArch64TargetLowering::LowerGlobalAddressELFSmall(SDValue Op,
1947 SelectionDAG &DAG) const {
Tim Northovere0e3aef2013-01-31 12:12:40 +00001948 assert(getTargetMachine().getCodeModel() == CodeModel::Small);
1949
1950 EVT PtrVT = getPointerTy();
Andrew Trickef9de2a2013-05-25 02:42:55 +00001951 SDLoc dl(Op);
Tim Northovere0e3aef2013-01-31 12:12:40 +00001952 const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
1953 const GlobalValue *GV = GN->getGlobal();
1954 unsigned Alignment = GV->getAlignment();
Tim Northover228d9d32013-02-06 16:43:33 +00001955 Reloc::Model RelocM = getTargetMachine().getRelocationModel();
Tim Northoverc3c5c092013-02-28 14:36:31 +00001956 if (GV->isWeakForLinker() && GV->isDeclaration() && RelocM == Reloc::Static) {
1957 // Weak undefined symbols can't use ADRP/ADD pair since they should evaluate
1958 // to zero when they remain undefined. In PIC mode the GOT can take care of
1959 // this, but in absolute mode we use a constant pool load.
Tim Northover3533ad6b2013-02-15 09:33:43 +00001960 SDValue PoolAddr;
1961 PoolAddr = DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT,
1962 DAG.getTargetConstantPool(GV, PtrVT, 0, 0,
1963 AArch64II::MO_NO_FLAG),
1964 DAG.getTargetConstantPool(GV, PtrVT, 0, 0,
1965 AArch64II::MO_LO12),
1966 DAG.getConstant(8, MVT::i32));
Tim Northoverb9d4fd22013-02-28 14:36:24 +00001967 SDValue GlobalAddr = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), PoolAddr,
1968 MachinePointerInfo::getConstantPool(),
1969 /*isVolatile=*/ false,
1970 /*isNonTemporal=*/ true,
1971 /*isInvariant=*/ true, 8);
1972 if (GN->getOffset() != 0)
1973 return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalAddr,
1974 DAG.getConstant(GN->getOffset(), PtrVT));
1975
1976 return GlobalAddr;
Tim Northover228d9d32013-02-06 16:43:33 +00001977 }
Tim Northovere0e3aef2013-01-31 12:12:40 +00001978
1979 if (Alignment == 0) {
1980 const PointerType *GVPtrTy = cast<PointerType>(GV->getType());
Tim Northoverbcaca872013-02-05 13:24:56 +00001981 if (GVPtrTy->getElementType()->isSized()) {
1982 Alignment
1983 = getDataLayout()->getABITypeAlignment(GVPtrTy->getElementType());
1984 } else {
Tim Northovere0e3aef2013-01-31 12:12:40 +00001985 // Be conservative if we can't guess, not that it really matters:
1986 // functions and labels aren't valid for loads, and the methods used to
1987 // actually calculate an address work with any alignment.
1988 Alignment = 1;
1989 }
1990 }
1991
1992 unsigned char HiFixup, LoFixup;
Bill Wendling496dc332013-06-07 05:00:11 +00001993 bool UseGOT = getSubtarget()->GVIsIndirectSymbol(GV, RelocM);
Tim Northovere0e3aef2013-01-31 12:12:40 +00001994
1995 if (UseGOT) {
1996 HiFixup = AArch64II::MO_GOT;
1997 LoFixup = AArch64II::MO_GOT_LO12;
1998 Alignment = 8;
1999 } else {
2000 HiFixup = AArch64II::MO_NO_FLAG;
2001 LoFixup = AArch64II::MO_LO12;
2002 }
2003
2004 // AArch64's small model demands the following sequence:
2005 // ADRP x0, somewhere
2006 // ADD x0, x0, #:lo12:somewhere ; (or LDR directly).
2007 SDValue GlobalRef = DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT,
2008 DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2009 HiFixup),
2010 DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2011 LoFixup),
2012 DAG.getConstant(Alignment, MVT::i32));
2013
2014 if (UseGOT) {
2015 GlobalRef = DAG.getNode(AArch64ISD::GOTLoad, dl, PtrVT, DAG.getEntryNode(),
2016 GlobalRef);
2017 }
2018
2019 if (GN->getOffset() != 0)
2020 return DAG.getNode(ISD::ADD, dl, PtrVT, GlobalRef,
2021 DAG.getConstant(GN->getOffset(), PtrVT));
2022
2023 return GlobalRef;
2024}
2025
Tim Northover2dbef342013-05-04 16:53:46 +00002026SDValue
2027AArch64TargetLowering::LowerGlobalAddressELF(SDValue Op,
2028 SelectionDAG &DAG) const {
2029 // TableGen doesn't have easy access to the CodeModel or RelocationModel, so
2030 // we make those distinctions here.
2031
2032 switch (getTargetMachine().getCodeModel()) {
2033 case CodeModel::Small:
2034 return LowerGlobalAddressELFSmall(Op, DAG);
2035 case CodeModel::Large:
2036 return LowerGlobalAddressELFLarge(Op, DAG);
2037 default:
2038 llvm_unreachable("Only small and large code models supported now");
2039 }
2040}
2041
Tim Northovere0e3aef2013-01-31 12:12:40 +00002042SDValue AArch64TargetLowering::LowerTLSDescCall(SDValue SymAddr,
2043 SDValue DescAddr,
Andrew Trickef9de2a2013-05-25 02:42:55 +00002044 SDLoc DL,
Tim Northovere0e3aef2013-01-31 12:12:40 +00002045 SelectionDAG &DAG) const {
2046 EVT PtrVT = getPointerTy();
2047
2048 // The function we need to call is simply the first entry in the GOT for this
2049 // descriptor, load it in preparation.
2050 SDValue Func, Chain;
2051 Func = DAG.getNode(AArch64ISD::GOTLoad, DL, PtrVT, DAG.getEntryNode(),
2052 DescAddr);
2053
2054 // The function takes only one argument: the address of the descriptor itself
2055 // in X0.
2056 SDValue Glue;
2057 Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, AArch64::X0, DescAddr, Glue);
2058 Glue = Chain.getValue(1);
2059
2060 // Finally, there's a special calling-convention which means that the lookup
2061 // must preserve all registers (except X0, obviously).
2062 const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2063 const AArch64RegisterInfo *A64RI
2064 = static_cast<const AArch64RegisterInfo *>(TRI);
2065 const uint32_t *Mask = A64RI->getTLSDescCallPreservedMask();
2066
2067 // We're now ready to populate the argument list, as with a normal call:
2068 std::vector<SDValue> Ops;
2069 Ops.push_back(Chain);
2070 Ops.push_back(Func);
2071 Ops.push_back(SymAddr);
2072 Ops.push_back(DAG.getRegister(AArch64::X0, PtrVT));
2073 Ops.push_back(DAG.getRegisterMask(Mask));
2074 Ops.push_back(Glue);
2075
2076 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
Tim Northoverbcaca872013-02-05 13:24:56 +00002077 Chain = DAG.getNode(AArch64ISD::TLSDESCCALL, DL, NodeTys, &Ops[0],
2078 Ops.size());
Tim Northovere0e3aef2013-01-31 12:12:40 +00002079 Glue = Chain.getValue(1);
2080
2081 // After the call, the offset from TPIDR_EL0 is in X0, copy it out and pass it
2082 // back to the generic handling code.
2083 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue);
2084}
2085
2086SDValue
2087AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op,
2088 SelectionDAG &DAG) const {
Bill Wendling496dc332013-06-07 05:00:11 +00002089 assert(getSubtarget()->isTargetELF() &&
Tim Northovere0e3aef2013-01-31 12:12:40 +00002090 "TLS not implemented for non-ELF targets");
Tim Northover85dcbde2013-05-04 16:54:11 +00002091 assert(getTargetMachine().getCodeModel() == CodeModel::Small
2092 && "TLS only supported in small memory model");
Tim Northovere0e3aef2013-01-31 12:12:40 +00002093 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2094
2095 TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal());
2096
2097 SDValue TPOff;
2098 EVT PtrVT = getPointerTy();
Andrew Trickef9de2a2013-05-25 02:42:55 +00002099 SDLoc DL(Op);
Tim Northovere0e3aef2013-01-31 12:12:40 +00002100 const GlobalValue *GV = GA->getGlobal();
2101
2102 SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT);
2103
2104 if (Model == TLSModel::InitialExec) {
2105 TPOff = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
2106 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2107 AArch64II::MO_GOTTPREL),
2108 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2109 AArch64II::MO_GOTTPREL_LO12),
2110 DAG.getConstant(8, MVT::i32));
2111 TPOff = DAG.getNode(AArch64ISD::GOTLoad, DL, PtrVT, DAG.getEntryNode(),
2112 TPOff);
2113 } else if (Model == TLSModel::LocalExec) {
2114 SDValue HiVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
2115 AArch64II::MO_TPREL_G1);
2116 SDValue LoVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
2117 AArch64II::MO_TPREL_G0_NC);
2118
2119 TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZxii, DL, PtrVT, HiVar,
Tim Northovercaaf2382013-07-25 16:03:54 +00002120 DAG.getTargetConstant(1, MVT::i32)), 0);
Tim Northoverbcaca872013-02-05 13:24:56 +00002121 TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKxii, DL, PtrVT,
2122 TPOff, LoVar,
Tim Northovere0e3aef2013-01-31 12:12:40 +00002123 DAG.getTargetConstant(0, MVT::i32)), 0);
2124 } else if (Model == TLSModel::GeneralDynamic) {
2125 // Accesses used in this sequence go via the TLS descriptor which lives in
2126 // the GOT. Prepare an address we can use to handle this.
2127 SDValue HiDesc = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2128 AArch64II::MO_TLSDESC);
2129 SDValue LoDesc = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2130 AArch64II::MO_TLSDESC_LO12);
2131 SDValue DescAddr = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
Tim Northoverbcaca872013-02-05 13:24:56 +00002132 HiDesc, LoDesc,
2133 DAG.getConstant(8, MVT::i32));
Tim Northovere0e3aef2013-01-31 12:12:40 +00002134 SDValue SymAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0);
2135
2136 TPOff = LowerTLSDescCall(SymAddr, DescAddr, DL, DAG);
2137 } else if (Model == TLSModel::LocalDynamic) {
2138 // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
2139 // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
2140 // the beginning of the module's TLS region, followed by a DTPREL offset
2141 // calculation.
2142
2143 // These accesses will need deduplicating if there's more than one.
2144 AArch64MachineFunctionInfo* MFI = DAG.getMachineFunction()
2145 .getInfo<AArch64MachineFunctionInfo>();
2146 MFI->incNumLocalDynamicTLSAccesses();
2147
2148
2149 // Get the location of _TLS_MODULE_BASE_:
2150 SDValue HiDesc = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
2151 AArch64II::MO_TLSDESC);
2152 SDValue LoDesc = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT,
2153 AArch64II::MO_TLSDESC_LO12);
2154 SDValue DescAddr = DAG.getNode(AArch64ISD::WrapperSmall, DL, PtrVT,
Tim Northoverbcaca872013-02-05 13:24:56 +00002155 HiDesc, LoDesc,
2156 DAG.getConstant(8, MVT::i32));
Tim Northovere0e3aef2013-01-31 12:12:40 +00002157 SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT);
2158
2159 ThreadBase = LowerTLSDescCall(SymAddr, DescAddr, DL, DAG);
2160
2161 // Get the variable's offset from _TLS_MODULE_BASE_
2162 SDValue HiVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
2163 AArch64II::MO_DTPREL_G1);
2164 SDValue LoVar = DAG.getTargetGlobalAddress(GV, DL, MVT::i64, 0,
2165 AArch64II::MO_DTPREL_G0_NC);
2166
2167 TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZxii, DL, PtrVT, HiVar,
2168 DAG.getTargetConstant(0, MVT::i32)), 0);
Tim Northoverbcaca872013-02-05 13:24:56 +00002169 TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKxii, DL, PtrVT,
2170 TPOff, LoVar,
Tim Northovere0e3aef2013-01-31 12:12:40 +00002171 DAG.getTargetConstant(0, MVT::i32)), 0);
2172 } else
2173 llvm_unreachable("Unsupported TLS access model");
2174
2175
2176 return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff);
2177}
2178
2179SDValue
2180AArch64TargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG,
2181 bool IsSigned) const {
2182 if (Op.getValueType() != MVT::f128) {
2183 // Legal for everything except f128.
2184 return Op;
2185 }
2186
2187 RTLIB::Libcall LC;
2188 if (IsSigned)
2189 LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
2190 else
2191 LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType());
2192
2193 return LowerF128ToCall(Op, DAG, LC);
2194}
2195
2196
2197SDValue
2198AArch64TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2199 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
Andrew Trickef9de2a2013-05-25 02:42:55 +00002200 SDLoc dl(JT);
Tim Northover8ff187d2013-05-04 16:54:00 +00002201 EVT PtrVT = getPointerTy();
Tim Northovere0e3aef2013-01-31 12:12:40 +00002202
2203 // When compiling PIC, jump tables get put in the code section so a static
2204 // relocation-style is acceptable for both cases.
Tim Northover8ff187d2013-05-04 16:54:00 +00002205 switch (getTargetMachine().getCodeModel()) {
2206 case CodeModel::Small:
2207 return DAG.getNode(AArch64ISD::WrapperSmall, dl, PtrVT,
2208 DAG.getTargetJumpTable(JT->getIndex(), PtrVT),
2209 DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2210 AArch64II::MO_LO12),
2211 DAG.getConstant(1, MVT::i32));
2212 case CodeModel::Large:
2213 return DAG.getNode(
2214 AArch64ISD::WrapperLarge, dl, PtrVT,
2215 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G3),
2216 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G2_NC),
2217 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G1_NC),
2218 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_ABS_G0_NC));
2219 default:
2220 llvm_unreachable("Only small and large code models supported now");
2221 }
Tim Northovere0e3aef2013-01-31 12:12:40 +00002222}
2223
2224// (SELECT_CC lhs, rhs, iftrue, iffalse, condcode)
2225SDValue
2226AArch64TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
Andrew Trickef9de2a2013-05-25 02:42:55 +00002227 SDLoc dl(Op);
Tim Northovere0e3aef2013-01-31 12:12:40 +00002228 SDValue LHS = Op.getOperand(0);
2229 SDValue RHS = Op.getOperand(1);
2230 SDValue IfTrue = Op.getOperand(2);
2231 SDValue IfFalse = Op.getOperand(3);
2232 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2233
2234 if (LHS.getValueType() == MVT::f128) {
2235 // f128 comparisons are lowered to libcalls, but slot in nicely here
2236 // afterwards.
2237 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
2238
2239 // If softenSetCCOperands returned a scalar, we need to compare the result
2240 // against zero to select between true and false values.
2241 if (RHS.getNode() == 0) {
2242 RHS = DAG.getConstant(0, LHS.getValueType());
2243 CC = ISD::SETNE;
2244 }
2245 }
2246
2247 if (LHS.getValueType().isInteger()) {
2248 SDValue A64cc;
2249
2250 // Integers are handled in a separate function because the combinations of
2251 // immediates and tests can get hairy and we may want to fiddle things.
2252 SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl);
2253
2254 return DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(),
2255 CmpOp, IfTrue, IfFalse, A64cc);
2256 }
2257
2258 // Note that some LLVM floating-point CondCodes can't be lowered to a single
2259 // conditional branch, hence FPCCToA64CC can set a second test, where either
2260 // passing is sufficient.
2261 A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
2262 CondCode = FPCCToA64CC(CC, Alternative);
2263 SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
2264 SDValue SetCC = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
2265 DAG.getCondCode(CC));
Tim Northoverbcaca872013-02-05 13:24:56 +00002266 SDValue A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl,
2267 Op.getValueType(),
Tim Northovere0e3aef2013-01-31 12:12:40 +00002268 SetCC, IfTrue, IfFalse, A64cc);
2269
2270 if (Alternative != A64CC::Invalid) {
2271 A64cc = DAG.getConstant(Alternative, MVT::i32);
2272 A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(),
2273 SetCC, IfTrue, A64SELECT_CC, A64cc);
2274
2275 }
2276
2277 return A64SELECT_CC;
2278}
2279
2280// (SELECT testbit, iftrue, iffalse)
2281SDValue
2282AArch64TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
Andrew Trickef9de2a2013-05-25 02:42:55 +00002283 SDLoc dl(Op);
Tim Northovere0e3aef2013-01-31 12:12:40 +00002284 SDValue TheBit = Op.getOperand(0);
2285 SDValue IfTrue = Op.getOperand(1);
2286 SDValue IfFalse = Op.getOperand(2);
2287
2288 // AArch64 BooleanContents is the default UndefinedBooleanContent, which means
2289 // that as the consumer we are responsible for ignoring rubbish in higher
2290 // bits.
2291 TheBit = DAG.getNode(ISD::AND, dl, MVT::i32, TheBit,
2292 DAG.getConstant(1, MVT::i32));
2293 SDValue A64CMP = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, TheBit,
2294 DAG.getConstant(0, TheBit.getValueType()),
2295 DAG.getCondCode(ISD::SETNE));
2296
2297 return DAG.getNode(AArch64ISD::SELECT_CC, dl, Op.getValueType(),
2298 A64CMP, IfTrue, IfFalse,
2299 DAG.getConstant(A64CC::NE, MVT::i32));
2300}
2301
Tim Northover40e9efd2013-08-01 09:20:35 +00002302static SDValue LowerVectorSETCC(SDValue Op, SelectionDAG &DAG) {
2303 SDLoc DL(Op);
2304 SDValue LHS = Op.getOperand(0);
2305 SDValue RHS = Op.getOperand(1);
2306 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2307 EVT VT = Op.getValueType();
2308 bool Invert = false;
2309 SDValue Op0, Op1;
2310 unsigned Opcode;
2311
2312 if (LHS.getValueType().isInteger()) {
2313
2314 // Attempt to use Vector Integer Compare Mask Test instruction.
2315 // TST = icmp ne (and (op0, op1), zero).
2316 if (CC == ISD::SETNE) {
2317 if (((LHS.getOpcode() == ISD::AND) &&
2318 ISD::isBuildVectorAllZeros(RHS.getNode())) ||
2319 ((RHS.getOpcode() == ISD::AND) &&
2320 ISD::isBuildVectorAllZeros(LHS.getNode()))) {
2321
2322 SDValue AndOp = (LHS.getOpcode() == ISD::AND) ? LHS : RHS;
2323 SDValue NewLHS = DAG.getNode(ISD::BITCAST, DL, VT, AndOp.getOperand(0));
2324 SDValue NewRHS = DAG.getNode(ISD::BITCAST, DL, VT, AndOp.getOperand(1));
2325 return DAG.getNode(AArch64ISD::NEON_TST, DL, VT, NewLHS, NewRHS);
2326 }
2327 }
2328
2329 // Attempt to use Vector Integer Compare Mask against Zero instr (Signed).
2330 // Note: Compare against Zero does not support unsigned predicates.
2331 if ((ISD::isBuildVectorAllZeros(RHS.getNode()) ||
2332 ISD::isBuildVectorAllZeros(LHS.getNode())) &&
2333 !isUnsignedIntSetCC(CC)) {
2334
2335 // If LHS is the zero value, swap operands and CondCode.
2336 if (ISD::isBuildVectorAllZeros(LHS.getNode())) {
2337 CC = getSetCCSwappedOperands(CC);
2338 Op0 = RHS;
2339 } else
2340 Op0 = LHS;
2341
2342 // Ensure valid CondCode for Compare Mask against Zero instruction:
2343 // EQ, GE, GT, LE, LT.
2344 if (ISD::SETNE == CC) {
2345 Invert = true;
2346 CC = ISD::SETEQ;
2347 }
2348
2349 // Using constant type to differentiate integer and FP compares with zero.
2350 Op1 = DAG.getConstant(0, MVT::i32);
2351 Opcode = AArch64ISD::NEON_CMPZ;
2352
2353 } else {
2354 // Attempt to use Vector Integer Compare Mask instr (Signed/Unsigned).
2355 // Ensure valid CondCode for Compare Mask instr: EQ, GE, GT, UGE, UGT.
2356 bool Swap = false;
2357 switch (CC) {
2358 default:
2359 llvm_unreachable("Illegal integer comparison.");
2360 case ISD::SETEQ:
2361 case ISD::SETGT:
2362 case ISD::SETGE:
2363 case ISD::SETUGT:
2364 case ISD::SETUGE:
2365 break;
2366 case ISD::SETNE:
2367 Invert = true;
2368 CC = ISD::SETEQ;
2369 break;
2370 case ISD::SETULT:
2371 case ISD::SETULE:
2372 case ISD::SETLT:
2373 case ISD::SETLE:
2374 Swap = true;
2375 CC = getSetCCSwappedOperands(CC);
2376 }
2377
2378 if (Swap)
2379 std::swap(LHS, RHS);
2380
2381 Opcode = AArch64ISD::NEON_CMP;
2382 Op0 = LHS;
2383 Op1 = RHS;
2384 }
2385
2386 // Generate Compare Mask instr or Compare Mask against Zero instr.
2387 SDValue NeonCmp =
2388 DAG.getNode(Opcode, DL, VT, Op0, Op1, DAG.getCondCode(CC));
2389
2390 if (Invert)
2391 NeonCmp = DAG.getNOT(DL, NeonCmp, VT);
2392
2393 return NeonCmp;
2394 }
2395
2396 // Now handle Floating Point cases.
2397 // Attempt to use Vector Floating Point Compare Mask against Zero instruction.
2398 if (ISD::isBuildVectorAllZeros(RHS.getNode()) ||
2399 ISD::isBuildVectorAllZeros(LHS.getNode())) {
2400
2401 // If LHS is the zero value, swap operands and CondCode.
2402 if (ISD::isBuildVectorAllZeros(LHS.getNode())) {
2403 CC = getSetCCSwappedOperands(CC);
2404 Op0 = RHS;
2405 } else
2406 Op0 = LHS;
2407
2408 // Using constant type to differentiate integer and FP compares with zero.
2409 Op1 = DAG.getConstantFP(0, MVT::f32);
2410 Opcode = AArch64ISD::NEON_CMPZ;
2411 } else {
2412 // Attempt to use Vector Floating Point Compare Mask instruction.
2413 Op0 = LHS;
2414 Op1 = RHS;
2415 Opcode = AArch64ISD::NEON_CMP;
2416 }
2417
2418 SDValue NeonCmpAlt;
2419 // Some register compares have to be implemented with swapped CC and operands,
2420 // e.g.: OLT implemented as OGT with swapped operands.
2421 bool SwapIfRegArgs = false;
2422
2423 // Ensure valid CondCode for FP Compare Mask against Zero instruction:
2424 // EQ, GE, GT, LE, LT.
2425 // And ensure valid CondCode for FP Compare Mask instruction: EQ, GE, GT.
2426 switch (CC) {
2427 default:
2428 llvm_unreachable("Illegal FP comparison");
2429 case ISD::SETUNE:
2430 case ISD::SETNE:
2431 Invert = true; // Fallthrough
2432 case ISD::SETOEQ:
2433 case ISD::SETEQ:
2434 CC = ISD::SETEQ;
2435 break;
2436 case ISD::SETOLT:
2437 case ISD::SETLT:
2438 CC = ISD::SETLT;
2439 SwapIfRegArgs = true;
2440 break;
2441 case ISD::SETOGT:
2442 case ISD::SETGT:
2443 CC = ISD::SETGT;
2444 break;
2445 case ISD::SETOLE:
2446 case ISD::SETLE:
2447 CC = ISD::SETLE;
2448 SwapIfRegArgs = true;
2449 break;
2450 case ISD::SETOGE:
2451 case ISD::SETGE:
2452 CC = ISD::SETGE;
2453 break;
2454 case ISD::SETUGE:
2455 Invert = true;
2456 CC = ISD::SETLT;
2457 SwapIfRegArgs = true;
2458 break;
2459 case ISD::SETULE:
2460 Invert = true;
2461 CC = ISD::SETGT;
2462 break;
2463 case ISD::SETUGT:
2464 Invert = true;
2465 CC = ISD::SETLE;
2466 SwapIfRegArgs = true;
2467 break;
2468 case ISD::SETULT:
2469 Invert = true;
2470 CC = ISD::SETGE;
2471 break;
2472 case ISD::SETUEQ:
2473 Invert = true; // Fallthrough
2474 case ISD::SETONE:
2475 // Expand this to (OGT |OLT).
2476 NeonCmpAlt =
2477 DAG.getNode(Opcode, DL, VT, Op0, Op1, DAG.getCondCode(ISD::SETGT));
2478 CC = ISD::SETLT;
2479 SwapIfRegArgs = true;
2480 break;
2481 case ISD::SETUO:
2482 Invert = true; // Fallthrough
2483 case ISD::SETO:
2484 // Expand this to (OGE | OLT).
2485 NeonCmpAlt =
2486 DAG.getNode(Opcode, DL, VT, Op0, Op1, DAG.getCondCode(ISD::SETGE));
2487 CC = ISD::SETLT;
2488 SwapIfRegArgs = true;
2489 break;
2490 }
2491
2492 if (Opcode == AArch64ISD::NEON_CMP && SwapIfRegArgs) {
2493 CC = getSetCCSwappedOperands(CC);
2494 std::swap(Op0, Op1);
2495 }
2496
2497 // Generate FP Compare Mask instr or FP Compare Mask against Zero instr
2498 SDValue NeonCmp = DAG.getNode(Opcode, DL, VT, Op0, Op1, DAG.getCondCode(CC));
2499
2500 if (NeonCmpAlt.getNode())
2501 NeonCmp = DAG.getNode(ISD::OR, DL, VT, NeonCmp, NeonCmpAlt);
2502
2503 if (Invert)
2504 NeonCmp = DAG.getNOT(DL, NeonCmp, VT);
2505
2506 return NeonCmp;
2507}
2508
Tim Northovere0e3aef2013-01-31 12:12:40 +00002509// (SETCC lhs, rhs, condcode)
2510SDValue
2511AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
Andrew Trickef9de2a2013-05-25 02:42:55 +00002512 SDLoc dl(Op);
Tim Northovere0e3aef2013-01-31 12:12:40 +00002513 SDValue LHS = Op.getOperand(0);
2514 SDValue RHS = Op.getOperand(1);
2515 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2516 EVT VT = Op.getValueType();
2517
Tim Northover40e9efd2013-08-01 09:20:35 +00002518 if (VT.isVector())
2519 return LowerVectorSETCC(Op, DAG);
2520
Tim Northovere0e3aef2013-01-31 12:12:40 +00002521 if (LHS.getValueType() == MVT::f128) {
2522 // f128 comparisons will be lowered to libcalls giving a valid LHS and RHS
2523 // for the rest of the function (some i32 or i64 values).
2524 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl);
2525
2526 // If softenSetCCOperands returned a scalar, use it.
2527 if (RHS.getNode() == 0) {
2528 assert(LHS.getValueType() == Op.getValueType() &&
2529 "Unexpected setcc expansion!");
2530 return LHS;
2531 }
2532 }
2533
2534 if (LHS.getValueType().isInteger()) {
2535 SDValue A64cc;
2536
2537 // Integers are handled in a separate function because the combinations of
2538 // immediates and tests can get hairy and we may want to fiddle things.
2539 SDValue CmpOp = getSelectableIntSetCC(LHS, RHS, CC, A64cc, DAG, dl);
2540
2541 return DAG.getNode(AArch64ISD::SELECT_CC, dl, VT,
2542 CmpOp, DAG.getConstant(1, VT), DAG.getConstant(0, VT),
2543 A64cc);
2544 }
2545
2546 // Note that some LLVM floating-point CondCodes can't be lowered to a single
2547 // conditional branch, hence FPCCToA64CC can set a second test, where either
2548 // passing is sufficient.
2549 A64CC::CondCodes CondCode, Alternative = A64CC::Invalid;
2550 CondCode = FPCCToA64CC(CC, Alternative);
2551 SDValue A64cc = DAG.getConstant(CondCode, MVT::i32);
2552 SDValue CmpOp = DAG.getNode(AArch64ISD::SETCC, dl, MVT::i32, LHS, RHS,
2553 DAG.getCondCode(CC));
2554 SDValue A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT,
2555 CmpOp, DAG.getConstant(1, VT),
2556 DAG.getConstant(0, VT), A64cc);
2557
2558 if (Alternative != A64CC::Invalid) {
2559 A64cc = DAG.getConstant(Alternative, MVT::i32);
2560 A64SELECT_CC = DAG.getNode(AArch64ISD::SELECT_CC, dl, VT, CmpOp,
2561 DAG.getConstant(1, VT), A64SELECT_CC, A64cc);
2562 }
2563
2564 return A64SELECT_CC;
2565}
2566
2567SDValue
2568AArch64TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
2569 const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
2570 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
2571
2572 // We have to make sure we copy the entire structure: 8+8+8+4+4 = 32 bytes
2573 // rather than just 8.
Andrew Trickef9de2a2013-05-25 02:42:55 +00002574 return DAG.getMemcpy(Op.getOperand(0), SDLoc(Op),
Tim Northovere0e3aef2013-01-31 12:12:40 +00002575 Op.getOperand(1), Op.getOperand(2),
2576 DAG.getConstant(32, MVT::i32), 8, false, false,
2577 MachinePointerInfo(DestSV), MachinePointerInfo(SrcSV));
2578}
2579
2580SDValue
2581AArch64TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
2582 // The layout of the va_list struct is specified in the AArch64 Procedure Call
2583 // Standard, section B.3.
2584 MachineFunction &MF = DAG.getMachineFunction();
Tim Northoverbcaca872013-02-05 13:24:56 +00002585 AArch64MachineFunctionInfo *FuncInfo
2586 = MF.getInfo<AArch64MachineFunctionInfo>();
Andrew Trickef9de2a2013-05-25 02:42:55 +00002587 SDLoc DL(Op);
Tim Northovere0e3aef2013-01-31 12:12:40 +00002588
2589 SDValue Chain = Op.getOperand(0);
2590 SDValue VAList = Op.getOperand(1);
2591 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2592 SmallVector<SDValue, 4> MemOps;
2593
2594 // void *__stack at offset 0
2595 SDValue Stack = DAG.getFrameIndex(FuncInfo->getVariadicStackIdx(),
2596 getPointerTy());
2597 MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList,
2598 MachinePointerInfo(SV), false, false, 0));
2599
2600 // void *__gr_top at offset 8
2601 int GPRSize = FuncInfo->getVariadicGPRSize();
2602 if (GPRSize > 0) {
2603 SDValue GRTop, GRTopAddr;
2604
2605 GRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
2606 DAG.getConstant(8, getPointerTy()));
2607
2608 GRTop = DAG.getFrameIndex(FuncInfo->getVariadicGPRIdx(), getPointerTy());
2609 GRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), GRTop,
2610 DAG.getConstant(GPRSize, getPointerTy()));
2611
2612 MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr,
2613 MachinePointerInfo(SV, 8),
2614 false, false, 0));
2615 }
2616
2617 // void *__vr_top at offset 16
2618 int FPRSize = FuncInfo->getVariadicFPRSize();
2619 if (FPRSize > 0) {
2620 SDValue VRTop, VRTopAddr;
2621 VRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
2622 DAG.getConstant(16, getPointerTy()));
2623
2624 VRTop = DAG.getFrameIndex(FuncInfo->getVariadicFPRIdx(), getPointerTy());
2625 VRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), VRTop,
2626 DAG.getConstant(FPRSize, getPointerTy()));
2627
2628 MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr,
2629 MachinePointerInfo(SV, 16),
2630 false, false, 0));
2631 }
2632
2633 // int __gr_offs at offset 24
2634 SDValue GROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
2635 DAG.getConstant(24, getPointerTy()));
2636 MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-GPRSize, MVT::i32),
2637 GROffsAddr, MachinePointerInfo(SV, 24),
2638 false, false, 0));
2639
2640 // int __vr_offs at offset 28
2641 SDValue VROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList,
2642 DAG.getConstant(28, getPointerTy()));
2643 MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-FPRSize, MVT::i32),
2644 VROffsAddr, MachinePointerInfo(SV, 28),
2645 false, false, 0));
2646
2647 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &MemOps[0],
2648 MemOps.size());
2649}
2650
2651SDValue
2652AArch64TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
2653 switch (Op.getOpcode()) {
2654 default: llvm_unreachable("Don't know how to custom lower this!");
2655 case ISD::FADD: return LowerF128ToCall(Op, DAG, RTLIB::ADD_F128);
2656 case ISD::FSUB: return LowerF128ToCall(Op, DAG, RTLIB::SUB_F128);
2657 case ISD::FMUL: return LowerF128ToCall(Op, DAG, RTLIB::MUL_F128);
2658 case ISD::FDIV: return LowerF128ToCall(Op, DAG, RTLIB::DIV_F128);
2659 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, true);
2660 case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG, false);
2661 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG, true);
2662 case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG, false);
2663 case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
2664 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
2665
2666 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
2667 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
2668 case ISD::BR_CC: return LowerBR_CC(Op, DAG);
2669 case ISD::GlobalAddress: return LowerGlobalAddressELF(Op, DAG);
2670 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
2671 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
2672 case ISD::SELECT: return LowerSELECT(Op, DAG);
2673 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
2674 case ISD::SETCC: return LowerSETCC(Op, DAG);
2675 case ISD::VACOPY: return LowerVACOPY(Op, DAG);
2676 case ISD::VASTART: return LowerVASTART(Op, DAG);
Tim Northover40e9efd2013-08-01 09:20:35 +00002677 case ISD::BUILD_VECTOR:
2678 return LowerBUILD_VECTOR(Op, DAG, getSubtarget());
Tim Northovere0e3aef2013-01-31 12:12:40 +00002679 }
2680
2681 return SDValue();
2682}
2683
Tim Northover40e9efd2013-08-01 09:20:35 +00002684/// Check if the specified splat value corresponds to a valid vector constant
2685/// for a Neon instruction with a "modified immediate" operand (e.g., MOVI). If
2686/// so, return the encoded 8-bit immediate and the OpCmode instruction fields
2687/// values.
2688static bool isNeonModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
2689 unsigned SplatBitSize, SelectionDAG &DAG,
2690 bool is128Bits, NeonModImmType type, EVT &VT,
2691 unsigned &Imm, unsigned &OpCmode) {
2692 switch (SplatBitSize) {
2693 default:
2694 llvm_unreachable("unexpected size for isNeonModifiedImm");
2695 case 8: {
2696 if (type != Neon_Mov_Imm)
2697 return false;
2698 assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
2699 // Neon movi per byte: Op=0, Cmode=1110.
2700 OpCmode = 0xe;
2701 Imm = SplatBits;
2702 VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
2703 break;
2704 }
2705 case 16: {
2706 // Neon move inst per halfword
2707 VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
2708 if ((SplatBits & ~0xff) == 0) {
2709 // Value = 0x00nn is 0x00nn LSL 0
2710 // movi: Op=0, Cmode=1000; mvni: Op=1, Cmode=1000
2711 // bic: Op=1, Cmode=1001; orr: Op=0, Cmode=1001
2712 // Op=x, Cmode=100y
2713 Imm = SplatBits;
2714 OpCmode = 0x8;
2715 break;
2716 }
2717 if ((SplatBits & ~0xff00) == 0) {
2718 // Value = 0xnn00 is 0x00nn LSL 8
2719 // movi: Op=0, Cmode=1010; mvni: Op=1, Cmode=1010
2720 // bic: Op=1, Cmode=1011; orr: Op=0, Cmode=1011
2721 // Op=x, Cmode=101x
2722 Imm = SplatBits >> 8;
2723 OpCmode = 0xa;
2724 break;
2725 }
2726 // can't handle any other
2727 return false;
2728 }
2729
2730 case 32: {
2731 // First the LSL variants (MSL is unusable by some interested instructions).
2732
2733 // Neon move instr per word, shift zeros
2734 VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
2735 if ((SplatBits & ~0xff) == 0) {
2736 // Value = 0x000000nn is 0x000000nn LSL 0
2737 // movi: Op=0, Cmode= 0000; mvni: Op=1, Cmode= 0000
2738 // bic: Op=1, Cmode= 0001; orr: Op=0, Cmode= 0001
2739 // Op=x, Cmode=000x
2740 Imm = SplatBits;
2741 OpCmode = 0;
2742 break;
2743 }
2744 if ((SplatBits & ~0xff00) == 0) {
2745 // Value = 0x0000nn00 is 0x000000nn LSL 8
2746 // movi: Op=0, Cmode= 0010; mvni: Op=1, Cmode= 0010
2747 // bic: Op=1, Cmode= 0011; orr : Op=0, Cmode= 0011
2748 // Op=x, Cmode=001x
2749 Imm = SplatBits >> 8;
2750 OpCmode = 0x2;
2751 break;
2752 }
2753 if ((SplatBits & ~0xff0000) == 0) {
2754 // Value = 0x00nn0000 is 0x000000nn LSL 16
2755 // movi: Op=0, Cmode= 0100; mvni: Op=1, Cmode= 0100
2756 // bic: Op=1, Cmode= 0101; orr: Op=0, Cmode= 0101
2757 // Op=x, Cmode=010x
2758 Imm = SplatBits >> 16;
2759 OpCmode = 0x4;
2760 break;
2761 }
2762 if ((SplatBits & ~0xff000000) == 0) {
2763 // Value = 0xnn000000 is 0x000000nn LSL 24
2764 // movi: Op=0, Cmode= 0110; mvni: Op=1, Cmode= 0110
2765 // bic: Op=1, Cmode= 0111; orr: Op=0, Cmode= 0111
2766 // Op=x, Cmode=011x
2767 Imm = SplatBits >> 24;
2768 OpCmode = 0x6;
2769 break;
2770 }
2771
2772 // Now the MSL immediates.
2773
2774 // Neon move instr per word, shift ones
2775 if ((SplatBits & ~0xffff) == 0 &&
2776 ((SplatBits | SplatUndef) & 0xff) == 0xff) {
2777 // Value = 0x0000nnff is 0x000000nn MSL 8
2778 // movi: Op=0, Cmode= 1100; mvni: Op=1, Cmode= 1100
2779 // Op=x, Cmode=1100
2780 Imm = SplatBits >> 8;
2781 OpCmode = 0xc;
2782 break;
2783 }
2784 if ((SplatBits & ~0xffffff) == 0 &&
2785 ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
2786 // Value = 0x00nnffff is 0x000000nn MSL 16
2787 // movi: Op=1, Cmode= 1101; mvni: Op=1, Cmode= 1101
2788 // Op=x, Cmode=1101
2789 Imm = SplatBits >> 16;
2790 OpCmode = 0xd;
2791 break;
2792 }
2793 // can't handle any other
2794 return false;
2795 }
2796
2797 case 64: {
2798 if (type != Neon_Mov_Imm)
2799 return false;
2800 // Neon move instr bytemask, where each byte is either 0x00 or 0xff.
2801 // movi Op=1, Cmode=1110.
2802 OpCmode = 0x1e;
2803 uint64_t BitMask = 0xff;
2804 uint64_t Val = 0;
2805 unsigned ImmMask = 1;
2806 Imm = 0;
2807 for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
2808 if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
2809 Val |= BitMask;
2810 Imm |= ImmMask;
2811 } else if ((SplatBits & BitMask) != 0) {
2812 return false;
2813 }
2814 BitMask <<= 8;
2815 ImmMask <<= 1;
2816 }
2817 SplatBits = Val;
2818 VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
2819 break;
2820 }
2821 }
2822
2823 return true;
2824}
2825
Tim Northovere0e3aef2013-01-31 12:12:40 +00002826static SDValue PerformANDCombine(SDNode *N,
2827 TargetLowering::DAGCombinerInfo &DCI) {
2828
2829 SelectionDAG &DAG = DCI.DAG;
Andrew Trickef9de2a2013-05-25 02:42:55 +00002830 SDLoc DL(N);
Tim Northovere0e3aef2013-01-31 12:12:40 +00002831 EVT VT = N->getValueType(0);
2832
2833 // We're looking for an SRA/SHL pair which form an SBFX.
2834
2835 if (VT != MVT::i32 && VT != MVT::i64)
2836 return SDValue();
2837
2838 if (!isa<ConstantSDNode>(N->getOperand(1)))
2839 return SDValue();
2840
2841 uint64_t TruncMask = N->getConstantOperandVal(1);
2842 if (!isMask_64(TruncMask))
2843 return SDValue();
2844
2845 uint64_t Width = CountPopulation_64(TruncMask);
2846 SDValue Shift = N->getOperand(0);
2847
2848 if (Shift.getOpcode() != ISD::SRL)
2849 return SDValue();
2850
2851 if (!isa<ConstantSDNode>(Shift->getOperand(1)))
2852 return SDValue();
2853 uint64_t LSB = Shift->getConstantOperandVal(1);
2854
2855 if (LSB > VT.getSizeInBits() || Width > VT.getSizeInBits())
2856 return SDValue();
2857
2858 return DAG.getNode(AArch64ISD::UBFX, DL, VT, Shift.getOperand(0),
2859 DAG.getConstant(LSB, MVT::i64),
2860 DAG.getConstant(LSB + Width - 1, MVT::i64));
2861}
2862
Tim Northovere0e3aef2013-01-31 12:12:40 +00002863/// For a true bitfield insert, the bits getting into that contiguous mask
2864/// should come from the low part of an existing value: they must be formed from
2865/// a compatible SHL operation (unless they're already low). This function
2866/// checks that condition and returns the least-significant bit that's
2867/// intended. If the operation not a field preparation, -1 is returned.
Andrew Trickef9de2a2013-05-25 02:42:55 +00002868static int32_t getLSBForBFI(SelectionDAG &DAG, SDLoc DL, EVT VT,
Tim Northovere0e3aef2013-01-31 12:12:40 +00002869 SDValue &MaskedVal, uint64_t Mask) {
2870 if (!isShiftedMask_64(Mask))
2871 return -1;
2872
2873 // Now we need to alter MaskedVal so that it is an appropriate input for a BFI
2874 // instruction. BFI will do a left-shift by LSB before applying the mask we've
2875 // spotted, so in general we should pre-emptively "undo" that by making sure
2876 // the incoming bits have had a right-shift applied to them.
2877 //
2878 // This right shift, however, will combine with existing left/right shifts. In
2879 // the simplest case of a completely straight bitfield operation, it will be
2880 // expected to completely cancel out with an existing SHL. More complicated
2881 // cases (e.g. bitfield to bitfield copy) may still need a real shift before
2882 // the BFI.
2883
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +00002884 uint64_t LSB = countTrailingZeros(Mask);
Tim Northovere0e3aef2013-01-31 12:12:40 +00002885 int64_t ShiftRightRequired = LSB;
2886 if (MaskedVal.getOpcode() == ISD::SHL &&
2887 isa<ConstantSDNode>(MaskedVal.getOperand(1))) {
2888 ShiftRightRequired -= MaskedVal.getConstantOperandVal(1);
2889 MaskedVal = MaskedVal.getOperand(0);
2890 } else if (MaskedVal.getOpcode() == ISD::SRL &&
2891 isa<ConstantSDNode>(MaskedVal.getOperand(1))) {
2892 ShiftRightRequired += MaskedVal.getConstantOperandVal(1);
2893 MaskedVal = MaskedVal.getOperand(0);
2894 }
2895
2896 if (ShiftRightRequired > 0)
2897 MaskedVal = DAG.getNode(ISD::SRL, DL, VT, MaskedVal,
2898 DAG.getConstant(ShiftRightRequired, MVT::i64));
2899 else if (ShiftRightRequired < 0) {
2900 // We could actually end up with a residual left shift, for example with
2901 // "struc.bitfield = val << 1".
2902 MaskedVal = DAG.getNode(ISD::SHL, DL, VT, MaskedVal,
2903 DAG.getConstant(-ShiftRightRequired, MVT::i64));
2904 }
2905
2906 return LSB;
2907}
2908
2909/// Searches from N for an existing AArch64ISD::BFI node, possibly surrounded by
2910/// a mask and an extension. Returns true if a BFI was found and provides
2911/// information on its surroundings.
2912static bool findMaskedBFI(SDValue N, SDValue &BFI, uint64_t &Mask,
2913 bool &Extended) {
2914 Extended = false;
2915 if (N.getOpcode() == ISD::ZERO_EXTEND) {
2916 Extended = true;
2917 N = N.getOperand(0);
2918 }
2919
2920 if (N.getOpcode() == ISD::AND && isa<ConstantSDNode>(N.getOperand(1))) {
2921 Mask = N->getConstantOperandVal(1);
2922 N = N.getOperand(0);
2923 } else {
2924 // Mask is the whole width.
Benjamin Kramera5dce352013-02-17 17:55:32 +00002925 Mask = -1ULL >> (64 - N.getValueType().getSizeInBits());
Tim Northovere0e3aef2013-01-31 12:12:40 +00002926 }
2927
2928 if (N.getOpcode() == AArch64ISD::BFI) {
2929 BFI = N;
2930 return true;
2931 }
2932
2933 return false;
2934}
2935
2936/// Try to combine a subtree (rooted at an OR) into a "masked BFI" node, which
2937/// is roughly equivalent to (and (BFI ...), mask). This form is used because it
2938/// can often be further combined with a larger mask. Ultimately, we want mask
2939/// to be 2^32-1 or 2^64-1 so the AND can be skipped.
2940static SDValue tryCombineToBFI(SDNode *N,
2941 TargetLowering::DAGCombinerInfo &DCI,
2942 const AArch64Subtarget *Subtarget) {
2943 SelectionDAG &DAG = DCI.DAG;
Andrew Trickef9de2a2013-05-25 02:42:55 +00002944 SDLoc DL(N);
Tim Northovere0e3aef2013-01-31 12:12:40 +00002945 EVT VT = N->getValueType(0);
2946
2947 assert(N->getOpcode() == ISD::OR && "Unexpected root");
2948
2949 // We need the LHS to be (and SOMETHING, MASK). Find out what that mask is or
2950 // abandon the effort.
2951 SDValue LHS = N->getOperand(0);
2952 if (LHS.getOpcode() != ISD::AND)
2953 return SDValue();
2954
2955 uint64_t LHSMask;
2956 if (isa<ConstantSDNode>(LHS.getOperand(1)))
2957 LHSMask = LHS->getConstantOperandVal(1);
2958 else
2959 return SDValue();
2960
2961 // We also need the RHS to be (and SOMETHING, MASK). Find out what that mask
2962 // is or abandon the effort.
2963 SDValue RHS = N->getOperand(1);
2964 if (RHS.getOpcode() != ISD::AND)
2965 return SDValue();
2966
2967 uint64_t RHSMask;
2968 if (isa<ConstantSDNode>(RHS.getOperand(1)))
2969 RHSMask = RHS->getConstantOperandVal(1);
2970 else
2971 return SDValue();
2972
2973 // Can't do anything if the masks are incompatible.
2974 if (LHSMask & RHSMask)
2975 return SDValue();
2976
2977 // Now we need one of the masks to be a contiguous field. Without loss of
2978 // generality that should be the RHS one.
2979 SDValue Bitfield = LHS.getOperand(0);
2980 if (getLSBForBFI(DAG, DL, VT, Bitfield, LHSMask) != -1) {
2981 // We know that LHS is a candidate new value, and RHS isn't already a better
2982 // one.
2983 std::swap(LHS, RHS);
2984 std::swap(LHSMask, RHSMask);
2985 }
2986
2987 // We've done our best to put the right operands in the right places, all we
2988 // can do now is check whether a BFI exists.
2989 Bitfield = RHS.getOperand(0);
2990 int32_t LSB = getLSBForBFI(DAG, DL, VT, Bitfield, RHSMask);
2991 if (LSB == -1)
2992 return SDValue();
2993
2994 uint32_t Width = CountPopulation_64(RHSMask);
2995 assert(Width && "Expected non-zero bitfield width");
2996
2997 SDValue BFI = DAG.getNode(AArch64ISD::BFI, DL, VT,
2998 LHS.getOperand(0), Bitfield,
2999 DAG.getConstant(LSB, MVT::i64),
3000 DAG.getConstant(Width, MVT::i64));
3001
3002 // Mask is trivial
Benjamin Kramera5dce352013-02-17 17:55:32 +00003003 if ((LHSMask | RHSMask) == (-1ULL >> (64 - VT.getSizeInBits())))
Tim Northovere0e3aef2013-01-31 12:12:40 +00003004 return BFI;
3005
3006 return DAG.getNode(ISD::AND, DL, VT, BFI,
3007 DAG.getConstant(LHSMask | RHSMask, VT));
3008}
3009
3010/// Search for the bitwise combining (with careful masks) of a MaskedBFI and its
3011/// original input. This is surprisingly common because SROA splits things up
3012/// into i8 chunks, so the originally detected MaskedBFI may actually only act
3013/// on the low (say) byte of a word. This is then orred into the rest of the
3014/// word afterwards.
3015///
3016/// Basic input: (or (and OLDFIELD, MASK1), (MaskedBFI MASK2, OLDFIELD, ...)).
3017///
3018/// If MASK1 and MASK2 are compatible, we can fold the whole thing into the
3019/// MaskedBFI. We can also deal with a certain amount of extend/truncate being
3020/// involved.
3021static SDValue tryCombineToLargerBFI(SDNode *N,
3022 TargetLowering::DAGCombinerInfo &DCI,
3023 const AArch64Subtarget *Subtarget) {
3024 SelectionDAG &DAG = DCI.DAG;
Andrew Trickef9de2a2013-05-25 02:42:55 +00003025 SDLoc DL(N);
Tim Northovere0e3aef2013-01-31 12:12:40 +00003026 EVT VT = N->getValueType(0);
3027
3028 // First job is to hunt for a MaskedBFI on either the left or right. Swap
3029 // operands if it's actually on the right.
3030 SDValue BFI;
3031 SDValue PossExtraMask;
3032 uint64_t ExistingMask = 0;
3033 bool Extended = false;
3034 if (findMaskedBFI(N->getOperand(0), BFI, ExistingMask, Extended))
3035 PossExtraMask = N->getOperand(1);
3036 else if (findMaskedBFI(N->getOperand(1), BFI, ExistingMask, Extended))
3037 PossExtraMask = N->getOperand(0);
3038 else
3039 return SDValue();
3040
3041 // We can only combine a BFI with another compatible mask.
3042 if (PossExtraMask.getOpcode() != ISD::AND ||
3043 !isa<ConstantSDNode>(PossExtraMask.getOperand(1)))
3044 return SDValue();
3045
3046 uint64_t ExtraMask = PossExtraMask->getConstantOperandVal(1);
3047
3048 // Masks must be compatible.
3049 if (ExtraMask & ExistingMask)
3050 return SDValue();
3051
3052 SDValue OldBFIVal = BFI.getOperand(0);
3053 SDValue NewBFIVal = BFI.getOperand(1);
3054 if (Extended) {
3055 // We skipped a ZERO_EXTEND above, so the input to the MaskedBFIs should be
3056 // 32-bit and we'll be forming a 64-bit MaskedBFI. The MaskedBFI arguments
3057 // need to be made compatible.
3058 assert(VT == MVT::i64 && BFI.getValueType() == MVT::i32
3059 && "Invalid types for BFI");
3060 OldBFIVal = DAG.getNode(ISD::ANY_EXTEND, DL, VT, OldBFIVal);
3061 NewBFIVal = DAG.getNode(ISD::ANY_EXTEND, DL, VT, NewBFIVal);
3062 }
3063
3064 // We need the MaskedBFI to be combined with a mask of the *same* value.
3065 if (PossExtraMask.getOperand(0) != OldBFIVal)
3066 return SDValue();
3067
3068 BFI = DAG.getNode(AArch64ISD::BFI, DL, VT,
3069 OldBFIVal, NewBFIVal,
3070 BFI.getOperand(2), BFI.getOperand(3));
3071
3072 // If the masking is trivial, we don't need to create it.
Benjamin Kramera5dce352013-02-17 17:55:32 +00003073 if ((ExtraMask | ExistingMask) == (-1ULL >> (64 - VT.getSizeInBits())))
Tim Northovere0e3aef2013-01-31 12:12:40 +00003074 return BFI;
3075
3076 return DAG.getNode(ISD::AND, DL, VT, BFI,
3077 DAG.getConstant(ExtraMask | ExistingMask, VT));
3078}
3079
3080/// An EXTR instruction is made up of two shifts, ORed together. This helper
3081/// searches for and classifies those shifts.
3082static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount,
3083 bool &FromHi) {
3084 if (N.getOpcode() == ISD::SHL)
3085 FromHi = false;
3086 else if (N.getOpcode() == ISD::SRL)
3087 FromHi = true;
3088 else
3089 return false;
3090
3091 if (!isa<ConstantSDNode>(N.getOperand(1)))
3092 return false;
3093
3094 ShiftAmount = N->getConstantOperandVal(1);
3095 Src = N->getOperand(0);
3096 return true;
3097}
3098
Joel Jones440d8e42013-02-10 23:56:30 +00003099/// EXTR instruction extracts a contiguous chunk of bits from two existing
Tim Northovere0e3aef2013-01-31 12:12:40 +00003100/// registers viewed as a high/low pair. This function looks for the pattern:
3101/// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an
3102/// EXTR. Can't quite be done in TableGen because the two immediates aren't
3103/// independent.
3104static SDValue tryCombineToEXTR(SDNode *N,
3105 TargetLowering::DAGCombinerInfo &DCI) {
3106 SelectionDAG &DAG = DCI.DAG;
Andrew Trickef9de2a2013-05-25 02:42:55 +00003107 SDLoc DL(N);
Tim Northovere0e3aef2013-01-31 12:12:40 +00003108 EVT VT = N->getValueType(0);
3109
3110 assert(N->getOpcode() == ISD::OR && "Unexpected root");
3111
3112 if (VT != MVT::i32 && VT != MVT::i64)
3113 return SDValue();
3114
3115 SDValue LHS;
3116 uint32_t ShiftLHS = 0;
3117 bool LHSFromHi = 0;
3118 if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi))
3119 return SDValue();
3120
3121 SDValue RHS;
3122 uint32_t ShiftRHS = 0;
3123 bool RHSFromHi = 0;
3124 if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi))
3125 return SDValue();
3126
3127 // If they're both trying to come from the high part of the register, they're
3128 // not really an EXTR.
3129 if (LHSFromHi == RHSFromHi)
3130 return SDValue();
3131
3132 if (ShiftLHS + ShiftRHS != VT.getSizeInBits())
3133 return SDValue();
3134
3135 if (LHSFromHi) {
3136 std::swap(LHS, RHS);
3137 std::swap(ShiftLHS, ShiftRHS);
3138 }
3139
3140 return DAG.getNode(AArch64ISD::EXTR, DL, VT,
3141 LHS, RHS,
3142 DAG.getConstant(ShiftRHS, MVT::i64));
3143}
3144
3145/// Target-specific dag combine xforms for ISD::OR
3146static SDValue PerformORCombine(SDNode *N,
3147 TargetLowering::DAGCombinerInfo &DCI,
3148 const AArch64Subtarget *Subtarget) {
3149
3150 SelectionDAG &DAG = DCI.DAG;
Tim Northover40e9efd2013-08-01 09:20:35 +00003151 SDLoc DL(N);
Tim Northovere0e3aef2013-01-31 12:12:40 +00003152 EVT VT = N->getValueType(0);
3153
3154 if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
3155 return SDValue();
3156
3157 // Attempt to recognise bitfield-insert operations.
3158 SDValue Res = tryCombineToBFI(N, DCI, Subtarget);
3159 if (Res.getNode())
3160 return Res;
3161
3162 // Attempt to combine an existing MaskedBFI operation into one with a larger
3163 // mask.
3164 Res = tryCombineToLargerBFI(N, DCI, Subtarget);
3165 if (Res.getNode())
3166 return Res;
3167
3168 Res = tryCombineToEXTR(N, DCI);
3169 if (Res.getNode())
3170 return Res;
3171
Tim Northover40e9efd2013-08-01 09:20:35 +00003172 if (!Subtarget->hasNEON())
3173 return SDValue();
3174
3175 // Attempt to use vector immediate-form BSL
3176 // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
3177
3178 SDValue N0 = N->getOperand(0);
3179 if (N0.getOpcode() != ISD::AND)
3180 return SDValue();
3181
3182 SDValue N1 = N->getOperand(1);
3183 if (N1.getOpcode() != ISD::AND)
3184 return SDValue();
3185
3186 if (VT.isVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
3187 APInt SplatUndef;
3188 unsigned SplatBitSize;
3189 bool HasAnyUndefs;
3190 BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
3191 APInt SplatBits0;
3192 if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
3193 HasAnyUndefs) &&
3194 !HasAnyUndefs) {
3195 BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
3196 APInt SplatBits1;
3197 if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
3198 HasAnyUndefs) &&
3199 !HasAnyUndefs && SplatBits0 == ~SplatBits1) {
3200 // Canonicalize the vector type to make instruction selection simpler.
3201 EVT CanonicalVT = VT.is128BitVector() ? MVT::v16i8 : MVT::v8i8;
3202 SDValue Result = DAG.getNode(AArch64ISD::NEON_BSL, DL, CanonicalVT,
3203 N0->getOperand(1), N0->getOperand(0),
3204 N1->getOperand(0));
3205 return DAG.getNode(ISD::BITCAST, DL, VT, Result);
3206 }
3207 }
3208 }
3209
Tim Northovere0e3aef2013-01-31 12:12:40 +00003210 return SDValue();
3211}
3212
3213/// Target-specific dag combine xforms for ISD::SRA
3214static SDValue PerformSRACombine(SDNode *N,
3215 TargetLowering::DAGCombinerInfo &DCI) {
3216
3217 SelectionDAG &DAG = DCI.DAG;
Andrew Trickef9de2a2013-05-25 02:42:55 +00003218 SDLoc DL(N);
Tim Northovere0e3aef2013-01-31 12:12:40 +00003219 EVT VT = N->getValueType(0);
3220
3221 // We're looking for an SRA/SHL pair which form an SBFX.
3222
3223 if (VT != MVT::i32 && VT != MVT::i64)
3224 return SDValue();
3225
3226 if (!isa<ConstantSDNode>(N->getOperand(1)))
3227 return SDValue();
3228
3229 uint64_t ExtraSignBits = N->getConstantOperandVal(1);
3230 SDValue Shift = N->getOperand(0);
3231
3232 if (Shift.getOpcode() != ISD::SHL)
3233 return SDValue();
3234
3235 if (!isa<ConstantSDNode>(Shift->getOperand(1)))
3236 return SDValue();
3237
3238 uint64_t BitsOnLeft = Shift->getConstantOperandVal(1);
3239 uint64_t Width = VT.getSizeInBits() - ExtraSignBits;
3240 uint64_t LSB = VT.getSizeInBits() - Width - BitsOnLeft;
3241
3242 if (LSB > VT.getSizeInBits() || Width > VT.getSizeInBits())
3243 return SDValue();
3244
3245 return DAG.getNode(AArch64ISD::SBFX, DL, VT, Shift.getOperand(0),
3246 DAG.getConstant(LSB, MVT::i64),
3247 DAG.getConstant(LSB + Width - 1, MVT::i64));
3248}
3249
Hao Liucd8b02d2013-08-15 08:26:11 +00003250/// Check if this is a valid build_vector for the immediate operand of
3251/// a vector shift operation, where all the elements of the build_vector
3252/// must have the same constant integer value.
3253static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
3254 // Ignore bit_converts.
3255 while (Op.getOpcode() == ISD::BITCAST)
3256 Op = Op.getOperand(0);
3257 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
3258 APInt SplatBits, SplatUndef;
3259 unsigned SplatBitSize;
3260 bool HasAnyUndefs;
3261 if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
3262 HasAnyUndefs, ElementBits) ||
3263 SplatBitSize > ElementBits)
3264 return false;
3265 Cnt = SplatBits.getSExtValue();
3266 return true;
3267}
3268
3269/// Check if this is a valid build_vector for the immediate operand of
3270/// a vector shift left operation. That value must be in the range:
Hao Liud4aede02013-09-04 09:28:24 +00003271/// 0 <= Value < ElementBits
Hao Liucd8b02d2013-08-15 08:26:11 +00003272static bool isVShiftLImm(SDValue Op, EVT VT, int64_t &Cnt) {
3273 assert(VT.isVector() && "vector shift count is not a vector type");
3274 unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
3275 if (!getVShiftImm(Op, ElementBits, Cnt))
3276 return false;
3277 return (Cnt >= 0 && Cnt < ElementBits);
3278}
3279
Hao Liud4aede02013-09-04 09:28:24 +00003280/// Check if this is a valid build_vector for the immediate operand of a
3281/// vector shift right operation. The value must be in the range:
3282/// 1 <= Value <= ElementBits
3283static bool isVShiftRImm(SDValue Op, EVT VT, int64_t &Cnt) {
3284 assert(VT.isVector() && "vector shift count is not a vector type");
3285 unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
3286 if (!getVShiftImm(Op, ElementBits, Cnt))
3287 return false;
3288 return (Cnt >= 1 && Cnt <= ElementBits);
3289}
3290
3291/// Checks for immediate versions of vector shifts and lowers them.
3292static SDValue PerformShiftCombine(SDNode *N,
3293 TargetLowering::DAGCombinerInfo &DCI,
Hao Liucd8b02d2013-08-15 08:26:11 +00003294 const AArch64Subtarget *ST) {
3295 SelectionDAG &DAG = DCI.DAG;
3296 EVT VT = N->getValueType(0);
Hao Liud4aede02013-09-04 09:28:24 +00003297 if (N->getOpcode() == ISD::SRA && (VT == MVT::i32 || VT == MVT::i64))
3298 return PerformSRACombine(N, DCI);
Hao Liucd8b02d2013-08-15 08:26:11 +00003299
3300 // Nothing to be done for scalar shifts.
3301 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3302 if (!VT.isVector() || !TLI.isTypeLegal(VT))
3303 return SDValue();
3304
3305 assert(ST->hasNEON() && "unexpected vector shift");
3306 int64_t Cnt;
Hao Liud4aede02013-09-04 09:28:24 +00003307
3308 switch (N->getOpcode()) {
3309 default:
3310 llvm_unreachable("unexpected shift opcode");
3311
3312 case ISD::SHL:
3313 if (isVShiftLImm(N->getOperand(1), VT, Cnt)) {
3314 SDValue RHS =
3315 DAG.getNode(AArch64ISD::NEON_DUPIMM, SDLoc(N->getOperand(1)), VT,
3316 DAG.getConstant(Cnt, MVT::i32));
3317 return DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0), RHS);
3318 }
3319 break;
3320
3321 case ISD::SRA:
3322 case ISD::SRL:
3323 if (isVShiftRImm(N->getOperand(1), VT, Cnt)) {
3324 SDValue RHS =
3325 DAG.getNode(AArch64ISD::NEON_DUPIMM, SDLoc(N->getOperand(1)), VT,
3326 DAG.getConstant(Cnt, MVT::i32));
3327 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N->getOperand(0), RHS);
3328 }
3329 break;
3330 }
3331
3332 return SDValue();
3333}
3334
3335/// ARM-specific DAG combining for intrinsics.
3336static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
3337 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
3338
3339 switch (IntNo) {
3340 default:
3341 // Don't do anything for most intrinsics.
3342 break;
3343
3344 case Intrinsic::arm_neon_vqshifts:
3345 case Intrinsic::arm_neon_vqshiftu:
3346 EVT VT = N->getOperand(1).getValueType();
3347 int64_t Cnt;
3348 if (!isVShiftLImm(N->getOperand(2), VT, Cnt))
3349 break;
3350 unsigned VShiftOpc = (IntNo == Intrinsic::arm_neon_vqshifts)
3351 ? AArch64ISD::NEON_QSHLs
3352 : AArch64ISD::NEON_QSHLu;
3353 return DAG.getNode(VShiftOpc, SDLoc(N), N->getValueType(0),
3354 N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
Hao Liucd8b02d2013-08-15 08:26:11 +00003355 }
3356
3357 return SDValue();
3358}
Tim Northovere0e3aef2013-01-31 12:12:40 +00003359
3360SDValue
3361AArch64TargetLowering::PerformDAGCombine(SDNode *N,
3362 DAGCombinerInfo &DCI) const {
3363 switch (N->getOpcode()) {
3364 default: break;
3365 case ISD::AND: return PerformANDCombine(N, DCI);
Bill Wendling496dc332013-06-07 05:00:11 +00003366 case ISD::OR: return PerformORCombine(N, DCI, getSubtarget());
Hao Liud4aede02013-09-04 09:28:24 +00003367 case ISD::SHL:
3368 case ISD::SRA:
3369 case ISD::SRL:
3370 return PerformShiftCombine(N, DCI, getSubtarget());
3371 case ISD::INTRINSIC_WO_CHAIN:
3372 return PerformIntrinsicCombine(N, DCI.DAG);
Tim Northovere0e3aef2013-01-31 12:12:40 +00003373 }
3374 return SDValue();
3375}
3376
Stephen Lin73de7bf2013-07-09 18:16:56 +00003377bool
3378AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
3379 VT = VT.getScalarType();
3380
3381 if (!VT.isSimple())
3382 return false;
3383
3384 switch (VT.getSimpleVT().SimpleTy) {
3385 case MVT::f16:
3386 case MVT::f32:
3387 case MVT::f64:
3388 return true;
3389 case MVT::f128:
3390 return false;
3391 default:
3392 break;
3393 }
3394
3395 return false;
3396}
3397
Tim Northover40e9efd2013-08-01 09:20:35 +00003398// If this is a case we can't handle, return null and let the default
3399// expansion code take care of it.
3400SDValue
3401AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
3402 const AArch64Subtarget *ST) const {
3403
3404 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
3405 SDLoc DL(Op);
3406 EVT VT = Op.getValueType();
3407
3408 APInt SplatBits, SplatUndef;
3409 unsigned SplatBitSize;
3410 bool HasAnyUndefs;
3411
3412 // Note we favor lowering MOVI over MVNI.
3413 // This has implications on the definition of patterns in TableGen to select
3414 // BIC immediate instructions but not ORR immediate instructions.
3415 // If this lowering order is changed, TableGen patterns for BIC immediate and
3416 // ORR immediate instructions have to be updated.
3417 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
3418 if (SplatBitSize <= 64) {
3419 // First attempt to use vector immediate-form MOVI
3420 EVT NeonMovVT;
3421 unsigned Imm = 0;
3422 unsigned OpCmode = 0;
3423
3424 if (isNeonModifiedImm(SplatBits.getZExtValue(), SplatUndef.getZExtValue(),
3425 SplatBitSize, DAG, VT.is128BitVector(),
3426 Neon_Mov_Imm, NeonMovVT, Imm, OpCmode)) {
3427 SDValue ImmVal = DAG.getTargetConstant(Imm, MVT::i32);
3428 SDValue OpCmodeVal = DAG.getConstant(OpCmode, MVT::i32);
3429
3430 if (ImmVal.getNode() && OpCmodeVal.getNode()) {
3431 SDValue NeonMov = DAG.getNode(AArch64ISD::NEON_MOVIMM, DL, NeonMovVT,
3432 ImmVal, OpCmodeVal);
3433 return DAG.getNode(ISD::BITCAST, DL, VT, NeonMov);
3434 }
3435 }
3436
3437 // Then attempt to use vector immediate-form MVNI
3438 uint64_t NegatedImm = (~SplatBits).getZExtValue();
3439 if (isNeonModifiedImm(NegatedImm, SplatUndef.getZExtValue(), SplatBitSize,
3440 DAG, VT.is128BitVector(), Neon_Mvn_Imm, NeonMovVT,
3441 Imm, OpCmode)) {
3442 SDValue ImmVal = DAG.getTargetConstant(Imm, MVT::i32);
3443 SDValue OpCmodeVal = DAG.getConstant(OpCmode, MVT::i32);
3444 if (ImmVal.getNode() && OpCmodeVal.getNode()) {
3445 SDValue NeonMov = DAG.getNode(AArch64ISD::NEON_MVNIMM, DL, NeonMovVT,
3446 ImmVal, OpCmodeVal);
3447 return DAG.getNode(ISD::BITCAST, DL, VT, NeonMov);
3448 }
3449 }
3450
3451 // Attempt to use vector immediate-form FMOV
3452 if (((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) ||
3453 (VT == MVT::v2f64 && SplatBitSize == 64)) {
3454 APFloat RealVal(
3455 SplatBitSize == 32 ? APFloat::IEEEsingle : APFloat::IEEEdouble,
3456 SplatBits);
3457 uint32_t ImmVal;
3458 if (A64Imms::isFPImm(RealVal, ImmVal)) {
3459 SDValue Val = DAG.getTargetConstant(ImmVal, MVT::i32);
3460 return DAG.getNode(AArch64ISD::NEON_FMOVIMM, DL, VT, Val);
3461 }
3462 }
3463 }
3464 }
3465 return SDValue();
3466}
3467
Tim Northovere0e3aef2013-01-31 12:12:40 +00003468AArch64TargetLowering::ConstraintType
3469AArch64TargetLowering::getConstraintType(const std::string &Constraint) const {
3470 if (Constraint.size() == 1) {
3471 switch (Constraint[0]) {
3472 default: break;
3473 case 'w': // An FP/SIMD vector register
3474 return C_RegisterClass;
3475 case 'I': // Constant that can be used with an ADD instruction
3476 case 'J': // Constant that can be used with a SUB instruction
3477 case 'K': // Constant that can be used with a 32-bit logical instruction
3478 case 'L': // Constant that can be used with a 64-bit logical instruction
3479 case 'M': // Constant that can be used as a 32-bit MOV immediate
3480 case 'N': // Constant that can be used as a 64-bit MOV immediate
3481 case 'Y': // Floating point constant zero
3482 case 'Z': // Integer constant zero
3483 return C_Other;
3484 case 'Q': // A memory reference with base register and no offset
3485 return C_Memory;
3486 case 'S': // A symbolic address
3487 return C_Other;
3488 }
3489 }
3490
3491 // FIXME: Ump, Utf, Usa, Ush
Tim Northoverbcaca872013-02-05 13:24:56 +00003492 // Ump: A memory address suitable for ldp/stp in SI, DI, SF and DF modes,
3493 // whatever they may be
Tim Northovere0e3aef2013-01-31 12:12:40 +00003494 // Utf: A memory address suitable for ldp/stp in TF mode, whatever it may be
3495 // Usa: An absolute symbolic address
3496 // Ush: The high part (bits 32:12) of a pc-relative symbolic address
3497 assert(Constraint != "Ump" && Constraint != "Utf" && Constraint != "Usa"
3498 && Constraint != "Ush" && "Unimplemented constraints");
3499
3500 return TargetLowering::getConstraintType(Constraint);
3501}
3502
3503TargetLowering::ConstraintWeight
3504AArch64TargetLowering::getSingleConstraintMatchWeight(AsmOperandInfo &Info,
3505 const char *Constraint) const {
3506
3507 llvm_unreachable("Constraint weight unimplemented");
3508}
3509
3510void
3511AArch64TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3512 std::string &Constraint,
3513 std::vector<SDValue> &Ops,
3514 SelectionDAG &DAG) const {
3515 SDValue Result(0, 0);
3516
3517 // Only length 1 constraints are C_Other.
3518 if (Constraint.size() != 1) return;
3519
3520 // Only C_Other constraints get lowered like this. That means constants for us
3521 // so return early if there's no hope the constraint can be lowered.
3522
3523 switch(Constraint[0]) {
3524 default: break;
3525 case 'I': case 'J': case 'K': case 'L':
3526 case 'M': case 'N': case 'Z': {
3527 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
3528 if (!C)
3529 return;
3530
3531 uint64_t CVal = C->getZExtValue();
3532 uint32_t Bits;
3533
3534 switch (Constraint[0]) {
3535 default:
3536 // FIXME: 'M' and 'N' are MOV pseudo-insts -- unsupported in assembly. 'J'
3537 // is a peculiarly useless SUB constraint.
3538 llvm_unreachable("Unimplemented C_Other constraint");
3539 case 'I':
3540 if (CVal <= 0xfff)
3541 break;
3542 return;
3543 case 'K':
3544 if (A64Imms::isLogicalImm(32, CVal, Bits))
3545 break;
3546 return;
3547 case 'L':
3548 if (A64Imms::isLogicalImm(64, CVal, Bits))
3549 break;
3550 return;
3551 case 'Z':
3552 if (CVal == 0)
3553 break;
3554 return;
3555 }
3556
3557 Result = DAG.getTargetConstant(CVal, Op.getValueType());
3558 break;
3559 }
3560 case 'S': {
3561 // An absolute symbolic address or label reference.
3562 if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
Andrew Trickef9de2a2013-05-25 02:42:55 +00003563 Result = DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
Tim Northovere0e3aef2013-01-31 12:12:40 +00003564 GA->getValueType(0));
Tim Northoverbcaca872013-02-05 13:24:56 +00003565 } else if (const BlockAddressSDNode *BA
3566 = dyn_cast<BlockAddressSDNode>(Op)) {
Tim Northovere0e3aef2013-01-31 12:12:40 +00003567 Result = DAG.getTargetBlockAddress(BA->getBlockAddress(),
3568 BA->getValueType(0));
3569 } else if (const ExternalSymbolSDNode *ES
3570 = dyn_cast<ExternalSymbolSDNode>(Op)) {
3571 Result = DAG.getTargetExternalSymbol(ES->getSymbol(),
3572 ES->getValueType(0));
3573 } else
3574 return;
3575 break;
3576 }
3577 case 'Y':
3578 if (const ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
3579 if (CFP->isExactlyValue(0.0)) {
3580 Result = DAG.getTargetConstantFP(0.0, CFP->getValueType(0));
3581 break;
3582 }
3583 }
3584 return;
3585 }
3586
3587 if (Result.getNode()) {
3588 Ops.push_back(Result);
3589 return;
3590 }
3591
3592 // It's an unknown constraint for us. Let generic code have a go.
3593 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
3594}
3595
3596std::pair<unsigned, const TargetRegisterClass*>
Tim Northoverbcaca872013-02-05 13:24:56 +00003597AArch64TargetLowering::getRegForInlineAsmConstraint(
3598 const std::string &Constraint,
Chad Rosier295bd432013-06-22 18:37:38 +00003599 MVT VT) const {
Tim Northovere0e3aef2013-01-31 12:12:40 +00003600 if (Constraint.size() == 1) {
3601 switch (Constraint[0]) {
3602 case 'r':
3603 if (VT.getSizeInBits() <= 32)
3604 return std::make_pair(0U, &AArch64::GPR32RegClass);
3605 else if (VT == MVT::i64)
3606 return std::make_pair(0U, &AArch64::GPR64RegClass);
3607 break;
3608 case 'w':
3609 if (VT == MVT::f16)
3610 return std::make_pair(0U, &AArch64::FPR16RegClass);
3611 else if (VT == MVT::f32)
3612 return std::make_pair(0U, &AArch64::FPR32RegClass);
3613 else if (VT == MVT::f64)
3614 return std::make_pair(0U, &AArch64::FPR64RegClass);
3615 else if (VT.getSizeInBits() == 64)
3616 return std::make_pair(0U, &AArch64::VPR64RegClass);
3617 else if (VT == MVT::f128)
3618 return std::make_pair(0U, &AArch64::FPR128RegClass);
3619 else if (VT.getSizeInBits() == 128)
3620 return std::make_pair(0U, &AArch64::VPR128RegClass);
3621 break;
3622 }
3623 }
3624
3625 // Use the default implementation in TargetLowering to convert the register
3626 // constraint into a member of a register class.
3627 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3628}